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We study the proximity effect in a one-dimensional nanowire strongly coupled to a finite superconductor with
a characteristic size which is much shorter than its coherence length. Such geometries have become increasingly
relevant in recent years in the experimental search for Majorana fermions with the development of thin epitaxial
Al shells which form a very strong contact with either InAs or InSb nanowires. So far, however, no theoretical
treatment of the proximity effect in these systems has accounted for the finite size of the superconducting film.
We show that the finite-size effects become very detrimental when the level spacing of the superconductor greatly
exceeds its energy gap. Without any fine tuning of the size of the superconductor (on the scale of the Fermi
wavelength), the tunneling energy scale must be larger than the level spacing in order to reach the “hard gap”
regime which is seen ubiquitously in the experiments. However, in this regime, the large tunneling energy scale
induces a large shift in the effective chemical potential of the nanowire and pushes the topological phase transition
to magnetic field strengths which exceed the critical field of Al.
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I. INTRODUCTION

Topological superconductivity has been a subject of intense
study in recent years [1] both theoretically and experimentally
because the localized Majorana excitations of such systems
obey non-Abelian statistics and can potentially be utilized for
applications in quantum computing [2,3]. The most promising
proposal to date for engineering Majorana bound states in
nanowires combines Rashba spin-orbit coupling, proximity-
induced s-wave superconductivity, and an external magnetic
field applied parallel to the nanowire [4–16]. An alternative
proposal which has also received a great deal of attention
involves coupling a ferromagnetic atomic chain to an s-
wave superconductor with strong intrinsic spin-orbit coupling
[17–25]. Since the first generation of nanowire experiments
[6–11], there has been significant progress made in both the
fabrication of cleaner devices as well as in the quality of
the proximity-induced superconductivity [12–16]. The most
significant advance in this respect has been the development
of thin shells (with thickness d ∼ 10 nm) of superconducting
Al grown epitaxially on either InAs [12–14] or InSb [16]
nanowires, thus ensuring a very strong proximity contact
which has led to very hard induced gaps in the nanowires
in the absence of a magnetic field.

Despite the recent experimental development of these
thin superconducting shells, the most comprehensive theories
describing proximity-induced superconductivity in a nanowire
treat the superconductor as infinitely large [14,26–31]. Such
an assumption implies that there is a continuum of states in the
superconductor, and therefore there are always states available
to couple to the nanowire and open a gap. However, in reality,
the superconductor has a finite level spacing δEs ∼ h̄vF /d due
to its finite size. For the thin Al shells studied experimentally
(vF ∼ 106 m/s and d ∼ 10 nm), the level spacing of the shell
δEs ∼ 10 meV exceeds the Fermi energy of the nanowire
(∼0.1–1.0 meV for typical semiconducting nanowires). Thus,
for the experimental system, the limit of a bulk superconductor
is not the relevant one and finite-size effects are expected
to play an important role in determining the strength of
proximity-induced superconductivity.

In this paper, we show that the finite size of the shell
can be very detrimental to inducing superconductivity in
the nanowire. In order to induce a sizable superconducting
gap without finely tuning the thickness of the shell on the
scale of the Fermi wavelength (of the superconductor), the
energy scale describing tunneling between the nanowire and
superconductor (γ ) must be made larger than the level spacing
of the shell (γ � δEs). However, such strong tunneling induces
a shift in the effective chemical potential of the nanowire
which greatly exceeds the semiconducting energy scale. As
a result, it is possible for the system to exhibit a hard gap even
if the nanowire is effectively depleted; in this case, the gap
is determined by the lowest subband in the superconductor
rather than the nanowire. Additionally, in order to reach
the topological phase, the Zeeman energy induced by an
external magnetic field must counteract the large chemical
potential shift. As a result, the field strength needed to
reach the topological phase greatly exceeds the critical field
of Al.

The remainder of this paper is organized as follows. In
Sec. II, we describe a simple theoretical model which can be
applied to the experimental geometry of a thin superconducting
shell strongly coupled to a semiconducting nanowire. In
Sec. III, we analyze the spectrum of our model, showing that
a large tunneling strength is needed to overcome the large
level spacing of the superconductor and open a sizable gap
in the nanowire. We consider the case when the nanowire
is located near the edge of the superconductor in Sec. III A,
while we consider the case when the nanowire is located in
the middle of the superconductor in Sec. III B. We present a
numerical tight-binding calculation to back up the theoretical
analysis of our model in Sec. IV. In Sec. V, we determine
how the finite size of the superconductor affects the critical
field strength needed to reach the topological phase in the
nanowire. In Sec. VI, we relate the results of our simple model
directly to the experimental setup and provide estimates for
the level spacing of the superconducting shell, the tunneling
strength needed to induce a sizable gap in the nanowire, and
the critical field strength needed to reach the topological phase.
Our conclusions are given in Sec. VII.
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FIG. 1. (a) A single-channel 1D nanowire is tunnel coupled

(at position xw) to a superconductor with finite extent d in the
direction perpendicular to the nanowire. (b) Spectrum of finite-size
superconductor in the absence of tunneling [Eq. (5)] with μs/� = 104

and kF d/π = 35.75. Each occupied subband (black) has a gap of �

which is not visible on the scale of the plot; unoccupied subbands
(red) do not have a superconducting gap. The subband spacing in
this case is much larger than both the superconducting gap and the
characteristic energy scale of the nanowire, δEs � �,μw .

II. MODEL

The system we consider is displayed in Fig. 1(a). We con-
sider a nanowire which is an infinitely long one-dimensional
channel oriented along the y direction (with zero width).
The nanowire is tunnel coupled at a position x = xw to a
superconductor which is infinitely long in the y direction and
has finite extent d in the x direction (the need for a finite xw

will be explained below).
We consider a Hamiltonian of the form

H = Hw + Hs + Ht. (1)

For now, we take a simple model for the Hamiltonian of the
nanowire,

Hw =
∑

σ

∫
dky

2π
ψ†

σ (ky)ξkψσ (ky), (2)

where ky is a conserved momentum in the direction parallel to
the nanowire, ψ†

σ (ky) is the creation operator in the nanowire,
and ξk = k2

y/2mw − μw (mw and μw are the effective mass
and chemical potential of the nanowire, respectively). The
superconductor is described by a BCS Hamiltonian,

Hs = 1

2

∫
dky

2π

∫ d

0
dx η†(ky,x)HBCSη(ky,x), (3)

where η(ky,x) = [η↑(ky,x),η†
↓(−ky,x)]T , η†

σ (ky,x) is the
creation operator in the superconductor, and HBCS =
(−∂2

x /2ms + k2
y/2ms − μs)τz + �τx , with � the (constant

in space) superconducting pairing potential and τx,y,z Pauli
matrices acting in Nambu space. The two systems are coupled
at a position x = xw by a tunneling term, which we assume
preserves spin and momentum,

Ht = −t
∑

σ

∫
dky

2π
[ψ†

σ (ky)ησ (ky,xw) + H.c.], (4)

where t is the (spin-independent) tunneling amplitude.
Such a model corresponds to local tunneling along the
superconductor/semiconductor interface.

In the absence of tunneling, the spectrum of the finite-sized
superconductor is given by (n ∈ Z+)

En(ky) =
√(

μs − k2
y

2ms

− π2n2

2msd2

)2

+ �2. (5)

When the quantization scale exceeds the gap, 1/msd
2 � �,

there are very few subbands available to couple to the low-
energy modes of the nanowire, as shown in Fig. 1(b). In this
case, the relevant subbands follow a linearized form,

En(ky) =
√[

(kF d − πn)δEs − k2
y

2ms

]2

+ �2, (6)

where we define the level spacing δEs = vF /d (vF = kF /ms

is the Fermi velocity of the superconductor and kF = √
2msμs

is the Fermi momentum). As we will show explicitly, when
δEs � �, it is the level spacing which is the relevant scale
(rather than �) in determining the strength of the proximity
effect.

The Hamiltonian in Eq. (1) can be diagonalized by means of
a Bogoliubov transformation [32]. The resulting Bogoliubov–
de Gennes (BdG) equation is given by[

HBCS + t2δ(x − xw)GR
0 (E,ky)

]
ψs(x) = Eψs(x), (7)

where ψs(x) is the (Nambu spinor) wave function of the
superconductor and GR

0 (E,ky) = (E − ξkτz + i0+)−1 is the
bare retarded Green’s function of the nanowire (in the ab-
sence of tunneling). The nanowire itself enters only through the
boundary condition at x = xw [corresponding to the δ-function
term in Eq. (7)]. Inside the superconductor, we solve Eq. (7) on
both the left (x < xw) and right (x > xw) sides of the nanowire
to give

ψL(x) = c1

(
u0

v0

)
sin(k+d) + c2

(
v0

u0

)
sin(k−d), (8a)

ψR(x) = c3

(
u0

v0

)
sin[k+(d − x)] + c4

(
v0

u0

)
sin[k−(d − x)],

(8b)

where k± = (k2
F − k2

y ± 2ims�)1/2, u0(v0) = √
(1 ± i�/E)/2,

and � = √
�2 − E2. The vanishing boundary conditions

which we impose at the free ends of the superconductor (x = 0
and x = d) are accounted for already in Eqs. (8); the boundary
conditions at x = xw due to tunneling are given by [32]

ψL(xw) = ψR(xw), (9a)

1

kF

[∂xψR(xw) − ∂xψL(xw)] = 2γ τzG
R
0 (E,ky)ψs(xw), (9b)

where γ = t2/vF is a tunneling energy scale.
Imposing boundary conditions at x = xw, the solvability

condition of the resulting system of equations determines the
excitation spectrum E(ky). Assuming that μs � |�|, we make
a semiclassical expansion

k± = kF ϕ ± i�/(vF ϕ) ≡ ζ ± iχ, (10)

where ϕ = (1 − k2
y/k2

F )1/2 parametrizes the quasiparticle tra-
jectory inside the superconductor (0 < ϕ � 1). We note that
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the semiclassical approximation breaks down for grazing trajectories ky ≈ kF within the superconductor, and we do not consider
such trajectories. After some algebra (see Appendix A for details), the solvability condition can be expressed as

E2

�2(E,ky)
− �2

[
1

�(E,ky)
− 1

]2

− [ξk − δμ(E,ky)]2 = 0, (11)

where we define the effective parameters

� =
(

1 + γ

�ϕ[cosh(2χd) − cos(2ζd)]
{sinh(2χd) − cos(2ζxw) sinh[2χ (d − xw)] − cos[2ζ (d − xw)] sinh(2χxw)}

)−1

,

δμ = − γ

ϕ[cosh(2χd) − cos(2ζd)]
{sin(2ζd) − sin(2ζxw) cosh[2χ (d − xw)] − sin[2ζ (d − xw)] cosh(2χxw)}. (12)

The quantity �(E,ky), which takes values 0 < � < 1 for
E < �, renormalizes the energy and is responsible for
inducing superconductivity in the nanowire, while the quantity
δμ(E,ky) corresponds to a tunneling-induced shift in the
effective chemical potential of the nanowire.

Note that both tunneling-induced terms vanish (δμ = 0 and
� = 1) if the nanowire is taken to be strictly at the edge of the
superconductor, xw = 0 or xw = d. As a result, the system
behaves as though there is no tunnel coupling [i.e., Eq. (11)
reduces to simply E2 = ξ 2

k ]. This is a direct consequence
of the fact that the nanowire was taken to have zero width.
The tunneling term in Eq. (7) relates the wave functions
in the nanowire and superconductor at x = xw, and the
superconducting wave function vanishes at the boundaries. We
choose to keep the approximation of a zero-width nanowire,
as it is more consistent with previous related theories and
is easier to treat analytically, and therefore the nanowire
must be chosen to be located at some position x = xw 
= 0
in order to have a nonvanishing tunnel coupling. We will
show in Sec. IV that such an approximation is consistent
with a numerical tight-binding calculation in which the wire
can be placed strictly at the edge of the superconductor.
Alternatively, if the nanowire is located strictly at the edge of
the superconductor, it must be given a finite width so that the
superconducting wave function does not vanish at the interface.
Related calculations were carried out in Refs. [33–36], where
proximity-induced superconductivity was studied in a quasi-
two-dimensional layer of finite width coupled to a semi-infinite
three-dimensional superconductor.

We also note that we can equivalently express the solvability
condition in Eq. (11) in the language of Green’s functions.
We can rewrite Eq. (11) in the form det(GR

w)−1 = 0, where
GR

w = [(GR
0 )−1 − �R]−1 is the retarded Green’s function of

the nanowire with a self-energy induced by the superconductor.
From Eq. (11), we can identify the retarded self-energy as (see
also Appendix A)

�R(E,ky) = (1/� − 1)(�τx − E) − δμ τz, (13)

with � and δμ as defined in Eq. (12).
Before moving on, we pause to compare our result for

the self-energy of a nanowire coupled to a finite-sized super-
conductor to the self-energy that has appeared extensively in
the literature to describe proximitized nanowires beyond the
weak-coupling limit [14,26–31]. In these works, all based on
the approach of integrating out the superconducting degrees
of freedom, the superconductor is implicitly assumed to be

infinitely large, with a nanowire coupled to the middle of
the superconductor. In this geometry, one obtains the same
self-energy as given in Eq. (13), but with the vastly simplified
effective parameters δμ = 0 and � = (1 + γ /�)−1. We find
that we recover this form for the self-energy by setting
xw = d/2 and taking the limit d → ∞ in Eq. (12) (the
momentum dependence must also be neglected by setting
ϕ = 1). For maximum transparency in relating the current
work to the previous ones, we show in Appendix B how
Eqs. (12) and (13) can be equivalently derived by integrating
out the superconductor.

III. EXCITATION SPECTRUM

In this section, we analyze the excitation spectrum of our
model in two simplified limiting cases. First, in Sec. III A,
we consider the case when the nanowire is placed very close
to the boundary of the superconductor, such that kF xw 
 1
(i.e., the distance between the nanowire and the edge of the
system is much smaller than the Fermi wavelength of the
superconductor λF ). In Sec. III B, we consider the case when
the nanowire is placed in the middle of the superconductor,
xw = d/2. Throughout this section, we assume that the width
of the superconductor is much smaller than its coherence
length, d 
 ξs ; equivalently, its level spacing is much larger
than the gap, δEs � �.

A. Wire near edge of superconductor

1. Analytical calculation of excitation gap

We first look to analytically determine the excitation gap
of the semiconductor/superconductor system when the wire is
placed near the edge of the superconductor (kF xw 
 1). In
this limit, and taking E < � (� is the upper bound on the size
of the excitation gap), the effective parameters of Eq. (12) can
be simplified to

� =
[

1 + 2γ (kF xw)2

δEs sin2(kF d)

]−1

,

δμ = 2γ (kF xw)[1 − (kF xw) cot(kF d)]. (14)

In Eq. (14), we have additionally assumed that | sin(kF d)| �
�/δEs (recall that we are assuming �/δEs 
 1). Therefore,
Eq. (14) breaks down when the thickness of the shell
approaches kF d → πn (n ∈ Z+). We have also neglected
the momentum dependence of ϕ(ky) by setting ϕ = 1; this
assumption is justified provided that ky/kF 
 1/

√
kF d.
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Because the effective parameters of Eq. (14) are not
functions of energy or momentum, it is particularly simple
to solve for the spectrum,

E2 = �2

(
k2
y

2mw

− μeff

)2

+ �2(1 − �)2, (15)

where we define μeff = μw + δμ. [Remember, Eq. (15) should
be taken to describe the spectrum only for E < �.] If μeff > 0,
the spectrum of Eq. (15) describes a superconductor with an
induced gap of size

Eg/� = 1 −
[

1 + 2γ (kF xw)2

δEs sin2(kF d)

]−1

, (16)

which is opened around the effective Fermi momentum
kF,eff = √

2mwμeff. We note that Eq. (16) cannot be applied if
the tunneling energy is made too large, such that kF,eff/kF �
1/

√
kF d. In terms of energy scales, we find that Eq. (16) breaks

down when
√

γ /δEs �
√

(ms/mw)/(kF xw) � 1. If μeff < 0,
then Eq. (15) describes the spectrum of an insulator with
gap |μeff|. In this case, one must take into account the full
momentum dependence ϕ(ky) in order to calculate the gap and
Eq. (16) does not apply.

In the limit when the induced gap is small Eg 
 �, it is
necessarily given by

Eg/� = 2γ (kF xw)2

δEs sin2(kF d)

 1. (17)

This result has several important implications. First, assuming
that the thickness of the shell is not finely tuned on the scale of
the Fermi wavelength of the superconductor [i.e., sin2(kF d) ∼
1], we see that the induced gap can be small even if the
tunneling energy greatly exceeds the gap of the superconductor
(γ � �). This result is purely a finite-size effect and is due
to the suppression of the gap by a factor �/δEs 
 1. Second,
we see that the gap is additionally suppressed by a factor
(kF xw)2 
 1, which is a direct consequence of the smallness
of the superconducting wave function in the vicinity of the
edge. Finally, we note that it is still possible to induce a
sizable gap if the thickness of the shell is finely tuned to the
limit sin2(kF d) 
 (γ /δEs)(kF xw)2 
 1; in this limit, we find
from Eq. (17) that Eg � � and our original expansion breaks
down. This leads to a resonance behavior, with sharp peaks in
the induced gap when the resonance condition sin(kF d) = 0
is satisfied. The width of the resonance peaks is estimated as
xw

√
γ /δEs 
 λF .

Rearranging Eq. (16), we can express the tunneling energy
γ in terms of the experimentally observable quantities Eg

and � (similarly to what is done in Refs. [30,31] for
the case of a bulk superconductor). However, due to the
presence of the quantities kF xw and kF d, which would be
impossible to determine experimentally, we can obtain only
an order of magnitude estimate for γ for the case of a finite
superconductor. Assuming that sin2(kF d) ∼ 1, we find

γedge ∼ Eg

� − Eg

δEs

(kF xw)2
. (18)

From Eq. (18), it is clear that the lower bound on the tunneling
strength needed to induce a sizable gap in the system (such
that Eg ∼ �) is given by the level spacing δEs .
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FIG. 2. Excitation gap Eg as a function of superconductor width
d for γ = 4� (black), γ = 75� (red), and γ = 1000� (blue) when
the nanowire is located near the edge of the superconductor. For
weak tunneling strengths γ 
 δEs/(kF xw)2, a small gap is induced
for general d , with sharp (on the scale of the Fermi wavelength)
resonance peaks near kF d = πn. A sizable gap is induced for all d

when γ � δEs/(kF xw)2. The remaining parameters are chosen to be
kF ξs = 2 × 104, mw/ms = 0.02, and kF xw = 0.3 [δEs/(kF xw)2 ∼
1000�].

2. Numerical calculation of spectrum

While we were able to solve for the excitation spectrum
at energies E < � to determine the gap in certain limits
[see Eq. (15)], it is much more difficult to solve for the
full spectrum. Because the full spectrum E(ky) obeys a
transcendental equation that cannot be solved analytically in
general, we must resort to solving Eq. (11) numerically.

In Fig. 2, we plot the excitation gap Eg as a function of
superconductor width d. We calculate the gap numerically
by computing the spectrum and finding the minimum of
the lowest subband, allowing us to treat values of kF d for
which Eq. (16) breaks down [namely, for sin(kF d) → 0 and
μeff < 0]. Overall, we find very good agreement between the
numerical solution for the gap and the analytical form given in
Eq. (16). For weak tunneling [Fig. 2(a)], the gap is in general
very small with very sharp resonance peaks around kF d = πn.
As the tunneling is increased, the resonance peak is broadened
and the size of the gap is generally shifted to larger values
[Fig. 2(b)]. When γ ∼ δEs/(kF xw)2, the gap is always of the
same order as that of the superconductor, Eg ∼ � [Fig. 2(c)].

To better understand the behavior of the gap as a function
of γ , we plot the spectrum for various γ and fixed supercon-
ductor width (chosen to be off resonance) in Fig. 3. In the
absence of tunneling [Fig. 3(a)], there is a large separation
in energy between the band of the nanowire and the lowest
subband of the superconductor (a consequence of the fact that
δEs � μw). As the tunneling strength is increased [Figs. 3(b)
and 3(c)], the effective chemical potential of the nanowire
μeff increases and the two lowest subbands move closer
in energy; as a result, the nanowire can more efficiently
couple to the superconductor and the proximity-induced gap
increases. When γ ∼ δEs/(kF xw)2 [Fig. 3(d)], the tunneling
is strong enough to overcome the large subband spacing of the
superconductor. This creates significant overlap between the
two lowest subbands of the system and a sizable excitation gap
Eg ∼ �.
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FIG. 3. Lowest two subbands of excitation spectrum E(ky) for
fixed kF d = 34.75π (away from resonance peaks of Fig. 2) and
tunneling strengths (a) γ = 0, (b) γ = 4�, (c) γ = 75�, and (d)
γ = 1000�. As the tunneling strength is increased, the nanowire band
can more efficiently couple to the superconductor and the excitation
gap is increased. The effective chemical potential of the wire μeff also
increases with tunneling strength [see Eq. (14)]; when μeff � δEs ,
the nanowire and superconducting bands overlap and a large gap is
induced [see (d)]. The remaining parameters are the same as in Fig. 2.

3. Simple two-band model

In this section, we present a simple two-band model
which can be used to better understand the “weak tunneling”
limit γ 
 δEs/(kF xw)2. In this limit, we can safely assume
that the nanowire couples only to the lowest subband of
the superconductor. Taking into account only the lowest
superconducting subband, we can write a simple tunneling
Hamiltonian,

H = 1

2

∫
dky

2π
�†

⎛
⎜⎝

ξk 0 −t 0
0 −ξk 0 t

−t 0 ξn �

0 t � −ξn

⎞
⎟⎠�, (19)

where � = (�w,�n)T (�w describes states in the nanowire,
while �n describes states in subband n of the superconductor)
and t is a coupling between the two bands with dimensions
of energy [note that this is not the same t which was
introduced in Eq. (4)]. Quantization of the superconducting
bands is accounted for through ξn = k2

y/2ms − μn, with μn =
δEs(kF d − πn) for n ∈ Z+ [see Eq. (6)].

The corresponding spectrum is given by

2E2 = �2 + ξ 2
k + ξ 2

n + 2t2

±
√(

�2 − ξ 2
k + ξ 2

n

)2 + 4t2[�2 + (ξk + ξn)2]. (20)

In general, |μn| � μw,�,t and we can expand Eq. (20) to give

E = ±
√

ξ 2
k + t4/μ2

n. (21)

In this case, the lower subband takes on a superconducting
dispersion with a small induced gap, Eg = t2/μn 
 �. The
gap can only be enhanced when |μn| � μw,�,t , which occurs
only when a new superconducting subband becomes occupied,
kF d ≈ πn. While we cannot solve analytically for the gap in
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FIG. 4. Spectrum of two-band model [Eq. (20)] for fixed tun-
neling strength t = 10� and different superconductor widths (a)
kF d/π = 34.75, (b) kF d/π = 34.98, (c) kF d/π = 35, and (d)
kF d/π = 35.02. For these choices of kF d , the relevant supercon-
ducting subband corresponds to n = 35. The induced gap is sharply
peaked around kF d/π = 35, as even a small shift away from
resonance leads to a drastic reduction in the size of the gap. This
picture is consistent with the resonance behavior observed for weak
tunneling in Fig. 2. The remaining parameters are chosen as in Fig. 2.

this limit, we find by plotting the spectrum that the gap is
approximately �.

We plot the spectrum Eq. (20) for different superconductor
widths d in Fig. 4. Away from resonance [Fig. 4(a)], the
lowest subband has a superconducting dispersion with very
small induced gap [Eq. (21)]. As the resonance is approached
[Fig. 4(b)], the lowest superconducting subband becomes
available to more strongly couple to the nanowire band and the
gap is enhanced. On resonance [Fig. 4(c)], overlap between
the two subbands is maximal and the full gap � is opened.
As a new subband in the superconductor becomes occupied
and moves away from the nanowire band [Fig. 4(d)], the
gap is again suppressed by the large subband spacing in the
superconductor. By plotting the spectrum, we indeed see that
the excitation gap is sharply peaked as a function of d around
kF d = πn, consistent with the resonance behavior discussed
in Sec. III A. 1 and shown in Fig. 2.

B. Wire in middle of superconductor

If the wire is placed in the middle of the superconductor,
xw = d/2, the effective parameters of Eq. (12) for energies
E < � can be simplified to

� =
[

1 + γ

δEs

1

2 cos2(kF d/2)

]−1

,

δμ = γ tan(kF d/2). (22)

Again, we neglect the momentum dependence of the effec-
tive parameters by setting ϕ = 1 and assume | sin(kF d)| �
�/δEs .

Since the parameters in Eq. (22) are independent of energy
and momentum, the spectrum is again given by Eq. (15).
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FIG. 5. Excitation gap Eg as a function of superconductor width
d for γ = 4� (black), γ = 75� (red), and γ = 1000� (blue) when
the nanowire is located in the middle of the superconductor. For all
tunneling strengths, we observe extended plateau regions as a function
of d; these plateaus correspond to instances when the nanowire is
completely depleted (μeff < 0) and the excitation gap is therefore
determined by the gap on the lowest superconducting subband. Away
from the plateau regions, a sizable gap is induced in the nanowire
for all d when γ � δEs . We also find that the periodicity of the gap
as a function of d is increased by a factor of two compared to when
the nanowire is located at the edge of the superconductor (Fig. 2).
The remaining parameters are chosen as in Fig. 2, corresponding to
δEs ∼ 100�.

Assuming that μeff > 0, we find an excitation gap

Eg/� = 1 −
[

1 + γ

δEs

1

2 cos2(kF d/2)

]−1

. (23)

While the gap can still be small for γ � �, there are two
important differences when comparing to the case when the
nanowire is at the edge of the superconductor [Eq. (16)]. First,
the gap is no longer suppressed by the factor (kF xw)2 
 1
which originated from the smallness of the superconducting
wave function near the edge. Instead, without any fine tuning
of the superconductor width [cos2(kF d/2) ∼ 1], a sizable gap
can be induced for γ � δEs . Second, the periodicity of the gap
as a function of kF d is twice as large. In the weak tunneling
limit γ 
 δEs , resonance peaks are half as frequent and occur
near kF d = π (2n + 1) (n ∈ Z+). The width of each resonance
peak is larger than in the case of the nanowire at the edge of
the superconductor, but it is still much smaller than the Fermi
wavelength, λF

√
γ /δEs 
 λF .

The excitation gap Eg is plotted as a function of d for
several different tunneling strengths γ in Fig. 5. Similarly to
Sec. III A.2, we solve for the gap numerically by computing
the full spectrum E(ky) and finding the minimum. Again,
all parameters are chosen the same as in Fig. 2 (except for
xw = d/2). As previously discussed, the periodicity of the
gap as a function of kF d is increased by a factor of two
compared with the case when the nanowire is located at the
edge of the superconductor. We see that the gap is maximized
near kF d/π = 2n + 1 and is minimized near kF d/π = 2n.
This result can be inferred from the structure of the wave
function corresponding to the lowest quantized subband of the
superconductor in the absence of the nanowire. For kF d/π =
2n + 1, there is a superconducting subband available at low
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FIG. 6. Excitation spectrum for kF d/π = 35.75 (corresponding
to one of the plateau regions of Fig. 5) with (a) γ = 0, (b) γ =
25�, and (c) γ = 75�. As the tunneling strength is increased, the
nanowire band becomes depleted and eventually becomes insulating.
(d) Excitation gap as a function of tunneling strength γ . We also
denote whether the minimum gap in the spectrum is an induced
superconducting gap in the nanowire band at finite ky [see (a)], an
insulating gap in the nanowire band at ky = 0 [see (b)], or the gap �

on the lowest occupied subband of the superconductor [see (c)]. The
remaining parameters are chosen as in Fig. 2.

energies with which the nanowire can couple; because the
wave function of this subband is extremal at x = d/2, the
nanowire efficiently couples and a large gap is induced. For
kF d/π = 2n, there is again a superconducting subband at
low energies; however, the wave function of this subband
has a node at x = d/2 and does not couple efficiently to the
nanowire. In this case, a sufficiently large gap is opened only
when the tunneling is very strong.

We also find that as the tunneling strength is increased,
extended plateaus emerge as a function of kF d. To better
understand this behavior, in Figs. 6(a)–6(c) we plot the
spectrum for different γ choosing kF d/π = 35.75. As the
tunneling strength is increased from γ = 0 [Fig. 6(a)], a
superconducting gap is induced on the band which originates
in the nanowire. However, at the same time, the nanowire
band gets depleted. For some critical tunneling strength, the
nanowire band becomes depleted completely and enters an
insulating phase. The minimum excitation gap is then given
by the insulating gap in the nanowire at ky = 0 [Fig. 6(b)]. As
the tunneling strength is increased further and the insulating
gap on the nanowire band exceeds �, the minimum excitation
gap is determined by the lowest occupied subband of the
superconductor [Fig. 6(c)]. This behavior can be understood
as follows. The depletion of the nanowire band can be inferred
from δμ given in Eq. (22). When the wire is in the middle
of the superconductor, δμ < 0 for precisely half of a period,
including for kF d/π = 35.75. In the strong tunneling limit,
|δμ| � μn in general and μeff < 0 (i.e., the nanowire becomes
insulating) also for half of a period (and, as shown in Fig. 5,
the plateau extends over half of a period in the strong tunneling
limit). We also find that the lowest subband of the supercon-
ductor (corresponding to n = 36) remains almost completely
unaffected by tunneling. This is consistent with our previous
analysis and results from the fact that this subband cannot
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FIG. 7. Excitation gap Eg as a function of tunneling strength
γ for fixed d . (a) Width of superconductor much smaller than its
coherence length, kF d/π = 36.5 (d/ξs = 5.7 × 10−3), for both the
case when the nanowire is located near the edge of the superconductor
[Eq. (16), taking kF xw = 0.3] and in the middle of the superconductor
[Eq. (23)]. (b) Bulk superconductor, d → ∞ [Eq. (25)]. In order to
induce a sizable gap in the nanowire, the tunneling strength needed
when d 
 ξs is orders of magnitude larger than the bulk case.

efficiently couple to the nanowire because the corresponding
wave function has a node at x = d/2. Rather, the nanowire
band couples most efficiently to the second-lowest subband
(corresponding to n = 35). While the presence of the nanowire
modifies this subband somewhat in the vicinity of ky = 0, it has
no effect on the gap of this subband at finite ky . These findings
are summarized in Fig. 6(d), where we plot the excitation gap
as a function of tunneling strength for kF d/π = 35.75.

Using our result for the gap [Eq. (23)], we provide an order
of magnitude estimate for the tunneling strength γ assuming
that the superconductor width d is tuned outside of the plateau
region and satisfies cos2(kF d/2) ∼ 1. In this case, we estimate

γmiddle ∼ Eg

� − Eg

δEs. (24)

Compared with Eq. (18), we find that a sizable gap (Eg ∼ �)
can be induced with a much smaller tunneling strength when
the wire is placed in the middle of the superconductor.

Finally, we compare three different cases by plotting the
induced gap in the nanowire as a function of γ in Fig. 7. In
Fig. 7(a), we show a direct comparison between the case of
a nanowire located at the edge of the superconductor and the
case of a nanowire located in the middle. We also contrast
our result for a finite superconductor against that for a bulk
superconductor by plotting the induced gap as a function of γ

for the latter case in Fig. 7(b). For a bulk system, the induced
gap obeys the equation [30,31]

γbulk = Eg

√
� + Eg

� − Eg

. (25)

We see that to open a sizable gap in a finite superconductor, a
tunneling strength which is several orders of magnitude larger
than in the bulk case is needed.

IV. TIGHT-BINDING MODEL

In this section, we check our analytical results by
comparing them with a numerical tight-binding model for
proximity-induced superconductivity [37–39] in the geometry
shown in Fig. 1. The system is again assumed infinite in the
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FIG. 8. Excitation gap Eg as a function of superconductor
width N , calculated by numerically diagonalizing a tight-binding
Hamiltonian for tunneling strengths t = 0.006t0 (black), t = 0.05t0
(red), and t = 0.2t0 (blue). (a) Nanowire at edge of superconductor.
Similarly to Fig. 2, we observe sharp resonance peaks in the weak
tunneling limit. Note that for the black curve, the width of the
resonance peak is narrower than a single site. (b) Nanowire in
middle of superconductor. Similarly to Fig. 5, we observe both
extended plateau regions and a doubling of the periodicity of the
gap as a function of superconductor width. In both plots, we choose
μs = 0.1t0, μw = 10−4t0, � = 10−5t0, and tw = 50t0 (all parameters
are chosen to be consistent with those in Fig. 2).

y direction, so that the Hamiltonian takes a block-diagonal
form in momentum ky , H = ∑

ky
Hky

. The size of the
superconductor in the x direction is Nax (ax,y are lattice
constants), while the size of the nanowire is taken to be a
single site. The Hamiltonian of the superconductor is given by

Hs,ky
=
∑

σ

N∑
i=1

{
[μs − 2t0 cos(kyay)]c†ky ,i,σ

cky ,i,σ

− (
t0c

†
ky ,i+1,σ cky ,i,σ − �c

†
ky ,i,↑c

†
−ky ,i,↓ + H.c.

)}
, (26)

where cky,i,σ destroys a state of momentum ky and spin σ in
the superconductor at site i, t0 is the hopping amplitude, μs

is the chemical potential (calculated from the bottom of the
band), and � is the pairing potential. The Hamiltonian of the
nanowire is given by

Hw,ky
=
∑

σ

[μw − 2tw cos(kyay)]b†ky ,σ
bky,σ , (27)

where bky,σ destroys a state of momentum ky and spin σ in the
nanowire, μw is the chemical potential, and tw is the hopping
amplitude. The nanowire is coupled to the superconductor at
site j ,

Ht,ky
= −t

∑
σ

(
c
†
ky ,j,σ

bky,σ + H.c.
)
, (28)

where t is the tunneling amplitude between the nanowire and
superconductor. We assume that tunneling preserves both spin
and momentum.

We consider two separate cases. First, the nanowire is
placed at the end of the superconducting chain (j = 1).
Whereas analytically we were unable to place the nanowire
strictly at the edge of the superconductor due to its vanishing
width, we can do so in the tight-binding formulation (the
nanowire has a finite width of one site). Second, the nanowire
is placed in the middle of the superconductor (j = N/2). The
results of our tight-binding calculation are shown in Fig. 8.
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We plot the excitation gap as a function of superconductor
width choosing μs = 0.1t0, μw = 10−4t0, � = 10−5t0, and
tw = 50t0 (all parameters are chosen to coincide with those
used previously in the analytical calculation). For Fig. 8(a),
which corresponds to j = 1, we find very good agreement
with the analytics of Sec. III A and Fig. 2. We note that the
resonance peaks in the curve corresponding to weak tunneling
[black curve in Fig. 8(a)] are narrower than a single site and
therefore do not appear in the numerics. For Fig. 8(b), which
corresponds to j = N/2, we find very good agreement with
the analytics of Sec. III B and Fig. 5. Notably, a sizable gap
Eg ∼ � is seen only when the tunneling strength t exceeds
the chemical potential of the superconductor.

V. TOPOLOGICAL CRITERION

To access the topological phase, we now assume that
the nanowire has Rashba spin-orbit coupling and a Zeeman
splitting that results from the application of an external
magnetic field B parallel to the nanowire, corresponding to
the typical setup for realizing topological superconductivity
[4,5]. The Hamiltonian of the nanowire in this case is given by

Hw = 1

2

∫
dky

2π
�†(ky)Hw(ky)�(ky), (29)

where �(ky) = [ψ↑(ky),ψ↓(ky),ψ†
↑(−ky),ψ†

↓(−ky)]T . The
Hamiltonian density, which is a 4 × 4 matrix in Nambu ⊗
spin space, is given by

Hw(ky) = ξkτz − αkyσz − �Zτzσx, (30)

where α is the Rashba constant, �Z = gμBB/2 is the Zeeman
splitting (g is the g-factor of the nanowire and μB is the Bohr
magneton), and σx,y,z are Pauli matrices acting in spin space.
Following convention, we neglect the effect of the external
magnetic field on the superconductor. Generalization of the
solution of the BdG equation given in Eq. (8) to the case
where one additionally has to account for the spin degree of
freedom is straightforward. The addition of spin-orbit coupling
and Zeeman splitting simply modifies the retarded Green’s
function which enters the boundary conditions [Eqs. (9)],
GR

0 = (E − Hw + i0+)−1. Solving the boundary conditions,
we find that the self-energy given in Eq. (13) still holds, with
the simple replacement �τx → −�τyσy to account for the
spin-singlet nature of the induced pairing [40].

Given the self-energy, we find that the excitation spectrum
is determined from the implicit equation

E2/�2 = �2
Z + �2(1/� − 1)2 + (ξk − δμ)2 + α2k2

y

± 2
√

�2
Z�2(1/� − 1)2 + (ξk − δμ)2

(
�2

Z + α2k2
y

)
.

(31)

The critical Zeeman splitting needed to close the excitation gap
at ky = 0, which we find by setting ky = E = 0 in Eq. (31), is
found to be

��c
Z =

√
�2(μw + δμ)2 + E2

g, (32)

where we replace �(1 − �) = Eg , noting that this replacement
is strictly valid only when δEs � �. [The explicit forms of
δμ(0,0) and �(0,0) are given in Eq. (12).] If the chemical

d

W

FIG. 9. Cross section of a hexagonal nanowire (InAs or InSb)
coupled to an epitaxially grown thin superconducting shell (Al), sim-
ilar to the devices studied in Refs. [13,14,16]. The superconducting
shell has thickness d ∼ 10 nm and width W ∼ 100 nm.

potential shift δμ can be compensated by tuning the chemical
potential of the wire (such that μw + δμ = 0), then the
critical field strength is �c

Z ∼ Eg/� (this is a similar criterion
used, for example, to analyze the data of Ref. [14]; note
that the critical Zeeman splitting needed is larger than the
induced gap Eg). If, however, the chemical potential shift
is made too large (|δμ| � μw), the critical Zeeman splitting
is determined solely by this shift, �c

Z ∼ |δμ|, and the finite
size of the superconductor pushes the topological threshold to
significantly higher magnetic field strength. We will provide
numerical estimates in the next section to argue that the latter
case is more relevant to thin superconducting shells that have
a large level spacing δEs � �.

VI. RELATION TO EXPERIMENTS WITH EPITAXIAL
SUPERCONDUCTING SHELLS

In this section, we argue that the theoretical model that
we have considered to this point is applicable to recent
experiments studying InAs or InSb nanowires strongly coupled
to thin superconducting Al shells (see Fig. 9) [12–14,16].
We also provide an order of magnitude estimate for the level
spacing of the shell, which determines the critical field strength
needed to reach the topological phase in such a setup.

First, in order to treat the nanowire as one-dimensional,
we assume that the wave function is uniform across the
entire cross section of the nanowire (which spans roughly
∼100 nm). Second, because we have replaced the nanowire
cross section by a single point, we must also neglect the
width of the superconducting shell, W ∼ 100 nm (see Fig. 9).
To justify this assumption, let us define a phenomenological
tunneling strength that originates from the coupling between
the nanowire and superconductor along this dimension [call
it t(W )]. Such a tunneling should be given by the product of
the nanowire and superconducting wave functions, integrated
over the width,

t(W ) ∼
∫ W

0
dz ψ∗

w(z)ψs(z). (33)

Here, we denote the dimension along the width of the
shell by z, imagining for simplicity that the shell cross
section is rectangular rather than kinked. The superconducting
wave function is quantized as ψs ∼ sin(ksz)/

√
W , where

ks = nπ/W and 1/
√

W is a normalization factor. The wave
function of the nanowire is uniform, but it also must be
normalized, ψw ∼ 1/

√
Ww. Because the normalization factor
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of the nanowire wave function should scale with the width of
the shell, Ww ∼ W , the effective tunneling strength is given
by

t(W ) ∼ 1

W

∫ W

0
dz sin(ksz) ∼ 1. (34)

Because the tunneling does not scale with W , this additional
dimension is unimportant and can be neglected.

We now turn our attention toward applying our results to
make qualitative predictions about the experimental setup. The
relevant geometrical parameter (which corresponds to d) is the
thickness of the superconducting shell, d ∼ 10 nm. For shells
of this thickness, we estimate a level spacing δEs = h̄vF /d ∼
10 meV, where we take vF ∼ 106 m/s for Al.

Given the level spacing of the shell, we can also estimate the
tunneling strength needed to induce a gap Eg ∼ �. Because
the experimental systems universally exhibit sizable induced
gaps (and therefore it is safe to assume that the shell thicknesses
are not fine tuned to a resonance point), we use Eq. (18) to
estimate

γedge � 100 meV, (35)

where we take (kF xw)2 ∼ 0.1.
Therefore, the chemical potential shift induced by tunneling

is estimated from Eq. (14) as

|δμ(0,0)| ∼ γ (kF xw) � 30 meV. (36)

Given that the characteristic energy scale of the nanowire
is the spin-orbit energy (Eso = mwα2/2h̄2), which takes
typical values Eso ∼ 0.1–1 meV in semiconducting nanowires
[41–43], the topological phase transition is controlled entirely
by tunneling, �c

Z ∼ |δμ(0,0)| � 30 meV. Such a large Zeeman
energy corresponds to a critical field strength of Bc � 60 T for
Al/InAs (gInAs ∼ 20) and Bc � 30 T for Al/InSb (gInSb ∼ 40).
In either case, the magnetic field threshold needed to reach
the topological phase greatly exceeds the field strength at
which superconductivity in Al is destroyed (which occurs for
B ∼ 2 T).

As discussed previously, in order to negate the effect of
the tunneling-induced shift in the chemical potential, one
must tune to μw = −δμ(0,0). However, this is difficult in
practice because |δμ(0,0)| � Eso. If δμ(0,0) > 0, it is not
possible to properly tune the chemical potential without
completely depleting the semiconducting band; if δμ(0,0) <

0, the nanowire would have to be gated outside of the regime
for which it is semiconducting.

We note that there are several aspects of the experimental
setup which are not accounted for by our simple model. For
example, our model does not include an additional renormal-
ization of the nanowire g-factor by the superconductor beyond
that which is contained in Eq. (32). This is because the g-factor
in the superconductor was taken to be gs = 0 [and therefore
no Zeeman term enters the self-energy of Eq. (13)]. However,
the additional renormalization should be small, as we estimate
the effective g-factor of the wire as �g + (1 − �)gs ≈ �g

given that g � gs and � ∼ (1 − �) ∼ 1 [44]. We also do
not account for any orbital effects in the nanowire, as the
nanowire was taken to have zero width. In the experimental
setup, however, the nanowire has a diameter Ww ∼ 100 nm;

compared with a typical cyclotron radius for electrons in the
wire rc = mwvFw/eB ∼ 10 nm (evaluated for a field strength
B ∼ 1 T and Fermi velocity vFw ∼ 105 m/s), orbital effects
can be non-negligible [45]. Additionally, we do not consider
the superconductor to be disordered. It has been shown that
disorder in a bulk superconductor can be detrimental to the
proximity effect [46,47]; however, this does not seem to be an
issue experimentally, as sizable hard proximity-induced gaps
are universally observed [12–16] along with ballistic transport
in the absence of a magnetic field [15]. Relatedly, given the
fact that applied magnetic fields are small, we do not determine
�(x) self-consistently as done, for example, for Shiba states,
where the exchange interaction (effective Zeeman field) is
comparable to the Fermi energy [48–52]. Finally, we do not
account for the fact that there may be multiple subbands in the
nanowire which contribute to transport. While this possibility
seems to be excluded by the fact that typical nanowires exhibit
a quantized conductance of 2e2/h in the ballistic transport
limit over a wide range of gate voltages [15,53], it could be that
with the introduction of the large tunneling energy scale, higher
subbands can become important. The intersubband spacing in
an InSb nanowire was estimated in the absence of a magnetic
field and a superconducting shell to be ∼20 meV in Ref. [53],
so we cannot rule out the possibility that a |δμ(0,0)| ∼ 30 meV
simply places the chemical potential into a higher subband.
However, this possibility requires a more in-depth theoretical
treatment that cannot be captured by a single-band model.

VII. CONCLUSIONS

We have studied the proximity effect in a semiconducting
nanowire strongly coupled to a thin superconducting shell with
thickness d. We have shown that finite-size effects become
detrimental to the induced superconductivity when the level
spacing of the shell δEs ∼ h̄vF /d exceeds its gap, δEs � �.
In this limit, a large tunneling strength γ � δEs is needed to
overcome the level spacing to induce a gap in the nanowire (we
estimate γ � 100 meV for typical experimental setups with
d ∼ 10 nm). In turn, this large tunneling energy induces a very
large shift in the effective chemical potential of the nanowire
(δμ � 30 meV) which would be difficult to compensate by
gating.

In order to overcome the detrimental finite-size effects,
the thickness of the superconducting shell should be made
larger than its coherence length, d � ξs . In this limit, the
level spacing and chemical potential shift become negligible
(δEs,δμ 
 �), and a sizable proximity gap can be induced
with a much smaller tunneling energy (γ ∼ �). However, this
requirement may prove problematic when using Al, which
has a very long coherence length ξs ∼ 1 μm, to induce
superconductivity. It would therefore be beneficial to choose
a superconductor with shorter coherence length (for example,
Nb has ξs ∼ 10 nm).
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APPENDIX A: SOLVABILITY CONDITION AND SELF-ENERGY

In this Appendix, we show how to arrive at the solvability condition given in Eq. (11) of the main text. The boundary conditions
that must be imposed on the wave function of Eq. (8) are given in Eq. (9). These boundary conditions can be significantly
simplified by assuming that μs � �,E. In this limit, we can make a semiclassical approximation k± = (k2

F − k2
y ± 2msi�)1/2 ≈

kF ϕ ± i�/(vF ϕ), where ϕ = (1 − k2
y/k2

F )1/2 (0 < ϕ � 1). The boundary conditions in Eq. (9) can be written in matrix form as
Mc = 0, where c = (c1,c2,c3,c4)T and

M =

⎛
⎜⎜⎝

u0φ cos(k+xw) v0φ cos(k−xw)
v0φ cos(k+xw) u0φ cos(k−xw)
−u0 sin(k+xw) −v0 sin(k−xw)
−v0 sin(k+xw) −u0 sin(k−xw)

· · ·

· · ·
u0
(
ϕ cos[k+(d − xw)] + 2γ

E−ξk
sin[k+(d − xw)]

)
v0
(
ϕ cos[k−(d − xw)] + 2γ

E−ξk
sin[k−(d − xw)]

)
v0
(
ϕ cos[k+(d − xw)] − 2γ

E+ξk
sin[k+(d − xw)]

)
u0
(
ϕ cos[k−(d − xw] − 2γ

E+ξk
sin[k−(d − xw)]

)
u0 sin[k+(d − xw)] v0 sin[k−(d − xw)]
v0 sin[k+(d − xw)] u0 sin[k−(d − xw)]

⎞
⎟⎟⎟⎠. (A1)

In Eq. (A1), we have approximated k± = kF ϕ outside of the
trigonometric functions while keeping k± = kF ϕ ± i�/(vF ϕ)
inside. Taking the determinant of the matrix in Eq. (A1), we
find a solvability condition given by

0 = �ϕ2 sin(k+d) sin(k−d)

{
E2 − ξ 2

k − γ 2

ϕ2
β+β−

+ γ

ϕ

[
ξk(β+ + β−) + E2

i�
(β+ − β−)

]}
, (A2)

where we define β± = {cos[k±(d − 2xw)] −
cos(k±d)}/ sin(k±d). Dividing Eq. (A2) through by the
common factor �ϕ2 sin(k+d) sin(k−d) and rearranging, we
obtain

0 = E2

[
1 + γ

�ϕ
Im(β+)

]2

− �2γ 2

�2ϕ2
[Im(β+)]2

−
[
ξk − γ

ϕ
Re(β+)

]2

. (A3)

Defining the quantities � = {1 + γ Im(β+)/(�ϕ)}−1 and
δμ = γ Re(β+)/ϕ, we arrive at the solvability condition
presented in Eq. (11). Substituting k± = kF ϕ ± i�/(vF ϕ) into
the expressions for � and δμ, we arrive at the definitions
presented in Eq. (12).

We also note that the solvability condition of Eq. (11) can
be expressed as det[GR

w(E,ky)]−1 = 0, where

(
GR

w

)−1 =
(

E/� − ξk + δμ −�(1/� − 1)

−�(1/� − 1) E/� + ξk − δμ

)
. (A4)

Noting that the bare retarded Green’s function of the nanowire
is given by (GR

0 )−1 = E − ξkτz + i0+, the full Green’s func-
tion can be written as (GR

w)−1 = (GR
0 )−1 − �R with self-

energy

�R =
(

E(1 − 1/�) − δμ �(1/� − 1)

�(1/� − 1) E(1 − 1/�) + δμ

)
, (A5)

as given in Eq. (13).

APPENDIX B: INTEGRATING OUT SUPERCONDUCTOR

In this section, we show how to alternatively derive
Eqs. (12) and (13) by integrating out the superconductor. For
completeness, we first go through the steps of performing the
integration. We start with the same model as considered in
the main text, expressed in terms of the Euclidean action. The
action of the nanowire is given by

SNW = 1

2

∫
dω

2π

∫
dky

2π
�†

w

(
G0

w

)−1
�w, (B1)

where (G0
w)−1 = iω − ξkτz is the inverse Matsubara Green’s

function of the nanowire in the absence of tunneling (ω is a
Matsubara frequency) and �w = [ψ↑(ky,ω),ψ†

↓(−ky, − ω)]T

is a Heisenberg spinor field describing states in the nanowire.
The action of the superconductor is given by

SBCS = 1

2

∫
dω

2π

∫
dky

2π

∫ d

0
dx �†

s (iω − HBCS)�s, (B2)

where HBCS is as defined below Eq. (3) and �s =
[η↑(x,ky,ω),η†

↓(x, − ky, − ω)] is a spinor field describing
states in the superconductor. The tunneling action, which
couples the nanowire to the superconductor at x = xw, is taken
to be

St = − t

2

∫
dω

2π

∫
dky

2π

∫ d

0
dx[�†

wτz�sδ(x − xw) + H.c.].

(B3)
The path-integral representation of the partition function is
then given by

Z =
∫

D[�†
w,�w]

∫
D[�†

s ,�s]e
−Sw−SBCS−St . (B4)

In the exponential, we rewrite

SBCS + St = 1

2

∫
dω

2π

∫
dky

2π

{∫ d

0
dx

[
�†

s − t�†
wτzG

0
s (xw,x)

]
× (iω − HBCS)

[
�s − tG0

s (x,xw)τz�w

]
− t2�†

wτzG
0
s (xw,xw)τz�w

}
. (B5)
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In Eq. (B5), we introduce a function G0
s (x,x ′) that must sat-

isfy (iω − HBCS)G0
s (x,x ′) = G0

s (x ′,x)(iω − HBCS) = δ(x −
x ′); i.e., G0

s (x,x ′) corresponds to the Green’s function of the
superconductor in the absence of tunneling. Evaluating the
Gaussian path integral over superconducting fermions, we
obtain an effective action describing the nanowire given by

Seff = 1

2

∫
dω

2π

∫
dky

2π
�†

w

[(
G0

w

)−1 − �
]
�w, (B6)

with the self-energy given by

� = t2τzG
0
s (xw,xw)τz. (B7)

To explicitly evaluate the self-energy, we must choose the
appropriate bare Green’s function G0

s (x,x ′) for the geometry
under consideration. For our purposes, we evaluate the self-
energy using the Green’s function of a finite-sized supercon-
ductor satisfying vanishing boundary conditions at x = 0 and
x = d. The bare Green’s function must satisfy the equation[
iω +

(
∂2
x

2ms

− k2
y

2ms

+ μs

)
τz − �τx

]
G0

s (x,x ′) = δ(x−x ′).

(B8)

The solution to Eq. (B8) can be written as the sum of a homoge-
neous solution Gh(x,x ′) and a particular solution Gp(x − x ′),

G0
s (x,x ′) = Gh(x,x ′) + Gp(x − x ′), (B9)

with the particular solution corresponding to the bulk
superconducting Green’s function. We determine the bulk
Green’s function in real space by Fourier transformation.
Defining ξks = (k2

x + k2
y)/2ms − μs , we have

Gp(x − x ′) = −
∫

dkx

2π

iω + ξksτz + �τx

�2 + ξ 2
ks + ω2

eikx (x−x ′)

= − 1

vF �ϕ
[(iω + �τx) cos(ζ |x − x ′|)

−�τz sin(ζ |x − x ′|)]e−χ |x−x ′ |, (B10)

where, as we have done throughout, we replace k± = ζ = kF ϕ

outside of the exponentials while keeping k± = ζ ± iχ =
kF ϕ ± i�/(vF ϕ) inside of the exponentials (in Matsubara
frequency space, � = √

�2 + ω2). The homogeneous solution
is given by

Gh(x,x ′) = (iω + �τx + i�τz)[c1e
ik+x + c2e

−ik+x]

+ (iω + �τx − i�τz)[c3e
ik−x + c4e

−ik−x].

(B11)

The unknown coefficients, which are functions of the coordi-
nate x ′, are determined by imposing the boundary conditions
G0

s (0,x ′) = G0
s (d,x ′) = 0. Solving the boundary conditions

gives

c1(x ′) = sin[k+(d − x ′)]
2vF �ϕ sin(k+d)

,

c2(x ′) = 1

2vF �ϕ
[i + cot(k+d)] sin(k+x ′),

c3(x ′) = 1

2vF �ϕ
[−i + cot(k−d)] sin(k−x ′),

c4(x ′) = sin[k−(d − x ′)]
2vF �ϕ sin(k−d)

. (B12)

Substituting Eqs. (B10)–(B12) into Eq. (B9) and setting x =
x ′ = xw, we find the bare Green’s function,

G0
s (xw,xw) = − 1

vF �ϕ[cosh(2χd) − cos(2ζd)]

(
(iω + �τx){sinh(2χd) − cos(2kζxw) sinh[2χ (d − xw)]

− cos[2ζ (d − xw)] sinh(2χxw)}−�τz{sin(2ζd) − sin(2ζxw) cosh[2χ (d − xw)] − sin[2ζ (d−xw)] cosh(2χxw)}
)
.

(B13)

Substituting Eq. (B13) into Eq. (B7) and defining � and δμ as
in Eq. (12), we obtain a self-energy given by (recall γ = t2/vF )

� = (�τx − iω)(1/� − 1) − δμ τz. (B14)

After analytic continuation, we reproduce the retarded self-
energy given in Eq. (13).

We note that choosing the bare Green’s function to be
translationally invariant and equal to the bulk superconducting

Green’s function, as is typically done to describe proximitized
nanowires, corresponds to the geometry of a nanowire coupled
to the middle of an infinitely large superconductor. In this
case, the bare Green’s function is simply G0

s (xw,xw) = Gp(0),
yielding a self-energy

�bulk = −γ (iω − �τx)

ϕ
√

�2 + ω2
. (B15)

[1] J. Alicea, Rep. Prog. Phys. 75, 076501 (2012).
[2] A. Y. Kitaev, Phys. Usp. 44, 131 (2001).
[3] C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. Das

Sarma, Rev. Mod. Phys. 80, 1083 (2008).
[4] R. M. Lutchyn, J. D. Sau, and S. Das Sarma, Phys. Rev. Lett.

105, 077001 (2010).

[5] Y. Oreg, G. Refael, and F. von Oppen, Phys. Rev. Lett. 105,
177002 (2010).

[6] V. Mourik, K. Zuo, S. M. Frolov, S. R. Plissard, E. P. A. M.
Bakkers, and L. P. Kouwenhoven, Science 336, 1003 (2012).

[7] M. T. Deng, C. L. Yu, G. Y. Huang, M. Larsson, P. Caroff, and
H. Q. Xu, Nano Lett. 12, 6414 (2012).

125426-11

https://doi.org/10.1088/0034-4885/75/7/076501
https://doi.org/10.1088/0034-4885/75/7/076501
https://doi.org/10.1088/0034-4885/75/7/076501
https://doi.org/10.1088/0034-4885/75/7/076501
https://doi.org/10.1070/1063-7869/44/10S/S29
https://doi.org/10.1070/1063-7869/44/10S/S29
https://doi.org/10.1070/1063-7869/44/10S/S29
https://doi.org/10.1070/1063-7869/44/10S/S29
https://doi.org/10.1103/RevModPhys.80.1083
https://doi.org/10.1103/RevModPhys.80.1083
https://doi.org/10.1103/RevModPhys.80.1083
https://doi.org/10.1103/RevModPhys.80.1083
https://doi.org/10.1103/PhysRevLett.105.077001
https://doi.org/10.1103/PhysRevLett.105.077001
https://doi.org/10.1103/PhysRevLett.105.077001
https://doi.org/10.1103/PhysRevLett.105.077001
https://doi.org/10.1103/PhysRevLett.105.177002
https://doi.org/10.1103/PhysRevLett.105.177002
https://doi.org/10.1103/PhysRevLett.105.177002
https://doi.org/10.1103/PhysRevLett.105.177002
https://doi.org/10.1126/science.1222360
https://doi.org/10.1126/science.1222360
https://doi.org/10.1126/science.1222360
https://doi.org/10.1126/science.1222360
https://doi.org/10.1021/nl303758w
https://doi.org/10.1021/nl303758w
https://doi.org/10.1021/nl303758w
https://doi.org/10.1021/nl303758w


CHRISTOPHER REEG, DANIEL LOSS, AND JELENA KLINOVAJA PHYSICAL REVIEW B 96, 125426 (2017)

[8] A. Das, Y. Ronen, Y. Most, Y. Oreg, M. Heiblum, and H.
Shtrikman, Nat. Phys. 8, 887 (2012).

[9] L. P. Rokhinson, X. Liu, and J. K. Furdyna, Nat. Phys. 8, 795
(2012).

[10] H. O. H. Churchill, V. Fatemi, K. Grove-Rasmussen, M. T. Deng,
P. Caroff, H. Q. Xu, and C. M. Marcus, Phys. Rev. B 87, 241401
(2013).

[11] A. D. K. Finck, D. J. Van Harlingen, P. K. Mohseni, K. Jung,
and X. Li, Phys. Rev. Lett. 110, 126406 (2013).

[12] W. Chang, S. M. Albrecht, T. S. Jespersen, F. Kuemmeth, P.
Krogstrup, J. Nygård, and C. M. Marcus, Nat. Nano. 10, 232
(2015).

[13] S. M. Albrecht, A. P. Higginbotham, M. Madsen, F. Kuemmeth,
T. S. Jespersen, J. Nygård, P. Krogstrup, and C. M. Marcus,
Nature (London) 531, 206 (2016).

[14] M. T. Deng, S. Vaitiekenas, E. B. Hansen, J. Danon, M. Leijnse,
K. Flensberg, J. Nygård, P. Krogstrup, and C. M. Marcus,
Science 354, 1557 (2016).

[15] H. Zhang, Ö. Gül, S. Conesa-Boj, M. Nowak, M. Wimmer, K.
Zuo, V. Mourik, F. K. de Vries, J. van Veen, M. W. A. de Moor, J.
D. S. Bommer, D. J. van Woerkom, D. Car, S. R. Plissard, E. P. A.
M. Bakkers, M. Quintero-Pérez, M. C. Cassidy, S. Koelling, S.
Goswami, K. Watanabe, T. Taniguchi, and L. P. Kouwenhoven,
Nat. Commun. 8, 16025 (2017).

[16] S. Gazibegovic, D. Car, H. Zhang, S. C. Balk, J. A. Logan, M.
W. A. de Moor, M. C. Cassidy, R. Schmits, D. Xu, G. Wang, P.
Krogstrup, R. L. M. O. het Veld, J. Shen, D. Bouman, B. Shojaei,
D. Pennachio, J. S. Lee, P. J. van Veldhoven, S. Koelling, M. A.
Verheijen, L. P. Kouwenhoven, C. J. Palmstrøm, and E. P. A. M.
Bakkers, Nature (London) 548, 434 (2017).

[17] S. Nadj-Perge, I. K. Drozdov, J. Li, H. Chen, S. Jeon, J. Seo,
A. H. MacDonald, B. A. Bernevig, and A. Yazdani, Science 346,
602 (2014).

[18] M. Ruby, F. Pientka, Y. Peng, F. von Oppen, B. W. Heinrich,
and K. J. Franke, Phys. Rev. Lett. 115, 197204 (2015).

[19] R. Pawlak, M. Kisiel, J. Klinovaja, T. Meier, S. Kawai, T.
Glatzel, D. Loss, and E. Meyer, Npj Quantum Inf. 2, 16035
(2016).

[20] J. Klinovaja, P. Stano, A. Yazdani, and D. Loss, Phys. Rev. Lett.
111, 186805 (2013).

[21] M. M. Vazifeh and M. Franz, Phys. Rev. Lett. 111, 206802
(2013).

[22] B. Braunecker and P. Simon, Phys. Rev. Lett. 111, 147202
(2013).

[23] S. Nadj-Perge, I. K. Drozdov, B. A. Bernevig, and A. Yazdani,
Phys. Rev. B 88, 020407 (2013).

[24] F. Pientka, L. I. Glazman, and F. von Oppen, Phys. Rev. B 88,
155420 (2013).

[25] O. A. Awoga, K. Björnson, and A. M. Black-Schaffer, Phys.
Rev. B 95, 184511 (2017).

[26] J. D. Sau, R. M. Lutchyn, S. Tewari, and S. Das Sarma, Phys.
Rev. B 82, 094522 (2010).

[27] A. C. Potter and P. A. Lee, Phys. Rev. B 83, 184520 (2011).
[28] N. B. Kopnin and A. S. Melnikov, Phys. Rev. B 84, 064524

(2011).

[29] A. A. Zyuzin, D. Rainis, J. Klinovaja, and D. Loss, Phys. Rev.
Lett. 111, 056802 (2013).

[30] B. van Heck, R. M. Lutchyn, and L. I. Glazman, Phys. Rev. B
93, 235431 (2016).

[31] C. Reeg and D. L. Maslov, Phys. Rev. B 95, 205439 (2017).
[32] C. Reeg, J. Klinovaja, and D. Loss, Phys. Rev. B 96, 081301(R)

(2017).
[33] A. F. Volkov, P. H. C. Magnée, B. J. van Wees, and T. M.

Klapwijk, Physica C 242, 261 (1995).
[34] G. Fagas, G. Tkachov, A. Pfund, and K. Richter, Phys. Rev. B

71, 224510 (2005).
[35] G. Tkachov, Physica C 417, 127 (2005).
[36] C. Reeg and D. L. Maslov, Phys. Rev. B 94, 020501(R) (2016).
[37] D. Rainis, L. Trifunovic, J. Klinovaja, and D. Loss, Phys. Rev.

B 87, 024515 (2013).
[38] J. Klinovaja and D. Loss, Eur. Phys. J. B 88, 62 (2015).
[39] G. Yang, P. Stano, J. Klinovaja, and D. Loss, Phys. Rev. B 93,

224505 (2016).
[40] C. Schrade, M. Thakurathi, C. Reeg, S. Hoffman, J. Klinovaja,

and D. Loss, Phys. Rev. B 96, 035306 (2017).
[41] I. van Weperen, B. Tarasinski, D. Eeltink, V. S. Pribiag, S. R.

Plissard, E. P. A. M. Bakkers, L. P. Kouwenhoven, and M.
Wimmer, Phys. Rev. B 91, 201413(R) (2015).

[42] J. Shabani, M. Kjaergaard, H. J. Suominen, Y. Kim, F. Nichele,
K. Pakrouski, T. Stankevic, R. M. Lutchyn, P. Krogstrup, R.
Feidenhans’l, S. Kraemer, C. Nayak, M. Troyer, C. M. Marcus,
and C. J. Palmstrøm, Phys. Rev. B 93, 155402 (2016).

[43] R. M. Lutchyn, E. P. A. M. Bakkers, L. P. Kouwenhoven, P.
Krogstrup, C. M. Marcus, and Y. Oreg, arXiv:1707.04899.

[44] Note that the Andreev bound states for which the g-factor is
measured experimentally do not exhibit a renormalization by
the superconductor as suggested by Eq. (32) [54]. This should
be expected because the Andreev bound states originate from the
ends of the nanowire where the superconducting shell is absent
(and therefore � = 1).

[45] G. W. Winkler, D. Varjas, R. Skolasinski, A. A. Soluyanov, M.
Troyer, and M. Wimmer, Phys. Rev. Lett. 119, 037701 (2017).

[46] W. S. Cole, J. D. Sau, and S. Das Sarma, Phys. Rev. B 94,
140505(R) (2016).

[47] H.-Y. Hui, J. D. Sau, and S. Das Sarma, Phys. Rev. B 92, 174512
(2015).

[48] M. E. Flatté and J. M. Byers, Phys. Rev. Lett. 78, 3761 (1997).
[49] M. I. Salkola, A. V. Balatsky, and J. R. Schrieffer, Phys. Rev. B

55, 12648 (1997).
[50] A. V. Balatsky, I. Vekhter, and J.-X. Zhu, Rev. Mod. Phys. 78,

373 (2006).
[51] T. Meng, J. Klinovaja, and D. Loss, Phys. Rev. B 89, 205133

(2014).
[52] S. Hoffman, J. Klinovaja, T. Meng, and D. Loss, Phys. Rev. B

92, 125422 (2015).
[53] J. Kammhuber, M. C. Cassidy, H. Zhang, Ö. Gül, F. Pei, M.

W. A. de Moor, B. Nijholt, K. Watanabe, T. Taniguchi, D. Car,
S. R. Plissard, E. P. A. M. Bakkers, and L. P. Kouwenhoven,
Nano Lett. 16, 3482 (2016).

[54] L. Kouwenhoven (private communication).

125426-12

https://doi.org/10.1038/nphys2479
https://doi.org/10.1038/nphys2479
https://doi.org/10.1038/nphys2479
https://doi.org/10.1038/nphys2479
https://doi.org/10.1038/nphys2429
https://doi.org/10.1038/nphys2429
https://doi.org/10.1038/nphys2429
https://doi.org/10.1038/nphys2429
https://doi.org/10.1103/PhysRevB.87.241401
https://doi.org/10.1103/PhysRevB.87.241401
https://doi.org/10.1103/PhysRevB.87.241401
https://doi.org/10.1103/PhysRevB.87.241401
https://doi.org/10.1103/PhysRevLett.110.126406
https://doi.org/10.1103/PhysRevLett.110.126406
https://doi.org/10.1103/PhysRevLett.110.126406
https://doi.org/10.1103/PhysRevLett.110.126406
https://doi.org/10.1038/nnano.2014.306
https://doi.org/10.1038/nnano.2014.306
https://doi.org/10.1038/nnano.2014.306
https://doi.org/10.1038/nnano.2014.306
https://doi.org/10.1038/nature17162
https://doi.org/10.1038/nature17162
https://doi.org/10.1038/nature17162
https://doi.org/10.1038/nature17162
https://doi.org/10.1126/science.aaf3961
https://doi.org/10.1126/science.aaf3961
https://doi.org/10.1126/science.aaf3961
https://doi.org/10.1126/science.aaf3961
https://doi.org/10.1038/ncomms16025
https://doi.org/10.1038/ncomms16025
https://doi.org/10.1038/ncomms16025
https://doi.org/10.1038/ncomms16025
https://doi.org/10.1038/nature23468
https://doi.org/10.1038/nature23468
https://doi.org/10.1038/nature23468
https://doi.org/10.1038/nature23468
https://doi.org/10.1126/science.1259327
https://doi.org/10.1126/science.1259327
https://doi.org/10.1126/science.1259327
https://doi.org/10.1126/science.1259327
https://doi.org/10.1103/PhysRevLett.115.197204
https://doi.org/10.1103/PhysRevLett.115.197204
https://doi.org/10.1103/PhysRevLett.115.197204
https://doi.org/10.1103/PhysRevLett.115.197204
https://doi.org/10.1038/npjqi.2016.35
https://doi.org/10.1038/npjqi.2016.35
https://doi.org/10.1038/npjqi.2016.35
https://doi.org/10.1038/npjqi.2016.35
https://doi.org/10.1103/PhysRevLett.111.186805
https://doi.org/10.1103/PhysRevLett.111.186805
https://doi.org/10.1103/PhysRevLett.111.186805
https://doi.org/10.1103/PhysRevLett.111.186805
https://doi.org/10.1103/PhysRevLett.111.206802
https://doi.org/10.1103/PhysRevLett.111.206802
https://doi.org/10.1103/PhysRevLett.111.206802
https://doi.org/10.1103/PhysRevLett.111.206802
https://doi.org/10.1103/PhysRevLett.111.147202
https://doi.org/10.1103/PhysRevLett.111.147202
https://doi.org/10.1103/PhysRevLett.111.147202
https://doi.org/10.1103/PhysRevLett.111.147202
https://doi.org/10.1103/PhysRevB.88.020407
https://doi.org/10.1103/PhysRevB.88.020407
https://doi.org/10.1103/PhysRevB.88.020407
https://doi.org/10.1103/PhysRevB.88.020407
https://doi.org/10.1103/PhysRevB.88.155420
https://doi.org/10.1103/PhysRevB.88.155420
https://doi.org/10.1103/PhysRevB.88.155420
https://doi.org/10.1103/PhysRevB.88.155420
https://doi.org/10.1103/PhysRevB.95.184511
https://doi.org/10.1103/PhysRevB.95.184511
https://doi.org/10.1103/PhysRevB.95.184511
https://doi.org/10.1103/PhysRevB.95.184511
https://doi.org/10.1103/PhysRevB.82.094522
https://doi.org/10.1103/PhysRevB.82.094522
https://doi.org/10.1103/PhysRevB.82.094522
https://doi.org/10.1103/PhysRevB.82.094522
https://doi.org/10.1103/PhysRevB.83.184520
https://doi.org/10.1103/PhysRevB.83.184520
https://doi.org/10.1103/PhysRevB.83.184520
https://doi.org/10.1103/PhysRevB.83.184520
https://doi.org/10.1103/PhysRevB.84.064524
https://doi.org/10.1103/PhysRevB.84.064524
https://doi.org/10.1103/PhysRevB.84.064524
https://doi.org/10.1103/PhysRevB.84.064524
https://doi.org/10.1103/PhysRevLett.111.056802
https://doi.org/10.1103/PhysRevLett.111.056802
https://doi.org/10.1103/PhysRevLett.111.056802
https://doi.org/10.1103/PhysRevLett.111.056802
https://doi.org/10.1103/PhysRevB.93.235431
https://doi.org/10.1103/PhysRevB.93.235431
https://doi.org/10.1103/PhysRevB.93.235431
https://doi.org/10.1103/PhysRevB.93.235431
https://doi.org/10.1103/PhysRevB.95.205439
https://doi.org/10.1103/PhysRevB.95.205439
https://doi.org/10.1103/PhysRevB.95.205439
https://doi.org/10.1103/PhysRevB.95.205439
https://doi.org/10.1103/PhysRevB.96.081301
https://doi.org/10.1103/PhysRevB.96.081301
https://doi.org/10.1103/PhysRevB.96.081301
https://doi.org/10.1103/PhysRevB.96.081301
https://doi.org/10.1016/0921-4534(94)02429-4
https://doi.org/10.1016/0921-4534(94)02429-4
https://doi.org/10.1016/0921-4534(94)02429-4
https://doi.org/10.1016/0921-4534(94)02429-4
https://doi.org/10.1103/PhysRevB.71.224510
https://doi.org/10.1103/PhysRevB.71.224510
https://doi.org/10.1103/PhysRevB.71.224510
https://doi.org/10.1103/PhysRevB.71.224510
https://doi.org/10.1016/j.physc.2004.10.015
https://doi.org/10.1016/j.physc.2004.10.015
https://doi.org/10.1016/j.physc.2004.10.015
https://doi.org/10.1016/j.physc.2004.10.015
https://doi.org/10.1103/PhysRevB.94.020501
https://doi.org/10.1103/PhysRevB.94.020501
https://doi.org/10.1103/PhysRevB.94.020501
https://doi.org/10.1103/PhysRevB.94.020501
https://doi.org/10.1103/PhysRevB.87.024515
https://doi.org/10.1103/PhysRevB.87.024515
https://doi.org/10.1103/PhysRevB.87.024515
https://doi.org/10.1103/PhysRevB.87.024515
https://doi.org/10.1140/epjb/e2015-50882-2
https://doi.org/10.1140/epjb/e2015-50882-2
https://doi.org/10.1140/epjb/e2015-50882-2
https://doi.org/10.1140/epjb/e2015-50882-2
https://doi.org/10.1103/PhysRevB.93.224505
https://doi.org/10.1103/PhysRevB.93.224505
https://doi.org/10.1103/PhysRevB.93.224505
https://doi.org/10.1103/PhysRevB.93.224505
https://doi.org/10.1103/PhysRevB.96.035306
https://doi.org/10.1103/PhysRevB.96.035306
https://doi.org/10.1103/PhysRevB.96.035306
https://doi.org/10.1103/PhysRevB.96.035306
https://doi.org/10.1103/PhysRevB.91.201413
https://doi.org/10.1103/PhysRevB.91.201413
https://doi.org/10.1103/PhysRevB.91.201413
https://doi.org/10.1103/PhysRevB.91.201413
https://doi.org/10.1103/PhysRevB.93.155402
https://doi.org/10.1103/PhysRevB.93.155402
https://doi.org/10.1103/PhysRevB.93.155402
https://doi.org/10.1103/PhysRevB.93.155402
http://arxiv.org/abs/arXiv:1707.04899
https://doi.org/10.1103/PhysRevLett.119.037701
https://doi.org/10.1103/PhysRevLett.119.037701
https://doi.org/10.1103/PhysRevLett.119.037701
https://doi.org/10.1103/PhysRevLett.119.037701
https://doi.org/10.1103/PhysRevB.94.140505
https://doi.org/10.1103/PhysRevB.94.140505
https://doi.org/10.1103/PhysRevB.94.140505
https://doi.org/10.1103/PhysRevB.94.140505
https://doi.org/10.1103/PhysRevB.92.174512
https://doi.org/10.1103/PhysRevB.92.174512
https://doi.org/10.1103/PhysRevB.92.174512
https://doi.org/10.1103/PhysRevB.92.174512
https://doi.org/10.1103/PhysRevLett.78.3761
https://doi.org/10.1103/PhysRevLett.78.3761
https://doi.org/10.1103/PhysRevLett.78.3761
https://doi.org/10.1103/PhysRevLett.78.3761
https://doi.org/10.1103/PhysRevB.55.12648
https://doi.org/10.1103/PhysRevB.55.12648
https://doi.org/10.1103/PhysRevB.55.12648
https://doi.org/10.1103/PhysRevB.55.12648
https://doi.org/10.1103/RevModPhys.78.373
https://doi.org/10.1103/RevModPhys.78.373
https://doi.org/10.1103/RevModPhys.78.373
https://doi.org/10.1103/RevModPhys.78.373
https://doi.org/10.1103/PhysRevB.89.205133
https://doi.org/10.1103/PhysRevB.89.205133
https://doi.org/10.1103/PhysRevB.89.205133
https://doi.org/10.1103/PhysRevB.89.205133
https://doi.org/10.1103/PhysRevB.92.125422
https://doi.org/10.1103/PhysRevB.92.125422
https://doi.org/10.1103/PhysRevB.92.125422
https://doi.org/10.1103/PhysRevB.92.125422
https://doi.org/10.1021/acs.nanolett.6b00051
https://doi.org/10.1021/acs.nanolett.6b00051
https://doi.org/10.1021/acs.nanolett.6b00051
https://doi.org/10.1021/acs.nanolett.6b00051



