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DIII topological superconductivity with emergent time-reversal symmetry
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We find a class of topological superconductors which possess an emergent time-reversal symmetry that
is present only after projecting to an effective low-dimensional model. We show that a topological phase in
symmetry class DIII can be realized in a noninteracting system coupled to an s-wave superconductor only if
the physical time-reversal symmetry of the system is broken, and we provide three general criteria that must
be satisfied in order to have such a phase. We also provide an explicit model which realizes the class DIII
topological superconductor in 1D. We show that, just as in time-reversal invariant topological superconductors,
the topological phase is characterized by a Kramers pair of Majorana fermions that are protected by the emergent
time-reversal symmetry.
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Introduction. Topological superconductors have been in-
tensively pursued in recent years [1–3] because the Majorana
fermions which are localized to their boundaries have potential
applications in the development of a topological quantum
computer [4,5]. The most promising proposals to date for
engineering topological superconductivity involve coupling a
conventional superconductor either to a nanowire with Rashba
spin-orbit interaction that is subjected to an external magnetic
field [6–26] or to a ferromagnetic atomic chain [27–34].

Additionally, there have been several proposals to engineer
topological superconductors in symmetry class DIII. Such
systems possess both particle-hole symmetry and time-reversal
symmetry [35], with the presence of time-reversal symmetry
ensuring that the Majorana fermions existing at the boundaries
of class DIII topological superconductors come in Kramers
pairs. In one dimension (1D), where superconductivity is re-
quired to be induced by the proximity effect, it has been shown
that a nontrivial topological phase in class DIII can be realized
by proximity coupling a noninteracting multichannel Rashba
nanowire to an unconventional superconductor [36–39] or
to two conventional superconductors forming a Josephson
junction with a phase difference of π [40]. Alternatively, an
effective π -phase difference can be induced in a multichannel
Rashba nanowire with repulsive electron-electron interactions
[41] or in a system of two topological insulators coupled to
a conventional superconductor via a magnetic insulator [42].
It has also been proposed to realize class DIII topological
superconductivity in a system of two Rashba nanowires
[43–45] or two topological insulators [46] coupled to a
single conventional superconductor, but repulsive interactions
are also necessary to reach the topological phase in these
setups, which require a strength of induced crossed Andreev
(interwire) pairing exceeding that of the direct (intrawire)
pairing [47–49]. While it would be beneficial to engineer a
DIII topological superconductor in a noninteracting 1D system
coupled to a single conventional superconductor, as such a
setup could avoid relying on unconventional superconductivity
or interactions that are difficult to control experimentally, it
has been shown that this is not possible in a fully time-reversal
invariant system [38,50].

In this paper, we show that such a 1D topological super-
conductor in class DIII can be realized when time-reversal

symmetry is explicitly broken. While the full Hamiltonian
(describing the 1D system, the superconductor, and the tunnel
coupling) possesses only particle-hole symmetry and is thus
in symmetry class D, it is possible to place the system in
symmetry class DIII after integrating out the superconductor
[47,51–57] and projecting to an effective 1D model. (This is
completely analogous to the case of a single Rashba nanowire
coupled to an s-wave superconductor and subjected to an
external magnetic field [6,7]. In this setup, it is possible to
define an effective time-reversal symmetry, which squares to
+1, and to place the system in class BDI after projecting
to 1D [58].) We establish three necessary criteria to realize
a DIII topological phase. First, the 1D system must obey
an “emergent” time-reversal symmetry. That is, given the
Hamiltonian density hk of the 1D system, there must exist a
unitary matrix T1D such that T †

1DhkT1D = h∗
−k and T 2

1D = −1.
[While a specific example could be the physical time-reversal
symmetry T1D = iσy , where σx,y,z is a Pauli matrix acting
in spin space, we do not restrict ourselves to this case.]
Second, the self-energy induced on the 1D system by the
superconductor must preserve the emergent time-reversal
symmetry. Third, the anomalous (pairing) component of the
self-energy must have both positive and negative eigenvalues.

After a general discussion, we provide a simple model
which realizes the DIII topological phase in 1D. We consider
a system of two Rashba nanowires with opposite Zeeman
splittings coupled to an s-wave superconductor. We show
that such a system undergoes a topological phase transition
under certain conditions. By explicitly solving for the wave
functions of the Majorana bound states, we show that the
topological phase is characterized by the presence of a Kramers
pair of Majorana fermions that is protected by the emergent
time-reversal symmetry.

Minimum requirements for DIII topological phase. We
consider a general 1D (noninteracting) system coupled to
a conventional superconductor. We assume that the system
is translationally invariant along the direction of the 1D
system, allowing us to define a conserved momentum k. The
Hamiltonian of the 1D system is given by

H1D =
∫

dk

2π
ψ

†
khkψk, (1)
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where ψk is a spinor annihilation operator acting on all internal
degrees of freedom of the 1D system (spin, subband, etc.)
and hk is a Hermitian matrix. We assume that there exists a
unitary matrix T1D which acts as an effective time-reversal
symmetry on the Hamiltonian, such that T †

1DhkT1D = h∗
−k and

T 2
1D = −1. Introducing the Nambu spinor �

†
k = (ψ†

k ,ψ
T
−kT1D),

the Hamiltonian Eq. (1) can be expressed as

H1D = 1

2

∫
dk

2π
�

†
kH1D

k �k, (2)

where Hk = τzhk and τx,y,z is a Pauli matrix acting in Nambu
space.

The 1D system is coupled to a conventional superconductor
which is described by a BCS Hamiltonian,

Hsc = 1

2

∫
dk

2π

∫
dr⊥ η

†
k(r⊥)Hsc

k (r⊥)ηk(r⊥), (3)

where r⊥ denotes directions transverse to the 1D system and
η
†
k = (η†

k↑,η
†
k↓,−η−k↓,η−k↑) is a spinor creation operator in

Nambu ⊗ spin space. The Hamiltonian density in this basis is
given by Hsc

k (r⊥) = τz[(k2 − ∇2
⊥)/2ms − μs] + τx�, where

ms , μs , and � are the effective mass, chemical potential,
and pairing potential of the superconductor, respectively. The
superconductor is time-reversal invariant, T †

scHsc
k Tsc = Hsc∗

−k ,
where Tsc = iσy is the physical time-reversal operator, with
σx,y,z the Pauli matrix acting in spin space.

We allow for a linear coupling between the 1D system and
the superconductor of the form

Ht = 1

2

∫
dk

2π

∫
dr⊥[η†

k(r⊥)Tk(r⊥)�k + H.c.]. (4)

The tunneling matrix in Nambu space, Tk(r⊥), can be ex-
pressed generally as

Tk = T 0
k + τzT

z
k , (5)

where T 0
k = [tk − T †

sct
∗
−kT1D]/2, T z

k = [tk + T †
sct

∗
−kT1D]/2, and

tk is a tunneling matrix acting on all additional degrees of
freedom in the system [59]. Combining Eqs. (2)–(4), the full
Hamiltonian can be expressed as

H = 1

2

∫
dk

2π

(
�

†
k η

†
k

)(
H1D

k T
†
k

Tk Hsc
k

)(
�k

ηk

)
, (6)

where we suppress explicit reference to r⊥ for brevity. Note
that the time-reversal symmetry of the full Hamiltonian is
broken by having T 0

k �= 0; i.e., T †HkT �= H∗
−k , where Hk is

the Hamiltonian density of Eq. (6) and T = diag(T1D,Tsc).
We now project our system to an effective 1D model by

integrating out the superconductor [47,51–57]. The supercon-
ductor induces a self-energy on the 1D system given by

	k,ω =
∫

dr⊥
∫

dr′
⊥ T

†
k (r⊥)Gsc

k,ω(r⊥,r′
⊥)Tk(r′

⊥), (7)

where Gsc
k,ω(r⊥,r′

⊥) is the Matsubara Green’s function
of the bare superconductor, defined such that [iω −
Hsc

k (r⊥)]Gsc
k,ω(r⊥,r′

⊥) = δ(r⊥ − r′
⊥). In the limit of weak

tunneling, when the relevant pairing energies in the 1D system
are ω 
 �, it is sufficient to evaluate the self-energy at
ω = 0. In this case, the system is described by an effective 1D
Hamiltonian given by Heff

k = H1D
k + 	k . Since it was already

assumed that H1D
k obeys an effective time-reversal symmetry,

the HamiltonianHeff
k is in class DIII if the self-energy of Eq. (7)

preserves this symmetry,

T †
1D	kT1D = 	∗

−k. (8)

Hence, T1D acts as an emergent time-reversal symmetry which
exists only in the low-dimensional subspace. Assuming that
the self-energy satisfies Eq. (8), we can decompose it into
normal and anomalous parts as

	k = τz	
N
k + τx	

A
k , (9)

where 	N
k = GN

k (T 0†
k T 0

k + T
z†
k T z

k ) and 	A
k = GA

k (T 0†
k T 0

k −
T

z†
k T z

k ) [60]. In arriving at Eq. (9), we have utilized the fact
that the superconducting Green’s function can be similarly
decomposed as Gsc

k = τzG
N
k + τxG

A
k , where GN

k and GA
k are

scalars.
The anomalous self-energy, which represents the induced

pairing in the 1D system, can be expressed in a form

	A
k = 	z

k − 	0
k , (10)

where 	i
k = −GA

k T
i†
k T i

k . It has been well demonstrated that
the class DIII topological invariant can take a nontrivial value
only if there exist at least two bands with opposite sign of
the pairing potential [38,40,41,50,61], or, equivalently, that
the anomalous component of the self-energy has both positive
and negative eigenvalues. It was also shown in Ref. [50] that
	z

k is always a positive semidefinite matrix, and by extension
it is straightforward to show that 	0

k is also always positive
semidefinite. Consequently, it is only possible for the DIII
topological invariant to take a nontrivial value if both 	z

k and
	0

k are nonzero, as the anomalous self-energy is not restricted
to be either positive or negative semidefinite in this case. Note
that it was concluded in Ref. [50] that the DIII invariant always
takes a trivial value because it was assumed that the full
tunneling Hamiltonian [Eq. (6)] is time-reversal symmetric,
and hence T 0

k = 	0
k = 0. However, this is an unnecessarily

restrictive assumption which is valid only for a certain subclass
of one-dimensional DIII systems.

We have thus established three minimal criteria to realize a
class DIII topological phase in a noninteracting 1D system: the
bare 1D system must obey an effective time-reversal symmetry,
the self-energy induced by the superconductor must preserve
this symmetry, and the anomalous self-energy must have both
positive and negative eigenvalues. The final requirement can
be satisfied only if the full tunneling Hamiltonian [Eq. (6)]
is not time-reversal invariant. We will now provide a model
which satisfies all three criteria, showing indeed that the class
DIII topological phase can be realized.

Model. We consider the geometry shown in Fig. 1. Two
Rashba nanowires, separated by a distance d (let us take one
wire to be located at z = 0 and the other at z = d), are coupled
to an infinite 2D s-wave superconducting plane. We take the
two nanowires to have opposite Zeeman splitting, which can
be achieved by applying an antiparallel external magnetic field
to each wire or by applying a uniform external magnetic field
to two wires with opposite g-factors.
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SC

d

ΔZ −ΔZ

FIG. 1. Two nanowires, separated by a distance d , are coupled to
an infinite superconducting plane. The two nanowires are assumed to
have opposite Zeeman splittings.

The two nanowires are described by the Hamiltonian
density

hk = ξk − αkσz − �Zλzσx, (11)

where ξk = k2/2mw − μw (mw is the effective mass and μw

the chemical potential of the nanowires), α is the Rashba
spin-orbit interaction constant (we choose our spin quantiza-
tion axis along the direction of the effective Rashba field),
and �Z = gμBB/2 is the Zeeman splitting in an external
magnetic field of strength B (g is the nanowire g-factor
and μB is the Bohr magneton). The Pauli matrix λx,y,z acts
in left/right wire space. Crucially, we impose that the two
nanowires are identical, with only a change in the sign of
the Zeeman splitting. Although the Zeeman term in Eq. (11)
explicitly breaks time reversal, the Hamiltonian density obeys
an effective time-reversal symmetry T †

1DhkT1D = h∗
−k , where

T1D = iλxσy and T 2
1D = −1.

The self-energy induced on the two nanowires by the
superconductor is given in Eq. (7). Assuming that μs � μw,
we evaluate the Green’s function of the bulk 2D supercon-
ductor for momenta k 
 kFs (kFs = √

2msμs is the Fermi
momentum of the superconductor) to give

Gsc
0,0(z,z′) = − 1

vFs

[τx cos(kFs |z − z′|)

− τz sin(kFs |z − z′|)]e−|z−z′ |/ξs , (12)

where ξs = vFs/� is the coherence length and vFs = kFs/ms

the Fermi velocity of the superconductor (we have also
expanded in the limit μs � �). We assume local spin-
and momentum-independent tunneling of the form tk(z) =
[tδ(z) tδ(z − d)], where t is a (scalar) tunneling amplitude
which has the same strength in both nanowires. This gives
T 0

k = tk(1 − λx)/2 and T z
k = tk(1 + λx)/2. Evaluating the

self-energy Eq. (7), we find

	 = �τzλx + τx(�c + �dλx), (13)

where we define a single-particle interwire tunnel coupling
� = γ sin(kFsd)e−d/ξs , an induced direct (intrawire) pairing
potential �d = γ , and an induced crossed Andreev (interwire)
pairing potential �c = γ cos(kFsd)e−d/ξs [47]. Here, γ =
t2/vFs is a tunneling energy scale. Note that the pairing
potentials always satisfy �d > �c.

0
0

1

Δ
c
/
Δ

d

ΔZ/Δd

1

0.5

0.5 1.5

Trivial

Topological

FIG. 2. Phase diagram of our model. A phase boundary at �2
Z =

�2
d − �2

c separates trivial and DIII topological superconducting
phases. The topological phase is characterized by the presence of a
Kramers pair of Majorana fermions that is protected by the emergent
time-reversal symmetry.

Taking into account the self-energy, the effective Hamilto-
nian describing the double nanowire system is given by

Heff
k = τz(ξk − αkσz − �Zλzσx + �λx) + τx(�c + �dλx).

(14)

Because the self-energy preserves the effective time-reversal
symmetry, T †

1D	T1D = 	∗, we also have T †
1DHeff

k T1D = Heff∗
−k .

Additionally, the effective Hamiltonian possesses a particle-
hole symmetry P†Heff

k P = −Heff∗
−k , where P = τyλxσy is

a unitary matrix satisfying P2 = 1. Finally, the effective
Hamiltonian possesses a chiral symmetry {C,Heff

k } = 0, where
C = T1DP = iτy . These three properties of the Hamiltonian
place it in the DIII symmetry class. Additionally, the anoma-
lous self-energy 	A = �c + �dλx has both positive and
negative eigenvalues, �c ± �d . Because all of our previously
established criteria are met in this setup, it is possible to have
a topological phase.

To determine whether such a topological phase exists in
this setup, we search for a k = 0 gap-closing transition by
enforcing det(Heff

0 ) = 0. We find

det
(
Heff

0

) = {
�4

Z + 2�2
Z

(
�2 − �2

d + �2
c − μ2

w

)
+ [(�d − �c)2 + (� − μw)2][(�d + �c)2

+ (� + μw)2]
}2

, (15)

which yields a gap closing at the critical Zeeman
splitting (�c

Z)2 = �2
d − �2

c + μ2
w − �2 ± 2i(μw�c − ��d ).

Therefore, in order to have a physical transition, the chemical
potential of the nanowires must be tuned to μw = ��d/�c.
For simplicity, let us assume that the system is tuned in such
a way that the interwire tunnel coupling vanishes, � = 0
[which can be done by tuning sin(kFsd) = 0]. In this case, the
critical Zeeman splitting at which the gap closes is given by

�c
Z =

√
�2

d − �2
c . (16)

The phase diagram of our model is displayed in Fig. 2. We find
two distinct phases whose topological characterization can be
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inferred along the line �c = 0, corresponding to the case when
the two wires are decoupled (d � ξs). For �Z < �d , both
wires are in a topologically trivial phase. For �Z > �d , both
wires are in a topologically nontrivial phase, with each wire
hosting its own distinct pair of Majorana bound states. Because
the number of Majorana bound states is a topological invariant
that cannot be changed without closing the gap, we conclude
that �2

Z < �2
d − �2

c corresponds to a topologically trivial
phase while �2

Z > �2
d − �2

c corresponds to a topologically
nontrivial phase with two pairs of Majorana bound states.

To further establish the presence of a topologically non-
trivial phase, we explicitly solve for the wave functions of
the Majorana bound states. We now take our nanowires to
be semi-infinite (x > 0), and we assume that the effective
Hamiltonian of Eq. (14) remains valid for the semi-infinite case
after replacing k → −i∂x [62]. States in the nanowires obey
a Bogoliubov-de Gennes equation given by Heff(x)φ(x) =
Eφ(x). By constructing a general zero-energy solution and
imposing a vanishing boundary condition φ(0) = 0, we find
two Majorana bound state solutions in the topological phase
(�2

Z > �2
d − �2

c) and no solutions in the trivial phase (�2
Z <

�2
d − �2

c). The full analytical expressions for the wave
functions are given in the limit of strong spin-orbit interaction
(mwα2 � �d,�c,�Z) in the Supplemental Material [60]. We
find that the two Majorana wave functions in the topological
phase are orthogonal,

φ
†
2(x)φ1(x) = 0, (17)

and related by the effective time-reversal symmetry,

φ1(x) = T1Dφ∗
2 (x),

φ2(x) = −T1Dφ∗
1 (x). (18)

Hence, the two Majorana bound states in the system form a
Kramers pair that is protected by the emergent time-reversal

symmetry. We note that the Kramers degeneracy is lifted
when the effective time-reversal symmetry is broken (for
example by differences in the effective Hamiltonians of the two
nanowires), which causes the Majorana bound states to split
to finite energy. However, these subgap bound states persist
at low energies provided that the symmetry breaking effect is
smaller than the gap.

Conclusions. We have shown that a topological super-
conductor in symmetry class DIII can be realized in a
noninteracting 1D system proximity coupled to a conventional
superconductor. Crucially, the full Hamiltonian (incorporating
the 1D system, the parent superconductor, and the tunneling
term) must not possess an effective time-reversal symmetry,
with such a symmetry emerging only after projection to an
effective 1D model. We provide an explicit example realizing
such a class DIII topological superconductor, showing that
the topological phase is characterized by a Kramers pair of
Majorana bound states which is protected by the effective
time-reversal symmetry of the system. We believe that our
general criteria can be applied to realize class DIII topological
superconductivity in a multitude of additional systems coupled
to a bulk s-wave superconductor, for example in nanowires
with helical magnetization of opposite helicity, antiferromag-
netically coupled spin chains, magnetic topological insulators
with opposite magnetization, or ferromagnetic atomic chains
with opposite magnetization.

Note added. Upon completion of this manuscript, we
became aware of a very recent preprint, Ref. [63], which
discusses the realization of a class DIII topological phase in 2D
antiferromagnetic quantum spin Hall insulators, providing an
additional physical realization of the three topological criteria
proposed in the present Rapid Communication.

Acknowledgments. This work was supported by the Swiss
National Science Foundation and the NCCR QSIT.

[1] J. Alicea, Rep. Prog. Phys. 75, 076501 (2012).
[2] M. Leijnse and K. Flensberg, Semicond. Sci. Technol. 27,

124003 (2012).
[3] C. W. J. Beenakker, Annu. Rev. Condens. Matter Phys. 4, 113

(2013).
[4] A. Y. Kitaev, Phys. Usp. 44, 131 (2001).
[5] C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. Das

Sarma, Rev. Mod. Phys. 80, 1083 (2008).
[6] R. M. Lutchyn, J. D. Sau, and S. Das Sarma, Phys. Rev. Lett.

105, 077001 (2010).
[7] Y. Oreg, G. Refael, and F. von Oppen, Phys. Rev. Lett. 105,

177002 (2010).
[8] J. Alicea, Phys. Rev. B 81, 125318 (2010).
[9] D. Chevallier, D. Sticlet, P. Simon, and C. Bena, Phys. Rev. B

85, 235307 (2012).
[10] B. I. Halperin, Y. Oreg, A. Stern, G. Refael, J. Alicea,

and F. von Oppen, Phys. Rev. B 85, 144501
(2012).

[11] D. Sticlet, C. Bena, and P. Simon, Phys. Rev. Lett. 108, 096802
(2012).

[12] J. Klinovaja, P. Stano, and D. Loss, Phys. Rev. Lett. 109, 236801
(2012).

[13] E. Prada, P. San-Jose, and R. Aguado, Phys. Rev. B 86,
180503(R) (2012).

[14] F. Domínguez, F. Hassler, and G. Platero, Phys. Rev. B 86,
140503 (2012).

[15] W. DeGottardi, M. Thakurathi, S. Vishveshwara, and D. Sen,
Phys. Rev. B 88, 165111 (2013).

[16] E. Vernek, P. H. Penteado, A. C. Seridonio, and J. C. Egues,
Phys. Rev. B 89, 165314 (2014).

[17] V. Mourik, K. Zuo, S. M. Frolov, S. R. Plissard, E. P. A. M.
Bakkers, and L. P. Kouwenhoven, Science 336, 1003
(2012).

[18] M. T. Deng, C. L. Yu, G. Y. Huang, M. Larsson, P. Caroff, and
H. Q. Xu, Nano Lett. 12, 6414 (2012).

[19] A. Das, Y. Ronen, Y. Most, Y. Oreg, M. Heiblum, and H.
Shtrikman, Nat. Phys. 8, 887 (2012).

[20] L. P. Rokhinson, X. Liu, and J. K. Furdyna, Nat. Phys. 8, 795
(2012).

[21] H. O. H. Churchill, V. Fatemi, K. Grove-Rasmussen, M. T. Deng,
P. Caroff, H. Q. Xu, and C. M. Marcus, Phys. Rev. B 87, 241401
(2013).

[22] A. D. K. Finck, D. J. Van Harlingen, P. K. Mohseni, K. Jung,
and X. Li, Phys. Rev. Lett. 110, 126406 (2013).

161407-4

https://doi.org/10.1088/0034-4885/75/7/076501
https://doi.org/10.1088/0034-4885/75/7/076501
https://doi.org/10.1088/0034-4885/75/7/076501
https://doi.org/10.1088/0034-4885/75/7/076501
https://doi.org/10.1088/0268-1242/27/12/124003
https://doi.org/10.1088/0268-1242/27/12/124003
https://doi.org/10.1088/0268-1242/27/12/124003
https://doi.org/10.1088/0268-1242/27/12/124003
https://doi.org/10.1146/annurev-conmatphys-030212-184337
https://doi.org/10.1146/annurev-conmatphys-030212-184337
https://doi.org/10.1146/annurev-conmatphys-030212-184337
https://doi.org/10.1146/annurev-conmatphys-030212-184337
https://doi.org/10.1070/1063-7869/44/10S/S29
https://doi.org/10.1070/1063-7869/44/10S/S29
https://doi.org/10.1070/1063-7869/44/10S/S29
https://doi.org/10.1070/1063-7869/44/10S/S29
https://doi.org/10.1103/RevModPhys.80.1083
https://doi.org/10.1103/RevModPhys.80.1083
https://doi.org/10.1103/RevModPhys.80.1083
https://doi.org/10.1103/RevModPhys.80.1083
https://doi.org/10.1103/PhysRevLett.105.077001
https://doi.org/10.1103/PhysRevLett.105.077001
https://doi.org/10.1103/PhysRevLett.105.077001
https://doi.org/10.1103/PhysRevLett.105.077001
https://doi.org/10.1103/PhysRevLett.105.177002
https://doi.org/10.1103/PhysRevLett.105.177002
https://doi.org/10.1103/PhysRevLett.105.177002
https://doi.org/10.1103/PhysRevLett.105.177002
https://doi.org/10.1103/PhysRevB.81.125318
https://doi.org/10.1103/PhysRevB.81.125318
https://doi.org/10.1103/PhysRevB.81.125318
https://doi.org/10.1103/PhysRevB.81.125318
https://doi.org/10.1103/PhysRevB.85.235307
https://doi.org/10.1103/PhysRevB.85.235307
https://doi.org/10.1103/PhysRevB.85.235307
https://doi.org/10.1103/PhysRevB.85.235307
https://doi.org/10.1103/PhysRevB.85.144501
https://doi.org/10.1103/PhysRevB.85.144501
https://doi.org/10.1103/PhysRevB.85.144501
https://doi.org/10.1103/PhysRevB.85.144501
https://doi.org/10.1103/PhysRevLett.108.096802
https://doi.org/10.1103/PhysRevLett.108.096802
https://doi.org/10.1103/PhysRevLett.108.096802
https://doi.org/10.1103/PhysRevLett.108.096802
https://doi.org/10.1103/PhysRevLett.109.236801
https://doi.org/10.1103/PhysRevLett.109.236801
https://doi.org/10.1103/PhysRevLett.109.236801
https://doi.org/10.1103/PhysRevLett.109.236801
https://doi.org/10.1103/PhysRevB.86.180503
https://doi.org/10.1103/PhysRevB.86.180503
https://doi.org/10.1103/PhysRevB.86.180503
https://doi.org/10.1103/PhysRevB.86.180503
https://doi.org/10.1103/PhysRevB.86.140503
https://doi.org/10.1103/PhysRevB.86.140503
https://doi.org/10.1103/PhysRevB.86.140503
https://doi.org/10.1103/PhysRevB.86.140503
https://doi.org/10.1103/PhysRevB.88.165111
https://doi.org/10.1103/PhysRevB.88.165111
https://doi.org/10.1103/PhysRevB.88.165111
https://doi.org/10.1103/PhysRevB.88.165111
https://doi.org/10.1103/PhysRevB.89.165314
https://doi.org/10.1103/PhysRevB.89.165314
https://doi.org/10.1103/PhysRevB.89.165314
https://doi.org/10.1103/PhysRevB.89.165314
https://doi.org/10.1126/science.1222360
https://doi.org/10.1126/science.1222360
https://doi.org/10.1126/science.1222360
https://doi.org/10.1126/science.1222360
https://doi.org/10.1021/nl303758w
https://doi.org/10.1021/nl303758w
https://doi.org/10.1021/nl303758w
https://doi.org/10.1021/nl303758w
https://doi.org/10.1038/nphys2479
https://doi.org/10.1038/nphys2479
https://doi.org/10.1038/nphys2479
https://doi.org/10.1038/nphys2479
https://doi.org/10.1038/nphys2429
https://doi.org/10.1038/nphys2429
https://doi.org/10.1038/nphys2429
https://doi.org/10.1038/nphys2429
https://doi.org/10.1103/PhysRevB.87.241401
https://doi.org/10.1103/PhysRevB.87.241401
https://doi.org/10.1103/PhysRevB.87.241401
https://doi.org/10.1103/PhysRevB.87.241401
https://doi.org/10.1103/PhysRevLett.110.126406
https://doi.org/10.1103/PhysRevLett.110.126406
https://doi.org/10.1103/PhysRevLett.110.126406
https://doi.org/10.1103/PhysRevLett.110.126406


RAPID COMMUNICATIONS

DIII TOPOLOGICAL SUPERCONDUCTIVITY WITH . . . PHYSICAL REVIEW B 96, 161407(R) (2017)

[23] W. Chang, S. M. Albrecht, T. S. Jespersen, F. Kuemmeth, P.
Krogstrup, J. Nygård, and C. M. Marcus, Nat. Nanotechnol. 10,
232 (2015).

[24] S. M. Albrecht, A. P. Higginbotham, M. Madsen, F. Kuemmeth,
T. S. Jespersen, J. Nygård, P. Krogstrup, and C. M. Marcus,
Nature (London) 531, 206 (2016).

[25] M. T. Deng, S. Vaitiekenas, E. B. Hansen, J. Danon, M. Leijnse,
K. Flensberg, J. Nygård, P. Krogstrup, and C. M. Marcus,
Science 354, 1557 (2016).

[26] H. Zhang, Ö. Gül, S. Conesa-Boj, M. Nowak, M. Wimmer, K.
Zuo, V. Mourik, F. K. de Vries, J. van Veen, M. W. A. de Moor,
J. D. S. Bommer, D. J. van Woerkom, D. Car, S. R. Plissard,
E. P. A. M. Bakkers, M. Quintero-Pérez, M. C. Cassidy, S.
Koelling, S. Goswami, K. Watanabe, T. Taniguchi, and L. P.
Kouwenhoven, Nat. Commun. 8, 16025 (2017).

[27] S. Nadj-Perge, I. K. Drozdov, B. A. Bernevig, and A. Yazdani,
Phys. Rev. B 88, 020407 (2013).

[28] F. Pientka, L. I. Glazman, and F. von Oppen, Phys. Rev. B 88,
155420 (2013).

[29] J. Klinovaja, P. Stano, A. Yazdani, and D. Loss, Phys. Rev. Lett.
111, 186805 (2013).

[30] M. M. Vazifeh and M. Franz, Phys. Rev. Lett. 111, 206802
(2013).

[31] B. Braunecker and P. Simon, Phys. Rev. Lett. 111, 147202
(2013).

[32] S. Nadj-Perge, I. K. Drozdov, J. Li, H. Chen, S. Jeon, J. Seo,
A. H. MacDonald, B. A. Bernevig, and A. Yazdani, Science 346,
602 (2014).

[33] Y. Peng, F. Pientka, L. I. Glazman, and F. von Oppen, Phys. Rev.
Lett. 114, 106801 (2015).

[34] R. Pawlak, M. Kisiel, J. Klinovaja, T. Meier, S. Kawai, T.
Glatzel, D. Loss, and E. Meyer, Npj Quant. Info. 2, 16035
(2016).

[35] A. P. Schnyder, S. Ryu, A. Furusaki, and A. W. W. Ludwig,
Phys. Rev. B 78, 195125 (2008).

[36] C. L. M. Wong and K. T. Law, Phys. Rev. B 86, 184516 (2012).
[37] S. Nakosai, J. C. Budich, Y. Tanaka, B. Trauzettel, and N.

Nagaosa, Phys. Rev. Lett. 110, 117002 (2013).
[38] F. Zhang, C. L. Kane, and E. J. Mele, Phys. Rev. Lett. 111,

056402 (2013).
[39] E. Dumitrescu, J. D. Sau, and S. Tewari, Phys. Rev. B 90, 245438

(2014).
[40] A. Keselman, L. Fu, A. Stern, and E. Berg, Phys. Rev. Lett. 111,

116402 (2013).
[41] A. Haim, A. Keselman, E. Berg, and Y. Oreg, Phys. Rev. B 89,

220504 (2014).

[42] C. Schrade, A. A. Zyuzin, J. Klinovaja, and D. Loss, Phys. Rev.
Lett. 115, 237001 (2015).

[43] J. Klinovaja and D. Loss, Phys. Rev. B 90, 045118 (2014).
[44] E. Gaidamauskas, J. Paaske, and K. Flensberg, Phys. Rev. Lett.

112, 126402 (2014).
[45] C. Schrade, M. Thakurathi, C. Reeg, S. Hoffman, J. Klinovaja,

and D. Loss, Phys. Rev. B 96, 035306 (2017).
[46] J. Klinovaja, A. Yacoby, and D. Loss, Phys. Rev. B 90, 155447

(2014).
[47] C. Reeg, J. Klinovaja, and D. Loss, Phys. Rev. B 96, 081301

(2017).
[48] P. Recher and D. Loss, Phys. Rev. B 65, 165327 (2002).
[49] C. Bena, S. Vishveshwara, L. Balents, and M. P. A. Fisher, Phys.

Rev. Lett. 89, 037901 (2002).
[50] A. Haim, E. Berg, K. Flensberg, and Y. Oreg, Phys. Rev. B 94,

161110 (2016).
[51] J. D. Sau, R. M. Lutchyn, S. Tewari, and S. Das Sarma, Phys.

Rev. B 82, 094522 (2010).
[52] A. C. Potter and P. A. Lee, Phys. Rev. B 83, 184520 (2011).
[53] N. B. Kopnin and A. S. Melnikov, Phys. Rev. B 84, 064524

(2011).
[54] A. A. Zyuzin, D. Rainis, J. Klinovaja, and D. Loss, Phys. Rev.

Lett. 111, 056802 (2013).
[55] B. van Heck, R. M. Lutchyn, and L. I. Glazman, Phys. Rev. B

93, 235431 (2016).
[56] C. Reeg and D. L. Maslov, Phys. Rev. B 95, 205439

(2017).
[57] C. Reeg, D. Loss, and J. Klinovaja, Phys. Rev. B 96, 125426

(2017).
[58] S. Tewari and J. D. Sau, Phys. Rev. Lett. 109, 150408

(2012).
[59] Note that we do not consider the possibility that tk is a two-body

operator as in Ref. [42], as this corresponds to an interacting
model.

[60] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevB.96.161407 for a derivation of Eq. (9) and
a detailed solution for the Majorana wave functions of our
model.

[61] X.-L. Qi, T. L. Hughes, and S.-C. Zhang, Phys. Rev. B 81,
134508 (2010).

[62] Because the proximity effect was treated in the bulk of the
nanowires, there could be additional boundary effects that are not
properly accounted for in the effective Hamiltonian. However,
the presence or absence of topological Majorana modes is
insensitive to such boundary effects.

[63] Y. Huang and C.-K. Chiu, arXiv:1708.05724.

161407-5

https://doi.org/10.1038/nnano.2014.306
https://doi.org/10.1038/nnano.2014.306
https://doi.org/10.1038/nnano.2014.306
https://doi.org/10.1038/nnano.2014.306
https://doi.org/10.1038/nature17162
https://doi.org/10.1038/nature17162
https://doi.org/10.1038/nature17162
https://doi.org/10.1038/nature17162
https://doi.org/10.1126/science.aaf3961
https://doi.org/10.1126/science.aaf3961
https://doi.org/10.1126/science.aaf3961
https://doi.org/10.1126/science.aaf3961
https://doi.org/10.1038/ncomms16025
https://doi.org/10.1038/ncomms16025
https://doi.org/10.1038/ncomms16025
https://doi.org/10.1038/ncomms16025
https://doi.org/10.1103/PhysRevB.88.020407
https://doi.org/10.1103/PhysRevB.88.020407
https://doi.org/10.1103/PhysRevB.88.020407
https://doi.org/10.1103/PhysRevB.88.020407
https://doi.org/10.1103/PhysRevB.88.155420
https://doi.org/10.1103/PhysRevB.88.155420
https://doi.org/10.1103/PhysRevB.88.155420
https://doi.org/10.1103/PhysRevB.88.155420
https://doi.org/10.1103/PhysRevLett.111.186805
https://doi.org/10.1103/PhysRevLett.111.186805
https://doi.org/10.1103/PhysRevLett.111.186805
https://doi.org/10.1103/PhysRevLett.111.186805
https://doi.org/10.1103/PhysRevLett.111.206802
https://doi.org/10.1103/PhysRevLett.111.206802
https://doi.org/10.1103/PhysRevLett.111.206802
https://doi.org/10.1103/PhysRevLett.111.206802
https://doi.org/10.1103/PhysRevLett.111.147202
https://doi.org/10.1103/PhysRevLett.111.147202
https://doi.org/10.1103/PhysRevLett.111.147202
https://doi.org/10.1103/PhysRevLett.111.147202
https://doi.org/10.1126/science.1259327
https://doi.org/10.1126/science.1259327
https://doi.org/10.1126/science.1259327
https://doi.org/10.1126/science.1259327
https://doi.org/10.1103/PhysRevLett.114.106801
https://doi.org/10.1103/PhysRevLett.114.106801
https://doi.org/10.1103/PhysRevLett.114.106801
https://doi.org/10.1103/PhysRevLett.114.106801
https://doi.org/10.1038/npjqi.2016.35
https://doi.org/10.1038/npjqi.2016.35
https://doi.org/10.1038/npjqi.2016.35
https://doi.org/10.1038/npjqi.2016.35
https://doi.org/10.1103/PhysRevB.78.195125
https://doi.org/10.1103/PhysRevB.78.195125
https://doi.org/10.1103/PhysRevB.78.195125
https://doi.org/10.1103/PhysRevB.78.195125
https://doi.org/10.1103/PhysRevB.86.184516
https://doi.org/10.1103/PhysRevB.86.184516
https://doi.org/10.1103/PhysRevB.86.184516
https://doi.org/10.1103/PhysRevB.86.184516
https://doi.org/10.1103/PhysRevLett.110.117002
https://doi.org/10.1103/PhysRevLett.110.117002
https://doi.org/10.1103/PhysRevLett.110.117002
https://doi.org/10.1103/PhysRevLett.110.117002
https://doi.org/10.1103/PhysRevLett.111.056402
https://doi.org/10.1103/PhysRevLett.111.056402
https://doi.org/10.1103/PhysRevLett.111.056402
https://doi.org/10.1103/PhysRevLett.111.056402
https://doi.org/10.1103/PhysRevB.90.245438
https://doi.org/10.1103/PhysRevB.90.245438
https://doi.org/10.1103/PhysRevB.90.245438
https://doi.org/10.1103/PhysRevB.90.245438
https://doi.org/10.1103/PhysRevLett.111.116402
https://doi.org/10.1103/PhysRevLett.111.116402
https://doi.org/10.1103/PhysRevLett.111.116402
https://doi.org/10.1103/PhysRevLett.111.116402
https://doi.org/10.1103/PhysRevB.89.220504
https://doi.org/10.1103/PhysRevB.89.220504
https://doi.org/10.1103/PhysRevB.89.220504
https://doi.org/10.1103/PhysRevB.89.220504
https://doi.org/10.1103/PhysRevLett.115.237001
https://doi.org/10.1103/PhysRevLett.115.237001
https://doi.org/10.1103/PhysRevLett.115.237001
https://doi.org/10.1103/PhysRevLett.115.237001
https://doi.org/10.1103/PhysRevB.90.045118
https://doi.org/10.1103/PhysRevB.90.045118
https://doi.org/10.1103/PhysRevB.90.045118
https://doi.org/10.1103/PhysRevB.90.045118
https://doi.org/10.1103/PhysRevLett.112.126402
https://doi.org/10.1103/PhysRevLett.112.126402
https://doi.org/10.1103/PhysRevLett.112.126402
https://doi.org/10.1103/PhysRevLett.112.126402
https://doi.org/10.1103/PhysRevB.96.035306
https://doi.org/10.1103/PhysRevB.96.035306
https://doi.org/10.1103/PhysRevB.96.035306
https://doi.org/10.1103/PhysRevB.96.035306
https://doi.org/10.1103/PhysRevB.90.155447
https://doi.org/10.1103/PhysRevB.90.155447
https://doi.org/10.1103/PhysRevB.90.155447
https://doi.org/10.1103/PhysRevB.90.155447
https://doi.org/10.1103/PhysRevB.96.081301
https://doi.org/10.1103/PhysRevB.96.081301
https://doi.org/10.1103/PhysRevB.96.081301
https://doi.org/10.1103/PhysRevB.96.081301
https://doi.org/10.1103/PhysRevB.65.165327
https://doi.org/10.1103/PhysRevB.65.165327
https://doi.org/10.1103/PhysRevB.65.165327
https://doi.org/10.1103/PhysRevB.65.165327
https://doi.org/10.1103/PhysRevLett.89.037901
https://doi.org/10.1103/PhysRevLett.89.037901
https://doi.org/10.1103/PhysRevLett.89.037901
https://doi.org/10.1103/PhysRevLett.89.037901
https://doi.org/10.1103/PhysRevB.94.161110
https://doi.org/10.1103/PhysRevB.94.161110
https://doi.org/10.1103/PhysRevB.94.161110
https://doi.org/10.1103/PhysRevB.94.161110
https://doi.org/10.1103/PhysRevB.82.094522
https://doi.org/10.1103/PhysRevB.82.094522
https://doi.org/10.1103/PhysRevB.82.094522
https://doi.org/10.1103/PhysRevB.82.094522
https://doi.org/10.1103/PhysRevB.83.184520
https://doi.org/10.1103/PhysRevB.83.184520
https://doi.org/10.1103/PhysRevB.83.184520
https://doi.org/10.1103/PhysRevB.83.184520
https://doi.org/10.1103/PhysRevB.84.064524
https://doi.org/10.1103/PhysRevB.84.064524
https://doi.org/10.1103/PhysRevB.84.064524
https://doi.org/10.1103/PhysRevB.84.064524
https://doi.org/10.1103/PhysRevLett.111.056802
https://doi.org/10.1103/PhysRevLett.111.056802
https://doi.org/10.1103/PhysRevLett.111.056802
https://doi.org/10.1103/PhysRevLett.111.056802
https://doi.org/10.1103/PhysRevB.93.235431
https://doi.org/10.1103/PhysRevB.93.235431
https://doi.org/10.1103/PhysRevB.93.235431
https://doi.org/10.1103/PhysRevB.93.235431
https://doi.org/10.1103/PhysRevB.95.205439
https://doi.org/10.1103/PhysRevB.95.205439
https://doi.org/10.1103/PhysRevB.95.205439
https://doi.org/10.1103/PhysRevB.95.205439
https://doi.org/10.1103/PhysRevB.96.125426
https://doi.org/10.1103/PhysRevB.96.125426
https://doi.org/10.1103/PhysRevB.96.125426
https://doi.org/10.1103/PhysRevB.96.125426
https://doi.org/10.1103/PhysRevLett.109.150408
https://doi.org/10.1103/PhysRevLett.109.150408
https://doi.org/10.1103/PhysRevLett.109.150408
https://doi.org/10.1103/PhysRevLett.109.150408
http://link.aps.org/supplemental/10.1103/PhysRevB.96.161407
https://doi.org/10.1103/PhysRevB.81.134508
https://doi.org/10.1103/PhysRevB.81.134508
https://doi.org/10.1103/PhysRevB.81.134508
https://doi.org/10.1103/PhysRevB.81.134508
http://arxiv.org/abs/arXiv:1708.05724



