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Abstract
Bistability underlies cellularmemory andmaintains alternative differentiation states. Bistability can
emerge only if its parameter range is either physically realizable or can be enlarged to become
realizable.We derived a general rule and showed that the bistable range of a reaction parameter is
maximized by a pair of other parameters in any gene regulatory network provided they satisfy a general
condition. The resulting analytical expressions revealedwhether or not such reaction pairs are present
in prototypical positive feedback loops. They are absent from the feedback loop enclosed by protein
dimers but present in both the toggle-switch and the feedback circuit inhibited by sequestration.
Sequestration can generate bistability even at narrow feedback expression range at which cooperative
binding fails to do so, provided inhibition is set to an optimal value. These results help to design
bistable circuits and cellular reprogramming and reveal whether bistability is possible in gene
networks in the range of realistic parameter values.

1. Introduction

Bistability is the co-existence of two stable equilibria.
It is a hallmark of self-organization in dynamical
systems, and has a wide range of occurrence and
applications [1–3].

Bistability creates two distinct cell states or pheno-
types in genetically identical cells. It can also storemem-
ory of past stimuli by hysteresis and promote cell-cycle
oscillations [4, 5]. These effects underlie cellular differ-
entiation, adaptation to varying environments by bet
hedging, and may have practical implications for cel-
lular reprogramming and antibiotic resistance [6–10].

The presence of positive feedback is a necessary
condition of bistability [11], and it is frequently
encountered in networks that control the above pro-
cesses [12, 13]. The existence of positive feedback is
however not a sufficient condition for bistability; the
feedback components must also participate in reac-
tions that generate ultrasensitive responses. More pre-
cisely formulated, the emergence of bistability requires
the following condition: if the feedback loop is
opened, the output response f of the resulting open-
loop must be a sigmoidal function of the input w with
a logarithmic sensitivity wS f larger than one; in other

words, w( )f has to be an ultrasensitive response

[14, 15]; w w= ¶ ¶w ( )S fln lnf .
This sufficient condition for bistability is satisfied

even in the simplest one-gene feedback loop provided
the self-activating transcriptional factor (TF) partici-
pates in an ultrasensitive reaction. This is the case
when the TF binds cooperatively to the promoter of its
own gene or the TF forms dimers to be active.

Bistability can function robustly if its parameter
range is broad enough. The logarithmic sensitivity can
provide clues about the bistable range of a parameter,
as evidenced by the positive correlation between coop-
erativity and the size of the bistable domain in the
parameter space [16–18]. wS f is proportional to the
degree of cooperativity (Hill-coefficient). With mod-
erately cooperative binding of the TF to DNA, bist-
ability is restricted to a narrow range of TF affinity; this
range broadens as cooperativity increases [17].

This intuitive relationship may be blurred for
other types of ultrasensitive reactions, including pro-
tein homo-dimerization, sequestration and multistep
phosphorylation [19–21]. For example, reducing the
production rate of a dimeric TF increases sensitivity
but also lowers the concentration of the active TF
quadratically, and hence the feedback intensity.
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We hypothesized that the trade-off between such
effects may maximize the bistable range of a para-
meter. We sought to identify general conditions for
this maximization in a multi-dimensional parameter
space. The derived general relations were then tested
on prototypical feedback loops incorporating three
different ultrasensitive reactions: homo-dimerization,
inhibition by sequestration and cooperative binding.

Identifying the maximal bistable range of a para-
meter permits the robust design of bistable networks
and provides answer to the question as to whether
bistability is possible in endogenous networks when
only the topology and few experimental data are avail-
able, which is often the case.

2. Results

2.1. Cusp points delimit the bistable range of two
parameters
First, we examined how bifurcation points delimit the
bistable range in the parameter space. For this purpose,
two key parameters were varied in a simple positive
feedback loop with cooperative binding. The system is
describedby the following equation at equilibrium:

g= +
+

- = ( )x b V
x

K x
x 0. 1P m

n

n n

The Hill number n is larger than one if the binding
is cooperative. g is the protein degradation rate con-
stant. K is the equilibrium dissociation constant of the
TF–DNAbinding reaction, and bP is the basal produc-
tion rate. The ratio of the basal ( )bP to the maximal
( )Vm production rate,b = b V ,P m/ is a dimensionless
parameter and can be used to compare different feed-
back loops. The inverse of this parameter is the feed-
back expression (dynamic) range.

Figure 1 illustrates the equilibrium manifold of
system (1). For low values of b, the manifold is

S-shaped and has two turning points, which represent
fold (saddle-node) bifurcation points. The two fold
bifurcation points determine the bistability range of K
in which system (1) has three distinct equilibria. As b
increases, the two fold points move toward each other
and collide at a cusp bifurcation point.

Since the intersection of the fold curves is tangen-
tial [22], the cusp point defines the maximum of para-
meter ranges in a two-parameter space in which
bistability can occur (figure 2(a), right).

The condition for bistability is defined in terms of
logarithmic sensitivity of the open-loop response.
Therefore, it is important to see how bifurcations arise
in this context (see also appendix A). The intersection
of w= ( )x f with the equivalence line w=x deter-
mines the number of equilibria and their values. If

w( )f intersects with the equivalence line tangentially,
the system undergoes a fold (saddle-node) bifurcation
(figure 2(a), table A1). When b is increased and K is
adjusted so that the equivalence line intersects w( )f at
its inflection point, then these values of b andK define
the position of the cusp bifurcation point (figure 2(a)).

2.2. Absence of extremaon the fold-curves
The cusp points represent the extremal values of the

bistable domains since the fold curves are monotone

with respect to the parameters, i.e. they do not turn

back (figures 1 and 2). If the fold-bifurcation curves

were notmonotone, theymight delimit the extrema of

bistable parameter domains. To explore this possibi-

lity, we defined a general condition for the existence of

non-monotone fold curves.
The locus of fold points satisfies C(1) and C(2) in

table A1. The fold curve has an extremum in a
2-dimensional parameter space a a{ },i k if the follow-
ing expression equals zero,

Figure 1.The equilibriummanifold for the simple positive feedback loopwith cooperative binding (1), =n 2; =V 20,m g = 0.01.
Fold points (violet) and their projection on the b( )K, plane (dark purple) are indicated. Between the fold bifurcation curves, the
systemhas three equilibria and is bistable. Forb b> ,cusp the system ismonostable for all values ofK and b .
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where C stands for C(1) and C(2). This is the case if
a¶ ¶ =f 0k/ provided a¶ ¶ ¹f 0.i/ Thus, an extre-

mum in the fold curve can arise if the open-loop
response is non-monotone with respect to a reaction
parameter. Most well-characterized reactions in gene
networks display monotone responses to variations in
the relevant parameters. An exceptionmay be the bell-
shaped response, which is the product of Hill-
functions for activation and repression. The bell-
shaped response can arise in promoters subject to
transcriptional interference or feedforward regulation,
and is characterized by a low noise behavior [23, 24]. It
has a non-monotone dependence on the state variable
(figure 2(b), left). Similarly, ¶ ¶ =f K 0/ for some
parameter values because the exchange of w and K
preserves the response function [23]. However,
¶ ¶ =f K 0/ and the fold condition w¶ ¶ =f 1/ can-
not bemet simultaneously (see appendix B).

Consequently, there is no extremum in the fold
curves. In fact, the overall bistability range is very simi-
lar to that of the simple cooperative feedback despite
the extremum in the bell-shaped response function
(figure 2, right).

Thus, the cusp point is generally expected to deli-
mit the range of two parameters, in which bistability is
permitted.

2.3.Derivation of general conditions for the
existence of extrema in the locus of cusp points
In order to detect the parameters that canmaximize the
permitted bistable range of another parameter, we set
up the following equations, which establish the neces-
sary conditions for the existence of a cusp bifurcation
point, upon eliminating three degrees of freedom,

w a w a w

w a
w a
w

w a
w a
w

= - =

=
¶

¶
- =

=
¶

¶
=

( ) ( )

( )
( )

( )
( )

( )

( )

( )

( )

C f

C
f

C
f

; ; 0,

;
;

1 0,

;
;

0. 3

1

2

3
2

2

Without loss of generality, w, ai and aj have to be
expressed in terms of all the remaining para-
meters a ¹{ }( )l i j,l .

Importantly, determining the derivatives of ai or
aj with respect to an arbitrary a aÎ ¹{ } ( )l i j,k l will
permit finding the conditions for an extremal point in
the hypersurface of cusp points.

According to the implicit function theorem,

a
a a

= - = -w
w

w

- ( )J
C J

J

d

d

d

d

det

det
. 4i

k
ij

k

kj

ij

1

The Jacobi determinant in the numerator of
equation (4) is given as (see also appendix C):

⎛
⎝⎜

⎞
⎠⎟w a a w a a w

=
¶

¶

¶
¶

¶
¶ ¶

-
¶
¶

¶
¶ ¶

w ( )J
f f f f f

det . 5kj
k j j k

3

3

2 2

Assuming the genericity condition w¶ ¶ ¹f 03 3

is satisfied, amaximum exists if the second factor in (5)
is zero. This is equivalent to:

- =w w
¶ ¶a a ( )S S 0. 6

f fj k

The choice of parameters for αj and αk is made
easier by identifying a specific parameter that
satisfies w a w a=( ) ( ( ) )f f g; ; 1 .C C αC is covariant
with the state variable; therefore, we term it covariant
parameter, and g is an arbitrary smooth function with
non-zero derivative at a .C It can be shown that

=w
¶aS 1fC at the cusp point (appendixD).

Figure 2.Open loop relations (left) and bistability domains in the parameter space (right) for the feedback loop incorporating the
promoter with the sigmoidal (equation (1)) (a) or bell-shaped (equation (17)) (b) response. = =n m 2; =V 20,m b = -10 2 and
g = 0.01.The correspondence is shown for a pair of fold bifurcation points (purple) and the cusp point (black). The black shaded
region defines the parameter domainwhere bistability is possible while the purple region is the actual bistability domain.
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Now, taking a a= ,j C one can define the possible
parameter pairs a a{ },C k to proceed with in the analy-
sis of a reaction model. Furthermore, one can recog-
nize that,

¶ =  =a w w
¶a ( )S S0 1. 7f f

With (7), it is possible to re-state (6) as

a a
¶
¶

=
¶
¶

=w w ( )S S
0 and 0. 8

f

C

f

k

This central result establishes a link between local
features of the open loop response and bifurcation
behavior: the maximum of wS f with respect to two
reaction parameters defines the extremum of the bis-
table range of a third parameter.

A point in the locus of cusp points in the a a( ),i j

plane that satisfies the doublemaximum a a a={ },j C k

is an extremal value in a ,i provided ¶ - ¶ ¹w wS S 0i
f

j
f .

A similar statement can be formulated for the
other possible pair in the a a( ),i j plane: a point that
satisfies the double maximum a a a={ },k C i is an
extremal value in aj.

Next, we applied condition (8) to analyze feedback
prototypes in different parameter spaces. We always
include the parameter pair representing the feedback
expression range and binding affinity of the TF to
DNA. This facilitates the consistent comparison of the
different feedback loops.

2.4.Detection of reaction pairs thatmaximize
bistability in the one-gene loopwith sequestration
First, we examined a positive feedback circuit
inhibited by sequestration. Sequestration is a
common but often hidden source of non-linearity
that can significantly alter system behavior, which
underscores the importance of this prototype of
bistable feedback loops [19, 20, 25]. In this
feedback circuit, the TF (A) binds to the promoter
and activates the production of its own mRNA
(M); A can also be sequestered by an inhibitor (I)
into a complex (C), which cannot bind to the
promoter (figure 3(a)). The promoter response
is described by a Hill-function. The system is
described by:

m

g

g

g

= +
+

-

= - + -

= - + -

= - -







( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( )

M t b V
A

K A
M t

A t p M t k A t I t k C t A t

I t b k A t I t k C t I t

C t k A t I t k C t C t

,

,

,

,
9

M m

n

n n

t a d A

Q a d I

a d C

where =
m

b bQ I
pt is the protein production of the

inhibitor;ka and kd are the protein association and
dissociation rate constants, respectively.

Figure 3.Open and closed loop responses in feedback loopwith sequestration. (a) Scheme of reactions in the open-loop (right) upon
breaking the closed-loop (left) at the proteinA. The decay rate constants of the proteins andmRNAare denoted by g and m,
respectively. (b)Correspondence of fold (purple) and cusp (black) bifurcation points between the open- (left) and closed-loop system
(right). The blue point represents themaximal bistable value of b ,A which lies within the range of the accessible parameter values
(hypothetically defined). (c)The dependence of the open-loop response function (left) and its sensitivity (right) on bI (the other
parameters arefixed at k = 11, c = 35, b » 0.06A ).
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To further simplify the system before opening
the loop, it was reduced to two variables and non-
dimensionalized:

b
k

c b

+
+

- =

- -
+

=
( )

p

p
m

m p
p

p

0,

1
0.

10
A

n

n n

I

m and p denote the non-dimensionalized mRNA (M)
andmonomeric protein (A), respectively.

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

⎡⎣ ⎤⎦
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b

c l m

b l

k g l

l g g g g

=
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=
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where . 11

A M m

t m

I Q

A

a C A I d C

1

1

1

1/

The SI units are given in brackets. Upon opening,
the following equation is obtained:

b
w

k w

c b

+
+

- =

- -
+

= ( )

m

m p
p

p

0,

1
0. 12

A

n

n n

I

This opening corresponds to ‘breaking’ A into two
parts. In the resulting open-loop system, two different
components arise from A. The first part serves as the
input w and the sole reaction it imitates is the binding
to the promoter. The second part, A’ is retained in all
the other reactions and becomes the output of the
response function (figure 3(a)).

The resulting open-loop response and the bifurca-
tion diagram (figure 3(b)) are similar to that of the
simple positive feedback loop (figure 2(a)) when the
feedback expression range, b - ,A

1 and the binding affi-
nity of the TF to the DNA, k, are varied. On the other
hand, the loop with the sequestration has two other
parameters and they may have non-trivial impact on

system behavior. When bI , the inhibitor production
rate, is increased, the open-loop response is lowered
(figure 3(c)). At the same time, the maximal value of

wS p displays a non-monotone response, pointing to the
possibility that there is an optimal value of bI that
maximizes the bistable range of bA.

For the above opening (12), the covariant para-
meter is k. Thus, k k=( )g 1 ./ Applying the condi-
tions for the double maxima, C(1), C(2) and
equation (8), to the response function constructed
from equation (12) reveals that all three possible pairs
of parameter combinations of k have jointmaxima.

• c k{ }, has the most permissive conditions: n 1,
b > 0,I b > -( )n n1 4M

2/ .

• k b{ }, I doublemaximum exists if b > 1,I n 1.

• k b{ }, A exists only if b > 27I (or c > )32 , n 1.

In order to focus on sequestration, no cooperativ-
ity was included in the analysis, =n 1. Thus, seques-
trationwas the sole source of ultrasensitivity.

The four reduced parameters contain multiple
reaction parameters that often belong to consecutive
or related reactions and therefore, they describe a spe-
cific property, exemplified by the feedback expression
range, b - .A

1 When a reduced parameter contains
unrelated reaction parameters, as well, it is possible to
focus on a dominant or unique reaction parameter by
varying it, while keeping the others fixed. In this way,
c reflects the maximal production rate of the tran-
scriptional activator; k reflects the TF–DNA binding
affinity and bI the inhibitor production rate.

For the b k( ),A plot when bI is varied, the relevant
double maximum is k b{ }, .I The optimal inhibitor
production rate that maximizes the bistable range of
bA is b = 27.18I when c = 35 (figure 4), revealing
that the maximal bistable feedback expression range is
attained when the inhibitor production rate nearly
reaches the level of the maximal activator production

Figure 4.Maximal bistable range for the feedback loopwith sequestration, (12)with =n 1, c = 35. bI was varied (fold curves in
purple are shown for illustration). For the extremal value of b ,A b c( )I is tuned to 27.18 (30). The orange full lines stand for fold curves
that intersect at the cusp pointmaximized by the indicated parameter pair. The positions of other doublemaxima are also shown,
which are not associatedwith extrema in this parameter space. A set of realistic parameter valueswere chosen, g = 0.02C min−1,
g = 0.01I min−1, =k 0.1a nM−1 min−1, and kd=0.18 min−1, so that k=K .
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rate. To visualize the maximal bistable range, we plot-
ted the locus of cusp points as bI was varied (figure 4).

The extremal value of bA for the k b{ }, I double
maximum can be conveniently expressed as a function
of c (31) or bI (13).

b
b

b
=

-
k b

( )
{ } ( )

1

8
. 13A

I

I
,

3

I

For the above example, b = 0.34A (figure 4). The
fact that b -

A
1 typically ranges from 10 to 1000 in net-

works with multiple feedback loops [26] reveals that
bistability is possible even with very narrow feedback
expression range, b »- 3A

1 .
The equation (13) also reveals that bA increases

with bI .
Interestingly, there are two relevant double max-

ima in the b c( ),I plane, when k is varied (figure 5):
k b{ }, I defines the extremum in c, while the c k{ },
pair defines the extremum in bI .

It is interesting to explore how realistic values of bI

can promote bistability (appendix E). We explored
two limiting scenarios with respect to the feedback
expression range, b- .A

1 For this purpose, bI was
expressed in terms of bA.

b b b

b b b b

= +

+ + + +

c k

)
(

( )

{ } 8 3 4

9 24 16 . 14

I A A

A A A A

,
2

2 3 4

If b-
A

1 is large, then bistability is possible with very
low inhibitor production rate or affinity. For example,
for b = -10 ,A

3 b = 0.28I using (14). Since bI contains
parameters for the rate of production of the inhibitor
and for its binding to the activator, the following com-
binations were considered.

If transcription rate is low (table E1), then
l = 0.28 min−1 (appendix F). Consequently, the inhi-
bitor affinity, =K k k ,d ainh / has to be less than

350 nM for bistability to emerge (figure 5(a)). On the
other hand, when transcription rate is high even a very
weak binding ( = )K 35 mMinh is sufficient to support
bistability. This points to the possibility that a highly
expressed inhibitor protein can generate bistability
even if the binding is weak, potentially representing
non-specific protein–protein interaction, which may
be overlooked in standard experimental conditions.

Is bistability possible if the feedback expression
range is narrow, e.g. b =- 4?A

1 Forb = 1 4,A /

b = 16.9I min−1 (14), (figure 5(b)). Assuming weak
and strong transcription rates, 5.8 and 590 nM inhibitor
affinities are needed, respectively, to generate bistability.
This indicates that bistability can emerge in the range of
typical protein binding constants even with a narrow,
fourfold, dynamic range of feedback expression.

2.5. Analysis of the one-gene loopwith protein
homo-dimerization
Next, we examined if maxima exist in the locus of cusp
points for a one-gene model with protein homo-
dimerization (figure 6). The TF binds to the promoter
only as dimerC. To focus on the effect of homodimer-
ization, the dimer binds to the promoter non-coop-
eratively. The system was non-dimensionalized and
then opened (appendix G). The main reduced para-
meters are dominated by the following reactions: c by
the maximal rate of activator production, kq by the
binding strength in the homodimerization, and kd by
the TF–DNA affinity. b-1 is the feedback expression
range. The covariant parameter is kd.

No positive real (physical) solutionwas found for any
of the possible parameter pairs k a{ },d k that satisfies the
conditions for the cusp points and equation (8). Thus, the
cusp points delimiting the bistability domains lack
extrema forpositiveparameter values.

This can be illustrated by varying the dissociation
rate of the dimer into the monomer (figure 6). At

Figure 5.Maximal bistable ranges for the feedback loopwith sequestration at broad and narrow feedback expression ranges (b - );A
1

=n 1 (12); k was varied (purple curves): k = 5 (bottom), 200 (top). (a) b = -10 .A
3 k » 2.8 for k b{ }, I and k » 11.8 for k c{ }, .

The extremal value (black line) of bI is 0.28. (b) b = 1 4.A / The extremal value (black line) of bI is 16.9.
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strong dimerization (k = 10,q the dimerization equi-
librium constant = » )K k k 20 nM ,d adim / the bist-
ability domain is small. This is because the TF
concentration has to be belowKdim to have sufficiently
high logarithmic sensitivity in the open-loop response.
Since the concentration of the TF is around 2000 nM
in the higher stable equilibrium, the ultrasensitivity
necessary for bistability is possible only if the basal
expression is around 100 times less than the maximal
expression, resulting in concentrations of around
20 nM (figure 6). Indeed, bistability appears only
when b < -10 .2 The TF–DNA binding affinity is low
(higher than 200 nM) in this bistable domain.

A reduction of the dimerization expands the bis-
table range of b (figure 6). Above »K 2000 nMdim

(i.e. belowk = )0.1 ,q the expansion of the bistable
range levels off. Indeed, if kq is set to zero by eliminat-
ing the dimer decay, b approaches 1/8, which is the
same value as the positive feedback loop with a coop-
erative promoter, =n 2 (appendix G.2).

Thus, in this range of low dimerization strengths
(high Kdim, low κq), a further weakening of dimerization
does not increase ultrasensitivity and the lower dimer
concentration is compensated by the stronger binding of
theTF toDNA.This explains the absence ofmaximum in
the locus of cusp points. Having no optimal value for the
dimerization binding, the feedback loop can generate a
robust bistability in the faceof variations inKdim.

2.6.Optimal parameter values for the broadest
bistable parameter range in the two-gene loopwith
mutual activation
Next, we examined a feedback loop enclosed by two
transcriptional activators. The cooperative binding of
the transcriptional activator to the promoter provides
the source of ultrasensitivity. The system dynamics is
defined by the feedback expression ranges b b- -( ),1

1
2

1

and the binding strengths of the two transcriptional
activators to theDNA k k( ),1 2 (figure 7).

Despite the simple reaction scheme and the
simple form of ultrasensitivity, two double maxima
were identified (appendix H), revealing that with

cooperativity as sole source of ultrasensitivity, non-
monotone parameter domains can arise.

The k k{ },1 2 double maximum exists under per-
missive conditions and defines the extremum in b1 as
k2 is varied in the b k( ),1 1 plane.

In order to assess how the affinities affect the bist-
ability range we explored the relationship between k1

and k2 at the cusp points. There is an inverse relation
between k1 and k2 in the bistable domains. At k = 5,1

the bistable domain is narrow (figure 7(a)). As k1 is
decreased, k2 increases and the bistable range of b1

expands. At the extremum in b ,1 the two affinities
have similar values (figure 7(a)).

To assess the above relation more quantitatively,
symmetric conditions were enforced in the reaction
scheme. The Hill coefficients were set equal. Secondly,
β1 and b2 were required to be equal at the extremum
of the cusp points (47).With these two constraints, the
two affinities were indeed equal at the maximal point
(48). This confirms that the broadest bistable range in
β1 and b2 is attained when the affinities are equal. It
also hints to why the values of k1 and k2 are similar
evenwhen the two basal production rates are different.

It is interesting to observe that the bistability range
of β1 declines very rapidly when k1 increases beyond
the optimal value (figure 7(a)). This behavior is even
more pronounced when the Hill coefficient assumes
larger values. In this case, a new extremum arises,
which delimits k1 at low affinities. Thus, the extre-
mum is surrounded by very asymmetric range of k1

values inwhich bistable domains arise (figure 7(b)).
The extrema in this feedback loop can be compared

to those with other forms of binding reactions. In both
homo- and heterodimerization two proteins interact.
Thus, cooperative binding to two sites in the promoter
permits a consistent comparison. If the cooperativity of
the binding to the two sites is large then the Hill coeffi-
cient, =n 2 [27]. For =n 2, the extremal values in the
normalizedbasal expression is 1/8 (49),which is the same
as the limiting value in homodimerization but less than
1/3, the value found for the loop with sequestration with
realistic parameters (13).

Figure 6.Monotonically increasing bistable expression range as dimerization strength,κq is lowered c = 20, =n 1, =V 1.m k ( )kq d

is indicated for each pair of fold bifurcation curves ( »k 2, 20d and 200 min−1 from top to bottom).Kwas expressed from kd so that,
g g= = 0.01A C min−1, ka= 0.1 nM−1 min−1.
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2.7.Optimal parameter values for the broadest
bistable parameter range in the two-gene loopwith
mutual repression
Positive feedback can be also realized by two mutually
inhibiting repressors, alsoknownas the toggle-switch [16].

The locus of cusp points reveals a behavior similar
to that of the two-gene loop with activators
(appendix I, figure (8)). The main difference is that in
this case the affinities of the two transcriptional factors
are similar in all the bistable domains. Weak binding
affinity of one repressor entails weak binding affinity
of the other repressor in the bistable domains.

3.Discussion

3.1.Maximizing sensitivity with respect to two
parametersmaximizes the bistable range of a third
parameter
The logarithmic sensitivity provides a practical tool to
predict and analyze bistability. Sensitivity can be easily
obtained from the open-loop response fitted to experi-
mental data.

Maximizing sensitivity was shown to specify the
broadest dynamic range of a single parameter in a sim-
ple positive feedback loop with cooperative binding
[17], similar to figure (1). When such an approach was
applied for more complex feedback loops, a high sta-
tistical correlation was seen between the maximal sen-
sitivity and bistability range [28]. It has remained
unclear how to formulate a condition so that the cor-
relation becomes full (i.e. one) and what analytical
relations can be obtained for that.

In this work, we derived a general rule that stipu-
lates that the largest bistable range of a parameter, i.e.
extremum of a bistable domain, (equation (8)), is
attained when the sensitivity of the response function
has a maximum against two other parameters. We
then verified whether such parameter pairs were pre-
sent in specific network topologies, by obtaining ana-
lytical relations (e.g. equation (13)). This allows
drawing general conclusions on specific network
topologies since the entire parameter space was cap-
tured. These relations revealed that the prototypical
feedback enclosed by protein dimers has no such

Figure 7.Extrema of the bistability domain for the feedback loopwithmutual activation. b = 0.012 .k2 was varied. (a) = =m n 1.5.
The extremal value of b1 is 0.096 (at k » )0.23 .2 (b) =m 3, =n 2.The extremal value of b1 is 0.78 (at k » 0.122 ).

Figure 8.Maximal bistable range for the basal expression b1 in the toggle-switch. = =m n 1.5 and b = 0.01.2 k2 was varied. For the
bistable regions (purple) the values of k2were selected to haveβ1=0.01 and 0.04 at the cusp point. The extremal value ofβ1 is 0.096
(at k » 0.122 ).
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reaction pairs. Conversely, loops with sequestration
and two-gene loops with cooperative binding do have
such reaction pairs despite the distinct nature of the
sequestration and cooperative binding to DNA. Also,
loops having similar reactions, such as homo- and het-
erodimerization, (sequestration) fall in distinct cate-
gories with respect to the existence of maxima in
bistable regions.

This suggests that not the chemical-kinetic nature
of a specific reaction but the interaction of all reactions
determines whether or not such parameter pairs are eli-
cited. Most complex networks that display bistability
are derivatives of a few prototypical network topologies
and reactions [28–32]. It will be interesting to explore
how the number of maximizing reaction parameter
pairs varies as the complexity of a network increases.

3.2.Maximizing bistability and the design of
bistable networks
In order to design a bistable gene network, an ultra-
sensitive reaction must be included. Furthermore, the
system parameters have to assume values within the
bistable parameter range. If the accessible parameter
range does not overlap with the bistable range one can
alter the reaction parameter physically or biologically to
broaden the accessible range (figure (3)). However, there
are often limits to howmuch the accessible range can be
widened. For example, the feedback expression range is
often delimited by the lowest possible value of basal
transcription rate, also known as leakage (figure 1(b))
[26]. In some promoters, the basal expression has
counter-intuitive determinants. For example, if the
number of activator binding sites is reduced in the
promoter the leakage increases despite the fact that the
maximal expression is reduced [26]. In this case it is very
difficult to broaden the range of the feedback expression.

If it is not possible to enlarge the accessible range of
a reaction parameter in the cells, one alternative is to
expand the bistable range. Our results provide support
for this possibility: the bistable range of a parameter
can be expanded by tuning other parameters to enable
the emergence of bistability. Even if the range of parti-
cular parameter in a system is severely constrained,
many othersmay be broadly tuned.

The conditions we derived in this work identify the
pairs of parameters thatmaximize the bistable range of
a parameter under consideration (8). For example,
knowing the affinity of the inhibitor to the TF and the
maximal transcription rate of the positive feedback
loop permits the calculation of the optimal inhibitor
production rate. Tuning this parameter to its optimal
value makes it possible for bistability to occur even if
the feedback expression range is very narrow
(figure 5).When the parameter is tuned away from this
optimal value the bistable feedback expression range
shrinks rapidly.

In contrast, the loop with homodimerization does
not have optimal values, and the bistable feedback

expression range remains relatively constant and close
to the limiting value as soon as sufficiently weak
dimerization strength is reached (figure 6). This indi-
cates that bistable feedback expression range of the
loop with homodimerization is not highly sensitive to
variations in the dimerization strength, reflecting the
absence of double maxima, which typically makes the
bistable ranges sensitive to parameter variations.

In the two-gene loops with cooperative binding,
the two TFs must have similar or equal affinities to
maximize the bistable feedback expression range. For
the mutual repression loop, the affinities are similar
also in other bistable domains, where the affinities are
not optimal (figure 8). Interestingly, the opposite rela-
tion is observed in loop with mutual activation. The
further away the value of an affinity is shifted from the
optimal value, the more different the affinities of the
twoTF have to be to generate bistability (figure 7).

3.3.Detection of bistability in endogenous networks
Endogenous bistable networks are subject to con-
straints similar to that encountered in the design of the
networks. Further constraints arise during evolution
when a reaction controls different biological functions
or a single function in different environments with
conflicting demands on the reaction parameters
[33–35].

Our resultsmay shed light on theprevalence of thedif-
ferent types of feedback loops. Interestingly, the mutually
activating and repressing loops have identicalmaximal bis-
table feedback expression ranges (figures 7 and 8). That
may explainwhy both network topologies have been iden-
tified in themodelorganismbuddingyeast [29].

The conditions for the extremal points also help to
assess whether bistability is possible in endogenous net-
works when few data are available, which is typically the
case. Most of the time, the network topology is identified
and gene expression data can be easily measured, which
can also define feedback expression range. For this rea-
son, we compared the extremal value of the feedback
expression range in prototypical feedback loops. Interest-
ingly, heterodimerization (sequestration) outperforms
both cooperativity and homodimerization since only
sequestration permits the occurrence of bistability if the
feedback expression range is less than eight.

Moreover, our results suggest that unexplained
bistability may arise in positive feedback loops with no
obvious ultrasensitive reaction because even very
weak, and hence unidentified, interaction with inhibi-
tors can generate bistability by sequestration.

Determining the limits of bistability in networks is
particularly important in networks that control cel-
lular differentiation [36].
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AppendixA. Relation between the
bifurcation conditions formulated for the
closed- and open-loop systems

The closed-loop formulation a( )F x; is converted to
the following one-dimensional expression:

a a= - =( ) ( ) ( )F x f x x; ; 0. 15

The open-loop response function w a( )f ; is then
given by replacing x in a( )f x; with w:

h w a= = ( ) ( )x f ; . 16

It is clear that the equilibrium condition C(1) for
the open-loop re-closes the loop.

The bifurcation conditions for themultidimensional
closed-loop system [22] are also given in tableA1.

Appendix B. Fold points for the feedback
loopwith the bell-shaped response

The positive feedback incorporating a promoter with
thebell-shaped response is described at equilibriumby

g+
+ +

- = ( )b V
x

K x

K

K x
x 0. 17P m

n

n n

m

m m

Thus, the open-loop response function is given by

⎛
⎝⎜

⎞
⎠⎟w

g
w

w w
= = +

+ +
( )

( )

x f b V
K

K

K

1
.

18

P m

n

n n

m

m m

The bell-shaped response is the product of Hill-
functions for an activator and a repressor. It can be
seen that the exchange of K and w does not change the
equation and the response function has maxima with
respect to bothK and w.

The fold condition and ¶ ¶ =f K 0/ have to be
satisfied simultaneously for the fold curve to display a
maximum:
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However, the two conditions are contradictory.
Therefore, there are no extrema on the fold curves.

AppendixC. Calculation of the Jacobi
determinant for the hypersurface of the
cusp points
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0
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k j

k j

k j

k j
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k j

k j

j k

1 1 1

2 2 2

3 3 3

2 2

3

3

3

2

3

2

3

3

2

2

TableA1.Conditions for fold (C(1) andC(2)) and cusp (C(1),C(2) andC(3)) bifurcations. The brackets denote the inner product.

Multi-dimensionala One-dimensional with w a( )f ; Sensitivity of open-loop response wS f

C(1): equilibrium a =( )F x; 0 w w=( )f —

C(2): fold ⋅ =
=

J q

J

0:

det 0
¶ =wf 1 =wS 1f

C(3): cusp á ⋅ ñ =q q H q, , 0 ¶ =wwf 0 ¶ =w wS 0f

a J is the Jacobian matrix: = ¶ ¶( )J F x .ij
i

j/ q is the null eigenvector of the Jacobian matrix, ⋅ =J q 0 so that it is normed to

one, < > =q q, 1. H is the Hessian matrix, = ¶ ¶ ¶( ) ( )H F x x ,kl
i i

k l
2 / and q is the adjoint null eigenvector of the Jacobian

matrix, ⋅ =q J 0, that is ⋅ =J q 0;T < > =˜q q, 1.
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AppendixD. wS f as a function of the
covariant parameter

If there exists a parameter αc for which the response
function can be re-written as

w a w a= ( )( ) ( ) ( )f f g; ; 1 , 22C C

so that a ¹( )g 0c and a¢ ¹( )g 0,c then =w
¶aS 1fC at

the cusp point. The proof can be seen by applying
constraintsC(1) ,C(2) andC(3) to equation (22):

w
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¶
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Then the sensitivity of the αc—derivative of the
response function is
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Applying (25) to (27) yields

=w
¶a ( )S 1. 28fC

Appendix E. Biologically relevant ranges of
parameter values

Specific model parameters were representative of
reactions in yeast and they fall into a realistic range of
values, as detailed below.

The typical yeast mRNA half-lives range between 1
and 10min (decay rate constant, μ=0.07–0.7 min−1)
[26, 37]. The average protein half-life is 120 min but the
half-life of some regulators is shorter by an order of
magnitude [38], which results in typical decay rate con-
stants ofμ=0.006–0.06min−1.

The translation rate pt ranges from 6 to
20 min−1 [39].

Most transcriptional factors and their regulators
have mean concentrations between 200 and 2000
molecules/cell [40]. For nuclear proteins, this corre-
sponds to 100–1000 nM, assuming a nuclear volume
of 2 μm3 [37]. Based on these data, the typical RNA
production (transcription rate, pR) and the lumped
protein production rates (translation rate, pP) can be
calculated (see table E1).

The relation between pR and pP is given by

m
= = ⋅[ ] ( )p p

p
RNA p . 29P R

t
t

The equilibrium dissociation constant of proteins
ranges between 0.1 and 1000 nM [20]. The typical
association rate of proteins is around ka=
1.66×106 M−1 s−1=0.1 nM−1 min−1 [41].

Appendix F.Doublemaxima for the
positive feedbackwith sequestration

When n=1, the following expressions are obtained

b c c c c= + + +k b ( ){ } ( )1

128
16 32 , 30I ,

2 3 2
I

/

b

c c c c

c c c c

=

+ + + -

+ + +

k b

( )( )
( )

{ }

( )

2 16 32 16

256 16 32
.

31

A ,

3

I

To consider realistic values of physical parameters,
we calculated a combination of bI and Kinh=kd/ka
for each value ofbI from (32),

b l g g g g= = +( ) ( )b b k k . 32I I I a C A I d C

For the protein production rate bI , two different
fixed values were used (table E1). For example, if
bI=16.9 min−1, then l=0.169 nM−1 with the high
production rate (table E1), bI=100 nMmin−1 (32).
With g g= =A I 0.01 min−1 and ka=0.1 nM−1 min−1,
this value of l yields kd=59 nMmin−1. Thus,
Kinh=590 nM.

Table E1.The range of realistic transcription rates and the resulting RNA and protein concentrations. For proteins nuclear localizationwas
assumed.

Production rate pR (RNA)/pP (protein) (nM min−1) RNA (copy/cell) Protein (copy number/cell)/(nM)

Low 0.005/1 0.1 200/100

High 0.5/100 10 20 000/10 000

11

Phys. Biol. 12 (2015) 066011 IMájer et al



AppendixG. Positive feedbackwith homo-
dimerization

G.1. Reaction scheme andopening
The following equations were used for the reaction
scheme in (figure 6):

m
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= +
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After non-dimensionalization equation (33) are
reduced to:
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where m and p denote the non-dimensionalized
mRNA (M) and monomeric protein (A), respectively,
with the following parameters:
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The covariant parameter is kd.
The loopwas opened at the promoter:

b
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G.2. Limiting value of the cusp points
To find the limiting value of basal expression at the
cusp point as kq declines, kq was equated to zero.
Non-cooperative binding, n=1, was taken for sim-
plicity. Equation (34) then reduces to:

b
k c

+
+

- = ( )
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p
p

1
0. 37

d

2

2 2

The above equation is essentially identical to the
simple positive feedback loop with a Hill coefficient of
2. Applying the conditions for the cusp bifurcation
yields b=1/8.

AppendixH. Two-gene loopwith activators

H.1. Reaction scheme andopening
The following system equation describes the system:
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The system at equilibrium was non-dimensiona-
lized to:
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The loopwas opened at the promoter:
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H.2.Doublemaxima
The k k{ },1 2 double maximum exists for b< <0 1
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Parameters are expressed as a function of b1 at this
point:
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Parameters at the extremal points can be expressed
analytically:
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To examine how the two TF–DNA binding affi-
nities relate to each other at the extrema of cusp points
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in the b1 direction, their relation was examined in
symmetric parameter conditions. First the Hill num-
bers were equated: m=n=q. Then, b b b= =1 2

and the equation (42)was solved for b :

b =
-( ) ( )

q

q

1

4
. 47S

2

This value was then substituted into equations (43)
and (44). As a result, the same expressions were
obtained for the two affinities (k ,1 k2):
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If the basal expression b = 0,1 then (42) becomes
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If =m 1 and =n 2 or = =m n 2
then b = 1 82 / .

Appendix I. The two-gene loopwith
repressors
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The non-dimensionalization and opening was
performed in the same way as for the two-gene loop
with activators (appendixH).

The covariant parameter is k .2 The k k{ },1 2 dou-
ble maximum exists for b > 0.2 A second double
maximum b k{ },1 2 exists for restrictive condi-

tions: b b b+ - + + >( )( )n m m2 1 4 1 22 2
2

2 .
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