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The scaling behavior of friction between rough surfaces is a well-known phenomenon. It might be asked
whether such a scaling feature also exists for friction at an atomic scale despite the absence of roughness on
atomically flat surfaces. Indeed, other types of fluctuations, e.g., thermal and instrumental fluctuations, become
appreciable at this length scale and can lead to scaling behavior of the measured atomic-scale friction. We
investigate this using the lateral force exerted on the tip of an atomic force microscope (AFM) when the tip is
dragged over the clean NaCl (001) surface in ultra-high vacuum at room temperature. Here the focus is on the
fluctuations of the lateral force profile rather than its saw-tooth trend; we first eliminate the trend using the singular
value decomposition technique and then explore the scaling behavior of the detrended data, which contains only
fluctuations, using the multifractal detrended fluctuation analysis. The results demonstrate a scaling behavior
for the friction data ranging from 0.2 to 2 nm with the Hurst exponent H = 0.61 ± 0.02 at a 1σ confidence
interval. Moreover, the dependence of the generalized Hurst exponent, h(q), on the index variable q confirms the
multifractal or multiscaling behavior of the nanofriction data. These results prove that fluctuation of nanofriction
empirical data has a multifractal behavior which deviates from white noise.

DOI: 10.1103/PhysRevE.95.062802

I. INTRODUCTION

The recent trend of new technologies toward fabricating
nanoscale devices demands a better understanding of physical
phenomena at this scale. One of the phenomena, inherent in
any physical system of contacting parts, is friction [1], which
is present in a wide range of length scales [2,3]. Tribological
studies at nano- and atomic scale are essential for completing
the picture of this scaling quantity and explaining its complex
behavior [4–6].

Since three decades ago, with the development of atomic
force microscopy (AFM), experimental studies on friction at
the atomic scale has become possible [1–3,6,7]. The friction
force in a typical nanofriction experiment is determined from
the lateral deflection of the AFM cantilever when the AFM tip
is dragged across an atomically flat surface [8]. Numerous
studies on the surface of various materials have shown a
sawtooth-like pattern for nanofriction [9,10]. This behavior,
which comes from the stick-slip motion of the tip, can be
well described by the very basic Prandtl-Tomlinson model
(a pointlike tip subject to a sinusoidal potential and dragged
via a harmonic spring) [11,12]. The model has been extended
to capture finite temperature effects [13–15]. The common
approaches are using the master equation for the temporal
evolution of the probability of thermally activating the tip [16]
and the Langevin equation for the tip motion in which thermal
effects are modeled by a Gaussian white-noise term [13].
These approaches justify the nanofriction thermal behavior to
a great extent [17–19], although other fluctuation sources such
as tip-apex instability, lattice deficiencies, and instrumental
noises have been neglected.

Recently the effects of such neglected types of noises on
the atomic-scale friction have been investigated. Labuda et al.
[20–22] divided noises of a typical AFM experiment into

three categories: (1) detection noise which comes from AFM
optical device, (2) force noise that is mainly caused by thermal
fluctuations, and (3) displacement noise which is related to the
design of AFM system. Their study was based on analyzing the
noises of nanofriction data using the method of power spectral
density and simulating the effect of each of these noises on
nanofriction. Furthermore, Dong et al. [23,24] considered the
effect of thermal and instrumental noises on the theoretical
modeling of nanofriction using the master equation method.

The aim of this work is to look for any scaling behavior
of the fluctuations present in the signal measured as friction
by AFM experiments. As a next step, it will be interesting
to investigate the individual contributions from the three
above mentioned sources into the scaling behavior of the
fluctuation either experimentally or by computer simulations.
Here, however, we study the overall stochastic part of the
experimental friction data that contains the effect of all noise
sources together. To do so, we first remove the deterministic
part of the data, i.e., the sawtooth-like trend, which comes
from the periodic structure of the sublayer lattice, using the
singular value decomposition (SVD) technique, and then we
investigate the scaling behavior of the remaining noisy part
using multifractal detrended fluctuation analysis (MF-DFA).
We calculate the generalized scaling exponent that describes
the multifractal properties of the nanofrction data. The results
show that the share of all noises in the data is a multifractal
signal with long-range correlation and thus cannot be replaced
by a white noise on friction modeling.

The rest of this paper is organized as follows. Section II
describes a brief review of the fluctuation analysis and
detrending methods. Section III explains the details of the
nanofriction experiment. A description of the data is also
given here. Section IV presents the scaling behavior and
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multifractality of the nanofriction data. In the final section
we draw conclusions and summarize the work.

II. METHODS

A. Multifractal detrended fluctuation analysis

Real data sets coming from experiments are usually affected
by nonstationarity and trends. Data reduction and cleaning
procedures should be implemented in order to find reliable
results by applying robust methods in the context of the data
analysis approach. Extracting various scaling exponents on a
statistical physics basis is known as a robust analysis method
in order to determine the statistical properties and to identify
the universality class of the underlying processes. To this end,
a multiscaling algorithm in the presence of unknown trends
and noises is one of the most reliable approach introduced and
implemented in many previous studies. Multifractal detrended
fluctuation analysis (MF-DFA) [25] is a widely used technique
to study the multifractal scaling properties of nonstationary
time series [26–30]. MF-DFA is the generalization of the
detrended fluctuation analysis (DFA) [31]. For a typical
series {xi} i = 1, . . . ,N with an insignificant fraction of
zeros, the five steps are as follows:

(1) As a first step the so-called profile should be determined
accordingly by integrating the original series {x} as

X(j ) =
j∑

i=1

x(i), j = 1, . . . ,N. (1)

(2) Then we divide the series {X} into Ns = int(N/s)
nonoverlapping segments of length s, which can take the value
from 2 to N/2. In the case of remaining unused part of data
from the end of series the procedure must be repeated from the
opposite end in order to take into account the remaining data
at the end of series.

(3) Compute the variance of fluctuations for each segment
after subtracting the local trend in that segment as

F 2(s,n) = 1

s

s∑
i=1

{X[i + (n − 1)s] − yn(i)}2 (2)

for segments n = 1, . . . ,Ns and

F 2(s,n) = 1

s

s∑
i=1

{X[i + N − (n − Ns)s] − yn(i)}2 (3)

for segments n = Ns + 1, . . . ,2Ns . Here yn(i) is a polynomial
function describing the local trend in the nth segment. The
order of polynomial function “m” fitted to the series {X}
determines which type of trend is eliminated in each segment.
MF-DFAm denotes that the order of polynomial function used
in MF-DFA is “m.” Throughout this paper we take m = 1.

(4) Determine the qth-order fluctuation function by aver-
aging over all segments

Fq(s) =
{

1

2Ns

2Ns∑
n=1

[F 2(s,n)]q/2

}1/q

, (4)

where the index parameter q can take any real value except
zero. For the case q = 0 we have

F0(s) = exp

[
1

4Ns

2Ns∑
n=1

ln F (s,n)

]
. (5)

Note that (q = 2) gives the DFA, which is nothing but the
second-order moment (i.e.,variance). Calculating higher order
moments helps to characterize the multifractality nature of
series. Multifractal time series, contrary to monofractal series,
contains both extremely small and large local fluctuations.
Depending on the value and sign of the parameter q we
can magnify the contribution of small and large fluctuations
F 2(s,n) in Fq(s). In other words, this is a quantitative
description of various values of fluctuations.

(5) Determine the scaling behavior of the fluctuation
function Fq(s) by analyzing its behavior for each value of
q. For the series {x} with self-similar behavior, Fq(s) is
an increasing function of s with the asymptotic power-law
behavior

Fq(s) ∼ sh(q). (6)

If the scaling exponent h(q) depends on q, the time series
is multifractal, while for a monofractal time series, h(q) is
constant. Since for a stationary time series h(q = 2) gives the
standard Hurst exponent H , the scaling exponent h(q) is called
the generalized Hurst exponent. For a nonstationary time series
like fractional Brownian motion h(q) > 1 and h(q = 2) is no
longer identical to the Hurst exponent H , but instead we have
H = h(q = 2) − 1. The Hurst exponent H characterizes the
correlation property of the time series [32–35]. For example,
H = 0.5 shows that the time series is a white noise. 0 <

H < 0.5 and 0.5 < H < 1 indicate antipersistence (negative
correlation) and persistence (positive correlation) of the time
series, respectively.

MF-DFA is related to the standard multifractal analysis
through the partition function [25]

Zq(s) ≡
Ns∑

n=1

|X(ns) − X[(n − 1)s]|q ∼ sτ (q). (7)

It can be proved that the scaling exponent τ (q) in Eq. (16) is
related to the multifractal scaling exponent h(q) as [25]

τ (q) = qh(q) − 1. (8)

This equation indicates that the exponent τ (q) for a monofrac-
tal series is linear. There is also a correspondence between the
scaling exponent τ (q) and the singularity spectrum f (α) via
the Lengendre transform as [36]

α = dτ (q)

dq
and f (α) = αq − τ (q). (9)

Another capability of MF-DFA as we expect is giving a
quantitative measure for multifractality nature of underlying
data sets. Accordingly, for a multifractal series, various parts of
the feature are characterized by different values of α, resulting
a set of Hölder exponents instead of a single α. Corresponding
domain for Hölder spectrum, α ∈ [αmin,αmax], becomes

αmin = lim
q→+∞

∂τ (q)

∂q
, (10)

αmax = lim
q→−∞

∂τ (q)

∂q
. (11)
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Therefore �α ≡ αmax − αmin is another measure for quantify-
ing multifractality nature of underlying data. The high value
of �α corresponds to more multifractal behavior.

B. Singular value decomposition

Recognizing trends and making proper detrending proce-
dures are an important step toward robust analysis. Wu et al.
[37] gave a statement accordingly; there is no unique definition
of the trend. Subsequently, any proper algorithm for extracting
trends from underlying data sets should remove embedded
trends without destroying intrinsic fluctuations as much as
possible. For real-world data sets the mentioned situation
needs more precise considerations. It was demonstrated that
MF-DFA is not able to eliminate the effect of intrinsic periodic
trends in data series [38–40]. As a result, when MF-DFA
applied to data with sinusoidal trends, spurious crossover
occurs in the plot of fluctuation function. Hu et al. [39]
showed that a periodic trend induces an artificial crossover
at the scale of the sinusoidal periodicity. This crossover leads
to difficulties in analyzing data in a sense that it makes the
estimation of scaling exponent unreliable [41]. Therefore, to
measure the scaling exponent correctly, we have to minimize
the effect of such trends in the data before applying the MF-
DFA. Along this line, various methods have been suggested
including the Fourier filtering method [38,42], the empirical
mode decomposition (EMD) method [43], and the singular
value decomposition (SVD) technique [44]. Here we use SVD
because, comparing with the other two techniques, it reduces
both periodic and quasiperiodic trends in series with more than
one peak in their power spectrums [44].

For a series {xi}i=1,...,N with periodic or quasiperiodic
trends, the steps of the filtering method based on SVD is as
follows [44]:

(1) Find the number of periodic or quasiperiodic compo-
nents of the data series using its power spectrum. This number
is denoted by p.

(2) Construct the matrix � = (γ1,γ2, . . . ,γd )T , where γk =
(xk,xk+1, . . . ,xk+N−(d−1)) and the superscript “T ′′ represents
the transpose operator. The dimension d of the matrix � is
called the embedding dimension. Note that, for a power-law
series, the embedding dimension should be chosen much larger
than the number of frequency components p.

(3) Determine singular values in descending order by ap-
plying the SVD on the matrix �. Singular value decomposition
of the matrix � is given by � = U	V T , where U and V are
two orthogonal matrices and 	 is the diagonal matrix whose
eigenvalues are the desired singular values [45].

(4) Construct the filtered matrix �∗ = U	∗V T with the
new matrix 	∗, which is obtained by setting the first 2p + 1
eigenvalues of 	 to zero.

(5) Compute detrended data {x∗
i }, elements of the filtered

matrix �∗, by mapping �∗ back onto a one-dimensional series.

III. EXPERIMENTAL DATA

A home-built atomic force microscope operating in ul-
trahigh vacuum (UHV) at room temperature was used in
experiments. Normal and lateral (i.e., friction) forces acting
on the sensor tip are respectively proportional to normal
bending and torsion of the cantilever beam and are measured

by means of an optical beam deflection scheme (with a
four-segment photodiode). The experiments were performed
on a NaCl single crystal, which was cleaved in air, transferred
immediately to UHV, and annealed to about 100 ◦C for
30 min in order to remove contaminants. The preparation of
samples under UHV conditions allowed the study of clean
surfaces, free of water or adsorbates. Friction experiments
were thence conducted on dry and clean surfaces, without
lubricants. We used silicon cantilevers consisting of single
crystalline materials. The pyramidal tip is pointing toward the
(001) direction and has a microscopic cone. At the apex, the
cone angle is reduced and nominal tip radii of less than 10 nm
can be obtained. For quantitative interpretation of friction
force microscopy images, the normal and torsional bending
of the cantilever have to be calibrated [46]. The normal spring
constant kN is given by

kN = Ewt3

4l3
, (12)

where w is the width, l the length, t the thickness of the
cantilever, and E the Young modulus of the material. For
silicon, E = 1.69×1011 N/m2. The thickness can be precisely
determined from the resonance frequency f of the cantilever:

t = 2
√

12π

1.8722

√
ρ

E
f l2 = 7.23×10−4 s

m
f l2, (13)

where ρ is the mass density (silicon: ρ = 2.3 g/cm3). The
relations between the deflection of the laser beam measured
by the photodiode and the normal force acting on the tip can be
obtained by recording deflection versus distance. The torsional
spring constant kT necessary for lateral force calibration is
given by

kT = Gwt3

3h2l
, (14)

where G (=0.5×10113 N/m2 for silicon) is the shear
modulus.

In our case, the silicon cantilevers bearing the sharp tips are
rectangular with a spring constant kN = 0.09 N/m for normal
bending and kT = 62 N/m for torsion. These spring constants
were calculated for the clamped beam geometry using optical
microscopy data for the length and the width of the beam and
the frequency of the first normal bending mode to determine
its thickness.

The friction force is sampled on 256×256 grid points
uniformly distributed on a 6×6 nm2 area; see Fig. 1(a).
In other words, the data set consists of 256 separate sets
corresponding to 256 scan lines equally spaced by 6 nm/256 =
0.23 Å. Each scan line is 6 nm long and in the (001)
crystallographic direction of the surface, meaning that at least
10 Na and 10 Cl ions are alternatively visited per scan. Along
each scan line, friction is recorded at length steps of 0.23 Å.
Figure 1(b) illustrates friction versus tip position along the
scan line indicated by a dashed line in Fig. 1(a).

IV. RESULTS AND DISCUSSION

Now we investigate the scaling behavior and multifractal
properties of atomic-scale friction by applying the MF-DFA1
method to our experimental data. As seen in Fig. 1(b), the
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FIG. 1. (a) Lateral force map of NaCl surface at room temperature
along (001) direction. (b) Friction versus the tip position along one
of the scan lines shown by a dashed line in (a).

friction profile shows a quasiperiodic trend (or a sawtooth-like
trend) whose periodicity is the same as the lattice constant of
NaCl (0.56 nm) coming from the crystalline structure of the
surface. Because of the periodic behavior, we expect to observe
a crossover at the same order of the lattice constant in the plot
of fluctuation function. Figure 2(a) depicts the log-log plot of
F2(s) after averaging the fluctuation function over all 256 scan
lines. In this figure, the length scale s varies from 10 to 256/3.
The upper curve of Fig. 2(a) is the result of applying MF-DFA
to the original data. This curve clearly shows a crossover at
the length scale s× ∼ 0.6 nm that happened, as expected, at
a length scale comparable to the surface lattice constant a =
0.56 nm, i.e., the period of the atomic structure of the surface.
The slopes of linear fits to the original data curve before and
after the crossover are 1.10 ± 0.05 and 0.38 ± 0.01 at a 1σ

confidence interval, respectively.
As stated earlier, applying MF-DFA to a data with periodic

trends yields to unreliable scaling exponents. Thus, we need
to remove such a sawtooth-like trend in our data, for which we
use the SVD technique before applying the MF-DFA method.
For SVD, the two parameters p and d should be adjusted.
The value of p is determined from the number of peaks in the
power spectrum, which is counted to be 2. Since, for SVD,
a large embedding dimension (d � p) is desirable, we take
d = 100. After removing the trend and applying MF-DFA,
the fluctuation function for each scan lines is obtained. The
lower curve of Fig. 2(a) represents the fluctuation function
for the detrended data averaged over all scan lines. As seen,

by eliminating the trend, the spurious crossover vanishes and
the fluctuation function shows a power law behavior. The
scaling exponent h(q = 2), which is the slope of the lower
curve of Fig. 2(a), is obtained equal to 0.61 ± 0.02 at a
1σ confidence interval. Note that since the slope is less than
unity, the Hurst exponent H becomes equal to h(q = 2) =
0.61 ± 0.02. The value of H = 0.61 ± 0.02 reflects the fact
that the fluctuation of the nanofriction data is not a Gaussian
white noise but a power-law correlated noise with positive
correlation.

The computations carried out before this point, for deter-
mining the scaling exponent h(q), are only for the certain
value q = 2. However, in order to investigate the multifractal
characteristics of the data, we should determine the scaling
exponent h(q) for other values of q. Figure 2(b) represents
the generalized scaling exponent h(q) as a function of
moment q. In the case of the detrended data, h(q) decreases
monotonically with the moment. This strong dependence of
h(q) on q clearly represents the existence of multifractality
in the nanofriction force data. According to Fig. 2(b), h(q)
has a stronger dependency on negative moments than positive
ones. This, in turn, shows the greater role of small fluctu-
ations in the multifractal properties of the series than large
fluctuations.

The nonlinear behavior of the scaling exponent τ (q)
also confirms the multifractality of the data; see Fig. 2(c).
These characteristics of nanofriction force, nonlinearity and
multifractality, can be more verified using the multifractal
spectrum f (α), which measures the range of the fractal
exponents in the series. Figure 2(d) shows f (α) as a non-
convex function of singularity with a left truncation and
the spectrum width αmax − αmin = 0.58 ± 0.08. The spectrum
width indicates the amount of deviation from monofractality.
In other words, it provides a measure of multifractality:
the more the width, the more multifractal are the series
fluctuations.

The presence of scaling behavior in atomic-scale friction is
the notable result of this study. The origins of scaling behavior
at the atomic and mesoscale are fundamentally different. At
the mesoscale, the scaling behavior is the result of the surface
roughness. But, at the atomic scale where the surface is flat, the
scaling behavior appears due to some fluctuation sources such
as thermal and instrumental noises where their overall effect
are usually assumed to be described by a white noise [6]. We
found that this assumption is ruled out beyond a 5 interval
over NaCl (001) surface at room temperature. Our work is
only the proof of existence of noise correlation in the friction
between two moving nanoscale objects. How this correlation is
affected by, e.g., sample surface, tip velocity, and temperature
are interesting questions worth separate studies following the
procedure introduced in this work.

It should be noted that these results are not reliable for
scales shorter than the so-called Markov length scale, which
is the minimum length scale over which the data can be
considered as a Markov process. This is due to the nature
of profilometry measurement techniques in which there is an
interaction between the probe’s tip and the sample. For blunt
tips, the convolution effect distorts measurements [47,48].
Fazeli et al. [49] showed that the tip size would affect only
measurements in length scales smaller than the Markov length
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FIG. 2. (a) The log-log plot of MF-DFA1 function F2(s) versus scale s for original and detrended data of stick-slip friction force on NaCl.
(b) Generalized scaling exponent h(q) versus q for the detrended data. (c) The mass exponent τ (q) plot of nanofriction force. (d) The singular
spectrum f (α) derived from the fluctuation of atomic friction force of NaCl for the detrended data.

scale. In other words, the scaling exponents obtained for
length scales larger than the Markov length are unaffected
by the mentioned phenomenon and therefore statistically
reliable.

Here it is instructive to state briefly the procedure of
determining the Markov length. In order to estimate the
Markov length, shown here by lM , for a given process {x(t)},
we exploit this fact that the necessary condition for {x(t)} to
be Markov is the Chapman-Kolmogorov equation [50–52]:

p(x3,t3|x1,t1) =
∑
x2

p(x3,t3|x2,t2)p(x2,t2|x1,t1), (15)

where p(xj ,tj |xi,ti) is the transition probability from the state
xi at initial time ti to the state xj at final time tj . Note that this
equation should be satisfied for any value of t2 in the interval
t1 < t2 < t3; otherwise we say that {x(t)} is a non-Markov
process. We use the criterion

D(τ ) =
∣∣∣∣∣p(x3,t3|x1,t1) −

∑
x2

p(x3,t3|x2,t2)p(x2,t2|x1,t1)

∣∣∣∣∣
(16)

to determine the Markov length scale. Here τ ≡ |t3 − t1|.
The Markov length lM equates to τ for which D(τ ) → 0.

Applying the above procedure to the nanofriction data, we
find that the Markov length is lM ∼ 0.08 nm. The typical
length scale in our study (0.2 to 2 nm) is quite larger than the
obtained Markov length, demonstrating the reliability of our
results.

V. SUMMARY

Friction between two contacting bodies emerges in a wide
range of length scales from atomic to macroscales. At the
mesoscopic scale, friction possesses a scaling behavior that
originates in surface roughness. Consequently, at the atomic
scale where there is no roughness anymore the question may
arise: What is the scaling picture of friction at this scale? To
address this question, we investigated the scaling behavior
of the atomic-scale friction between the AFM tip and the
flat surface of NaCl(001). The friction profile consists of
fluctuations superimposed with a sawtooth pattern due to
stick-slip motion. We used the singular value decomposition
to filter out the trend, followed by the MF-DFA analysis on
the clean data (fluctuations). As a result, the scaling behavior
for the friction data ranging from 0.2 to 2 nm was observed,
indicating that nanofriction fluctuations cannot be modeled
by a white noise signal. In addition, the dependence of the
generalized Hurst exponent h(q) on the variable q means
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that the scaling behavior of the data cannot be described
by only one scaling exponent. Subsequently, our results
showed the multifractal behavior of the combined noise
contribution in nanofriction data (the original data reported
by AFM).

This study could be extended to investigate the contribu-
tion of sample material, tip speed, scanning direction, and

temperature on the correlation and multifractality properties
of nanofriction fluctuations.
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