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Our understanding of animal communication has been largely driven by advances in theory since empirical evidence has been

difficult to obtain. Costly signaling theory became the dominant paradigm explaining the evolution of honest signals, according to

which communication reliability relies on differential costs imposed on signalers to distinguish animals of different quality. On the

other hand, mathematical models disagree on the source of costs at the communication equilibrium. Here, we present an empirical

framework to study the evolution of honest signals that generates predictions on the form, function, and sources of reliability

of visual signals. We test these predictions on the facial color patterns of the cooperatively breeding Princess of Burundi cichlid,

Neolamprologus brichardi. Using theoretical visual models and behavioral experiments we show that these patterns possess stable

chromatic properties for efficient transmission in the aquatic environment, while dynamic changes in signal luminance are used by

the fish to communicate switches in aggressive intent. By manipulating signal into out-of-equilibrium expression and simulating a

cheater invasion, we demonstrate that social costs (receiver retaliation) promote the honesty of this dynamic conventional signal.

By directly probing the sender of a signal in real time, social selection is likely to be the mechanism of choice shaping the evolution

of inexpensive, yet reliable context-dependent social signals in general.

KEY WORDS: Costly signaling theory, conventional signal, cichlid, Neolamprologus, out-of-equilibrium, pigmentation, receiver

retaliation costs, reliability, strategic costs, visual model.

Impact Summary
The principles guiding animal communication and the evolu-

tion of animal signals have long inspired researchers. What pre-

vents animals from lying, communication from losing mean-

ing and the signaling systems from collapsing? Theoreticians

concluded that animal signals need costs to be made reliable,

although there is disagreement regarding the source and type

of those costs. Experimental data could shed light on the evolu-

tion of animal signals and communication, although attempts

to determine the exact source of reliability costs have had lim-

ited success. In this study, we devised a framework that aids

the empirical study of the evolution of honest communication

by examining the form, function, and sources of reliability

of visual signals. We show the usefulness of this framework

by examining the facial mask of the cooperative Princess of

Burundi cichlid fish and uncovering how fish reliably com-

municate aggressiveness and dominance. We found that much

like the colorful masks used by humans in the Mexican-free

wrestling Lucha Libre, the facial mask of these fish is highly

conspicuous, the colors encode the fish’s intentions to fight

2 6 9
C© 2017 The Author(s). Evolution Letters published by Wiley Periodicals, Inc. on behalf of Society for the Study of Evolution
(SSE) and European Society for Evolutionary Biology (ESEB).
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original
work is properly cited.
Evolution Letters 1-5: 269–278

http://orcid.org/0000-0002-0321-3023
http://creativecommons.org/licenses/by/4.0/


JUDITH C. BACHMANN ET AL.

and the fish must reliably display those colors—if they cheat,

they are punished. Thus, we show that reliability of animal

communication can be maintained by social policing and does

not require additional costs.

How honest signals evolve is hotly debated by animal com-

munication theoreticians (Grose 2011). An appealing solution to

the puzzling problem of signaling honesty when signaler and

receiver interests do not coincide lies in the existence of costs

(Bradbury and Vehrencamp 2011). According to costly signaling

theory, honesty of a message is maintained by differential costs of

signaling imposed on animals of different quality (Grafen 1990;

Bradbury and Vehrencamp 2011; Fraser 2012; Higham 2014).

Nevertheless, there is considerable disagreement regarding the

exact nature of these costs. On one side, the handicap principle

requires costs paid by all signalers at the equilibrium (Zahavi

1975; John Maynard-Smith and Harper 2003; Hurd and Enquist

2005; Searcy and Nowicki 2005). In spite of the generalized ac-

ceptance of handicaps, reinterpretation of earlier models and new

mathematical simulations all conclude that strategic costs at the

communication equilibrium are not sufficient, nor even neces-

sary, for reliable signaling, a conclusion that is nonetheless still

not widely recognized by empirical biologists testing honesty

in communication (e.g., Hurd 1997; Getty 1998a, 1998b, 2006;

Lachmann et al. 2001; Számadó 2011a). Instead, honesty of sig-

naling systems can be socially selected and context-dependent,

such that social selection would act at the individual level during

competition for nonreproductive resources (Tanaka 1996). Rather

than incurring realized strategic costs at every signaling event,

potential social costs imposed by receivers on dishonest signalers

could explain how some types of cheap honest signals evolve.

Such is the case of conventional signals, which would not need

any realized strategic costs on top of the efficacy costs that signal

transmission entails (Hurd 1995; Tanaka 1996; Lachmann et al.

2001).

To evaluate alternative scenarios for the evolution of hon-

est signals it is necessary to empirically measure marginal costs

of cheating in manipulated out-of-equilibrium signals, where

individuals are forced to exhibit unreliable signal expression

(Kotiaho 2001; Lachmann et al. 2001; Számadó 2011b, 2012;

Higham 2014). While the understanding of honest signaling in

animal communication has centered around questions related to

the origin of costs of communicating, some authors have ques-

tioned whether signaling costs have even been determined empir-

ically (e.g., Fraser 2012; Számadó 2012; Higham 2014). Here, we

combine conceptual approaches from visual modeling (Vorobyev

and Osorio 1998; Vorobyev et al. 2001) and signaling theory (e.g.,

Laidre and Johnstone 2013) into a 3-stage framework that gen-

erates testable predictions about the evolution of form, function,
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Figure 1. A framework for studying intraspecific color signals.

Flowchart of the 3-stage framework proposed for studying in-

traspecific color signals generates predictions to determine signal

efficacy, function, and proximate reliability mechanisms.

and sources of reliability of color signals, making the demonstra-

tion of the existence of strategic costs a more tractable empirical

problem (Fig. 1). We follow Higham’s (Higham 2014) definition

of costly signaling and Fraser’s (Fraser 2012) classification of

signal costs. We allow cost functions to be zero at the equilib-

rium, to include social selection through receiver punishment as a

mechanism that can generate marginal costs to cheaters and main-

tain signaling reliability (as elaborated elsewhere (Fraser 2012)).

Furthermore, recent mathematical models indicate that the evo-

lution of index signals can also be explained by differential costs

(Biernaskie et al. 2014). Therefore, both handicaps and indices

share a link to intrinsic physiological condition to guarantee hon-

esty, while conventional signals rely on extrinsic sources of re-

liability. Whether liar detection mechanisms have evolved helps

determine if intrinsic constraints or extrinsic socially imposed

costs exist: liar detection is expected to evolve only in cheap con-

ventional signals, where receivers can immediately probe senders

(i.e., in real time). Conversely, in intrinsically costly handicaps

or indices, reliability is verified in terms of viability and fecun-

dity, too far into the future for social selection to be effective

(Lachmann et al. 2001).
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Figure 2. Dynamic visual signals of territoriality and aggressive intent. Territorial species display a variety of conspicuous visual signals

to communicate aggressive intent. To decrease predation pressure and in nonaggressive contexts several species use morphological,

physiological, or behavioral adaptations to conceal signals. We show that rapid physiological color changes, achieved by pigment move-

ment in melanophores (black pigment cells), are a cheap proximate mechanism turning a visual signal of aggressive intent “on” or

“off” in lifelong territorial fish. Clockwise from top left: black horizontal stripe in dominant Princess of Burundi cichlid (Neolamprolo-

gus brichardi); extended dewlap in trunk-ground Brown Anole (Anolis sagrei) (Losos 2009); partially covered epaulette in Fan-tailed

Widowbird (Euplectes axillaris) (Pryke and Andersson 2003).

Here, we implement this framework to study the evolution

of visual signals in the facial mask of the Princess of Burundi

cichlid, Neolamprologus brichardi (Fig. 2), as we observed fast

and transitory changes to the intensity of the black horizontal

stripe during agonistic social interactions. Accordingly, we first

calculated visual models to quantify signal design and signaling

efficacy, and to identify the axis of variation for experimental

manipulation. We then used behavioral experiments to determine

the message conveyed by our visual signal of interest. Finally,

by experimentally manipulating sender signals into an out-of-

equilibrium state and recording receiver’s reactions, we identified

the class of costs that unreliable signaling incurs.

Methods
NEOLAMPROLOGUS BRICHARDI

Princess cichlids emerged as prime model systems for study-

ing the evolution of cooperative breeding behavior (Wong and

Balshine 2011), and substantial genomic and transcriptomic re-

sources are available (Brawand et al. 2014; Gante et al. 2016). Like

most other species of the Tanganyikan cichlid tribe Lamprologini,

N. brichardi is sexually monochromatic, that is coloration patterns

are identical between males and females (Gante and Salzburger

2012). The dominant, breeding couple is aided by up to 25

subordinate helpers, and the social group is organized in a strict

linear hierarchy (Balshine et al. 2001; Zöttl et al. 2013). Con-

flict and aggression levels are highest between individuals of

the same sex and similar size (Mitchell et al. 2009; Wong and

Balshine 2011; Garvy et al. 2015). As a consequence of cooper-

ative breeding and colony life, Princess cichlids repeatedly and

regularly interact and communication between group members,

mates, and neighbors likely involves multiple signal modalities,

such as olfactory, visual, and auditory (Balshine-Earn and Lotem

1998; Frostman and Sherman 2004; Le Vin et al. 2010; Kohda

et al. 2015; Spinks et al. 2017). Further details on biology and

husbandry in Supplementary File.

STAGE 1—CHARACTERIZATION OF SIGNAL DESIGN

AND SIGNALING EFFICACY

We used a theoretical visual model (Vorobyev and Osorio 1998;

Vorobyev et al. 2001) to quantify the chromatic and achro-

matic contrasts between the facial pattern elements using the

N. brichardi visual system under ambient light conditions from

their natural habitat (further details in Supplementary File; Figs.

S1 and S2). To test whether the facial color pattern is conspicuous

to the fish eye, we compared chromatic and achromatic con-

trasts between adjacent and nonadjacent color patches of domi-

nant fish (i.e., fish with dark horizontal stripes, which is the state in

which the phenotype is normally expressed). High visual conspic-

uousness is achieved by stimulation of adjacent photoreceptors in

opposite ways by complementary radiance spectra (Lythgoe 1979;

Hurvich 1981). Thus, signal design strategies for increased con-

spicuousness and transmission efficacy include the use of (i) white

or highly reflective colors adjacent to dark patches, (ii) adjacent
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patches with complementary colors and (iii) color combinations

centered or just offset the transmission maxima of the media,

in this case the underwater habitats where the species evolved

(Lythgoe 1979; 1992). Further, (iv) a visual signal in a particular

light environment is most conspicuous when adjacent color ele-

ments have greater contrasts than nonadjacent elements (Endler

1992, 2012; Guilford and Dawkins 1993). To detect overall dif-

ferences between adjacent and nonadjacent color patches in chro-

matic and achromatic contrasts in dominant fish, we ran linear

mixed models (LMMs) in R package nlme (Pinheiro et al. 2017)

with contrasts as responses, adjacency as explanatory variable and

fish as random effect.

STAGE 2—DETERMINATION OF SIGNALING CONTEXT

AND SIGNAL MESSAGE

Given the higher potential conflict between individuals of the

same sex and similar size, territorial combats were staged such

that both fish have simultaneous ownership over a territory and

that they cannot divide this resource after the barrier is removed

(further details in Supplementary File; Fig. S3). Twenty fish dyads

were matched by sex, standard length (mean difference: 0.2 cm ±
0.45 (s.d.); Mann–Whitney U test, V = 233, P = 0.27) and body

mass (mean difference: 0.78 g ± 1.25 (s.d.); Mann–Whitney U

test, V = 316, P = 0.21).

Intensity of the horizontal facial stripe was categorized by

eye (pale or dark) at the beginning and at the end of experiments.

Combat success (winning or losing) and behaviors of the 20 min

combats were video recorded with a Sony HDR XR 550VE. A

fighting ability index for each fish was calculated as the differ-

ence between aggressive and submissive behaviors (Table S1;

dominance index in (Aubin-Horth et al. 2007)).

To determine whether body mass and fighting ability differed

between winners and losers, and if it was the same for males and

females, we used LMMs, with body mass and fighting ability

as responses and combat success, sex, and their interaction as

explanatory variables, as well as pair as random effect. To test

whether combat success is associated to the intensity of the facial

stripe at the beginning or at the end of the contest we fitted

generalized linear-mixed models (GLMMs) with binomial error

distribution, logit link function, and pair as random effect in R

package lme4 (Bates et al. 2015).

We calculated Mann–Whitney U tests applying false discov-

ery rate to determine which color elements change in chromatic

or achromatic contrasts with switches in dominance (darkening

or paling of the horizontal stripe). To detect overall differences

between adjacent and nonadjacent color patches in chromatic and

achromatic contrasts, in dominant and subordinate fish, we ran

two LMMs with contrasts as responses and adjacency, stripe in-

tensity, and their interaction as explanatory variables. As we mea-

sured several color patches per fish and then used them in different

comparisons, all adjacent and all nonadjacent chromatic or achro-

matic contrasts were averaged per individual. Individual was used

as random effect. Shapiro tests confirmed normality of chromatic

contrast and square-rooted achromatic contrast residuals.

STAGE 3—CLASSIFICATION OF SIGNAL BASED

ON RELIABILITY SOURCE

To empirically measure marginal costs of cheating and identify

the class of signaling costs, we manipulated horizontal facial

stripes into two extreme out-of-equilibrium states, where indi-

viduals were forced to exhibit unreliable signal expression. Each

fish was tested twice with two of the following three treatments

in randomized order: 1. Darkened facial stripe; 2. Paled facial

stripe; and 3. Control sham-manipulation (further details in Sup-

plementary File). Spectral reflectance measurements confirm that

both out-of-equilibrium treatments resulted in the desired effect

of extreme darkening and paling along the axis of normal vari-

ation, such that an enhanced stripe is darker, while the subdued

stripe is paler, than all control nonmanipulated stripes (Fig. S4;

Table S2). By testing multiple manipulations on each individual

we can control for aggression biases due to individual differences

such as personality (Bell 2007).

We used standard mirror image stimulation (MIS) to de-

termine if N. brichardi are able to detect and punish unreliable

signals by measuring the response of each individual to its own re-

flection. Cichlids, including Neolamprologus, are known to react

aggressively toward their mirror images (Balzarini et al. 2014),

therefore MIS provides instantaneous feedback without some of

the confounding factors resulting from using other individuals as

stimuli (Rowland 1999). In our setup, the focal fish act as intrud-

ers in territories of individuals of the same size they perceive as

territory owners that show the manipulated or control signals

(Fig. S5). This addresses common limitations of studies that

present manipulated individuals to focal dominant, territorial in-

dividuals, which end up testing the response of territory holders to

intruders displaying different signals, rather than testing the repel-

lent effect of a signal displayed by territorial individuals (Bradbury

and Vehrencamp 2011). Therefore, we can focus on reactions to-

ward the manipulated stripe alone, including testing the behavior

of nonterritorial individuals, which are the ones most interested

in detecting unreliable signals if used by territory-holding in-

dividuals. Testing nonterritorial individuals removes motivational

differences between individuals (generated by the value given to a

territorial resource by territorial fish) and testing only one individ-

ual against itself removes resource holding potential differences

(generated by body size or condition differences whenever two

individuals interact).

We fit two different LMMs with aggressive bouts or latency

to attack as response variables and treatment, sex and their inter-

action as explanatory variables. In the case of aggressive bouts
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residuals were normalized using square-root transformation. As

fish were tested twice, individual and treatment order were added

as random effects. Tukey’s HSD post-hoc analysis was performed

to test for differences among treatment levels.

In our behavioral assay to determine sources of reliability for

signal classification, (i) if stripe intensity does not encode indi-

vidual fighting abilities (but simply correlates with them) or if the

intended receiver is other than the one tested, we do not expect to

observe a response to the manipulation (i.e., no differences in ag-

gression toward manipulated or nonmanipulated individuals). On

the other hand, (ii) if stripe intensity signals a context-independent

(i.e., intrinsic) quality whereby realized strategic costs guarantee

honesty (in the case of a handicap or index), receivers should not

challenge individuals that signal dominance (even in the pres-

ence of cheaters with enhanced signals) but should do so toward

subordinate individuals (including those with artificially subdued

signals). In this case, we expect higher aggression levels, lower

latency to attack, or both with decreasing signal intensity (from

enhanced, to control, to subdued). This would constitute an in-

nate fear response whereby higher stimulus intensity would evoke

larger visual receptor potentials that would cause both a greater

number and higher frequency of action potentials in the fear cen-

ters of the brain (Martin 1991). Alternatively, (iii) if stripe inten-

sity signals context-dependent dominance whereby social selec-

tion (i.e., detection and punishment of cheaters) maintains signal

honesty, we expect increased levels of aggression toward an unre-

liable signal (i.e., a conventional signal). In the case of long-term

commitment to defend a resource, we expect higher aggression

rates, lower latency to attack, or both toward senders of unreliable

signals (both enhanced and subdued), otherwise it is possible that

only enhanced signals will be detected and punished (Owens and

Hartley 1991; Számadó 2011a). This would constitute a learned

behavior since response intensity and latency would not correlate

with stimulus intensity (Dawkins and Guilford 1991).

Results and Discussion
STAGE 1 – CHARACTERIZATION OF SIGNAL DESIGN

AND SIGNALING EFFICACY: HIGH CHROMATIC

CONSPICUOUSNESS OF N. BRICHARDI’S FACIAL

COLORATION

Unambiguous communication selects for signals that promote ef-

fective stimulation of sensory systems relative to environmental

noise and signal degradation. Using spectral reflectance measure-

ments and theoretical fish visual models we show that the facial

color pattern in dominant N. brichardi achieves high chromatic

conspicuousness to the visual system of conspecifics (Fig. 3A

and C, filled circles). This signal design is exceptionally effective

and ensures transmission efficacy in the aquatic environment: (i)

white is a broadband optical reflector, reflecting across all the

available light spectrum and the structural blue patches reflect

the high-intensity wavelengths available underwater, while (ii)

the adjacent black melanic stripes absorb most incident light.

Chromatic contrast is further achieved by (iii) the use of com-

plementary colors, blue and yellow, centered in the highest light

intensity of water transmission. Finally, (iv) chromatic contrasts

differ between adjacent and nonadjacent patches (linear mixed-

effects model [LMM]: F1,9 = 207.31, P < 0.001) and all pairwise

color comparisons are well above the just noticeable difference

(JND) threshold of one, a standard in chromatic color discrimi-

nation (Vorobyev and Osorio 1998; Endler 2012) (Fig. 3C, filled

circles). Compared to chromatic contrasts, the overall variance

in achromatic contrasts is smaller, and adjacent and nonadjacent

elements do not greatly differ from one another (LMM: F1,9 =
4.61, P = 0.06; Fig. 3D, filled circles).

STAGE 2 – DETERMINATION OF SIGNALING

CONTEXT AND SIGNAL MESSAGE:

NEOLAMPROLOGUS BRICHARDI MAKE DYNAMIC AND

CONTEXT-DEPENDENT USE OF FACIAL SIGNAL

High chromatic conspicuousness of the facial pattern impli-

cates selection for unambiguous signaling, at least at close range

(Fig. 1). We thus tested the likely function in communication of

different elements of the facial pattern, by staging dyadic combats

of territory-holding fish. As expected, body size (LMM: F1,18 =
8.79, P = 0.01) and fighting ability (LMM: F1,18 = 32.11, P <

0.001) differed between winners and losers of staged combats,

irrespective of sex (LMM: F1,18 = 1.85, P = 0.19 and LMM:

F1,18 = 0.04, P = 0.85) or their interaction (LMM: F1,18 = 0.44,

P = 0.52 and LMM: F1,18 = 0.58, P = 0.46; Fig. S8). Most im-

portantly, we found that a change in aggressive intent by losers

of the combat leads to a rapid paling of the horizontal facial

stripe at the end of the contest (generalized linear mixed-effects

model [GLMM] with binomial error distribution: χ2
1 = 14.97,

P < 0.001; Figs. 3B, 4, S6, S7, S9). Hence changes in horizontal

stripe intensity dynamically reflect an individual’s instantaneous

motivation to fight, its aggressive intent and current dominance,

while not predicting future contest outcome (binomial GLMM:

χ2
1 = 0.01, P = 0.93) nor aggression level (LMM: F1,17 = 0.72,

P = 0.41). These results indicate that this signal is fundamen-

tally different from other well-described signals that function as

badges of status, which by definition predict the outcome of fu-

ture contests and provide more stable rank information (Tibbetts

and Dale 2004; Bradbury and Vehrencamp 2011). Such paling

or darkening achieved by rapid movement of pigments within

melanophores (black pigment cells) is a cheap physiological

response available to many lower vertebrates (e.g., fish, reptiles)

and invertebrates (e.g., cephalopods), and can occur within a few

seconds in fish (Muske and Fernald 1987; Fujii 2000).
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Next, we used theoretical visual models to test whether the

observed physiological paling of the horizontal stripe induces

changes in conspicuousness of the overall facial pattern. We found

that chromatic conspicuousness is unaffected even after paling

takes place (Figs. 3C and S10A). In particular, high chromatic

contrast is still achieved by higher contrast of adjacent patches

than nonadjacent patches (LMM: F1,18 = 208.21, P < 0.001)

and not by differences in stripe darkness (LMM: F1,18 = 3.48,

P = 0.08) or interaction between adjacency and stripe darkness

(LMM: F1,18 = 0.05, P = 0.82). This model explains 99.31%

of chromatic contrast variance, 96.50% of which is explained by

adjacency of the color elements, while changes in luminance of

the horizontal stripe explain the remaining variance. On the other

hand, we found that achromatic contrasts become more relevant

with changes in luminance of the horizontal stripe (LMM: F1,18

= 9.11, P = 0.007), as adjacent contrasts are higher than nonadja-

cent contrasts (LMM: F1,18 = 5.07, P = 0.037) and this difference

is larger in submissive fish (LMM: F1,18 = 6.78, P = 0.018;

Figs. 3D and S10B). This model explains 95.90% of

the achromatic contrast variance, 68.53% of which is ex-

plained by changes in darkness of the horizontal stripe,

22.34% by signal design (patch adjacency) and the remain-

der 5.02% by their interaction. Thus, we find that com-

pared to the horizontal black stripe the white, yellow, and

blue are less dynamic elements of the facial mask in

N. brichardi, and seem to provide little or no information regard-

ing changes in aggressive intent. Instead they act as amplifiers to

enhance pattern conspicuousness and changes in luminance of the

horizontal stripe. Using this dual mechanism is an elegant way to

ensure that conspicuousness, and hence communication efficacy,

does not decrease due to context-dependent signaling.

STAGE 3 – CLASSIFICATION OF SIGNAL BASED ON

RELIABILITY SOURCE: SOCIAL SELECTION IS THE

PROXIMATE MECHANISM PRODUCING AN

EVOLUTIONARY STABLE SIGNALING STRATEGY

To identify the class of costs maintaining honest communica-

tion we manipulated the luminance of the horizontal facial stripe

into out-of-equilibrium states. We found that receivers actively

“read” and quickly react to the manipulations, detecting and

punishing cheaters in real time (Figs. 5 and S11). Manipula-

tion of the horizontal stripe had an effect on the number of

aggressive bouts received (LMM: F2,45 = 13.73, P < 0.001),

irrespective of sex (LMM: F2,45 = 0.48, P = 0.62). Individ-

uals with darkened stripes received 1.6 times more aggression

than individuals with paled stripes (Tukey HSD: z = –3.89, P <

0.001) and 2.6 times more than controls (Tukey HSD: z = –6.59,

P < 0.001). Importantly, individuals with paled stripes received

1.5 times more aggression than controls (Tukey HSD: z = –2.97,

P = 0.008), indicating that unreliable signaling brings increased
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Figure 5. Social selection maintains reliable communication. So-

cial costs (aggressive bouts, filled squares; latency to attack, empty

squares) on out-of-equilibrium and control signals. Unreliable sig-

naling of strength (darkened stripe) and weakness (paled stripe)

is punished by increased and faster costs relative to reliable sig-

naling (control). Mean ± SEM are shown. Symbols illustrate sig-

nificant differences in pairwise post-hoc tests between treatments

(∗∗∗P < 0.001, ∗∗P < 0.01, • P < 0.1, © P > 0.1).

marginal costs to all types of cheaters. We also found that un-

reliable signals induce shorter latencies to aggression (LMM:

F2,44 = 7.19, P = 0.002). Although less clear-cut than aggres-

sion level, individuals with artificially darkened and paled stripes

received aggression with 1.7 and 1.2 times shorter latency than

controls, respectively (Tukey HSD: z = 3.43, P = 0.002 and

z = 2.07, P = 0.095, respectively; Figs. 5 and S11).

Physiological color changes have previously been implicated

in signaling aggressive intent in a number of taxa, in particular fish

(Muske and Fernald 1987; Korzan et al. 2002; Moretz and Morris

2003; Rodrigues et al. 2009). Higher levels of aggression toward

the signal reported in some of these studies were interpreted as

receiver retaliation costs maintaining honesty of a conventional

signal, although it is not a sufficient condition. We show here that

unreliable signaling has increased costs relative to reliable sig-

naling, which is pivotal to the evolution of honest signals (Lach-

mann et al. 2001; Searcy and Nowicki 2005; Higham 2014). Our

study provides rare empirical evidence that, similar to paper wasps

(Tibbetts and Dale 2004; Tibbetts and Izzo 2010), fish are able

to detect and punish individuals that signal unreliably, be they

cheaters signaling strength (“bluffers”) or modest liars (“Tro-

jans”). This ability is likely part of the social competence reper-

toire learned early in life by Neolamprologus (Taborsky and

Oliveira 2012).

Conclusions
Our framework for studying signal evolution proved important in

generating testable predictions emerging from theory. We demon-

strated that the facial mask of N. brichardi has stable chromatic

properties that keep signaling efficacy high at all times, while
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rapid physiological changes in luminance of just one element

(the horizontal melanic stripe) dynamically communicate rever-

sals in aggressive intent and dominance. We further demonstrated

that real-time social selection maintains honesty of the signaling

system. Thus, as with communication efficacy, we demonstrate

that communication reliability does not decrease due to context-

dependent signaling but is rather promoted by social policing

in Neolamprologus. Since aggressive intent is not easily handi-

capped (Bradbury and Vehrencamp 2011), receivers can directly

assess reliability of signals of aggressive intent with relative ease

(Lachmann et al. 2001) and impose social costs on cheaters, pro-

moting the evolution of signal honesty. We thus provide empir-

ical support to theoretical models concluding that honest com-

munication does not require differential strategic costs and that

reliability can indeed be guaranteed by mechanisms that pro-

mote low realized costs for honest signalers, such as through

social selection (Hurd 1995; Tanaka 1996; Lachmann et al. 2001;

Számadó 2011b). Since receivers can effectively probe reliabil-

ity of signals in real time (essentially instantaneously), we pro-

pose that social selection and cheap conventional signals are

expected to be a widely chosen solution for honest context-

dependent, social signaling. Moreover, the design of social sig-

nals should follow efficacy considerations to be easily detectable

(high signal-to-noise ratio), discriminable (have more or less dis-

crete states), and memorable to receivers (a code that is easy

to learn) (Guilford and Dawkins 1991), like the facial mask of

N. brichardi.

Taken together, these findings suggest that social selection

may contribute to the dramatic diversity of color patterns (stripes,

bars, blotches) observed in many sexually monochromatic cich-

lids (Gante and Salzburger 2012) as another form of selection

shaping diversity in this clade (Salzburger 2009; Muschick et al.

2012). Social selection is expected to drive rapid signal evolu-

tion especially in isolated allopatric populations (West-Eberhard

1983; Tanaka 1996). While we expect socially selected signals

to be sexually monomorphic because of similar selection regimes

between sexes, most research into color signaling in cichlids has

centered on sexually dichromatic traits (Maan and Sefc 2013), in

particular in assemblages from Lake Malawi and Lake Victoria

(Wagner et al. 2012). Our results point to rapid social trait evolu-

tion as another process potentially affecting speciation dynamics

in cichlids. Confirmation of its importance would raise social

selection to the level of sexual and natural selection in shaping

adaptive radiations of cichlid fishes.
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