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ABSTRACT

While it needs yet to be assessed whether or not wind erosion in Western Saxony is a major point of concern regarding land degradation and
fertility, it has already been recognized that considerable off-site effects of wind erosion in the adjacent regions of Saxony-Anhalt and Bran-
denburg are connected to the spread of herbicides, pesticides and dust. So far, no wind erosion assessment for Western Saxony, Germany,
exists. The wind erosion model previously applied for Germany (DIN standard 19706) is considering neither changes in wind direction over
time nor influences of field size. This study aims to provide a first assessment of wind erosion for Western Saxony by extending the existing
DIN model to a multidirectional model on soil loss by wind (SoLoWind) with new controlling factors (changing wind directions, soil cover,
mean field length and mean protection zone) combined by fuzzy logic. SoLoWind is used for a local off-site effect evaluation in combination
with high-resolution wind speed and wind direction data at a section of the highway A72. The model attributes 3·6% of the arable fields in
Western Saxony to the very-high-wind erosion risk class. A relationship between larger fields (greater than 116 ha) and higher proportions
(51·7%) of very-high-wind erosion risk can be observed. Sections of the highway A72 might be under high risk according to the modelled
off-site effects of wind erosion. The presented applications showed the potential of SoLoWind to support and consult management for pro-
tection measures on a regional scale. © 2016 The Authors. Land Degradation and Development published by John Wiley & Sons, Ltd.
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INTRODUCTION

Land degradation results in a reduction of the productive ca-
pacity of land (van Lynden et al., 2004). Processes that are
in the focus of discussion to cause land degradation are soil
erosion by water, loss of organic matter, deforestation or
changes in climate (Lee et al., 1996; Montanarella, 2007;
Cerdà et al., 2010; Pérez-Cabello et al., 2010; Bruun et al.,
2015; Kairis et al., 2015; Prosdocimi et al., 2016). However,
there are other threats that can trigger land degradation that
are much less known and result in the desertification of the
landscapes (Munson et al., 2011; Xu and Zhang, 2014;
Vieira et al., 2015; Xie et al., 2015). Among those, wind
erosion is one of the less studied processes (Dregne and
Chou, 1992; Sterk et al., 1999; Brotons et al., 2010; Holmes
et al., 2012; Wang, 2014; Wang et al., 2015; Borrelli et al.,
2016a). Recent evaluations on the European scale have
shown that wind erosion cannot merely be neglected when
discussing soil degradation status and soil fertility (Borrelli
et al., 2016a, 2016b).
Globally, 27% of the total land area (548 million ha) is

potentially affected by wind erosion (Lal, 2001). In
Europe, approximately 12% of the agricultural land is
susceptible to soil erosion by wind (Borrelli et al., 2015).
The average annual soil loss by wind erosion on the
European Union’s arable land is predicted to be

0·53Mgha�1 y�1 and for Germany’s arable land to be
0·26Mgha�1 y�1 (Borrelli et al., 2016a). The focus of wind
erosion studies in Germany is located in the Northern and
Eastern parts of the country, where wind erosion is a major
soil threat and environmental concern (BGR Bundesanstalt
für Geowissenschaften und Rohstoffe, 2016). Approximately
30% of Northern and Eastern Germany’s farmland is prone to
wind erosion owing to its soil textural characteristics (Funk
et al., 2004).Wind erosion can cause an often non-visible loss
of fine soil up to 40Mgha�1 per single event as was shown
for fields in Kansas, USA (Chepil, 1960). Similar magnitudes
were also observed in Brandenburg, Germany, where an
average loss of 15-mm topsoil within a 4-year measuring
period by wind erosion was recorded (Funk, 2004). Assum-
ing a bulk density of 1Mgm�3, the latter corresponds to a soil
loss of 37·5Mgha�1 y�1, which would clearly exceed the soil
loss by water in this area estimated by Panagos et al. (2015).
Even though both studies cannot directly be compared, this
rough estimation of wind erosion magnitude gives a general
idea on the possible detrimental impact of wind erosion.
One of the most susceptible regions not only within

Germany but even within Europe is Western Saxony
(Borrelli et al., 2014, 2015). However, unlike for the
adjacent states Saxony-Anhalt and Brandenburg where wind
erosion was reported to be a considerable degradation risk
(Funk, 2004; Helbig, 2015), no local or regional wind ero-
sion assessment has been attempted for Western Saxony
yet. In addition to the on-site effects resulting in the degrada-
tion of landscapes, and the off-site effects such as spread of
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pesticides, herbicides and dust (Glotfelty et al., 1989;
Riksen and de Graaff, 2001), wind erosion may also be a
danger for human life. For instance, a wind erosion event
at the highway A19 close to Rostock, Mecklenburg-West
Pomerania, Germany, provoked visual obstruction in April
2011 and resulted in major collisions with 131 persons in-
jured and eight casualties (Manhart et al., 2012; Deetz
et al., 2016). Several other wind erosion events occurred in
Northern and Eastern Germany with severe impacts on road
traffic that were reported in newspapers (e.g. Aschersleben,
Saxony-Anhalt – Geipel, 2011; Staßfurt, Saxony-Anhalt –
Dörries, 2011; Neuruppin, Brandenburg – DPA, 2014;
Neuruppin, Brandenburg – Klehn, 2014; Welsleben,
Saxony-Anhalt – Helbig, 2015; Bensdorf, Brandenburg –
Führer, 2016). Prevention of future on- and off-site effects
of wind erosion depends on the identification of (i) wind
erosion hot spots and (ii) spatial patterns of on- and off-site
wind erosion effects.
To date, no reports on severe wind erosion events are

available for Western Saxony; however, potential wind ero-
sion risk is expected to be high because the natural condi-
tions (topsoil texture, wind speeds, main wind direction
and geographical location) and agricultural management
practices (large and plain fields, and sparseness in wind-
breaks) are similar to those of the adjacent and regularly af-
fected federal states of Saxony-Anhalt and Brandenburg.
Furthermore, the sparseness in windbreaks coincides with
strong and dry winds and low soil cover in the erosive
season, which is in March and April (Toy et al., 2002; Funk
et al., 2004; Hassenpflug, 2004). Even though the land
degradation by wind erosion in consequence of the 1960s
land reforms and land use change in the area of the former
German Democratic Republic (Arndt, 2004; Baude and
Meyer, 2006; Fritsche and Ertel, 2012) was immediately
recognizable, monitoring or even mere observing of wind
erosion had low priority for decades (Knauss, 2005).
The later spatial assessment of wind erosion risk for parts

of Northern and Eastern Germany still follows the rather
simplified norm DIN19706, although more sophisticated
wind erosion models are available. In 1930s, the dust-bowl
event in the USA (Tatarko et al., 2013) triggered the devel-
opment of empirical wind erosion models like the wind
erosion equation (WEQ) (Chepil and Woodruff, 1963;
Woodruff and Siddoway, 1965), the revised WEQ (RWEQ)
(Fryrear et al., 1998; Fryrear et al., 2000), its GIS version
(GIS-RWEQ) (Borrelli et al., 2016a) and the erosion pro-
ductivity impact calculator (Williams et al., 1983). WEQ
and RWEQ are widely used and extensively tested and have
the ability to be scaled up from field to regional scale
(Zobeck et al., 2000; Youssef et al., 2012; Guo et al.,
2013), but they are limited in their ability to account for
multidirectionality of wind and variations in precipitation
(Cole, 1983; Tatarko et al., 2013). Subsequently, the
recently developed Index of Land Susceptibility to Wind
Erosion (ILSWE) (Borrelli et al., 2014, 2015, 2016b) is a
large-scale model that was applied at European scale.
ILSWE serves as a conceptual model to define and

parameterize factors of wind erosion and ‘assesses the con-
ditions and the frequency under which an area may become
susceptible to wind erosion’ (Borrelli et al., 2016b).
Process-oriented and more complex models like the wind
erosion prediction system (WEPS) (Hagen, 1991; Wagner,
2013), wind erosion assessment model (WEAM) (Lu and
Shao, 2001) or the Texas erosion analysis model (TEAM)
(Gregory et al., 1999) started to be developed in the 1990s.
These models were usually not developed for European soils.
Later, Wind Erosion on European Light Soils (WEELS)
(Böhner et al., 2003) was the first process-oriented assessment
for European soils. Disadvantageously, all these models
have an extremely large demand for high-resolution data,
which limits their transferability and application in other
than the tested and calibrated regions. Zou et al. (2015) gives
a more in-depth review of wind erosion models.
A rather basic but commonly applied modelling approach

(DIN19706) exists for wind erosion assessments in
Germany (Blume, 2004) and the federal states Lower Sax-
ony (Schäfer, 2015), Schleswig-Holstein (LLUR Landesamt
für Landwirtschaft, Umwelt und ländliche Räume des
Landes Schleswig-Holstein, 2011), Mecklenburg-West
Pomerania (Frielinghaus et al., 2002), Saxony-Anhalt
(Deumelandt et al., 2014) and Brandenburg (ZALF, ). So
far local, regional and national wind erosion modelling of
German areas has been only published in so-called gray
literature. For Saxony, such a regional wind erosion risk as-
sessment has not been performed yet and assessments can
only be derived from continental (Borrelli et al., 2014,
2015, 2016a), national (Bug, 2014) or low-resolution
regional (LfUG Sächsisches Landesamt für Umwelt und
Geologie, 2007; Regionaler Planungsverband Westsachsen,
2007) models.
As the common empirical models on a regional scale are

limited in transferability or require a local adjustment of
the factors, process-oriented models are limited by the high
data demand, and often it is not possible to downscale
large-scale models; we aim to present to the international
community the new Soil Loss by Wind erosion model
(SoLoWind) for local and regional wind erosion assessments.
SoLoWind is developed as a screening model. Screening
models are ‘simple in concept and designed to identify prob-
lem areas’ (Morgan, 2005). They are ‘indicative rather than
precise’ (Morgan, 2007), and as such their quality is rather
evaluated by a sensitivity and plausibility check. The model
was designed to overcome the limitations of unidirectionality
of the DIN19706 model and non-transferability of the other
aforementioned wind erosion models. SoLoWind is partly
based on the DIN19706 model but includes new controlling
factors like moisture and field length. Key components of
SoLoWind are that (i) the multidirectionality of wind with
respect to field length and windbreaks is considered and
(ii) controlling factors are combined through fuzzy logic,
which has the advantage to set fuzzy class breaks by proba-
bility functions (Lang and Blaschke, 2007) and classifies on
a relative qualitative scheme instead of an ordinal scale
(Mezősi et al., 2015). In this way, the model should be able
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to locally identify those fields and objects, which are under
risk to wind erosion to apply further prevention actions.
The objective of this study is to introduce the concepts of

SoLoWind by (i) qualitatively assessing and mapping the
spatial distribution of single arable fields under risk of wind
erosion and (ii) combining SoLoWind with high-resolution
local wind speed and direction data (derived from a separate
orography model) to identify hot spots of wind erosion off-
site effects in a sub-study area. We chose Western Saxony as
our case study region, because of the expected high wind
erosion susceptibility as discussed earlier.

MATERIAL AND METHODS

Study Area

The study area is located in the western part of Saxony,
Germany, which has an extent of approximately
441,000 ha. It is characterized by a sequence of glacial low-
lands, loess plains and loess hill country increasing in alti-
tude from North to South (80 to 260masl) with sandy and
silty topsoil. The landscape types for the study area modified
according to Bernhardt et al. (1986) and Niemann &
Stephan (1982) are presented in Figure 1. The climate is
sub-continental. The average (1961 to 2010) annual rainfall,
derived from a 1-km resolution map provided by the
German Weather Service (DWD), for Western Saxony is
604mm. The lowest average precipitation of 518mm in
conjunction with winter droughts due to the shielding effect
of the Harz Mountains is located close to the border of
Saxony-Anhalt (Airport Leipzig-Halle). Extratropical
westerly winds are dominant with the prevailing wind
direction of 240° South-West (Regionaler Planungsverband

Westsachsen, 2007). Long-term average wind speeds in
Western Saxony range between 1·6 and 4·1m s�1 (derived
from long-term annual wind speeds measured by DWD;
200-m resolution, 1981–2000), influenced by an altitudinal
gradient of 0·3m s�1 per 100-m height (Flemming, 1994).
Long-term average wind speeds are lowest in the urban area
of Leipzig and highest in the north-western region of the
study area and on the summits of the loess hill country
(Figure 1) (Regionaler Planungsverband Westsachsen,
2007). Measurements at nine meteorological stations in the
study area (operated by DWD and the Saxon State Office
Agency for the Environment, Agriculture and Geology) with
hourly measured wind speeds and wind directions (at 10m
height) showed that the erosive season with gust speeds
greater 5·4m s�1 are predominantly from November to
April. About 54% (239,590 ha) of the study area are agricul-
tural fields [based on the field cadaster of the Integrated Ad-
ministration and Control System (InVeKoS)]. The average
size of arable fields has an extent of 26·5 ha with an obvious
scarcity of windbreaks. Agricultural use is predominant in
the fertile sandy-loess plain and loess hill country
(Regionaler Planungsverband Westsachsen, 2007).

Soil Loss by Wind Erosion Model

Soil loss by wind incorporates major causal wind erosion
factors (topsoil texture, organic content, soil moisture, wind
speeds and wind directions, soil cover, field length and wind
breaks) in the four modules natural wind erosion susceptibil-
ity (SUS), soil cover (COV), mean field length (MFL) and
mean protection zones (MPZ) (Figure 2). All modules are
calculated and evaluated separately and subsequently
combined with fuzzy logic.

Figure 1. Landscape types in Western Saxony and urban centres modified according to Bernhardt et al. (1986) and Niemann & Stephan (1982). [Colour figure
can be viewed at wileyonlinelibrary.com]
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The first module, the natural wind erosion susceptibility
module SUS, determines the regional soil erodibility accord-
ing to Table I by the parameters soil texture, soil organic
content and Ellenberg’s soil moisture (F-value) of the top-
soil layer. The derivation of soil erodibility classes (0–5;
boldface in Table I) is based on an empirical relation implied

in BGR Bundesanstalt für Geowissenschaften und Rohstoffe
& Geologische Landesämter (1982). This approach includes
an approximation factor for the site-specific soil moisture
(F-value). In a second step within the module SUS, soil
erodibility is combined with wind speeds according to
Table III of DIN19706 (version 2013:02). In our example

Figure 2. Datasets and framework of soil loss by wind (SoLoWind) and its modules natural wind erosion susceptibility (SUS), soil cover (COV), mean field
length (MFL) and mean protection zones (MPZ). [Colour figure can be viewed at wileyonlinelibrary.com]
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application, soil parameters and F-value were derived from
the digital soil map of Saxony (1:50,000). For Western
Saxony, long-term (1981 to 2000) average wind speeds in
meter per second (in 10-m height, 200-m spatial resolution)
were provided by DWD.
Further, a soil cover module COV that distinguishes

between bare soil and covered soil in satellite images
(according to the spectral information) is implemented in
SoLoWind. The method assigned a specific class (bare,
covered) to each image cell if 2 out of 3 years have similar
spectral characteristics. This multi-year approach was cho-
sen to account for inter-annual crop rotation. In the study
area, the season from December to March showed the
highest frequencies in erosive winds according to the evalu-
ated wind speeds at nine different stations. Consequently,
soil cover in March was chosen as the reference month ow-
ing to its high frequency in erosive winds and at the same
time a phase of the year with high agricultural practice and
low vegetation cover (seeding) (Toy et al., 2002; Funk
et al., 2004; Hassenpflug, 2004). For a 3-year sequence
(2010 to 2012) in March, various regions of interest (ROIs)
were set: for 2010, 126; for 2011, a total of 143 ROIs; and
for 2012, 173 ROIs. Digital orthophotos of the year 2012
(0·2-m spatial resolution) were used as ground truthing with
42 ROIs. For the soil cover mapping, a supervised minimum
distance classification of Landsat satellite images (Landsat
TM and ETM+, spatial resolution of 30m) was used. A
more detailed identification of the degree of coverage was
not applicable with Landsat data in the respective research

period because of missing ground truth data and the low
spatial resolution.
The field lengths in module MFL are an indicator of inten-

sity and transport capacity of wind forces on the topsoil
(Hassenpflug, 2004; LLUR Landesamt für Landwirtschaft,
Umwelt und ländliche Räume des Landes Schleswig-
Holstein, 2011) and serve as an approximation for the wind
erosion’s avalanching effect (Chepil and Woodruff, 1963).
The avalanching effect is most pronounced if the maximum
length of the field coincides with the main wind direction.
The field length of module MFL is calculated by a cumula-
tive cell count approach using a conventional GIS flow
accumulation algorithm (Figure 3). The cadastral map of
all fields is rasterized to a constant raster and rotated to the
desired wind direction (e.g. as in Figure 3 with a west–east
orientation) because the flow accumulation approach only
counts cells from left to right and cannot flow in any other
direction than 90°. Flow accumulation has its initial
counting cell at a left field border and cumulates the number
of cells straightforward to the right until the opposite border
is reached. It starts again to count by overpassing the next
field border. The cumulative cell count is multiplied by the
cell size to yield field length (meter) for each cell within a
field. The resulting field length raster is rotated back to its
initial position. All the steps are repeated for the 12 wind di-
rection sectors (0° to 360°). For each sector, the individual
long-term frequency of erosive winds (gust speeds above
5·4m s�1 and preceding 48 h rainless) need to be calculated.
These frequencies (fi) in each wind direction sector (wds)

Table I. Soil erodibility classes (0–5; in boldface) by wind according to soil texture, organic content and Ellenberg’s F-value after BGR
Bundesanstalt für Geowissenschaften und Rohstoffe & Geologische Landesämter (1982)

German textural
classes

Description Soil texture Organic content
in %

Mean Ellenberg
F-value

Particle size
in μm

Composition 7-8 6 5 4 3-2

T Clay <0.2 65-100% C, 0-35% Si, 0-35% S / 0 0 1 1 1
U Silt 2-63 0-8% C, 80-100% Si, 0-20% S
L Loam / 8-45% C, 0-50% Si, 15-83% S
Sl3 Medium loamy sand 63-2000 8-12% C, 7-40% Si, 48-85% S >4 0 1 2 3 3
Sl4 Very loamy sand 63-2000 12-17% C, 13-40% Si, 45-75%

S
<4 0 2 2 3 3

Sl2 Low loamy sand 63-2000 5-8% C, 5-25% Si, 67-90% S
Su2 Low silty sand 2-63 0-5% C, 10-25% Si, 70-90% S
Su3 Medium silty sand 2-63 0-8% C, 25-40% Si, 52-75% S >4 0 2 3 4 5
Su4 Very silty sand 2-63 0-8% C, 40-50% Si, 42-60% S <4 0 3 4 4 5
ffS Very fine sand 63-125 <5% C, <10% Si, >85% FS
gS Coarse sand 630-2000 <5% C, <10% Si, <20% FS,

<30% MS, >40% CS
mS Medium sand 200-630 <5% C, <10% Si, <20% FS,

>70% MS, <15% CS
msfS Medium sandy fine

sand
63-200 <5% C, <10% Si, 50-75% FS,

15-50% MS, <5% CS
>4 0 3 4 5 5

fsmS Fine sandy medium
sand

200-630 <5% C, <10% Si, 20-50% FS.
40-70% MS, <10% CS

<4 0 4 5 5 5

fS Fine sand 63-200 <5% C, 10% Si, >75% FS,
<15% MS, few grains CS

C = clay, Si = silt, S = sand, FS = fine sand, MS =medium sand, CS = coarse sand, 0 = no soil erodibility, 1 = very low soil erodibility, 2 = low soil erodibility,
3 = medium soil erodibility, 4 = high soil erodibility, 5 = very high soil erodibility.
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serve as a weight factor for each (here: 12 according to 12
wind direction sections) field length raster (FLi) in order to
calculate a MFL raster according to the following equation:

MFL ¼ ∑wds
i¼1 f i�FLi
wds

(1)

For the presented two applications of the model, erosive
events were derived from a total of nine gauging stations
for the application to Western Saxony and Geithain for the

sub-catchment application. The cadastral map was extracted
from InVeKoS.
Finally, SoLoWind enables the user to evaluate the effec-

tiveness of windbreaks, which are treated within a separate
protection zone module MPZ. For the module calculation,
all windbreaks like tree rows, hedges, groves, forests, build-
ings, bridges and field boundaries can be considered. The
windward and leeward protection zones (Blume, 2004) are
obtained by a GIS hillshade function using a specific altitude

Figure 3. Concept of the mean field length module (MFL) by rotation, flow accumulation and averaging. [Colour figure can be viewed at wileyonlinelibrary.
com]
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and azimuth for each wind sector. In this particular case, the
illumination source of the hillshade tool can be understood
as wind source. Therefore, windbreaks with defined heights
have their specific wind shadow zone according to the alti-
tude of the wind source. Azimuth can be understood as wind
direction. The process is repeated for each wind direction
sector (azimuth). Likewise in module MFL, the frequency
(fi) of erosive events of each wind direction sector (wds)
serves as a weight factor for averaging the protection zones
(PZi) to MPZ with Equation 2:

MPZ ¼ ∑wds
i¼1 f i�PZi

wds
(2)

Here, we extracted the mentioned objects with its specific
mean heights (Table II) from the biotope and land use map-
ping, the Official Topographic-Cartographic Information
System, InVeKoS, OpenStreetMap and orthophotos.
The modules are combined by fuzzy logic, which was first

introduced by Zadeh (1965; for detailed explanations, see
also Klir and Folger, 1988; Zadeh and Kacprzyk, 1992;
Kosko, 1993; Masulli et al., 2013). The technique deals with
uncertainties and vagueness of complex systems (Rihani
et al., 2009), which is often the case in wind erosion model-
ling (Böhner et al., 2003; Gomes et al., 2003; Goossens,
2003; Funk and Reuter, 2006; Borrelli et al., 2016a,
2016b). The variables are transformed to fuzzy members,
and the classes are converted into numerical values ranging
from 0 (no membership) to 1 (full membership). Different
underlying probability functions (e.g. linear, gaussian, trian-
gular, trapezoid, exponential, logarithmic and polynomial)
can be chosen instead of an additive linkage with high un-
certainties (McBratney and Odeh, 1997; Mezősi et al.,
2015). We assumed a linear relationship for the qualitative
classes of module SUS (in accordance with Climate Erosiv-
ity WFm and Soil Erodibility EF in Borrelli et al., 2016b).
Although Mezősi et al. (2015) and Borrelli et al. (2016b)
use a reciprocal and half-hyperbolic relationship of soil
cover, a linear function was assumed for COV because it
was classified as Boolean without intermediate values.

According to NLÖ Niedersächsisches Landesamt für
Ökologie (2003), classes of tolerable field lengths (module
MFL) were also linear classified. It was assumed that the
protection zone of any landscape component loses its effect
with a linear trend (Combeau, 1977; Blume, 2004). All four
modules as fuzzy members were combined with a fuzzy
overlay by equal weights of one-quarter.

Model Application

Wind erosion risk classes and plausibility check for Western
Saxony
The modelled wind erosion risk map was classified into five
equal interval risk categories. Fields with values in the first
interval (0% to 20%) were classified as very low and second
interval (greater 20% to 40%) as low risk to wind erosion;
fields with values in the fourth interval (greater 60% to
80%) and the fifth interval (greater 80% to 100%) were clas-
sified as high and very high risk to wind erosion, respec-
tively. Medium risk was assigned to the third interval
(between 40% and 60%). Further, a zonal averaging of the
cell values within each field was applied to achieve a more
common mean field value for matching the results with cross
compliance on soil erosion.
The model reliability was tested by (i) excluding individ-

ual modules, (ii) varying of the weighting of each module in
the fuzzy logic routine and (iii) extracting the orientation of
fields (in the fourth and fifth risk classes) by minimum
bounding geometry to assess whether the longest axis of
the field is parallel to the main wind direction (240°) of
erosive winds and, therefore, more prone to a mobilization
of topsoil by wind. Furthermore, snow fence positions
served as a controlling indicator for wind exposed fields.
Even though the process of snowdrift in winter might differ
from aeolian mobilization during spring and early summer,
high wind intensities and exposed fields are identified.

Combination of SoLoWind with small-scale orography
modelling
The outputs of SoLoWind were linked to high-resolution
wind speed and direction rasters, which enabled a more
detailed evaluation on a local scale than SoLoWind alone.
Station measurements of wind speeds and directions were
regionalized by the influence of the relief with the orography
model Wind Atlas Analysis and Application Program
(WAsP) (by Trœn & Petersen, 1989, 1990). We used the
measurements of the closest gauging station and a digital
elevation model with a spatial resolution of 20m for that
modification. By the small-scale modelling, the frequency
distribution of wind directions and associated wind speeds
can be determined for a sub-region with a limited amount
of gauging stations. This local assessment for an example
sub-region results in the investigation of potential tracks of
mobilized soil material and the identification of potential
off-site effects (Riksen and de Graaff, 2001; Goossens,
2003) of wind erosion such as endangered objects, street
bodies and landscape components by a semi-automated
and visual evaluation.

Table II. Average height and maximal protection zones of wind-
breaks (after Blume 2004) derived from BTLNK, InVeKoS,
ATKIS, OSM and orthophotos

Type of windbreak Average
height (m)

Maximal protection
zone (m) in leeward

Forest 20 500
Grove 15 375
Tree row 10 250
Bridge 10 250
Wetland 10 250
Building and urban space 10 250
Hedge 8 200
Field border 1 25

BTLNK, biotope and land use mapping; InVeKoS, Integrated Administra-
tion and Control System; ATKIS, Official Topographic-Cartographic In-
formation System; OSM, OpenStreetMap.
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RESULTS AND DISCUSSION

SoLoWind Application: Regional Wind Erosion Risk
Modelling for Western Saxony

Soil loss by wind indicates that 22·8% of the arable fields in
Western Saxony have very low or low and 30·5% fields
have a high or very high risk of wind erosion (with 3·6%
of fields having a very high risk of wind erosion; Table III,
Figure 4).
Congruent with physical process understanding, larger

fields (greater than 116 ha) show a higher proportion
(51·7%) of very high risk. Only a small percentage (5·2%)
of the 3·6% of very-high-risk fields was detected on fields
smaller than 21 ha. More than one-third (37·3%) of high-
and very-high-risk fields are orientated parallel (with its
longest axis) to the main wind direction of 240°. The
landscape type loess hill country in the south of the study
area and alluvial plains along the rivers (Figure 1) have
highest proportions in the top risk class (Figure 5). Alluvial
plains are also one of the riskiest areas to wind erosion in the
national model DIN19706 (Bug, 2014). These landscapes

are characterized by the most mobile soil texture class from
0·08 to 0·1mm with the lowest fluid threshold (necessary
wind shear velocity to mobilize soil particles; Bagnold,
1941) and by intensified agricultural usage with bare soils
in spring (according to module soil cover; COV). Owing
to the management common in the region, both loess hill
country and alluvial plains show bare soil on approximately
60% of all arable fields during March. A lower wind erosion
risk occurs in urban landscapes, porphyry country, heath,
sandy-loess plain and post-mining landscapes (Figure 1).
Urban landscapes are least susceptible, owing to relative
small fields and decelerating impact of buildings on wind
speeds. In the other landscape types where the wind erosion
risk is relatively low, a majority of fields is covered by veg-
etation according to the assessment in module COV. In ad-
dition, the topsoil of the sandy-loess plain and porphyry
country has high amounts of clay aggregates decreasing soil
erodibility. Heathland has a relatively low wind erosion risk
(Figure 5) because it is shaped by lower moraines with
generally permanent vegetation cover and additionally char-
acterized by sand, which is more resistant to mobilization.
Approximately two-thirds of all arable fields in the
post-mining landscape are covered by vegetation in spring
(module COV), and therefore, that landscape type is less
risky in the erosive phase of the year.
By analysing each module separately, 30·9% of the cells

of the module natural wind erosion susceptibility (SUS)
are at very low susceptibility to natural wind erosion. Only
5·4% of the analysed agriculture land in Western Saxony
is classified as having higher natural soil erosion susceptibil-
ity by wind. In the soil cover module COV, more than the

Table III. Distribution of potential risk classes to wind erosion on
arable land in Western Saxony

Potential risk classes to wind erosion Proportion (%)

Very low 2·2
Low 20·6
Medium 46·6
High 26·9
Very high 3·6

Figure 4. Mean wind erosion risk on arable land in Western Saxony modelled by soil loss by wind (SoLoWind). [Colour figure can be viewed at
wileyonlinelibrary.com]
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half of the arable land in the study area is assigned to be
fully covered by vegetation in the investigated erosive
periods from 2010 to 2012. Where field lengths are high, a
protective effect of windbreaks is generally very low. There-
fore, a similar risk pattern like for the MFL is visible for the
MPZ. On a field scale, unprotected zones are located princi-
pally in the centre of fields because of an aggregation of field
breaks at field borders. Owing to the large fields in the study
area, approximately 40% of the study area is without any
protection by field breaks. SoLoWind identified three main
clusters with large proportions of high-risk classes in the
study area. They are located in the regions of Geithain and
Döbeln in the southern part and Torgau in the north-eastern
part of Western Saxony (Figure 1).
Soil loss by wind results are very comparable with those

of ILSWE. Both models assess the relative soil erosion sus-
ceptibility and do not quantify absolute amounts of eroded
soil. However, the good comparability might still be surpris-
ing, because wind direction is not considered in ILSWE.
Large fields and low numbers of windbreaks dominate in
our study area, which might explain why wind direction is
not crucially influencing the relative differences between
fields. However, we would expect larger differences in study
areas with smaller fields and irregular distribution of wind
breaks, which will increase the dependency on wind direc-
tion and might influence wind erosion susceptibility consid-
erably. As such, SoLoWind can be used as an additional
sub-model of the continental ILSWE model to assign the
wind erosion risk on a field scale. Both models follow a sim-
plified qualitative approach but rely on different parameters
and are applied on different scales. Hence, SoLoWind can
be supplemented to ILSWE on a regional or local scale
and might serve as a tool to verify large-scale models.
Each module was tested with a variation in weight during

the fuzzy logic routine of SoLoWind’s sensitivity check.

The various overlays resulted in very robust results for all
four modules. Finally, the comparison of localities of snow
fences in Western Saxony indicates that 60·5% (138) of all
fences (228) are adjacent (max. distance of 50m) to high-
and very-high-risk fields, which indicates that these fields
are also affected by snowdrift. The latter supports the
plausibility of our model results because both processes,
wind erosion by soil and snow drift, are dependent on
exposition and wind forces.
Owing to its modular structure, SoLoWind is suitable to

assess the influence of land use management on wind
erosion susceptibility. Soil erodibility can be reduced by in-
creasing the content of organic matter (module SUS), and
wind speeds can be decelerated by installing windbreaks
and structuring the landscape (module MPZ). Moreover, a
dense soil cover during the erosive periods (module COV)
is the most effective and immediate method to reduce soil
erosion by wind.

SoLoWind Application: Assessing Wind Erosion Off-Site
Effects and the Evaluation of Windbreak Effectiveness at
Local Scale

With our approach of considering the frequency distribu-
tion of wind direction on a local scale regionalized with
the orography model WAsP (Figure 6), we can identify
arable fields with regularly high wind speeds in the
prevailing wind direction and the effect of the presence
or absence of protecting windbreaks on endangered
objects in the surrounding. For our sub-region, most
frequently, the wind blows from the 165° to 195°
directions. Windbreaks perpendicular to the 165° to 195°
directions exist in the region (Figure 7), which decelerates
wind speeds by lifting the wind field. Nevertheless, effec-
tive windbreaks on arable fields in the main wind
direction next to highway A72 are missing in many

Figure 5. Distribution of risk classes to wind erosion per landscape type in Western Saxony. [Colour figure can be viewed at wileyonlinelibrary.com]
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segments. Therefore, highway A72 is specifically vulnera-
ble in the vicinity to arable fields that are classified as
risky (see risk zones in Figure 7). Moreover, the street
body crosses the arable fields at ground level, which
endangers traffic by reducing the visibility due to soil
particles potentially mobilized by the wind. To our knowl-
edge, protective windbreaks along the roadway are not

planned by the Saxon State Office for Road Construction
and Traffic even though soil erosion by wind would be
‘strongly attenuated by the presence of nonerodible rough-
ness elements on the surface’ (Raupach et al., 1993). The
identified risk zones should be evaluated in the further
planning and management to prevent future off-site ef-
fects. The local assessment can be transformed to other

Figure 6. Regionalized wind speeds and direction according to the Wind Atlas Analysis and Application Program (WAsP) orography-model in the sub-region
of Geithain. [Colour figure can be viewed at wileyonlinelibrary.com]

Figure 7. Risk zones of off-site effects by wind erosion in the area of Geithain under consideration of small-scale wind speeds and direction and windbreaks.
[Colour figure can be viewed at wileyonlinelibrary.com]
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local sub-regions to evaluate the potential impact for soil
loss of wind trajectories through the landscape.

CONCLUSIONS AND OUTLOOK

The soil loss by wind erosion model (SoLoWind) indicates
the importance of windbreaks, which directly decelerate wind
speed and can act as a measure to reduce SoLoWind. Either
intra-field windbreaks or reduced field lengths have a
protective effect. Our revised wind erosion screening model
SoLoWind includes the consideration of the multidirectional-
ity of the wind, the soil erodibility, the state of soil cover, the
field length and windbreaks. SoLoWind can also be used to
verify and refine large-scale models by integrating it on a
regional scale as a sub-model to models like ILSWE. As such,
ILSWE was designed to define and parameterize the most
relevant factors and conditions of wind erosion and can be
supplemented by the qualitative and more detailed assessment
of SoLoWind on regional and local scales. Both models,
SoLoWind and ILSWE, show comparable general results
for the study area even though they are assessing the risk of
wind erosion with different approaches and on different
scales. SoLoWind is transferable to other study areas and
allows for spatial wind erosion risk assessment with low data
demand at the regional to local scale. Further, SoLoWind is
suitable for wind erosion risk predictions under changing
climates by considering different climate change scenarios
as input data. The application of SoLoWind to Western
Saxony showed that about one-third of all arable fields have
either high- or very-high-wind erosion risk. As such, we
conclude that as in the adjacent federal states, wind erosion
is a serious land degradation threat forWestern Saxony. Three
main regions were identified with predominantly high and
very high soil erosion risk by wind. Sections along the
highway A72 that are potentially endangered by wind erosion
off-site effects could clearly be determined and need to be
protected to avoid influences on road traffic. SoLoWind
clearly displays the connection between wind direction, wind
frequency and landscape elements and can consequently serve
as a planning tool to mitigate the impact of on- and off-site
effects of wind erosion risk. We suggest that SoLoWind
may serve as a planning tool for soil conservation strategies.
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