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Abstract

For studies of quark matter in astrophysical scenarios, the thermodynamic bag model is commonly employed.
Although successful, it does not account for dynamical chiral symmetry breaking and repulsions due to the vector
interaction which is crucial to explain recent observations of massive, two solar mass neutron stars. In Klähn &
Fischer we developed the novel vBag quark matter model which takes these effects into account. This article
extends vBag to finite temperatures and isospin asymmetry. Another particular feature of vBag is the determination
of the deconfinement bag constant Bdc from a given hadronic equation of state in order to ensure that chiral and
deconfinement transitions coincide. We discuss consequences of this novel approach for the phase transition
construction, the phase diagram, and implications for protoneutron stars.
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1. Introduction

The theory of strong interactions, i.e., Quantum Chromody-
namics (QCD), considers hadrons and mesons as color-neutral
compound objects of quarks and gluons. Besides confinement,
a second key feature of QCD is dynamical chiral symmetry
breaking (DχSB) and its restoration at large densities and high
temperatures. Currently, lattice-QCD is the only ab initio
approach to solve QCD numerically(cf. Fodor & Katz 2004;
Aoki et al. 2006, and references therein). In the vicinity of
vanishing chemical potentials, lattice-QCD predicts a crossover
phase transition for both deconfinement and chiral symmetry
breaking in the temperature range < <T150 170 MeV(the
currently considered value is 154± 9MeV; cf. Bazavov
et al. 2012a, 2014, 2012b; Borsányi et al. 2012, 2014). This
predicted temperature is in agreement with hadron freeze-out
data from heavy-ion collision experiments(cf. Braun-Munzin-
ger et al. 2015 and references therein). However, lattice-QCD
calculations are restricted to low chemical potentials. On the
other hand, in astrophysical systems, e.g., the interior of
neutron stars and core-collapse supernovae, we usually
encounter large chemical potentials (or equivalently high
densities, even in excess of normal nuclear density), high
isospin asymmetries, and finite temperatures. Such conditions
are inaccessible by lattice-QCD and the current generation of
heavy-ion collision experiments.

The two most commonly used effective quark matter models
in astrophysics are the thermodynamic bag model (tdBag) of
Farhi & Jaffe (1984) and models of the Nambu–Jona-Lasinio
(NJL) type(cf. Nambu & Jona-Lasinio 1961; Klevansky 1992;
Buballa 2005). Recently, we illustrated in Klähn & Fischer
(2015) that both approaches can be understood as limiting
solutions of QCD’s in-medium Dyson–Schwinger gap
equations within a particular set of approximations. The
advantage of the Dyson–Schwinger formalism is a closer
connection to QCD in comparison to the aforementioned
phenomenological approaches. First explorations of the
equation of state (EoS) of deconfined quark matter within this
approach have been performed(cf. Chen et al. 2008,
2011, 2015, 2016; Klähn et al. 2010). Perturbative QCD is

valid in the limit of asymptotic freedom where quarks are no
longer strongly coupled(cf. Kurkela et al. 2014 and references
therein). Therefore, it provides a valuable benchmark for the
asymptotic behavior of realistic quark matter model EoS.
Currently, no consistent approach exists to describe medium

properties of hadrons and mesons at the level of quarks and
gluons, in particular at high density. Hence, the deconfinement
phase transition is usually constructed from a given hadronic
EoS with hadrons and mesons as the fundamental degrees of
freedom and an independently computed quark matter EoS.
Only few attempts exist to improve this situation; see, e.g.,
Dexheimer & Schramm (2010), Steinheimer et al. (2011).
Constructions based on Maxwell’s conditions by definition
result in a first-order phase transition(cf. Rischke et al. 1988;
Barz et al. 1989). In Fischer et al. (2011), a Gibbs construction
based on tdBag as the quark matter EoS at finite temperatures
has been employed for applications in astrophysics. Yasutake
et al. (2014) considered pasta structures at the quark–hadron
interface and compared the results with standard Maxwell and
Gibbs constructions. Further alternative approaches for the
construction of possible quark–hadron phase transitions were
discussed in Masuda et al. (2013) and Kojo et al. (2015).
In Klähn & Fischer (2015), we introduced the novel quark

matter EoS vBag, in particular for applications in astrophysics.
Although vBag is initially motivated as a simplification of an
NJL model with scalar and iso-vector condensates, it is
essentially an extended bag model that explicitly accounts for
the repulsive vector interaction. This property is essential for a
stiffening of the EoS toward high densities and results in
maximum neutron star masses in agreement with the current
constraint of about 2Me from the observations of Antoniadis
et al. (2013) and Demorest et al. (2010), the latter recently
revised to 1.928±0.017Me by Fonseca et al. (2016).
Moreover, vBag mimics (de)confinement via a phenomenolo-
gical pressure correction to the EoS in the form of a
deconfinement bag constant Bdc. The simultaneous occurrence
of chiral symmetry restoration and (de)confinement is generally
not provided for a “standard” Maxwell or Gibbs construction.
This represents an essential assumption for this study. The
consequences will be discussed in detail. The idea to enforce
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deconfinement at the chiral transition by manually equating the
pressure of hadronic and quark matter EoS at zero temperature
has been discussed previously by Pagliara & Schaffner-
Bielich (2008).

In this article we extend vBag to finite temperatures and
isospin asymmetry. As a consequence of our model prescrip-
tion, the deconfinement bag constant Bdc becomes medium
dependent and depends directly on the hadronic EoS. The
medium dependence induces correction terms for the EOS of
the quark phase, which consequently depends on the hadronic
EOS as well. For illustration, we select a nuclear EoS from
the catalog of Hempel & Schaffner-Bielich (2010). It treats
the nuclear medium within a quasi-particle picture of the
relativistic mean-field (RMF) framework for conditions in
excess of normal nuclear matter density and high temperatures.
Specifically, we choose the parametrization DD2 from Typel
et al. (2010). We aim to make vBag accessible to a broader
spectrum of astrophysics applications where the appearance of
quark matter can be studied, e.g., simulations of neutron star
mergers, core-collapse supernovae, and protoneutron star
cooling (cf., Pons et al. 2001; Nakazato et al. 2008; Sagert
et al. 2009; Fischer et al. 2011).

In Section 2 we review the basic equations of vBag,
including novel aspects due to the extension to finite
temperature and isospin asymmetry. In Section 3 we construct
the hybrid EoS HS(DD2)–vBag based on a quark matter EoS
parametrization that was already used in Klähn & Fischer
(2015). We describe the resulting phase diagram and
differences from the standard approach for the construction
of the phase transition. In Section 4 we discuss possible
astrophysical applications using the example of protoneutron
stars. Section 5 is devoted to limitations of this study with a
detailed comparison of vBag and NJL. The manuscript closes
with a summary in Section 6.

2. vBag as a Hybrid Approach

2.1. Chiral Symmetry and Vector Interaction

In Klähn & Fischer (2015), we introduced the vBag model as
an extension of tdBag, which in turn was introduced in Farhi &
Jaffe (1984). As is typical for quasi-particle approaches, the
thermodynamical behavior of vBag is fully expressed in terms
of non-interacting Fermi gas integrals. The model considers
only the chirally restored phase where the quark mass is well
approximated by the bare quark mass. Despite this similarity to
the standard bag model, vBag accounts explicitly for the
repulsive vector interaction and the dynamical breaking of
chiral symmetry at a critical chemical potential mc f, , where f
denotes the quark flavor.

For m m< cf f, , chiral symmetry is broken and we assume
that quarks are confined in hadron and meson states that are not
accessible to vBag. The chiral phase transition and the
corresponding critical chemical potential mc f, is defined by
the value of the chiral bag constant Bχ, demanding that at
m m= cf f, , the pressure of a single quark flavor, which is given
as

( ) ( ) ( ) ( )* *m m m= + - cP P
K

n B
2

, 1f f f f
v

f f fFG,
kin

FG,
2

,

turns positive (for illustrations cf. Figure 1 of Klähn & Fischer
2015). cB f, is a flavor-dependent parameter that can be
computed from a microscopic approach as the difference

between the vacuum pressure of the chirally broken and the
chirally restored phase.
As this prescription is applied to each flavor independently,

it would result in sequential chiral transitions of light and heavy
quarks (more details are given in Klähn & Fischer 2015). We
return to this point during the discussion of the phase transition
in Section 2.2.
The constant Kv in the second term in Equation (1) relates

directly to the coupling strength Gv of the vector current–
current interaction as one would define it in NJL type models.
As explained in more detail in Klähn & Fischer (2015), cB f,
(besides the regularization scheme and involved parameters)
depends on a corresponding scalar coupling constant Gs, which
itself is related to Gv by =G G 2v s . Hence, Kv and cB f, are not
strictly independent quantities. However, as the latter relation is
not expected to hold strictly in a realistic model, we consider
these two as rather independent model parameters of vBag. A
consequence of accounting for the vector interaction that leads
beyond the tdBag model is the appearance of the effective
chemical potential *mf which enters all Fermi gas expressions.
The actual chemical potential mf in the sense of a thermo-
dynamic variable is determined post priori as

( ) ( )* *m m m= + K n . 2f f v f fFG,

This again is common for quasi-particle models where
interactions dynamically alter particle in-medium properties,
e.g., mass and chemical potential but not the structure of the
Fermi integrals.
With Equations (1) and (2), the EoS at zero temperature is

given and the two relations can be used to determine the energy
density and quark number density of a given flavor:

( ) ( ) ( ) ( )* *e m e m m= + + c
K

n B
2

, 3f f f f
v

f f fFG,
kin

FG,
2

,

( ) ( ) ( )*m m=n n . 4f f f fFG,

To extend the model to finite temperatures, we replace the zero
temperature Fermi gas integrals by the equivalent finite
temperature expressions. The entropy density of the system is
expressed in the quasi-particle picture again:

( )
( )

( ) ( )*m
m

m=
¶

¶
=

m

s T
P T

T
s T,

,
, . 5f f

f f
f fFG,

f

One easily verifies the Euler equation e m+ = +P n Ts to be
fulfilled. Notice that in this study we assume a constant,
medium-independent cB f, . This is not a perfect or in general
correct choice—the scalar condensate is known to melt with
increasing temperature—and we assume for the moment not to
reach high enough temperatures to induce significant changes
of the pressure due to this melting. We briefly discuss the
limitations of this assumption in Section 5.

2.2. Deconfinement

The previous section described how vBag accounts for the
repulsive vector interaction and the chiral phase transition of a
single quark flavor. These results can be perfectly understood
in terms of a simple NJL model or more generally in the
framework of Dyson–Schwinger model studies assuming an
underlying gluon contact interaction as illustrated in Klähn &
Fischer (2015). vBag is a limit of these models in the chirally
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restored phase, assuming that in this domain the bare quark
mass is a sufficient approximation of the real mass gap
solutions to describe the thermodynamical behavior of chirally
restored quark matter. The condition ( )m =cP 0f f, , which
determines mc f, , does not imply that the chiral bag constant
describes the pressure under a confining force but simply
accounts for the fact that chiral symmetry in confined matter is
broken, and subsequently, the restoration of chiral symmetry
induces pressure in the system.

If one aims to account for both chiral symmetry restoration
and deconfinement, it is worth considering the following two
aspects. First, a description of hadronic matter that does not
take chiral symmetry breaking on the quark level into account
is likely inaccurate. It is flawed already on the level of the
“fundamental” bare hadron masses independently from the
specific modeling of nucleon–nucleon interactions. Second,
hadronic matter will deconfine after the system reaches a
sufficient critical chemical potential mB,dc and related pressure.
It is a common approach to describe hybrid nuclear–quark EoS
including the chiral/deconfinement transition without giving
any of these two statements too much thought by performing a
Maxwell or Gibbs construction to connect nuclear and quark
EoS; both EoS can be—and in astrophysical applications
usually are—obtained from different, independent models.

With these considerations in mind we model a hybrid,
nuclear–light-quark EoS for applications at finite temperature
and arbitrary isospin asymmetry. While an extension to finite
temperatures is easily achieved, isospin asymmetry, i.e.,
m m¹u d , raises the problem that different light quark chemical
potentials imply situations where, e.g., ( )m m m< <cd u d u, , , and
consequently u-quarks are chirally restored while d-quarks are
not. This can lead to interesting scenarios(cf. Blaschke
et al. 2009). However, in this work we model an EoS where
light flavors appear at the same critical baryon chemical
potential analogous to the results obtained with the “standard”
approach for first-order phase transitions. To achieve this, we
redefine the chiral threshold condition to hold for the total light
quark pressure instead of independently for each single flavor:

( ) ( )å m =c
=

P T , 0. 6
f u d

f f
,

,

Here, ( )mP T ,f f is defined as the total quark pressure of a single
quark flavor according to Equation (1). Based on the NJL
model parameterization (Grigorian 2007) we used in Klähn &
Fischer (2015), we assume that the threshold density for the
appearance of the heavy strange quark at zero temperature is
larger than the light quark threshold. At least in this domain it
will not affect the deconfinement bag constant. We omit
possible contributions at finite temperature. To be consistent,
we neglect hyperon contributions to the hadronic EoS. We
point out that technically, our prescription remains the same if
one would consider strangeness. This additional degree of
freedom is likely to affect the quantitative results of this study
but not the prescription we suggest in this work to obtain a
medium-dependent deconfinement bag constant and the related
correction terms to the EoS.

It is useful to introduce the baryon and charge chemical
potentials for light quark matter, which follow in general from

 m m m= +f f B f C, with f and f being the baryon and
electric charge number of the corresponding quark flavor f.

This allows us to rewrite

( )m m m= + 2 , 7B u d

( )m m m= - . 8C u d

At a given T and mC, we denote our critical chemical potentials
for DχSB and confinement as m cB, and mB,dc, respectively. The
general thermodynamic identities,

( )
m m
¶
¶

=
¶
¶

=
¶
¶

=
P

n
P

n
P

T
s, , , 9

B
B

C
C

relate the pressure derivatives with respect to the baryonic and
charge chemical potentials to the baryon and charge number
densities as well as the temperature derivative to the entropy.
In this work, we assume that at sufficiently low temperatures,

the assumption of a first-order phase transition is correct. The
condition for the transition from hadronic (H) to quark matter
(Q) for the total pressure of each phase reads

( ) ( )m m=P PB B
H

,dc
Q

,dc at a given T and mC. It defines the
deconfinement baryonic chemical potential mB,dc. We observe
that (i) evidently, deconfinement occurs at finite pressure and
(ii) without further modifications, Equation (6) enforces zero
pressure at the chiral transition. Hence, chiral and deconfine-
ment transitions are necessarily located at different chemical
potentials, m m<cB B, ,dc. In fact, the gap between these critical
chemical potentials easily spans several 100MeV. The gap
region in this two-phase approach is obtained by comparing a
nuclear matter EoS that does not know about chiral symmetry
breaking on the quark level with a quark matter EoS that does
not know about confinement. The thermodynamically favored
solution in this domain is the hadron EoS due to its higher
pressure, and hence the chiral restoration of quark matter is
effectively postponed ad hoc until mB,dc is reached.

3 With vBag
we could model the same late onset of deconfinement.
However, to maintain our assumption of simultaneous chiral
symmetry restoration and deconfinement, this would require
shifting m cB, and hence increasing the chiral bag constant to
higher values, which are not in agreement with, e.g., the NJL
model.
We go the opposite way and want our model to account for

simultaneous chiral symmetry breaking and the confinement
transition at m cB, . We emphasize that this is an assumption we
put into this model and not a general property of vBag.
According to this idea, mB,dc has to decrease in order to match
m cB, , in agreement with Equation (6). This is achieved by
exploiting the fact that the total pressure is fixed by the
previous equations only up to a constant Bdc,

( ) ( )å m= +P P T B, . 10
f

f f
Q

dc

Introducing Bdc thus enables us to ensure that the pressure of
hadronic and quark matter is equal at the critical chemical
potential m cB, for the chiral transition. In order to match both

pressures, one easily finds the value of ( )m= cB P Bdc
H

, at a
given T and mC. In general, we expect Bdc to depend on all
thermodynamic variables, T, mC, and mB. However, our

3 Note how this picture differs from that of the quarkyonic phase (cf.,
McLerran & Pisarski 2007; McLerran et al. 2009; Andronic et al. 2010), where
chiral symmetry is restored in the confined domain, m m m< <cB B B, ,dc.
Strictly, this would require reformulating the nuclear EoS to account
dynamically for nucleon masses, which depend on medium-dependent quark-
constituent masses.
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prescription fixes Bdc only on a hypersurface within this three-
dimensional parameter space, which leaves one free variable
and the corresponding dependence of Bdc remains undeter-
mined. We eliminate this degree of freedom by assuming

( ) ( )m m m m= cB T B T, , , ,C B C Bdc dc , , where m cB, itself is a
function of T and mC.

2.3. Medium Corrections

We emphasize that we assume that chiral symmetry breaking
and deconfinement are tied to values of the corresponding
critical chemical potentials that are the same or similar. Whether
this will be supported by future research or not, the previous
paragraph outlined that both approaches we described imply
m m=c :B B, ,dc the traditional phase transition construction of two
independent phases by shifting m mcB B, ,dc and the Bdc

approach by shifting m m cB B,dc , . We prefer the latter as it
keeps the insights from a chiral description on the quark level,
and as we show in the following, results in an inherent
connection of nuclear and quark EoS that goes beyond the
“standard” two-phase approach. Note that vBag does not require
this procedure, and in principle we could obtain any value for
mB,dc with a corresponding choice of Bdc. In fact, the prescribed
procedure can be applied to any quark model that accounts for
DχSB and is not restricted to vBag. However, the problem of an
existing domain where the favored nuclear EoS is blind to the
restoration of chiral symmetry on the quark level would still
stand.

Ignoring the vector interaction-induced terms for the
moment, vBag behaves very similarly to the tdBag model as
it results in an effective bag constant

( )å= -c
=

B B B , 11
f u d

feff
,

, dc

which takes similar values to familiar one from the bag model.
We emphasize that unlike the standard bag model, in vBag the
positive value of Beff originates from DχSB only while
confinement reduces it. In this sense, Bdc is understood as a
confining binding energy. Moreover, Beff can take values
smaller than those in the tdBag model without predicting
deconfined (light)–quark matter to be energetically favored
over nuclear matter. This is explained in more detail in Klähn
& Fischer (2015).

As outlined earlier, the deconfinement bag constant Bdc
depends on the nuclear EoS. According to our prescription for
the phase transition, it will vary with temperature and
asymmetry, ( )mB B T , Cdc dc , while we keep it constant with
respect to mB. This medium dependence of Bdc results in
additional contributions to the charge number and entropy
density,

( ) ˜ ( ) ( )m m m m
m

= +
¶
¶

n T n T
B

, , , , , 12C C B C C B
C

Q Q dc

( ) ˜ ( ) ( )m m m m= +
¶
¶

s T s T
B

T
, , , , , 13C B C B

Q Q dc

with ˜ ( )= å = -=n n n n2C f u d f f u d
Q

,
1

3
and ˜ = å =s sf u d f

Q
, .

The derivative terms in Equations (12) and (13) distinguish our
model from tdBag and other models with the “standard” phase

transition construction of two independent phases. One obtains

≕ ( )

{ ( ( ))}

( ) ( )

( ) ˜ ( )

( )

( )
( )

m
m

m
m m m m

m
m m

m

m m
m m

m m m m

m m

m m

¶
¶

=
¶

¶
=

=
¶
¶

+
¶

¶
¶
¶

= -

´

c

c
c

c

c c

c

c

B
n T

P T T

P
T

P
T

n T n T

n T

n T

,

, , ,

, , , ,

, , , ,

, ,

, ,
,

14

C
C C

C
C B B C

C
C B

B

C B
C B

C C B C C B

B C B

B C B

dc
,dc

H
,

H

,
,

H

,

H
,

Q
,

H
,

Q
,

≕ ( )

{ ( ( ))}

( ) ( )

( ) ˜ ( )

( )

( )
( )

m

m m m m

m m
m

m
m m

m m m m

m m

m m

¶
¶

=
¶
¶

=

=
¶
¶

+
¶

¶
¶
¶

= -

´

c

c
c

c

c c

c

c

B

T
s T

T
P T T

P

T
T

T

P
T

s T s T

n T

n T

,

, , ,

, , , ,

, , , ,

, ,

, ,
.

15

C

C B B C

C B
B

B
C B

C B C B

B C B

B C B

dc
dc

H
,

H

,
,

H

,

H
,

Q
,

H
,

Q
,

At m = 0C one has isospin symmetric matter and hence
˜= =Y Y 0.5C C

H Q (with the charge fractions YC defined as
n nC B), which implies ( )m = =n T , 0 0C C,dc . Similarly at
T=0, ˜= =s s 0H Q holds and thus ( )m= =s T 0, 0Cdc . It is
evident that the definition of ( ) ≔ ( )m m m cB T P T, , ,C C Bdc H ,
entangles vBag with the hadron EoS (labeled H). In this very
aspect the finite temperature and isospin asymmetry extension
of vBag( mT , C) differs from the T=0 vBag case discussed in
Klähn & Fischer (2015). The procedure does not induce a
deconfinement baryon density, i.e., ˜ = = å ==n n nB B f u d f f

Q Q
,

( )+n nu d
1

3
, one has to take corrections to the energy density

into account,

( ) ˜ ( ) ( )
( ) ( ) ( )

e m m e m m m
m m m

= -
+ +

T T B T

Ts T n T

, , , , ,

, , , 16
C B C B C

C C C C

Q Q
dc

dc ,dc

with ẽ e= å =f u d f
Q

, . We name the corrections terms as the
deconfinement energy density, ( ) ( )e m m= +T Ts T, ,C Cdc dc

( )m mn T ,C C C,dc .

3. Phase Diagram

Figure 1 illustrates the difference of our approach from the
“standard” phase transition construction. We choose a point in
the phase diagram (m = 1125 MeVB , m = -150 MeVC ,
T=30 MeV) and examine the pressure dependence to changes
of one of these variables. In general, the vector coupling is set
to zero except for set (a), where we show two cases, Kv=0
and = ´ -K 2 10v

6 MeV−2. Note that only quarks, neutrons,
and protons are considered—leptons, further baryons, and
purely thermal excitation states, e.g., photons, pions, and
gluons, are not taken into account. For the purpose of

4
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illustration, we chose the nuclear HS(DD2) EoS from Hempel
& Schaffner-Bielich (2010) based on the RMF parametrization
DD2 from Typel et al. (2010) as it covers finite baryon number
density, temperature, and isospin asymmetry. It is available at
the CompOSE database.4

We refer to the “standard” phase transition construction as a
prescription that takes the EoS of both phases as independent
input and favors the phase with higher pressure at given
chemical potential. Such a model is represented by the green
line in Figure 1, where the light quark single flavor chiral bag
constant has a value of =cB 152.7 MeV1 4 (see Table 1 in
Klähn & Fischer 2015) while we set ºB 0dc . With this setup
we reproduce the underlying NJL model at zero temperature.
At small temperatures, the model predicts the restoration of
chiral symmetry at m »c 1150B, MeV defined by the condition

( )m m =cP T, , 0B C
Q

, . However, deconfinement as the trans-
ition from nuclear to quark matter occurs at a higher chemical
potential (as ( ) ( )m m= >P P 0B B

H
,dc

Q
,dc ), in this particular

case at m » 1400 MeVB,dc . For all m m<B B,dc, HS(DD2) is
determined as the thermodynamically favored EoS, although
the quark matter model already predicts the restoration of chiral
symmetry on the quark level at a significantly lower value. The
restoration of chiral symmetry is by construction not accounted
for by HS(DD2).
In our approach, we mimic confinement by introducing
( ) ( )m m m m= = cB T P T, , ,C C B Bdc

H
, as a positive shift of the

quark pressure as discussed in the previous section, and
therefore (i) lower the onset of deconfinement m m cB B,dc , and
(ii) do not favor the nuclear EoS in a region where the dressed
nucleon mass due to DχSB should be lower than HS(DD2)
accounts for. The result of our approach is illustrated by the
solid blue line in Figure 1. As we wish to study the
consequences of our approach for the QCD phase transition
in the phase diagram, we ignore the influence of vector
coupling-dependent terms in our model. The reason is easily
understood from the red dashed line in the same figure. Here
we chose a typical value for the vector coupling constant,

= ´ -K 2 10v
6 MeV−2. Although the thermodynamic correc-

tion terms induced by the vector interaction do visibly play an

Figure 1. Upper panel: phase transition from HS(DD2) to vBag for a selected chiral bag constant Bχ comparing our approach and the “standard” approach ( =B 0dc ).
Top panel: dependence on baryochemical potential mB (a), temperature (b), and electronic chemical potential mC (c). Bottom panel: dependence of the conjugated
thermodynamical variable (see text for definitions). For (a), zero and finite vector coupling Kv (units of 10

−6 MeV−2) are considered.

4 http://compose.obspm.fr (for details, see Typel et al. 2015).
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important role at higher densities, they have an almost
negligible influence on the position of m cB, and the thermo-
dynamical quantities at this value.

The lower-left panel of Figure 1 translates the chemical
potential from the upper-left panel into the corresponding
baryon number densities. Both the onset baryon densities of the
phase transition (nB,0) and pure quark matter ( cnB, ) are shifted
to smaller densities, and the phase coexistence region
[ ]cn n,B B,0 , shrinks in comparison to the standard approach.
Our construction implies that cnB, depends only on the chiral
quark model ( cnB, is the slope of ( )mP B

Q with respect to mB at
m cB, . Bdc does not depend on mB and consequently does not
contribute to nB.), while nB,0 is sensitive to both the nuclear and
quark matter EoS, as m m= cB B,dc , and ( )m=n nB B B,0

H
,dc . We

consider the effect dramatic. Whereas the “standard” approach
predicts the onset of the phase transition at about n3.5 S, our
approach shifts the onset close to n2.5 S (the saturation density
for HS(DD2) is nS=0.155 fm−3). Further, the density range
covered by the phase coexistence region (visible as a plateau in
the lower panel of Figure 1) is reduced from n2 S to less than

n0.5 S. Qualitatively, we find this shift of the phase transition
toward smaller values for all thermodynamic degrees of
freedom (mB, mC, and T) together with a narrowing of the
transition region in terms of the conjugated quantities (nB

Q, nC
Q,

sQ). This is illustrated in the remaining panels of Figure 1.
Although the phase transition along the temperature axis (b)
behaves qualitatively similar to what we observe in the
dependence on the baryochemical potential (a) we notice a
sequence of two phase transitions (quark to hadron (I) and
hadron to quark (II)) along the axis of the electronic chemical
potential in column (c).

We further illustrate the differences between our and the
“standard” approach by showing the phase boundary at finite
temperatures and chemical potentials for two selected values of
the charge chemical potential ( ( )m = -200, 0C MeV) in
Figure 2. As is expected, m cB, decreases with increasing
temperature. Moreover, our approach suggests a widening of
the phase transition region in terms of density with increasing
temperature while the “standard” approach describes a
narrowing. This is related to the different temperature
behaviors of HS(DD2) and vBag, with a faster softening for
the hadronic EoS. In our approach, the upper border of the
instability region (solid black and red lines in panel (b)) is
exclusively defined by the chiral transition line predicted by
vBag. In the standard approach, the restoration of chiral
symmetry is explicitly ignored. Unlike vBag, the upper border
of the transition region is influenced by the underlying nuclear
matter EoS, which together with the quark EoS determines the
location of the phase transition. In comparison to the
differences due to a different modeling of the phase transition,
only small variations in terms of m cB, and rc are found for
varying Kv (see Figure 1) or the isospin asymmetry (Figure 2).

The significant changes of the location and width of the
phase transition region are a direct result of the introduction of
the medium-dependent deconfinement bag constant Bdc. As
stated earlier, it maps the nuclear EoS at m cB, in order to align
the chiral and deconfinement phase transition. The critical
chemical potential for the chiral transition depends on the
particular value of the chiral bag constant Bχ, the temperature
T, and the isospin asymmetry. In Figures 3 and 4, we illustrate
the dependence of Bdc on temperature and charge chemical

Figure 2. Upper panel: phase diagram for the transition from HS(DD2) to vBag
with a selected single flavor chiral bag constant, =cB 152.7 MeV1 4 for
m = 0C (symmetric matter) and m = -200 MeVC (strongly asymmetric
matter) comparing our and the “standard” approach ( =B 0dc ). Bottom panel:
corresponding density dependence of the phase diagram (see the text for
definitions).

Figure 3. Temperature dependence of the deconfinement bag constant for
m = 0C , m = -200 MeVC , and intermediate values (blue band).
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potential. For any choice of Bχ (we discuss the model
dependence on Bχ in Section 5), Bdc decreases with increasing
temperature. Simultaneously, the critical baryochemical poten-
tial for the phase transition decreases. The related critical
temperature where the phase transition line hits the temperature
axis is indicated by filled circles in Figure 5, which also shows
how it depends on Bχ.

By construction, Bdc corresponds to the pressure of the
hadronic and quark phase at the phase transition. Therefore,
Figures 3 and 5 as well as Figure 4 can also be interpreted as
pressure–temperature, respectively pressure–charge chemical
potential phase diagrams. The fact that Bdc is decreasing with
temperature implies ∣ <mdP dT 0PT , C

, which is the opposite of
its behavior in the nuclear liquid–gas phase transition, sometimes
called an “entropic” phase transition (cf. Hempel et al. 2013;
Iosilevskiy 2013, Iosilevskiy 2015 and references therein). This
property could lead to interesting consequences for neutron stars
and core-collapse supernovae(Hempel et al. 2016; Yudin
et al. 2016).

According to our interpretation, Bdc is a measure of the
binding energy of quarks in confined hadrons. The decrease of
this quantity with increasing temperature indicates nicely that the
system indeed becomes less bound. Of course, the Maxwell-like
approach and resulting first-order transition are not an appro-
priate choice in this domain where a crossover transition is
expected. This happens in the vicinity of the critical temperature

< <T150 170c MeV(cf. Bazavov et al. 2012a, 2012b;
Borsányi et al. 2012, 2014). Our model is not designed to
describe a crossover phase transition, and for this reason should
not be applied at temperatures where one would expect the
critical end point and beyond. However, the drastic decrease of
Bdc with increasing temperature (it is rather insensitive to the
isospin asymmetry as we illustrate in Figure 4) confirms our
interpretation of Bdc as confining binding energy.

Although derivative terms due to the isospin asymmetry and
temperature dependence of Bdc, Equations (14) and (15),
respectively, play no role in determining the phase transition
surface (in terms of mB, mC, and T), they enter the EoS as they
contribute to charge density (Equation (12)), entropy (Equation
(13)), and energy density (Equation (16)). For the total energy
density of quark matter, we introduced ˜e e e= + +B ,Q Q

dc dc
where edc accounts for all medium-dependent corrections due

to derivative terms of Bdc. We define the resulting relative
deviation on the phase transition hypersurface as e e=eR dc

Q.
These correction terms become smaller when going to higher
values of m m> cB B, , and go to zero for m  ¥;B therefore Rε

represents the maximal contribution of the correction terms to
the energy density. The upper-left panel of Figure 6 illustrates
that it is always negative and that the magnitude of these
corrections is relatively small compared to the dominant direct
contribution of Bdc to eQ. As expected, at low temperatures and
small isospin asymmetry Rε turns negligibly small. Even with
increasing temperature and isospin asymmetry, it remains small
with values up to a magnitude of 10%. However, the opposite
is true for derivative corrections to the entropy and charge
fraction. The top-right panel of Figure 6 shows the relative
contribution of the derivative term of Bdc with respect to T to
the total entropy density, =R s ss dc

Q, which is always
negative. Although this quantity can reach a value of –1 at
small temperatures, thus reducing the total entropy by a factor
of one, one has to keep in mind that at low temperature the
entropy is small and hence this is a large relative modification
of a quantity with a small value. However, at intermediate
temperatures, the changes in the entropy due to the medium
dependence of Bdc are far from being negligible. The situation
turns even more extreme for the charge density

˜= +n n nC C C
Q Q

,dc or the corresponding charge fractions
˜= = +Y n n Y YC C B C C

Q Q Q Q
,dc. The bottom-left panel of Figure 6

illustrates that derivative corrections vanish for values of mC
close to zero. However, with more negative values of mC, the
correction term YC,dc can reach values of up to 0.5. For the total
charge fraction (bottom-right panel), this results in significant
changes, generally shifting the charge fraction toward more
positive values.

4. Protoneutron Stars

We develop the presented model to investigate possible
signatures of the QCD phase transition during simulations of
core-collapse supernovae(cf. Nakazato et al. 2008; Sagert et al.
2009; Fischer et al. 2011). Such a transition is expected at high
baryon densities, >n nB S, in the core of a newly born
protoneutron star. The latter originates from a core-collapse

Figure 4. Deconfinement bag constant with respect to temperature T and
charge chemical potential mC . Figure 5. Temperature dependence of the deconfinement bag constant for

varying chiral bag constants Bχ in symmetric matter (m = 0C ).
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supernova, being triggered from the initially imploding stellar
core of a massive star leading finally to the ejection of the
stellar mantle, known as the supernova problem.

We first adjust our model such that a cold neutron star can
form a quark matter core. The electron gas component in β-
equilibrium is included under the assumption of global charge
neutrality. In such a case, they represent a uniform background,
which does not influence the phase transition. As pointed out in
Klähn & Fischer (2015), this requires repulsive vector
interactions as provided by vBag in order to describe a
maximum neutron star mass of about 2Me, which is in
agreement with the results of Antoniadis et al. (2013) and
Fonseca et al. (2016). The inset of Figure 7 shows that vBag
provides such massive neutron stars for a vector coupling
constant of > ´ -K 2 10v

6 MeV−2. In order to mimic a typical
temperature profile for “hot” protoneutron stars we assume an
isentropic EoS at two different values for the entropy per
particle (s=1, 2 kB). In Figure 7 we show the resulting mass–
radius relations and indicate the core temperature at three

characteristic points. In particular, one observes that the quark
matter core tends to be significantly cooler than the corresp-
onding core of a purely hadronic star. This is a direct result of
the entropic phase transition to quark matter, which has a
smaller value of s at any given point in the phase diagram,
compared to the nuclear EoS. We further point out that the
chosen chiral bag constant of =cB 152.7 MeV1 4 results in a
transition density of approximately three times the saturation
density in symmetric matter, cf. Figure 8 (lower panel).
Although the model allows different choices and correspond-
ingly different transition densities, we consider this value as an
acceptable estimate for the lower limit on a possible phase
transition to quark matter.
The study of possible consequences of the quark–hadron

phase transition based on vBag, for the supernova dynamics as
well as on potential observables, e.g., the neutrino and
gravitational wave signals, extends beyond the scope of the
present paper. This will be explored in an upcoming article.

Figure 6. Contour plot of the correction term to the energy density (a), entropy (b), and charge fraction (c) with respect to T and mC at the phase transition (see text for
definitions). (d) Corresponding total charge fraction of the quark phase. Notice that negative values of Rs and Rε are shown. =cB 152.7 MeV1 4 .
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5. Model Limitations

We put forward that the deconfinement bag constant has a
temperature and isospin dependence which is implicitly given
via the hadronic EoS. The chiral condensate and therefore the
bag constant Bχ should show an explicit temperature

dependence as well. We neglect such dependencies and assume
the same fixed value for Bχ at all T and study the impact of
varying conditions for the chiral transition to construct our
phase diagrams. Figure 8 illustrates that with decreasing Bχ,
m cB, and cnB, will also decrease substantially. It is formally not
difficult to rewrite our approach for a fully medium-dependent
chiral bag constant Bχ. However, modeling a meaningful
medium dependence requires a more elaborate approach than
our phenomenological model. We therefore leave this impor-
tant issue for future investigations and instead provide a brief
discussion of the validity of our approach. Before we proceed,
we emphasize that we understand vBag to be an extension of
the tdBag model rather than an NJL model parameterization
even though the extensions are motivated from an NJL model
perspective. In this sense all limitations we will discuss in the
following hold in a similar way for vBag and tdBAG.
In Klähn & Fischer (2015) we illustrated that vBag at zero

temperature can be parameterized to reproduce the EoS of an
NJL model including the typical first-order phase transition in
good approximation. Figure 9(a) illustrates that at temperatures
larger than 90MeV, only one mass gap solution exists at any
given quark chemical potential and thus no distinct first-order
phase transition is obtained. For temperatures beyond this
value, one additionally observes a decrease of the mass gap
already at zero quark chemical potential.
This behavior of the dressed mass M at m = 0 is shown for a

wider range of temperatures in Figure 10. Additionally, we plot
the difference of the pressure of light quarks with temperature-
dependent dressed mass to the pressure of bare mass quarks at

Figure 7. Mass–radius relations for constant entropy per particle (s=1, 2 kB)
for =cB 152.71 4 MeV. The temperature of the most massive NS without a
quark core (*) is in general much larger than the corresponding value for an NS
with a quark core (o). By construction, the temperatures in the transition point
(X) for the hadron and mixed phases are equal.

Figure 8. Upper panel: symmetric matter phase diagram for varying chiral bag
constants Bχ. Bottom panel: corresponding onset density for pure quark matter.

Figure 9. (a) Mass gap solutions of the NJL model used in Klähn & Fischer
(2015) at different temperatures. For temperatures smaller than 90 MeV,
multiple mass gap solutions exist in the vicinity of the critical quark chemical
potential mc. (b) Pressure of the symmetric two-flavor quark matter obtained in
the NJL model compared to the ideal gas pressure with bare quark masses at
the same temperatures. The ideal gas pressure has been shifted by a
temperature-dependent offset to reproduce the high density behavior of the
NJL results (details in the text). For temperatures below 90 MeV this shift is
nearly constant.
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m = 0. In both cases, the vacuum pressure according to
Equation (17) in Klähn & Fischer (2015) is included. The
temperature dependence up to 100MeV is negligible.

Figure 9(b) shows the full dependence of the pressure on the
chemical potential for different temperatures as we obtain it
within the NJL model, considering only the scalar contributions
to the self energy (thick lines). The increasing offset at m = 0
with increasing temperature results from the thermal excitation
of quarks and antiquarks. We further plot the corresponding
results for an ideal gas of quarks with undressed bare mass
(thin lines). This corresponds to the vBag model with Kv=0.
The offset between the NJL and vBag results is determined at
zero μ in the same way we determine Bχ; however for this plot,
it is determined at finite temperature. Figure 10 shows this
quantity. Again, the difference from the T=0 result is small
for temperatures below about 90MeV. Moreover, Figure 9(b)
shows that at sufficiently large chemical potential, both
approaches give the same result at all temperatures. Of course,
this is the same behavior one observes at T=0 and which
initially motivated us to introduce vBag as a simplified model
EoS that does not require solving gap equations explicitly.

In conclusion, although not intended to fully mimic NJL
model calculations, vBag sufficiently reproduces the NJL
results for temperatures up to 90MeV. Higher temperatures
already correspond to conditions that are typically out of reach
for astrophysical applications, e.g., core-collapse supernovae
and neutron star scenarios. Finally, we remark that neither NJL
nor vBag nor the hadronic EoS HS(DD2) are developed for
large temperatures and small chemical potentials, e.g., to study
the QCD phase transition as in particular in the transition
domain thermally excited mesons (e.g., pions) and additional
nuclear resonances have to be taken into account.

Moreover, neither strange quarks nor hyperons are con-
sidered in this study. It is a worthwhile question to investigate
whether the transition to quark matter happens before or after
hyperon degrees are excited. However, as little is known about
hyperon interactions, we once again would have to make model
assumptions that crucially affect the answer to this question, cf.
Bonanno & Sedrakian (2012) and Masuda et al. (2016).

6. Summary and Discussions

In this article, we introduced an important extension of the
recently introduced quark matter EOS vBag (for details, see
Klähn & Fischer 2015) to finite temperature and arbitrary
isospin asymmetry. As an extension of tdBag, it takes DχSB

explicitly into account in terms of the chiral bag constant Bχ. It
imposes the restoration of chiral symmetry at an associated
critical chemical potential (m cB, ). This first model parameter is
complemented by a second one, Kv, which is the vector
coupling constant due to repulsive vector interactions—not
included in tdBag—which stiffens the EoS with increasing
density. The last main characteristics of vBag is the inherent
connection to a given hadronic EoS in terms of the medium-
dependent deconfinement bag constant (Bdc). It is determined
entirely by the chiral transition and a selected hadronic EoS—
and in this sense is not a free parameter of vBag. With this
procedure we assure that chiral and deconfinement phase
transitions coincide, assuming that the transition is of first
order. This purely phenomenologically introduced medium
dependence of the deconfinement bag constant of vBag to the
hadronic EoS based on the assumption of simultaneous chiral
symmetry restoration and deconfinement. In this sense, our
approach differs from quark models that aim to determine the
medium dependence of a bag constant microscopically (cf.
Roberts & Schmidt 2000 and Buballa 2005 and references
therein for a discussion of NJL and DS analyses, respectively).
With vBag and the extension to finite temperatures and

isospin asymmetry, we provide a novel quark matter EoS for a
broad spectrum of applications in astrophysics, e.g., simula-
tions of neutron star mergers, core-collapse supernovae, and
protoneutron star cooling, where commonly the simple tdBag
model has been employed(cf. Pons et al. 2001; Nakazato et al.
2008; Sagert et al. 2009; Fischer et al. 2011, and references
therein). tdBag does not account for chiral physics, and without
perturbative corrections violates the 2Me neutron star mass
constraint, due to missing repulsive interactions. Here, vBag
provides solutions that cure both problems without losing the
simplicity and flexibility of tdBag.
A natural consequence of the extension to finite temperatures

and isospin asymmetry is the emergence of an implicit
temperature and isospin asymmetry dependence of the
deconfinement bag constant, ( )mB T , Cdc . It is determined by
the pressure of the hadronic EoS at the chiral transition. In
addition, corrections to entropy and charge density arise from a
thermodynamically consistent treatment. The phase transition
surface in the phase diagram (in terms of mB, mC, and T) is
independent of these correction terms. Furthermore, the
resulting corrections to the energy density are small while we
find significant contributions to the entropy density and charge
fraction of quark matter. Overall, we find that simultaneous
chiral symmetry restoration and deconfinement make the quark
phase more similar to the hadronic phase in terms of its
temperature and asymmetry dependence.
The hybrid EoS is constructed based on our choice of the

nuclear RMF EoS HS(DD2). Starting from the assumption
m m= cB B,dc , , the phase boundary in the phase diagram shows
distinct differences from the common approach used in
astrophysics. The standard procedure results in significantly
higher transition densities than our approach with finite Bdc.
Moreover, we find a different behavior of the phase boundary
toward increasing temperatures. The coexistence region
between the onset of quark matter and pure quark matter
broadens, unlike in the “standard” approach. Since the
deconfinement bag constant maps the pressure of the hadronic
EoS at the transition line, its medium dependence is strongly
affected by the hadronic EoS. It decreases with increasing
temperature and rather weakly depends on the isospin

Figure 10. Temperature dependence of the mass gap solutions of the NJL
model used in Klähn & Fischer (2015) at zero quark chemical potential and the
resulting one flavor chiral bag constant.

10

The Astrophysical Journal, 836:89 (11pp), 2017 February 10 Klähn, Fischer, & Hempel



asymmetry. Furthermore, we briefly discussed the expected
impact of a temperature-dependent chiral bag constant by
choosing different values of Bχ. The phase boundaries shift to
lower (higher) densities for lower (larger) values of Bχ. This
important aspect will be further explored in future studies, as it
is beyond the scope of the present article.

At temperatures in excess of about 100MeV, we are leaving
the domain of validity of our purely nucleonic EoS; nuclear
resonances and mesons such as pions are not explicitly
included in the description of the hadronic medium of
HS(DD2). Nevertheless, the qualitative behavior of the vBag
phase boundary seems to be in agreement with predictions of
lattice-QCD and data from heavy-ion collision experiments
with one important exception: the phase transition we describe
in our approach is by construction always of first order.
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