
The Wavelet Galerkin Method for the
Polarizable Continuum Model

in Quantum Chemistry

Inauguraldissertation

zur

Erlangung der Würde eines Doktors der Philosophie

vorgelegt der

Philosophisch-Naturwissenschaftlichen Fakultät

der Universität Basel

von

Mihaela Monica Bugeanu

aus

Bukarest, Rumänien

Basel, 2017

Originaldokument gespeichert auf dem Dokumentenserver der Universität Basel

edoc.unibas.ch

This work is licensed under the Creative Commons Attribution 3.0 Unported License. To view

a copy of this license, visit http://creativecommons.org/licenses/by/3.0/ or send a letter

to Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA.

edoc.unibas.ch
http://creativecommons.org/licenses/by/3.0/

Genehmigt von der Philosophisch-Naturwissenschaftlichen Fakultät
auf Antrag von

Prof. Dr. Helmut Harbrecht
Prof. Dr. Benjamin Stamm

Basel, 19. September, 2017

Prof. Dr. Martin Spiess

Dekan

The Wavelet Galerkin Method for the Polarizable
Continuum Model in Quantum Chemistry

PhD Thesis

Monica Bugeanu

Prof. Dr. Benjamin Stamm
Co-Examiner

Prof. Dr. Helmut Harbrecht

Supervisor

December 17, 2017

Acknowledgements

The glorious day has finally arrived: this is the cherry on top of my dissertation. This
period has had a great impact on me, not only on an academic level, but also on a
personal one and I would like to give thanks to the people who supported and helped
me to get to where I am today.

My gratitude goes to my PhD supervisor Prof. Dr. Helmut Harbrecht, for the tremen-
dous amount of patience that he has shown during the past five years. He has guided
me through the deep waters of the PhD period with a soft hand and showed immense
knowledge, motivation and understanding.

I would also like to thank my co-examiner, Prof. Dr. Benjamin Stamm, for reviewing
and evaluating my work, and moving mountains to accommodate for the best possible
defense date.

I thank my fellow group members, current and former, for the stimulating discussions
and for the fun we had also outside the walls of the university. For the time at the
beginning I would like to thank Michael Peters, Markus Siebenmorgen and Manuela
Utzinger for helping me through the “infant” period of my work and Jürgen Dölz for
the patience when describing spheres and squares. I feel like I have truly gained a
second family. A very special thanks goes also the the administration of the institute,
this place would fall apart without You.

This work hast emerged from a collaboration with the department of theoretical chem-
istry in Tromsø and I would like to thank Prof. Dr. Luca Frediani and Roberto DiRemi-
gio for the great time spent in the north and the fruitful discussions about chemistry.

Special thanks goes also to Manuela Utzinger and Nikolai Ostapowicz who have taken
the time to proof read my thesis.

Last but not least, I would like to thank my family and my boyfriend for their wise
counsel, always having a sympathetic ear, and being there for me.

Thank you very much, everyone!

Monica Bugeanu

Basel, December 17, 2017.

Contents

1 Solving the Schrödinger equation 3

1.1 Schrödinger equation . 3

1.2 Born-Oppenheimer approximation 5

1.3 Ab-initio methods. 6

1.3.1 Hartree-Fock approximation. 6

1.3.2 Post Hartree-Fock methods 6

1.4 Density functional theory 7

1.5 Continuum models . 8

1.5.1 Types of cavities used in continuum models 8

1.5.2 Poisson equation . 9

1.5.3 Self-consistent reaction field methods 10

1.6 Polarizable continuum model. 10

1.6.1 Boundary integral operators. 11

1.6.1.1 Neutral solutions . 11

1.6.1.2 Ionic solutions . 12

1.6.1.3 Liquid crystals . 13

1.6.2 The interaction energy 14

1.6.3 The apparent surface charge and the boundary integral equation . . 14

1.6.3.1 Boundary integral equations for the general case 14

1.6.3.2 Boundary integral equations for the neutral solutions case 16

2 Solving boundary integral equations 17

2.1 Function spaces . 18

2.1.1 Ck function spaces . 18

2.1.2 Lp spaces and their duals 19

Contents

2.1.3 Weak derivatives and Sobolev spaces on domains 19

2.1.4 Weak derivatives and Sobolev spaces on manifolds 20

2.2 Discretization of the solution. 23

2.2.1 Finite elements on the boundary 23
2.2.1.1 Piecewise constant ansatz functions 24
2.2.1.2 Piecewise linear ansatz functions 24

2.3 Collocation method . 25

2.4 Galerkin method . 26

2.5 Computational chemistry packages 28

2.5.1 PDE solvers . 28

2.5.2 Existing SES cavity generation algorithms in chemistry packages . . 28
2.5.2.1 GEPOL . 28
2.5.2.2 Isodensity . 29
2.5.2.3 DefPol . 29
2.5.2.4 FIXPVA . 30

2.5.3 Other SES cavity generation algorithms 30

2.6 Conclusion . 30

3 Wavelet Galerkin method 31

3.1 Surface parametrization and inner products 31

3.2 Representation in a wavelet basis. 33

3.2.1 Wavelets on the interval 33
3.2.1.1 Piecewise constant ansatz functions 34
3.2.1.2 Piecewise linear ansatz functions 35

3.2.2 Wavelets on the surface 37

3.3 Compression of the system matrix 39

3.3.1 A priori compression. 40

3.3.2 A posteriori compression 41

3.3.3 Influence of the compression. 41

3.4 Implementation details 44

3.4.1 Control flow . 44
3.4.1.1 Initialization . 45
3.4.1.2 Structure initialization 48
3.4.1.3 System matrix construction 48
3.4.1.4 Solving the system . 48

3.4.2 Class structure . 49

4 Generating the cavity . 51

4.1 Surface decomposition . 51

4.2 Initialization and level set function 53

4.2.1 Intersection of two spheres 54

4.2.2 Circle line intersection 55

4.2.3 Molecular partial surface 55

4.2.4 Toroidal partial surface. 56

4.2.5 Intersection of three spheres or more 57

4.2.6 Domain decomposition 60

4.3 Initial triangulation . 62

4.3.1 Marching cubes. 62

4.3.2 First triangular mesh 63

4.3.3 Even number of triangles 69

4.3.4 Final improvement . 71

4.4 Generating patches . 71

4.4.1 Convexity in three dimensions 71

4.4.1.1 Convexity from plane projection 71

4.4.1.2 Convexity on the surface 74

4.4.2 Combining triangles to quadrangles 77

4.4.2.1 Plane fitness measure 77

4.4.2.2 Normal fitness measure 79

4.4.2.3 Surface fitness measure 79

4.4.2.4 The blossom algorithm 79

4.5 Surface parametrization 80

4.6 Mesh improvement . 81

4.6.1 Doubly neighbours . 81

4.6.2 Angle improvement . 81

4.6.2.1 Convex improvement 81

4.6.2.2 Non-convex improvement 84

4.6.2.3 Extreme obtuse or acute angle 85

4.6.3 Null length edge . 85

4.6.4 Improvement strategy 86

4.6.5 Runtime improvement 86

4.7 Summary. 88

5 Validation . 91

5.1 Geometry description by atoms 92

5.1.1 Parameter file . 92

5.1.2 Fitness versus number of patches 93

5.1.3 Convergence of the wavelet BEM solver 95

5.1.4 Time versus atoms . 96

5.2 Geometry description by isosurfaces 99

5.2.1 Input file of the isosurface 100

5.2.2 Convergence of the wavelet BEM solver 103

Contents

5.3 PCM for ionic solutions 104

5.4 PCM for liquid crystals 106

6 Conclusions . 109

A Molecules used . 111

Abstract

The polarizable continuum model (PCM) is a well established method for computing
solvation effects. Its attractiveness comes from the fact that the solution is modelled
as a continuum instead of modelling each atom individually. This allows for more
complex simulations. Nevertheless, there are still a couple of challenges to face. One
of them being the computational time required at the limit of large systems, or when
high accuracy is needed.

The wavelet boundary element method can be used to overcome these problems, pro-
vided a reliable cavity generator is used. The PCM calculates the molecular free energy
in solution as the sum of electrostatic, dispersion-repulsion and the cavitation energy by
solving the underlying partial differential equations. Those differential equations can
be transformed into integral equations, solely defined on the boundary of the molecular
cavity, by applying the integral equation formalism (IEFPCM). The integral equations
can then be discretized using the wavelet boundary element method. The resulting
sparse system of linear equations can be solved reliably by iterative solvers, leading to
high accuracy solutions even for large systems.

The challenge of this approach lies in the generation and refinement of the molecular
cavities on which the interactions take place. Since wavelets are defined as a tensor
product of one-dimensional functions, the wavelet boundary element method needs a
discretization into quadrangular patches of the molecular cavity. This feature is missing
in common commercial mesh generation tools, which focus on generating triangular
meshes. Making use of characteristic functions for defining which points are inside
the cavity, a model for generating the molecular surface independently of its exact
description is achieved. We present here a way for generating triangular meshes which
are subsequently merged into quadrangular ones. We apply geometrical quantities that
measure the fitness of the shapes involved and improve the position of individual points
iteratively. Thereby, we generate quadrangular meshes with an unprecedented quality,
which ultimately can be refined in a hierarchical manner for the use of wavelets.

Overall, this method can generate reliable parametrizations on a variety of smooth
cavities. With the help of the wavelet boundary element method, the PCM equations
can thus be solved with high accuracy also on large systems.

C H A P T E R 1

Solving the Schrödinger equation

1.1 Schrödinger equation . 3

1.2 Born-Oppenheimer approximation 5

1.3 Ab-initio methods. 6

1.4 Density functional theory 7

1.5 Continuum models . 8

1.6 Polarizable continuum model. 10

1.1. Schrödinger equation

The main focus of computational chemistry is to characterize atoms and compounds by
computing energy and structures that result from the interaction between electrons and
nuclei. The underlying equation that describes this interaction for a time-independent
setting is the Schrödinger equation,

HΨ(r,R) = EΨ(r,R), (1.1)

with Ψ being the wave function which fully describes the system, E the ground state
energy, r the position of the electrons, and R the position of the nuclei. This equation
is known since 1926, [65]. The Hamiltonian, H, for a system of Ne electrons and Nn

nuclei in a non-relativistic setting looks as follows:

H =−
Ne∑
j=1

〈pj ,pj〉
2m

−
Nn∑
α=1

〈Pα,Pα〉
2Mα

−
Ne∑
j=1

Nn∑
α=1

Zαe
2

‖rj −Rα‖
+

Ne∑
j=1

j−1∑
k=1

e2

‖rj − rk‖
+

Nn∑
α=1

α−1∑
β=1

ZαZβe
2

‖Rα −Rβ‖
.

(1.2)

4 Solving the Schrödinger equation

Here, the electrons are described by indices j and k, mass m, position rj/k, momentum
operator pj/k = −i~∇j/k, and the electronic charge e. The nuclei are described by indices
α and β, atomic number Zα/β, mass Mα/β, position Rα/β, and momentum operator
Pα/β = −i~∇α/β. Inserting the momentum operators into the Hamiltonian as given in
eq. (1.2) leads to a second order differential equation. The first two terms,

Te(r1, r2, . . . , rNe) = −
Ne∑
j=1

〈pj ,pj〉
2m

,

Tn(R1,R2, . . . ,RNn) = −
Nn∑
α=1

〈Pα,Pα〉
2Mα

,

(1.3)

contain the kinetic energy of the electrons and the nuclei, respectively. The third term,

Vne(r1, r2, . . . , rNe ,R1,R2, . . . ,RNn) = −
Ne∑
j=1

Nn∑
α=1

Zαe
2

‖rj −Rα‖
, (1.4)

represents the electron-nucleus attraction. The last two terms are the electron-electron

Vee(r1, r2, . . . , rNe) =

Ne∑
j=1

j−1∑
k=1

e2

‖rj − rk‖
, (1.5)

and the nucleus-nucleus repulsions,

Vnn(R1,R2, . . . ,RNn) =

Nn∑
α=1

α−1∑
β=1

ZαZβe
2

‖Rα −Rβ‖
. (1.6)

Eq. (1.1) with the Hamiltonian as given in eq. (1.2) theoretically solves every system one
might be interested in. However, the physicist Paul Dirac noticed already in 1929 the
need for approximate methods, [17], since solving this equation ab-initio, i.e. modelling
each electron and nucleus individually, leads to very large systems that would have to
be tackled.

For example, even solving the full Schrödinger equation for a single iron atom, including
all its 26 electrons and 26 protons in three dimensions, would lead to a wave function
of 156 variables. If one would discretize the space by a crude hypercube with only 10
points per unknown, one would need to work with 10156 spatial variables in the resulting
system. This illustrates that even solving the iron atom by using the full Hamiltonian
from eq. (1.2) can be problematic and suitable approximations are needed.

In order to reduce the complexity of the Hamiltonian, the separation of variables could
be used. A split of the Hamiltonian in form of H(r,R) = H1(r) + H2(R) is thus
sought after. In case such a split can be found, it would lead to a separation in the
wave function and the energy as follows

Ψ(r,R) = ψ1(r)ψ2(R),

E = E1(r) + E2(R).

Born-Oppenheimer approximation 5

The energies E1(r) and E2(R) would be given by the eigenvalues of the decoupled
system

H1(r) ψ1(r) = E1(r) ψ1(r),

H2(R)ψ2(R) = E2(R)ψ2(R).

Unfortunately, the potential energy, Vne, found in eq. (1.4) couples the nuclei and the
electrons in the Hamiltonian and prohibits its exact separation of variables.

1.2. Born-Oppenheimer approximation

The first approximation that can be used to simplify the Hamiltonian of the Schrödinger
eq. (1.2) is the so-called Born-Oppenheimer approximation, where one fixes the position
of the nuclei. The argument behind this approximation is the fact that the electron
mass is about three orders of magnitude smaller than that of a proton or a neutron
and thus the movement of the nuclei happens much slower than that of the electrons.
Due to their difference in size and speed, one can even assume that the electrons are
always in the ground state configuration for all possible positions of the nuclei. The
wave function can hence be separated into a purely electronic part and a part only
containing the nuclear coordinates:

Ψ(r,R) = ψn(R) ψe(r).

This introduces also a split in the Hamiltonian into an electronic Hamiltonian, He, and
a nuclear part, Hn, given by

He =−
Ne∑
j=1

〈pj ,pj〉
2m

−
Ne∑
j=1

Nn∑
α=1

Zαe
2

‖rj −Rα‖
+

Ne∑
j=1

j−1∑
k=1

e2

‖rj − rk‖
,

Hn =−
Nn∑
α=1

〈Pα,Pα〉
2Mα

+

Nn∑
α=1

α−1∑
β=1

ZαZβe
2

‖Rα −Rβ‖
.

The only term in the electronic Hamiltonian, He, that depends on the position of the
nuclei is the potential term Vne(r1, r2, . . . , rNe ,R1,R2, . . . ,RNn) from eq. (1.4). This
dependency is solved by keeping the nuclei fixed while computing the electronic part
of the wave function and solving the nuclear part in a later step.

The energy calculated using the electronic Hamiltonian is called the purely electronic
energy. In order to get the energy of the electrons for a given configuration of the
nuclei, one has to add the potential energy generated by the nuclei, given by eq. (1.6).
The kinetic energy of the nuclei, Tn, defined in eq. (1.3) can be ignored in this step,
since the nuclei are considered fixed in the Born-Oppenheimer approximation.

Solving the electronic Hamiltonian for several positions of the nuclei results in a po-
tential energy surface (PES), where critical points can be used to find equilibrium
and transition states. To arrive at the molecular energy for a given configuration, the
correction term stemming from the kinetic energy of the nuclei has to be computed.

In the following, further simplifications and approximations will be introduced to reduce
the complexity of the calculations even more.

6 Solving the Schrödinger equation

1.3. Ab-initio methods

This section is concerned with approximation methods which calculate the wave func-
tion not by relying on experimental data, but rather on mathematical approximations,
also called ab-initio methods, like the Born-Oppenheimer approximation mentioned
earlier.

1.3.1. Hartree-Fock approximation

After fixing the position of the nuclei according to the Born-Oppenheimer approxima-
tion, there is still a lot of interaction in the electronic Hamiltonian, He, stemming from
the electron-electron repulsion from eq. (1.5).

One can replace this such that each electron feels the presence of all other electrons in
an average way. This can be combined with the influence of the nuclei in an electric field
acting in radial direction equally on all electrons. The electronic wave function can now
be written as a combination of Slater determinants of one-electron wave functions. The
Slater determinant guarantees the antisymmetry condition, meaning that switching the
positions of two electrons within one Slater determinant leads to a change in sign for
the wave function. The antisymmetry condition is a postulate of quantum mechanics,
which has the Pauli exclusion principle as a consequence. The Pauli exclusion principle
states that no two electrons can occupy the same quantum state as postulated by Pauli
in [53].

The Hartree-Fock approximation, also called the self-consistent field approximation,
requires that the estimation of the central field is self-consistent, as described by Fock,
Hartree, and Slater in [18, 32, 68]. The central field is the combined electric field
of the electrons and nuclei acting in a radial direction. This means that the central
field, calculated by using a charge distribution, has to be equivalent to the assumed
central field used for calculating that charge distribution. In practice, this is done
iteratively. The central field is used as an input for solving the electronic Hamiltonian
and calculating a new charge distribution. The charge distribution in turn yields a new
value for the central field. This is done until a stationary state is reached.

Several improvements can be made in order to ensure the convergence of the fix-point
iteration. One of them is to use a relaxation of the one-electron wave functions. This
means that the wave function is a linear combination of the wave function from the
previous iteration and the newly calculated wave function. Another method is to first
calculate the wave function for a positive ion, having an increased nuclear charge, and
to use the results of this simulation as a starting point for the neutral molecule. For
all the details, see [12, 36, 76] and the references therein.

1.3.2. Post Hartree-Fock methods

The Hartree-Fock method constructs the multi-electron wave function by a linear com-
bination of non-interacting electrons. The main idea of post Hartree-Fock methods is

Density functional theory 7

to include corrections for the correlation of the electrons.

The configuration interaction (CI) method accounts for the electron interaction by
expanding the Hartree-Fock Hamiltonian in a different basis of wave functions, called
the configuration state functionals. These are linear combinations of spin orbitals and
describe the electron movement from the occupied states to the excited states. Applying
these functionals leads to the CI method. If only functionals that move one electron are
considered, the configuration interaction singles (CIS) method arises, which can give a
better approximation to the excited states of the molecule without changing the ground
state energy. Taking also double excitations into account, the configuration interaction
singles doubles (CISD) would arise. It would lead to a different ground state energy
which takes into account the corrections stemming from doubly excited states. If all
interactions are considered, the method recovers the solution of the exact Hamiltonian
from eq. (1.2) and is called full-CI. For more details, see [76] and the references therein.

Starting with the Hartree-Fock solution, one could also construct multi-electron wave
functions that model correlations by inserting a cluster operator. This is the idea
behind the coupled cluster (CC) method as described in [8] for molecules and atoms.
The wave function is herein represented as the coupled cluster operator, acting on the
ground state by an exponential ansatz

Ψ = eTΦ0,

where T is the coupling operator and Φ0 is the Hartree-Fock solution. The coupled
cluster method guarantees size extensivity of the system by construction, which is not
the case for the truncated CI methods. Size extensivity means that the energy of a non-
interacting system, for example of helium atoms, He, scales directly with the number
of the particles as follows:

E(N He) = NE(He).

In a similar fashion as for the CI method, the CC method can account for single (CCS),
double (CCSD), triple (CCSDT), and quadruple (CCSDTQ) excitations depending on
the operator used. The CCSDT method performs at a similar level as the full-CI
method. This also includes size consistency, which means that the energy of a combined
system AB and the individual systems far apart should satisfy

E(A) + E(B) = E(AB).

An example would be the H2 molecule and the energy of two hydrogen atoms. However,
this equation does not hold for the standard Hartree-Fock method, see [56] for details.

Both methods, CI and CC, recover the solution of the exact Hamiltonian if all exci-
tations are considered. The complexity, however, grows for both methods like O(N !)
with the number of particles, N . For a limited number of excitations implemented, the
CC has approximately the same complexity, but higher accuracy.

1.4. Density functional theory

A different class of methods avoids calculating the wave function altogether. Hohenberg
and Kohn, [34], received the Nobel prize for their proof that shows that the electronic

8 Solving the Schrödinger equation

ground state energy entirely depends on the electron density,

ρe = Ne

∫
ψ?e(r, r2, . . . rNe)ψe(r, r2, . . . rNe) dr2 dr3 . . . drNe .

This results in an energy functional depending only on the electron density,

E0 = E[ρe].

The following simple geometric explanation is found in [36]. The integral of the density
defines the number of electrons, the cusps in the density are located at the position of the
nuclei, and the heights of the cusps are proportional to the nuclear charge. These cusps
stem from the Coulomb potential. One only has to calculate the density distribution,
ρ(x), as a function of space instead of calculating the wave function which depends on
the r,p and R,P vector variables, the position and the momentum of the particles.
Since the exact functional of the density is unknown, the Kohn-Sham approximation
is used, where the density of the complete system is replaced by a system of non-
interacting particles that generate the same density as any given system of interacting
particles. The single particle density is expressed in terms of a wave function expanded
in a basis set of orbitals. Several basis functions can be used and they are chosen
according to the system at hand and the properties of interest.

The simplest density functional methods rely only on the electron density like the local
density approximation (LDA), [40], or the local spin density approximation (LSDA), [37].
The inclusion of the gradient of the electron density, leads to the group of the general-
ized gradient approximation (GGA) methods, [3]. There is also the group of meta-GGA
methods which include higher order derivatives, [72]. The so-called hybrid methods
consider the exchange correlation in a Hartree-Fock manner, for example by using the
B3LYP functional as in [4].

1.5. Continuum models

Many reactions in chemistry take place in solution, leading to systems with a high
number of interacting particles. The previously described methods fail here, due to
the large number of particles involved. The idea behind the continuum models is to
include the solvent as a continuum which is characterized by its dielectric constant. The
interaction is then restricted to the surface of the molecule, also called the molecular
cavity. The description of the cavities used in practice is found in sec. 1.5.1. In the
following, the model will be explained for a molecule, a solute, surrounded by a solvent.

1.5.1. Types of cavities used in continuum models

There are three types of cavities that play a role in molecular chemistry: the van der
Waals surface, the solvent accessible surface, and the Connolly surface, also known as
the solvent excluded surface. All these cavities are schematically shown in fig. 1.7.

Continuum models 9

(a) Van der Waals surface. (b) Solvent accessible surface. (c) Connolly surface.

Figure 1.7. Types of cavity surfaces that can be encountered.

The cavity construction starts with the atoms of the molecule, defined by their centres
and their van der Waals radii. This already defines the van der Waals surface (VWS),
seen in fig. 1.7a, which is the visible surface generated by the interlocking spheres of
the molecule. It is the most common surface encountered in chemistry packages and
is exactly generated by the discretization of the visible part of the atoms, resulting in
convex spherical partial surfaces. Nonetheless, this surface does not take into account
the solvent.

The simplest cavity that does take the solvent into account is the solvent accessible
surface (SAS), [45], depicted in fig. 1.7b. It is easily obtained by adding the radius of
the solvent to the radii of the atoms. The surface that is generated this way can also be
described analytically by the visible convex spherical partial surfaces, as for the VWS.

Although the SAS takes into account some radius characterizing the solvent, a better
description of the surface at which the interactions take place is the Connolly surface,
also called solvent excluded surface (SES), [10]. The SES can be seen in fig. 1.7c.
This surface is generated by rolling a probe sphere, with the radius depending on the
solvent, over the VWS. The visible partial surfaces are described not only by parts of
the atoms, but also by two additional partial surface types coming from the smoothing
property of rolling the probe sphere over the molecule. These partial surface types will
be presented later in chpt. 4 alongside with an algorithm that focuses on generating a
parametrization of the SES in a reliable and molecule-independent fashion.

An overview of existing algorithms for generating the cavity is presented in sec. 2.5.

1.5.2. Poisson equation

The most crude approximation used in continuum models considers only the classical
electrostatic potential as a function of the charge density of the molecule. This results
in solving the Poisson equation for a medium with dielectric constant ε:

−∆u(x) =
4πρ(x)

ε
. (1.8)

The solute is represented explicitly by the charge density distribution, ρ(x), which is
constrained to the molecular cavity, while the solvent is described implicitly by the
dielectric constant, ε. Methods like the Poisson-Boltzmann method solve the equation

10 Solving the Schrödinger equation

both inside and outside the cavity, as described in [36], by setting the dielectric constant
ε equal to 2 − 4 inside the cavity and the charge distribution ρ(x) = 0 outside of the
cavity.

1.5.3. Self-consistent reaction field methods

An improvement would be to use self-consistent reaction field models where the problem
is split into a chemically relevant part and a continuum part. A loop is then used
until self-consistency is reached. Close to the solute, the problem is solved by using a
quantum mechanical model, for example, any of the aforementioned approximations.
Therein, the electrostatic potential, u(x), from the Poisson eq. (1.8) is taken into
account. The resulting charge distribution, ρ(x), enters in a new continuum solution
which results in a new electrostatic potential, u(x). This is then repeated until self-
consistency is reached.

Self-consistent reaction field models can be further differentiated, according to the split-
ting of the quantum and the continuum problem, between methods that still take into
consideration the atomistic effects of the solvent next to the solute and methods where
the solution is an entirely homogeneous medium. Among the first type of methods, one
encounters molecular mechanics, [13, 66], where the molecules of the solvent follow the
classical mechanical laws, or polarizable embedding models, [48], where a hybrid model
of quantum mechanics and molecular mechanics is used. In the polarizable embed-
ding models, a small number of molecules close to the solvent, called the first solvation
shell, are treated quantum mechanically and molecules that have a smaller influence
are treated only mechanically or as an average influence. The polarizable continuum
model (PCM), which was introduced by Miertuš and Tomasi in 1981, [47], disregards
the atomistic structure of the solvent altogether and replaces it by a fluid characterized
by the dielectric constant. This model will be described in detail in the next section.

1.6. Polarizable continuum model

As mentioned in the previous section, the PCM replaces the solution around the solvent
by a continuous infinite medium, which is characterized only by a couple of parameters.
The interaction of the solvent with the solute takes place only on the boundary of the
molecular cavity. It then solves for the electrostatic potential, u(x), taking into account
the solute charge density, ρ(x), and the infinite solvent. Three different cases can be
modelled using the PCM according to the parameters used in describing the equations
for the electrostatic potential.

Polarizable continuum model 11

1.6.1. Boundary integral operators

1.6.1.1. Neutral solutions

The most common case where PCM is used is the case of a neutral solution characterized
by a constant permittivity. The governing equations for the electrostatic potential of a
charge distribution, ρ(x), which is supported inside the cavity, Ω, are

−∆ui(x) = ρ(x) in Ω,

−ε∆ue(x) = 0 in Ωc ··= R3 \ Ω,

ui(x) = ue(x), 〈∇ui(x),n(x)〉 = 〈ε∇ue(x),n(x)〉 on Γ ··= ∂Ω,

|ue(x)| = O
(
‖x‖−1

)
as ‖x‖ → ∞,

(1.9)

with Γ being the boundary of the molecular cavity, ρ(x) the charge density distribution
inside the cavity, and ε the dielectric constant of the solvent. The two equations on
the molecule’s boundary Γ represent the continuity requirement of the electrostatic
potential across the boundary taken from the inside, ui(x), and from the outside, ue(x),
and the jump condition in normal direction of the potential, [35]. The last equation
states that the electrostatic potential is zero at infinity to guarantee uniqueness of the
solution.

In order to solve the eq. (1.9) for the electrostatic potential, one can make use of
many methods for partial differential equations. One of the most prominent methods
is to transform the partial differential equation into an integral equation defined on the
boundary of the cavity. In order to achieve that, one can apply Green’s formula and
ends up with the integral equation formulation for the PCM (IEFPCM). This results
in utilizing the single and double layer operators for the interior and exterior Poisson
equation to transport the problem to the boundary, as described in [7].

For any problem where the fundamental solution is known, one can write the potential
as an evaluation of the single and double layer operators as follows:

u(x) = (Vi〈∇ui,n〉)(x)− (Kiui) (x) +Nρ(x) in Ω,

u(x) = (Ve〈ε∇ue,n〉)(x)− (Keue)(x) in Ωc.
(1.10)

Moving to the boundary, x → Γ, leads to the interior and the exterior Dirichlet-to-
Neumann maps:

(Vi〈∇ui,n〉)(x) =

((
Ki +

1

2

)
ui

)
(x)−Nρ(x),

(Ve〈ε∇ue,n〉)(x) =

((
Ke −

1

2

)
ue

)
(x).

(1.11)

Here, the interior single layer operator Vi and the interior double layer operator Ki,
taken on the boundary, are given by:

(Viu)(x) =

∫
Γ

u(y)

4π‖x− y‖
dσy

(Kiu)(x) =

∫
Γ

〈n(y),x− y〉
4π‖x− y‖3

u(y) dσy

 on Γ. (1.12)

12 Solving the Schrödinger equation

For the exterior problem, the single and the double layer operator, taken on the bound-
ary, read

(Veu)(x) =

∫
Γ

u(y)

4πε‖x− y‖
dσy

(Keu)(x) =

∫
Γ

〈n(y),x− y〉
4π‖x− y‖3

u(y) dσy

 on Γ. (1.13)

To treat the inhomogeneity, we require the Newton potential be defined in the entire
space,

Nρ(x) =

∫
Ω

ρ(y)

4π‖x− y‖
dy in R3. (1.14)

It solves the partial differential equation

−∆Nρi(x) = ρ(x) in Ω,

−∆Nρe(x) = 0 in Ωc,
(1.15)

with the transmission condition at the boundary

Nρe(x) = Nρi(x), 〈∇Nρi(x),n(x)〉 = 〈∇Nρe(x),n(x)〉 on Γ (1.16)

and the decay condition

|Nρe(x)| = O
(
‖x‖−1

)
as ‖x‖ → ∞.

As seen in [69], the Newton potential solves the following boundary integral equation(
Vi
∂Nρ
∂n

)
(x) =

((
Ki −

1

2

)
Nρ
)

(x) on Γ. (1.17)

In particular, for the neutral solution case, we obviously have the following relation
between the interior and exterior boundary operators from eq. (1.12) and eq. (1.13)

εVe = Vi and Ke = Ki. (1.18)

1.6.1.2. Ionic solutions

A small change in the neutral solution equations can lead to simulations for salt solu-
tions. One has

−∆ui(x) = ρ(x) in Ω,

−ε∆ue(x) + κ2ue(x) = 0 in Ωc,

ui(x) = ue(x), 〈∇ui(x),n(x)〉 = 〈ε∇ue(x),n(x)〉 on Γ,

|ue(x)| = O
(
‖x‖−1

)
as ‖x‖ → ∞,

(1.19)

where κ describes the ionic character of the solution and is inverse proportional to the
Debye length.

Polarizable continuum model 13

The interior problem stays the same, the interior operators thus correspond to the ones
found in eq. (1.12) and the Newton potential to the one in eq. (1.14). Whereas, the
exterior single and double layer operators for x ∈ Γ now become:

(Veu)(x) =

∫
Γ

u(y)e−κ‖x−y‖

4πε‖x− y‖
dσy,

(Keu)(x) =

∫
Γ

〈n(y),x− y〉(1 + κ‖x− y‖)e−κ‖x−y‖

4π‖x− y‖3
u(y) dσy.

The same system of boundary integral operators arises as seen in eq. (1.11) by inserting
the appropriate operators. For more details about using the PCM for ionic solutions,
see [6].

1.6.1.3. Liquid crystals

Liquid crystals are materials that have properties between the solid crystal and the
liquid phase. They might have a preferred orientation, like crystals, but still flow,
like liquids. Liquid crystals can be modelled using the PCM starting from the neutral
solution case by replacing the dielectric constant by a tensor, ε ∈ R3×3, containing the
permittivity in each direction and solving the following system of differential equations:

−∆ui(x) = ρ(x) in Ω,

−div(ε∇ue(x)) = 0 in Ωc,

ui(x) = ue(x), 〈∇ui(x),n(x)〉 = 〈ε∇ue(x),n(x)〉 on Γ,

|ue(x)| = O
(
‖x‖−1

)
as ‖x‖ → ∞.

(1.20)

Again, a system of integral operators similar to eq. (1.11) has to be solved by using the
corresponding operators and the jump conditions on the boundary from eq. (1.20). In
the present case, the exterior boundary integral operators have the form

(Veu)(x) =

∫
Γ

u(y)

4π
√

det(ε)‖x− y‖ε−1

dσy,

(Keu)(x) =

∫
Γ

〈n(y),x− y〉
4π
√

det(ε)‖x− y‖3
ε−1

u(y) dσy,

 on Γ,

with the norm ‖x‖ε−1 ··=
√
〈x, ε−1x〉. The Dirichlet-to-Neumann maps in case the

dielectric constant is a tensor become

(Vi〈∇ui,n〉) (x) =

((
Ki +

1

2

)
ui

)
(x)−Nρ(x),

(Ve〈ε∇ue,n〉) (x) =

((
Ke −

1

2

)
ue

)
(x).

(1.21)

More details about liquid crystals and the use of PCM can be found in [6].

14 Solving the Schrödinger equation

1.6.2. The interaction energy

Having solved for the electrostatic potential, u(x), the interaction energy between two
charge distributions inside the cavity, ρ(x) and ρ′(x), can be calculated as

e(ρ, ρ′) =

∫
R3

u(x)ρ′(x) dx. (1.22)

Defining the apparent surface charge (ASC), σ(x), as described in [7] by

(Viσ) (x) = u(x)−Nρ(x) on Γ (1.23)

and inserting this expression into the equation of the interaction energy, one gets the
following splitting:

e(ρ, ρ′) =

∫
R3

u(x)ρ′(x) dx

=

∫
R3

Nρ(x)ρ′(x) dx+

∫
R3

(ui(x)−Nρ(x)) ρ′(x) dx

=

∫
R3

Nρ(x)ρ′(x) dx+

∫
R3

(Viσ) (x)ρ′(x) dx

=

∫
R3

∫
R3

ρ(x)ρ′(y)

4π‖x− y‖
dy dx+

∫
R3

∫
Γ

ρ′(x)σ(y)

4π‖x− y‖
dσy dx.

Consequently, the interaction energy is represented as the sum of a vacuum term and
a correction term which involves the ASC, depending only on the surface coordinate
y ∈ Γ.

1.6.3. The apparent surface charge and the boundary integral equation

As shown in [7], the ASC defined in eq. (1.23) is the unique solution to the following
boundary integral equation, which is solved in the IEFPCM:[
Ve
(
KTi +

1

2

)
−
(
Ke −

1

2

)
Vi
]
σ =

(
Ke −

1

2

)
Nρ − VeV−1

i

(
Ki −

1

2

)
Nρ. (1.24)

The interior and exterior operators depend on the problem under consideration.

For the derivation of eq. (1.24), one has to start from the general interior and exterior
Dirichlet-to-Neumann maps found in eq. (1.21). The steps for the general model will
be shown in the following and specific integral equations will be then computed for the
neutral solution case.

1.6.3.1. Boundary integral equations for the general case

The starting point for the derivation of the ASC are the Dirichlet-to-Neumann maps
from eq. (1.21). Using the transmission conditions ui(x) = ue(x) and 〈∇ui(x),n(x)〉 =
〈ε∇ue(x),n(x)〉, respectively, in the most general form found in eq. (1.20), one gets

Polarizable continuum model 15

to the system of equations only depending on the interior value of the electrostatic
potential:

(Vi〈∇ui,n〉) (x) =

((
Ki +

1

2

)
ui

)
(x)−Nρ(x),

(Ve〈∇ui,n〉) (x) =

((
Ke −

1

2

)
ui

)
(x).

(1.25)

Since the exterior single layer operator Ve can in general not be transformed into the
interior single layer operator Vi, both equations need to be multiplied by the inverse of
the respective single layer operators, which leads to

〈∇ui(x),n(x)〉 =

(
V−1
i

(
Ki +

1

2

)
ui

)
(x)−

(
V−1
i Nρ

)
(x),

〈∇ui(x),n(x)〉 =

(
V−1
e

(
Ke −

1

2

)
ui

)
(x).

(1.26)

By subtracting the second equation from the first one in the system of eq. (1.26), the
electrostatic potential can be written as

ui = B−1V−1
i Nρ, (1.27)

in terms of the Newton potential. Thereby the operator B is given by

B = V−1
i

(
Ki +

1

2

)
− V−1

e

(
Ke −

1

2

)
.

Inserting eq. (1.27) into the definition of the ASC in eq. (1.23) and multiplying by the
operator B, one gets

BViσ = V−1
i Nρ − BNρ.

Multiplying this equation with Ve and using the commutation relation of the single layer
and the double layer operators, KV = VKT , [69], leads to the form of the equation used
in practice[

Ve
(
KTi +

1

2

)
−
(
Ke −

1

2

)
Vi
]
σ =

(
Ke −

1

2

)
Nρ − VeV−1

i

(
Ki −

1

2

)
Nρ.

The Dirichlet-to-Neumann map for the Newton potential found in eq. (1.17) could be
used to bring the equation in a different form,[

Ve
(
KTi +

1

2

)
−
(
Ke −

1

2

)
Vi
]
σ =

(
Ke −

1

2

)
Nρ − Ve

∂Nρ
∂n

, (1.28)

which however is not used in practice since the ASC would depend also on the derivative
of the Newton potential and not only on its value.

16 Solving the Schrödinger equation

1.6.3.2. Boundary integral equations for the neutral solutions case

For the neutral solution case, the boundary integral eq. (1.27) can be modified further
by using the operator equivalences in eq. (1.18). By inserting these properties into
eq. (1.27), one arrives at

ui =
1

ε− 1
A−1Nρ on Γ, (1.29)

where the operator A is given by

A =
ε+ 1

2 (ε− 1)
−Ki. (1.30)

Using the result found in eq. (1.29) in the definition of the ASC in eq. (1.23), one only
has to solve a first kind integral equation to get the ASC. This equation only involves
the Newton potential Nρ as the right hand side:

Viσ =

(
1

ε− 1
A−1 − 1

)
Nρ on Γ. (1.31)

By multiplying the first kind integral equation found in (1.31) by the operator A, using
the Dirichlet-to-Neumann map for the Newton potential from eq. (1.17) and again the
commutation relation KV = VKT , one gets the second kind integral equation

ATσ =
∂Nρ
∂n

on Γ. (1.32)

Nonetheless, due to the derivatives of the Newton potential appearing on the right, this
boundary integral equation is rarely used in practice.

The solution of boundary integral equations will be treated in chpt. 2, in particular,
the PDE solvers for the integral equation for PCM are discussed in sec. 2.5. In chpt. 3,
an implementation using wavelets, which has the advantage of leading to sparse system
matrices, will be described. The description of the molecular cavity from eq. (1.9),
eq. (1.19) and eq. (1.20) will be discussed in chpt. 4.

C H A P T E R 2

Solving boundary integral
equations

2.1 Function spaces . 18

2.2 Discretization of the solution. 23

2.3 Collocation method . 25

2.4 Galerkin method . 26

2.5 Computational chemistry packages 28

2.6 Conclusion . 30

Boundary integral equations, such as the IEFPCM eq. (1.24), can conveniently be
solved numerically by the application of the boundary element method (BEM). Both,
the integral operators and their associated function spaces, are defined solely on the
boundary of the cavity. The discretization of the system can be carried out by using
either the collocation or the Galerkin method, [23]. In order to compute the Galerkin
solution of the boundary integral equation, one introduces the variational formulation,
also called the weak form, of the integral equation at hand.

In this chapter, a general boundary integral equation, (Au) (x) = ρ(x), with a boundary
integral operator A : Hq(Γ)→ H−q(Γ) of order 2q,

(Au)(x) =

∫
Γ
k(x,y)u(y) dσy, (2.1)

and the right hand side ρ ∈ H−q(Γ) will be considered. The solution hence satisfies
u ∈ Hq(Γ).

18 Solving boundary integral equations

2.1. Function spaces

In order to understand the mathematical background behind the boundary integral
equations and the solvers used to find their solution, one has to first take a look at the
function spaces involved in the equation and their corresponding norms, as introduced
for example in [69].

2.1.1. Ck function spaces

A multiindex is a vector α = (α1, . . . , αn) ∈ Nn0 . Its modulus |α| is defined as |α| ··=∑n
i=1 αi. Multiindices can be used as a short hand notation for the derivatives of higher

order of a given function u : Rn → R, i.e.

∂αu(x) =

(
∂

∂x1

)α1
(

∂

∂x2

)α2

. . .

(
∂

∂xn

)αn
u(x),

where n ∈ N is the dimension of the space under consideration.

Recall that a vector space equipped with a norm is called a normed vector space. In
case the vector space is complete, it is called a Banach space. If the norm is induced
by a scalar product, the space is called a Hilbert space.

Definition 2.2. Let Ω ⊂ Rn be a bounded domain and k ∈ N. The Banach space
Ck(Ω) is defined as the space of all functions defined on Ω that are k times continuously
differentiable and are bounded in the norm

‖u‖Ck(Ω) =
∑
|α|≤k

sup
x∈Ω
|∂αu(x)|.

The special case of infinitely differentiable functions with compact support is denoted
by

C∞0 (Ω) ··= {u ∈ C∞(Ω) : suppu ⊂ Ω}.

The Banach space of Hölder continuous functions Ck,κ(Ω), where k ∈ N and κ ∈ (0, 1],
is equipped with the norm

‖u‖Ck,κ(Ω) ··= ‖u‖Ck(Ω) +
∑
|α|=k

sup
x,y∈Ω, x6=y

|∂αu(x)− ∂αu(y)|
‖x− y‖κ

.

The elements of this function space are functions f ∈ Ck(Ω) for which all k-th deriva-
tives satisfy the Hölder condition

|∂αf(x)− ∂αf(y)| ≤ C‖x− y‖κ, |α| = k.

Function spaces 19

2.1.2. Lp spaces and their duals

Definition 2.3 (Lp spaces). Let Ω be a domain in Rn and 1 ≤ p ≤ ∞. The Lebesgue
function spaces Lp(Ω) are the Banach spaces of measurable functions defined on Ω,
where the associated norm

‖u‖Lp(Ω) ··=

(∫

Ω
|u(x)|p dx

)1/p

, 1 ≤ p <∞,

ess sup
x∈Ω
{|u(x)|} , p =∞,

is bounded.

Two functions of Lp(Ω) are said to be equal if they are distinct only on a domain
of measure zero. Note that for p = 2 one gets a Hilbert space, namely the space of
quadratically integrable functions, L2(Ω), with the scalar product defined as

〈u, v〉L2(Ω) ··=
∫

Ω
u(x)v(x) dx.

Additionally, L2(Γ) is the Hilbert space of quadratically integrable functions which are
bounded with respect to the scalar product taken on the boundary of the domain,
Γ = ∂Ω,

〈u, v〉L2(Γ) ··=
∫

Γ
u(x)v(x) dσx.

2.1.3. Weak derivatives and Sobolev spaces on domains

Definition 2.4 (Weak derivatives). Let Ω be a bounded domain in Rn with boundary
Γ. The function u ∈ L1(Ω) has a weak derivative if a function v ∈ L1(Ω) exists such
that

〈v, ϕ〉L2(Ω) = −
〈
u,
∂ϕ

∂xi

〉
L2(Ω)

for all ϕ ∈ C∞0 (Ω).

The weak derivative is denoted by v = ∂u/∂xi and, in case u is differentiable, it coincides
with the strong derivative.

Recursively, higher order and multivariate derivatives can be defined.

Definition 2.5 (Sobolev spaces Hm(Ω), m ∈ N). The space of all functions in L2(Ω),
which are weakly differentiable of order α up to |α| ≤ m ∈ N and with the derivatives
in L2(Ω), is called the Sobolev space Hm(Ω). This space is a Hilbert space under
consideration of the scalar product

〈u, v〉Hm(Ω) =
∑
|α|≤m

〈∂αu, ∂αv〉L2(Ω)

and the induced norm

‖u‖Hm(Ω) =
√
〈u, u〉Hm(Ω) =

√ ∑
|α|≤m

‖∂αu‖2
L2(Ω)

.

20 Solving boundary integral equations

The extension of the Sobolev spaces to arbitrary s ∈ R can be done by extending the
scalar product and the norms first to 0 < s ∈ R.

Definition 2.6 (Sobolev-Slobodeckij spaces Hs(Ω), 0 < s ∈ R). For 0 < s ∈ R with
s = m + β, m ∈ N and β ∈ (0, 1), the Hilbert space Hs(Ω) contains all functions
u ∈ Hm(Ω) with bounded norm

‖u‖Hs(Ω) =
√
〈u, u〉Hs(Ω)

and the scalar product given by

〈u, v〉Hs(Ω) = 〈u, v〉Hm(Ω) +
∑
|α|=m

∫
Ω

∫
Ω

(∂αu(x)− ∂αu(y))(∂αv(x)− ∂αv(y))

‖x− y‖n+2β
dxdy.

In the case of the equations (1.24), (1.28), (1.31), or (1.32), since Ω ∈ R3, the parameter
n is equal to three.

Next, let the space Hs
0(Ω) be defined by the completion of C∞0 (Ω) with respect to the

previously defined norm, ‖ · ‖Hs(Ω), i.e.

Hs
0(Ω) ··= C∞0 (Ω)

‖·‖Hs(Ω)
.

Definition 2.7 (Sobolev-Slobodeckij spaces H−s(Ω), 0 < s ∈ R). The dual space
H−s(Ω) of Hs

0(Ω) is defined as the space of linear maps from Hs
0(Ω) to R, equipped

with the dual norm

‖u‖H−s(Ω) = sup
06=v∈Hs(Ω)

〈u, v〉L2(Ω)

‖v‖Hs(Ω)
. (2.8)

2.1.4. Weak derivatives and Sobolev spaces on manifolds

Definition 2.9 (Nk,κ property). The domain Ω ⊂ Rn is said to possess the Nk,κ

property if for each point x ∈ Γ ··= ∂Ω a neighbourhood, Ux, an orthogonal coordinate
transform, Ax : Rn → Rn, two numbers, αx, βx > 0, and a function, ax : Rn−1 → R
can be found such that the following properties hold.

Let y1, y2, . . . , yn be the new Cartesian coordinates given by the transform Ax, and let
Wn−1(αx) be the cube {y1, y2, . . . , yn−1 : |yi| < αx, i = 1, 2, . . . , n− 1} ∈ Rn−1. Then:

• ax ∈ Ck,κ(Wn−1(αx)).

• The boundary Ux ∩ Γ can be described by means of the new coordinates and the
function ax(y1, y2, . . . , yn−1) = yn, which leads to

Ux ∩ Ω =
{

(y1, . . . , yn) : (y1, . . . , yn−1) ∈Wn−1(αx), yn = ax(y1, . . . , yn−1)
}
.

• The displacement of Ux ∩ Γ by βx results in a surface that is inside of Ω

Ux ∩ Ω = {(y1, . . . , yn) : |yi| < αx, i = 1, . . . , n− 1,

ax(y1, . . . , yn−1) < yn < ax(y1, . . . , yn−1) + βx} = V +
x .

Function spaces 21

• The displacement of Ux ∩ Γ by −βx results in a surface that is outside of Ω

Ux ∩ Ω
c

= {(y1, . . . , yn) : |yi| < αx, i = 1, . . . , n− 1,

ax(y1, . . . , yn−1)− βx < yn < ax(y1, . . . , yn−1)} = V −x .

The number βx represents the local inward normal of the surface. The third and fourth
requirement ensure that Ω lies on one side of the surface Γ, meaning that Γ is indeed
the boundary of the domain Ω. Arbitrary polyhedral regions have the N0,1 property.
Moreover, it can be shown that the Nk,κ property is equivalent to Ck,κ(Ω), see [75] for
details.

Theorem 2.10 (Uniform cone property). Bounded domains Ω that possess the N0,1

property also have the uniform cone property.

Definition 2.11 (Sobolev space Hs(Γ), 0 < s ∈ R). If Ω ⊂ Rn is bounded and has
the Nk,κ property, any function u defined on Γ can be decomposed into regions. Such a
finite decomposition always exists and is obtained by a suitable partition of unity. Let
u(x) =

∑n
i ui(x) with suppui ⊂ Ux, where the coordinate neighbourhoods, Ux, have

the properties found in def. 2.9. Then the norm of ‖u‖2Hs(Γ) is given with respect to the

local functions ‖u‖2Hs(Γ) =
∑n

i ‖ui‖2Hs(Γ) with the norms of the localized functions

‖ui‖2Hs(Γ) =
∑
|α|≤s

∫
Γ
|∂αui|2 dσx +

∑
|α|≤s

∫
Γ

∫
Γ

|∂αui(x)− ∂αui(y)|2

|x− y|n−1+2β
dσx dσy,

where 0 < s ∈ R with s = m + β, m ∈ N and β ∈ (0, 1). The partial derivatives are
taken with respect to the coordinates (y1, . . . , yn−1), which correspond to the coordinates
of the local mappings yn = ax(y1, . . . , yn−1), as seen in def. 2.9, and the surface element
is given by

dσx =

1 +

n−1∑
j=1

(
∂ax
∂yj

)dy1 . . . dyn−1.

All functions from L2(Γ), whose Hs(Γ)-norm is bounded, belong to the Sobolev space
Hs(Γ).

Definition 2.12 (Interior trace operator). The interior trace is the continuous linear
map

γint0 : C(Ω)→ C(Γ)

with the property
γint0 f(x) ··= lim

y∈Ω, y→x
f(y)

for all x ∈ Γ and for all f ∈ C(Ω).

Lemma 2.13 (Continuation of the trace). For Ω ⊂ Rn with a Ck,κ-boundary and
1/2 < s ≤ k + κ, the interior trace can be extended to Hs(Ω) such that it is a unique
linear map

γint0 : Hs(Ω)→ Hs−1/2(Γ)

22 Solving boundary integral equations

with the property
γint0 f(x) = f(x)

∣∣
x∈Γ

for all f ∈ Cdse(Ω).

In particular, the restriction to the boundary of the single and double layer operators
from eq. (1.24) are well defined. For more details, see [75] and the references therein.

Lemma 2.14. Let Ω be a Lipschitz domain with boundary Γ. Then, the boundary
integral operators have the mapping properties

V : H
− 1/2+s(Γ)→ H

1/2+s(Γ),

K : H
1/2+s(Γ)→ H

1/2+s(Γ),

KT : H
− 1/2+s(Γ)→ H

− 1/2+s(Γ),

for all s ∈ [− 1/2, 1/2]. Moreover, the trace of the Newton potential satisfies

γint0 Nρ : H̃−1+s(Ω)→ H
1/2+s(Γ), s ∈ [− 1/2, 1/2] ,

where H̃−1+s(Ω) denotes the dual of H1−s(Ω).

Note that a proof of this lemma is found in [11]. For the case of domains with higher
regularity, the range of s can be extended correspondingly, see [69] for details.

Using the information of Lemma 2.14, the spaces for the boundary integral operators,
found in chpt. 1, can be defined.

Corollary 2.15. Recall the boundary integral eq. (1.24):[
Ve
(
KTi +

1

2

)
−
(
Ke −

1

2

)
Vi
]
σ =

(
Ke −

1

2

)
Nρ − VeV−1

i

(
Ki −

1

2

)
Nρ.

This equation was transformed into eq. (1.28):[
Ve
(
KTi +

1

2

)
−
(
Ke −

1

2

)
Vi
]
σ =

(
Ke −

1

2

)
Nρ − Ve

∂Nρ
∂n

.

The boundary integral operators on the left hand side of both integral equations are
composed of interior and exterior single layer operators and double layer operators,
which results in an operator which maps functions from H − 1/2(Γ) onto H1/2(Γ), i.e. it
is an operator of order 2q = −1.

For the neutral solution case, eq. (1.31), it holds

Viσ =

(
1

ε− 1
A−1 − 1

)
Nρ on Γ

with A given by eq. (1.30). This is a Fredholm boundary integral equation of the first
kind for the single layer operator, Vi : H − 1/2(Γ)→ H1/2(Γ), which is again an operator
of order 2q = −1.

Discretization of the solution 23

The last equation has been changed further into eq. (1.32),

ATσ =
∂Nρ
∂n

on Γ,

making use of only the transposed of the double layer operator. This is a Fredholm
boundary integral equation of second kind which involves an operator of order 2q = 0.

2.2. Discretization of the solution

In order to be able to solve the boundary integral equation that arises, well chosen
finite dimensional ansatz spaces are used. We are thus looking for the approximation
of the solution u(x) by a function un(x) in the finite dimensional ansatz space

Vn = span{ϕ0, ϕ1, . . . , ϕn} (2.16)

as follows

un(x) =
n∑
i=0

αiϕi(x) = 〈un,Φn(x)〉, (2.17)

where
(un)i = αi

((Φn) (x))i = ϕi(x)

}
for i = 0, . . . , n.

A common choice of ansatz functions results from introducing a partition of the surface
into simple elements, typically triangles or squares, and defining piecewise polynomial
ansatz functions on these finite elements.

2.2.1. Finite elements on the boundary

The boundary of the domain is partitioned in suitable finite subsets, called elements

Γ =
n⋃
i=0

Γi, (2.18)

where the ansatz functions, ϕi, will be defined on. In practice, a partitioning in simple
geometric figures, for example triangles or squares, is encountered. By this partitioning,
a mesh size, h, of the discretization of the surface is implicitly introduced. It is given
by the radius, hi = diam(Γi)/2, of the circumscribed circle for each element Γi ∈ Γ. The
mesh is called shape regular if there exists a number κ > 0 such that the elements
contain a circle of radius ρi with

ρi ≥
hi
κ
.

Additionally, if the radius of the circle can be chosen independently of the current
element of the decomposition, but dependent on h ··= maxhi, the decomposition is
called quasi-uniform and fulfills the equation

ρi ≥
h

κ
.

24 Solving boundary integral equations

The mesh size will have an influence when discussing the convergence of the boundary
element method, but first the typical ansatz functions need to be introduced. For
simplicity, the figures will be depicted for triangular meshes.

Definition 2.19 (Conforming mesh). A partition of the surface is called conforming
if the intersection of two different elements is either a single point, called vertex, an
entire edge or the empty set.

An example of a non-conforming mesh is seen in fig. 2.20a as well as an example of
a conforming mesh in fig. 2.20b. The meshes used in this thesis are all conforming
meshes.

(a) Non-conforming mesh example. (b) Conforming mesh example.

Figure 2.20. Examples of a non-conforming and a conforming mesh.

2.2.1.1. Piecewise constant ansatz functions

The simplest ansatz space is the space of functions which are constant on each element.
For a given partition of the surface, as in eq. (2.18), the basis of piecewise constant
ansatz functions is defined as follows:

ϕi(x) =

{
1, x ∈ Γi,

0, x /∈ Γi.

A schematic of a piecewise constant ansatz function can be found in fig. 2.21a.

Discretizing the surface in smaller elements would result in a smaller value for the mesh
size, h, which in turn influences the approximation to the exact solution u, as will be
shown later.

2.2.1.2. Piecewise linear ansatz functions

Another basis of the discrete space, Vn, is to use the space of functions that are linear
polynomials on each element and globally continuous. The ansatz function ϕi ∈ Vn is
uniquely defined by the values at the vertices of the elements, which satisfy

ϕi(x) =

{
1, x = pi,

0, x = pj , i 6= j,

Collocation method 25

(a) Piecewise constant
ansatz function.

(b) First linear
ansatz function,
value 1 in the
first vertex.

(c) Second linear
ansatz function,
value 1 in the
second vertex.

(d) Third linear
ansatz function,
value 1 in the
third vertex.

Figure 2.21. Piecewise constant and piecewise linear ansatz functions, depicted for a triangle.

where pi and pj are denoting vertices of the surface mesh. A schematic of piecewise
bilinear ansatz functions which have non-zero contributions on an element can be found
in fig. 2.21b, fig. 2.21c and fig. 2.21d.

The Euler formula gives a relation between the number of vertices, nv, the number of
elements, n∆, and the number of edges, ne,

nv + n∆ − ne = 2.

This holds on any closed surface, which is topologically equivalent to a sphere, as is the
case of simple molecules. If the molecules have a tunnel, like a doughnut, the equation
becomes

nv + n∆ − ne = 0,

and, for any further hole, the number on the right hand side would decrease by 2.
This means that the number of vertices is proportional to the number of elements. In
particular, it implies that both, the number of piecewise linear ansatz functions and
the number of piecewise constant ansatz functions, grow asymptotically linear with the
number of elements.

2.3. Collocation method

The first method that comes to mind in order to solve the discrete version of eq. (2.1) is
the so-called collocation method, which requires that the values of the discrete system
coincide in a set of n+ 1 disjoint sampling points,

K = {ξ0, ξ2, . . . , ξn} ⊂ Γ,

also called collocation points. This leads to solving the following equations:

(Aun)(ξi) = ρ(ξi) for all i = 0, . . . , n.

By assembling the system of linear equations for all values of ξi, one gets

Mnun = ρn (2.22)

26 Solving boundary integral equations

with the matrix entries

(Mn)i,j = (Aϕj) (ξi) =

∫
Γ
k(ξi,y)ϕj(y) dσy,

the right hand side
(ρn)i = ρ(ξi),

and the coefficient vector (un)i = αi as given in eq. (2.17).

The approximation un(x) is uniquely defined if the associated matrix Mn is regular.
This means that the collocation points have to be chosen in such a way that the
coefficients αi of un(x) are uniquely defined. The optimal number of collocation points
for a given discretization of the solution has exactly n + 1 points, that is equal to the
number of ansatz functions used. This results in solving a system of linear equations
with a square matrix Mn which is in general dense, see [23] for more details. A
clever choice of collocation points would be the midpoints of the elements for piecewise
constant ansatz functions or the mesh vertices for piecewise linear ansatz functions.

The convergence of the solution of the discrete linear system (2.22) depends on the
mesh size implicitly defined by n. We shall restrict ourselves to an integral operator of
order zero and a quasi-uniform mesh. Then, according to [25], given n elements, the
discrete solution of the collocation method, un, converges towards the exact solution,
u, with respect to the mesh size with the rate

‖u− un‖L∞(Ω) ≤ Chd.

Here, d denotes the approximation order of the ansatz functions used, that is d = 1
for the piecewise constant ansatz functions and d = 2 for the piecewise linear ansatz
functions. For generalizations to integral operators of non-zero order, see for exam-
ple [25, 42] and the references therein.

2.4. Galerkin method

The introduction of the Galerkin method requires the variational formulation or weak
formulation of the boundary integral equation. The variational formulation of a general
boundary integral eq. (2.1) arises by multiplying the equation with a test function and
integrating over the entire domain. This results in solving the problem:

Seek u ∈ Hq(Γ) such that

〈Au, v〉L2(Γ) = 〈ρ, v〉L2(Γ) for all v ∈ H−q(Γ).
(2.23)

It is obvious that the solution, u(x), of eq. (2.1) also satisfies the variational formula-
tion (2.23). For the reverse direction, the norm definition found in (2.8) can be used.
In particular, if ũ(x) would be the solution of the variational formulation, one has

〈Aũ− ρ, v〉L2(Γ) = 0 for all v ∈ Hq(Γ).

This means that 0 = Aũ − ρ ∈ H−q(Γ), which in turn implies that ũ ∈ Hq(Γ) has to
be a solution to the integral eq. (2.1), cf. [69].

Galerkin method 27

For the Galerkin method, the infinite dimensional energy space H−q(Γ) is replaced by
a finite dimensional trial space Wn. In our case, the trial space is chosen equal to the
ansatz space, meaning that Wn = Vn:

Seek un ∈ Vn such that

〈Aun, vn〉L2(Γ) = 〈ρ, vn〉L2(Γ) for all vn ∈ Vn.

We shall use the same trial space as in (2.16).

The problem can be simplified even more, if one takes a look at the basis that spans
the space Vn = span{ϕ0, ϕ1, . . . , ϕn}. Given such a basis, it suffices to test with each
of the function of the basis, i.e.

〈Aun, ϕi〉L2(Γ) = 〈ρ, ϕi〉L2(Γ), i = 0, . . . , n.

Inserting (2.17) into the previous equation and using the linearity of the integral oper-
ator under consideration leads to

n∑
i=0

αi〈Aϕi, ϕj〉L2(Γ) = 〈ρ, ϕj〉L2(Γ), j = 0, . . . , n.

This is equivalent to the system of linear equations

Mnun = ρn

with the matrix entries

(Mn)i,j = 〈Aϕj , ϕi〉L2(Γ),

the right hand side

(ρn)i = 〈ρ, ϕi〉L2(Γ),

and the coefficient vector (un)i = αi as given in (2.17).

By using the Céa Lemma and the approximation property of the ansatz spaces, the
following convergence result can be proven for the approximation, un ∈ Vn. The differ-
ence to the exact solution, u ∈ Hq(Ω), in the energy norm of the operator at hand is
given by

‖u− un‖Hq(Γ) ≤ C inf
vn∈Vn(Γ)

‖u− vn‖Hq(Γ) ≤ Chd−q‖u‖Hd(Γ),

provided that u is sufficiently regular and the finite element mesh is quasi-uniform and
where d is the approximation order of the ansatz functions used. This means that,
given a high enough resolution of the space Vn, which implicitly leads to the mesh size
h→ 0 for fixed d, one can approximate the solution u of the boundary integral eq. (2.1)
with arbitrary precision.

Additionally, the Aubin-Nitsche trick can double the convergenece rate, leading to the
error estimate

‖u− un‖H2q−d(Γ) ≤ Ch2(d−q)‖u‖Hd(Γ).

For more details concerning the Galerkin method, see e.g. [69].

28 Solving boundary integral equations

2.5. Computational chemistry packages

A brief overview of software packages and their capabilities will shed some light on the
current state of the art. This summary is by no means complete, for more details please
consult the review [73] and the references therein.

2.5.1. PDE solvers

There are several quantum chemical packages out there that tackle the PCM equations.
All of these implementations use the collocation method, differing sometimes in the
basis functions used. A more exotic choice can be found in the continuous surface charge
(CSC) and the switching Gaussians (SWIG) methods which use spherical Gaussians as
basis functions, [43, 44, 64]. These implementations can be found in the commercial
codes Gaussian and Q-Chem.

The fast multipole method, introduced by Greengard and Rokhlin in [20, 21, 22, 61],
was extended to the PCM by Kirkwood and Onsager, [38, 39, 49]. Here, the potential
inside the cavity is expressed by an expansion in terms of spherical harmonics such that
fast summation techniques can be applied. This method has been integrated into the
Gaussian and Dalton packages.

The only implementation of a Galerkin approach to the solution of the boundary inte-
gral equations is the one described in [5, 28, 29, 74] and is the foundation stone of this
thesis. It was incorporated in the template based module PCMSolver which is included
in several packages, like Psi4, [50], LSDalton, [1], Dirac, [59], and ReSpect, [60].

2.5.2. Existing SES cavity generation algorithms in chemistry packages

Due to the fact that a bad grid on the cavity can break the performance of boundary
element method codes and a poor precision of the cavity leads to a poor precision of
the measurable quantities calculated, a lot of effort has to be spent in the generation
of the cavities and their discretization. Since this thesis is mainly concerned with the
mesh generation for the Connolly surface, an overview of cavity generators for this type
of cavity is given here.

2.5.2.1. GEPOL

The GEPOL algorithm has been proposed by Pascual-Ahuir and Silla in [51, 52, 67] for
approximating the SES by convex spherical partial surfaces. This is done by inserting
additional spheres, called ghost atoms, in the space which is inaccessible to the fluid.
Three types of cases are considered: the case of overlapping spheres, which arise only
in the case of toroidal partial surfaces, and two cases of non-overlapping spheres. The
non-overlapping cases include the generation of one partial surface, for the toroidal
case, or two partial surfaces. The three cases for the interaction between two spheres
are depicted in fig. 2.24.

Computational chemistry packages 29

. .

(a) Generation of one surface
from the interaction of over-
lapping spheres.

. .

(b) Generation of one surface
from the interaction of non-
overlapping spheres.

. .

(c) Generation of two surfaces
from the interaction of non-
overlapping spheres.

Figure 2.24. Sphere-sphere interactions treated in GEPOL.

A pentakis dodecahedron is then used to mesh each sphere appearing in the molecular
system, the molecular atoms and the ghost atoms. By projecting the faces of the
pentakis dodecahedron to the surface, a distretization into 60 spherical triangles is
achieved for each sphere. These meshes are refined towards the intersections of the
spheres where the triangle faces have both, visible and invisible, parts. Only the visible
triangles are kept to form the surface mesh.

Several extensions of this algorithm have been developed for the case of geometry
optimization. The CSC or SWIG are two examples found in [43, 44, 64]. The CSC
guarantees a smooth change of the mesh between two configurations of the molecule,
while the SWIG uses switching functions to turn on or off elements which become
visible/invisible by a change in the geometry.

2.5.2.2. Isodensity

A different approach, integrated in Gaussian, is to define the cavity by the isosurface
of the total electron density, [19]. This method has been named IPCM for isodensity
PCM. Since the charge outside the cavity tends rapidly to zero, the surface of the
cavity is defined by an isosurface with a small value for the electron density. This has
the advantage that the atomic forces are continuous with respect to the position of
the atoms and easily integrable. We would like to mention that our mesh generator
can also be used to construct parametrizations of such isosurfaces as demonstrated in
sec. 5.2.

2.5.2.3. DefPol

A different algorithm was proposed by Pomelli and Tomasi, [54, 55], where the molecule
is surrounded by a sphere with a triangular mesh on it. This mesh is then distorted until
the points lie on the surface of the molecule. Each point is moved on the connecting line
to the centres of the molecule until it lies on the surface. To this end, a characteristic
function is used to check when the point has passed inside the molecule. This method

30 Solving boundary integral equations

has the advantage that it does not need additional spheres to fill the empty spaces.
The centres of the flat triangles are then projected in the normal direction onto the
surface. This way, a spherical triangulation of the molecular surface can be generated
by solving a system of linear equations.

2.5.2.4. FIXPVA

This method is implemented in GAMESS, [71], and stands for fixed points with variable
area. Herein, each sphere is divided into the same number of small triangular elements,
with fixed position relative to the centre of the atom they reside on. The difference to
the GEPOL and DefPol algorithms is that no additional spheres are introduced and
the mesh remains on the single spheres. The area of each element belonging to an atom
is a smooth function of the distance to the other atoms. The smooth functions used
are the same kind of switching functions used in the CSC and SWIG methods. This
way, the geometrical derivatives of the elements can be easily calculated.

2.5.3. Other SES cavity generation algorithms

More attention has been given to the generation of an analytically defined SES in the
works [29], [57] and [58]. In both approaches, the intersection circles and arcs are
determined and discretized. The same number of boundary points are used on each
type of partial surface. The partial surfaces are subsequently independently discretized
by triangles. In [29], the surface triangulation is then used to obtain quadrangular
patches, suited for the use of the wavelet boundary element method. The disadvantage
of the method is that it is not robust and can easily fail. The main advantage of [57, 58]
is that it treats self intersecting surfaces, as depicted for example in fig. 2.24c and the
interior holes of the molecules correctly, while the algorithm in [29] assumes that these
cases do not occur.

2.6. Conclusion

The integral equation is transformed into a system of linear equations whose dimension
depends on the number of finite elements used in the discretization of the boundary.
The resulting system matrix is, in general, a dense matrix. The boundary element
method thus suffers from limitations imposed by the number of matrix elements to be
stored and the memory and time requirements of solving the resulting linear system.

Methods have been developed to decrease the computational cost of boundary integral
calculations using collocation or Galerkin methods, like the fast multipole method [21],
panel clustering [25], adaptive cross approximation [2], or H-matrices [24]. In the next
chapter, a different choice of the basis functions will be introduced in order to transform
the system matrix into a sparse matrix.

C H A P T E R 3

Wavelet Galerkin method

3.1 Surface parametrization and inner products 31

3.2 Representation in a wavelet basis. 33

3.3 Compression of the system matrix 39

3.4 Implementation details 44

The reason behind the construction and use of a wavelet basis for the Galerkin method
to solve boundary integral equations is the fact that the resulting system matrices
are quasi-sparse from the start and can be reduced to a sparse form by an a priori
compression, as described in [15, 30, 31]. Appropriate wavelet bases are biorthogonal
spline wavelets since the number of vanishing moments can be chosen independently of
the polynomial exactness. They were first introduced on the line in [9], brought onto
the interval in [14] and finally onto the surface in [30, 31]. The wavelets on the surface
are constructed as tensor products of wavelets on the interval that are transported by
a parametrization onto the surface. This is why a parametrization of the surface into a
mesh with quadrangular elements needs to be used in order to accommodate the tensor
products of wavelets.

3.1. Surface parametrization and inner products

In order to be able to represent the wavelets on the surface, the surface has to be split
into smaller quadrangular pieces, also called patches. In this case, the surface elements
used for the discretization of the molecular cavity are constructed in such a way that
they coincide with the elements obtained by regular subdivision of the patches for the
wavelet BEM.

32 Wavelet Galerkin method

γi−→

Figure 3.1. Parametric representation of the patch Γi by a quadrangular mesh of refinement level 3.

Let the surface Γ be defined by a union of smooth parametric patches. To this end, let
� := [0, 1]× [0, 1] denote the unit square. The boundary Γ can then be represented as
follows:

Γ =

n�⋃
i=0

Γi with Γi = γi(�) for i = 0, 1, . . . n�.

Herein, γi : �→ Γi is a smooth diffeomorphism from the unit square, �, to the surface
patch, Γi. The mesh of level nL is generated by dyadic subdivisions of depth nL of the
unit square into 4nL elements, which results in a conforming mesh. The intersection of
two distinct patches Γi ∩Γj is also conforming, which means that the intersection is at
most a common vertex or a common edge. A matching condition is hereby imposed. It
is required that the parametrization of common edges is the same up to the orientation
of the edge. This means that an affine, bijective mapping Ξ : � → � exists such that
all points on the common edge between Γi and Γj satisfy γi(s) = γj(Ξ(s)). Fig. 3.1
shows such a parametrization for a patch on the surface of a benzene molecule.

For simplicity, let Γi,j,k denote the element k = (k1, k2) of patch Γi on refinement level
j. For each of these elements, one can define the local mapping γi,j,k : � → Γi,j,k by
the diffeomorphism defined on the patch:

γi,j,k(s) = γi

(
2−j

[
k1 + s1

k2 + s2

])
, where s = (s1, s2) ∈ �.

This in turn means that the partial derivatives of the local mappings obey the relation

∂m1
s1 ∂

m2
s2 γi,j,k(s) = 2−j(m1+m2)∂m1

s1 ∂
m2
s2 γi

(
2−j

[
k1 + s1

k2 + s2

])
.

Representation in a wavelet basis 33

The inner product in L2(Γ) can be written in accordance with the patch decomposition:

〈u, v〉L2(Γ) =

∫
Γ
u(x)v(x) dσx =

n�∑
i=0

∫
Γi

u(x)v(x) dσx

=

n�∑
i=0

∫
�
u(γi(s))v(γi(s))

∥∥∥∥∂γi(s)∂s1

× ∂γi(s)

∂s2

∥∥∥∥ds,

=

n�∑
i=0

∑
k

∫
�
u(γi,j,k(s))v(γi,j,k(s))κi,j,k(s) ds.

Here, κi,j,k is the surface measure taken at the point s = (s1, s2) ∈ �, which using the
diffeomorphism γi,j,k is given by

κi,j,k(s) :=

∥∥∥∥∂γi,j,k(s)

∂s1

×
∂γi,j,k(s)

∂s2

∥∥∥∥ .
The way of achieving the discretization of the molecular cavity into smooth parametric
patches is described in chpt. 4.

3.2. Representation in a wavelet basis

At the core of the wavelet boundary element method lies the definition of a sequence
of hierarchical trial spaces, spanned by standard finite element ansatz functions

{0} ··= V−1 ⊂ V0 ⊂ V1 ⊂ . . . ⊂ VnL ,

where Vj = span{ϕj,k : k ∈ ∆j} and ϕj,k are the standard finite element ansatz
functions defined as introduced in chpt. 2, and ∆j is an index set. The index set and
the ansatz functions on the surface will be described shortly. The spaces Vj are called
single-scale spaces. In the wavelet method, the space Vj is split into the direct sum

Vj = Vj−1 ⊕Wj . (3.2)

The resulting complementary space Wj is called the wavelet space which is not neces-
sarily orthogonal to Vj−1. It is spanned by the wavelet basis:

Wj = span{ψj,k : k ∈ ∇j ··= ∆j \∆j−1}.

Recursive splitting of the trial spaces leads to the wavelet decomposition VnL =
⊕nL

j=0Wj

by inserting eq. (3.2), where W0 ··= V0.

3.2.1. Wavelets on the interval

Wavelets on a two-dimensional surface are defined as a tensor product of wavelets on
the interval. Therefore, first the wavelets on the interval have to be introduced in order
to fully grasp the qualities of the wavelets on the surface. In this thesis, trial spaces of
piecewise constant and piecewise bilinear functions will be considered.

34 Wavelet Galerkin method

0 1

2

0.5 0.25 0.75

ϕ
[0,1]
2,0 ϕ

[0,1]
2,1 ϕ

[0,1]
2,2 ϕ

[0,1]
2,3

−5
8

(a) Piecewise constant single-scale basis for
the interval [0, 1] on refinement level 2.

0 1

−5
8

11
8

−1
2

1
8

−1
4

3
4

−3
4

1
4

5
8

−11
8

1
2

−1
8

(b) Piecewise constant wavelet with 3 vanish-
ing moments including the left and right
boundary wavelet. Every tick on the x-
axis represents the support of one single-
scale basis function.

Figure 3.3. Piecewise constant ansatz functions (left) and piecewise constant wavelets with 3 vanish-
ing moments (right).

3.2.1.1. Piecewise constant ansatz functions

For the piecewise constant ansatz functions on the interval [0, 1], the index set is defined

as ∆
[0,1]
j
··= {0, 1, . . . , 2j − 1}. The L2-normalized piecewise constant ansatz functions

then look like

ϕ
[0,1]
j,k (x) =

{
2
j/2, x ∈ [2−jk, 2−j(k + 1)],

0, otherwise.

Fig. 3.3a shows such a choice of basis functions for the refinement level j = 2.

The wavelet space, W
[0,1]
j , defined by the relation V

[0,1]
j = V

[0,1]
j−1 ⊕W

[0,1]
j , is spanned in

this case by

W
[0,1]
j = span{ψ[0,1]

j,k : k ∈ ∇j[0,1] ··= {0, 1, . . . , 2j−1 − 1}}.

The wavelets can be split into interior wavelets and boundary wavelets. The interior
wavelets are given by

ψ
[0,1]
j,k (x) =

1√
2

(
−1

4
ϕ

[0,1]
j,2k−1(x) +

3

4
ϕ

[0,1]
j,2k (x)

−3

4
ϕ

[0,1]
j,2k+1(x) +

1

4
ϕ

[0,1]
j,2k+2(x)

)
, k = 1, . . . , 2j−1 − 2.

Representation in a wavelet basis 35

The left boundary wavelet has the form

ψ
[0,1]
j,0 (x) =

1√
2

(
−5

8
ϕ

[0,1]
j,0 (x) +

11

8
ϕ

[0,1]
j,1 (x)− 1

2
ϕ

[0,1]
j,2 (x)

−1

2
ϕ

[0,1]
j,3 (x) +

1

8
ϕ

[0,1]
j,4 (x) +

1

8
ϕ

[0,1]
j,5 (x)

)
,

while the right boundary wavelet is defined by symmetry:

ψ
[0,1]

j,2j−1−1
(x) = −ψ[0,1]

j,0 (1− x).

Fig. 3.3b gives a schematic overview of the wavelets. By construction, these wavelets
satisfy the relation ∫ 1

0
xrψ

[0,1]
j,k (x) dx = 0 for all r = 0, 1, 2,

and thus the parameter d̃ = 3 represents the order of vanishing moments, [27].

3.2.1.2. Piecewise linear ansatz functions

In the case of piecewise linear ansatz functions, the index set is given by the range

∆
[0,1]
j
··= {0, 1, . . . , 2j}. The L2-normalized piecewise linear ansatz functions are given

by

ϕ
[0,1]
j,k (x) =

2

3j/2(x− 2−j(k − 1)), x ∈ [2−j(k − 1), 2−jk),

2
3j/2(2−j(k + 1)− x), x ∈ [2−jk, 2−j(k + 1)),

0, otherwise,

and k = 1, . . . , 2j − 1.

At the boundary, the ansatz functions take only the part of the interval inside the
domain into account

ϕ
[0,1]
j,0 (x) =

{
2

3j/2(2−j − x), x ∈ [0, 2−j),

0, otherwise.

By symmetry, it holds for the basis function at the right boundary

ϕ
[0,1]

j,2j
(x) = ϕ

[0,1]
j,0 (1− x).

In fig. 3.4a, the discretization using linear single-scale basis functions on a mesh of level
2 is depicted, while fig. 3.4b shows the related wavelet basis.

The wavelet space is similarly defined as for the piecewise constant ansatz functions

case by W
[0,1]
j = span{ψ[0,1]

j,k : k ∈ ∇[0,1]
j
··= {0, 1, . . . , 2j − 1}}. The interior wavelets

take the form

ψ
[0,1]
j,k (x) =

1√
2

(
1

8
ϕ

[0,1]
j,2k−2(x)− 1

2
ϕ

[0,1]
j,2k−1(x) +

3

4
ϕ

[0,1]
j,2k (x)

−1

2
ϕ

[0,1]
j,2k+1(x) +

1

8
ϕ

[0,1]
j,2k+2(x)

)
, k = 1, . . . , 2j − 2.

36 Wavelet Galerkin method

0 1

2

0.5 0.25 0.75

ϕ
[0,1]
2,0 ϕ

[0,1]
2,1 ϕ

[0,1]
2,2 ϕ

[0,1]
2,3 ϕ

[0,1]
2,4

(a) Piecewise linear single-scale basis for the inter-
val [0, 1] on refinement level 2.

0

1

- 35
64

875
1536

- 241
768

41
384

- 5
256

- 35
64

875
1536

- 241
768

41
384

- 5
256

1
8

- 1
2

3
4

- 1
2

1
8

(b) Piecewise linear wavelets with 4 vanishing mo-
ments including the left and right boundary
wavelets. Each tick on the x-axis represents
one nodal basis function.

Figure 3.4. Piecewise linear ansatz functions (left) and piecewise linear wavelets with 4 vanishing
moments (right).

Representation in a wavelet basis 37

Moreover, the left boundary wavelet looks like

ψ
[0,1]
j,0 (x) =

1√
2

(
−35

64
ϕ

[0,1]
j,0 (x) +

875

1536
ϕ

[0,1]
j,1 (x)− 241

768
ϕ

[0,1]
j,2 (x)− 53

512
ϕ

[0,1]
j,3 (x)

+
41

384
ϕ

[0,1]
j,4 (x) +

67

1536
ϕ

[0,1]
j,5 (x)− 5

256
ϕ

[0,1]
j,6 (x)− 5

512
ϕ

[0,1]
j,7 (x)

)
.

At the right boundary, symmetry can be used again:

ψ
[0,1]

j,2j−1
(x) = ψ

[0,1]
j,0 (1− x).

By construction, these wavelets have d̃ = 4 vanishing moments, meaning that∫ 1

0
xrψ

[0,1]
j,k (x) dx = 0 for all r = 0, 1, 2, 3.

3.2.2. Wavelets on the surface

The ansatz spaces on the unit square can be defined by using the tensor product of the

univariate spaces, i.e. V �j = V
[0,1]
j ⊗ V [0,1]

j . The ansatz space is thus spanned by tensor

products of the basis on the interval, V �j = span{ϕ�j,k : k ∈ ∆�j }, with the index set

given by ∆�j ··= ∆
[0,1]
j ×∆

[0,1]
j and the scaling functions ϕ�j,k(x) ··= ϕ

[0,1]
j,k1

(x1)ϕ
[0,1]
j,k2

(x2),
where x = (x1, x2) ∈ � ··= [0, 1]× [0, 1].

By inserting the direct sum (3.2) in the representation, one gets

V �j = V
[0,1]
j ⊗ V [0,1]

j = V
[0,1]
j ⊗

(
V

[0,1]
j−1 ⊕W

[0,1]
j

)
=
(
V

[0,1]
j ⊗ V [0,1]

j−1

)
⊕
(
V

[0,1]
j ⊗W [0,1]

j

)
=
((
V

[0,1]
j−1 ⊕W

[0,1]
j

)
⊗ V [0,1]

j−1

)
⊕
(
V

[0,1]
j ⊗W [0,1]

j

)
= V �j−1 ⊕

(
W

[0,1]
j ⊗ V [0,1]

j−1

)
⊕
(
V

[0,1]
j ⊗W [0,1]

j

)
.

Hence, the definition of the wavelet space on the surface is found,

W�
j =

(
W

[0,1]
j ⊗ V [0,1]

j−1

)
⊕
(
V

[0,1]
j ⊗W [0,1]

j

)
,

and one arrives at V �j = V �j−1 ⊕W�
j . This already defines which elements need to be

added to end up with a direct sum for the refinement from the level V �j−1 to V �j . It
leads to wavelets stemming from the combinations

W
[0,1]
j ⊗ V [0,1]

j−1 ⇒ ψ�j,k(x) = ψ
[0,1]
j,k1

(x1) ϕ
[0,1]
j−1,k2

(x2),

V
[0,1]
j ⊗W [0,1]

j ⇒ ψ�j,k(x) = ϕ
[0,1]
j,k1

(x1) ψ
[0,1]
j,k2

(x2),

for x = (x1, x2) ∈ � and appropriate indices k = (k1, k2). In particular, for the first

type of wavelets, k1 is a wavelet index from ∇[0,1]
j and k2 a scaling function index

38 Wavelet Galerkin method

− 5
8

11
8

− 1
2

1
8

− 1
4

3
4
− 3

4
1
4

− 5
8

11
8

− 1
2

1
8

1
4

− 3
4

3
4

− 1
4

(a) Piecewise constant wavelets with 3 van-
ishing moments on the square. Type 1
wavelets: boundary wavelet and interior
wavelet and type 2 wavelets: boundary
wavelet and interior wavelet are depicted.

− 35
64

875
1536

− 241
768

41
384

− 5
256

1
8
− 1

2
3
4
− 1

2
1
8

− 35
64

875
1536

− 241
768

41
384

− 5
256

1
8

− 1
2

3
4

− 1
2

1
8

(b) Piecewise bilinear wavelets with 4 vanishing mo-
ments on the square. Type 1 wavelets: boundary
wavelet and interior wavelet and type 2 wavelets:
boundary wavelet and interior wavelet are depicted.

Figure 3.5. Schematic representation of piecewise constant wavelets (left) and piecewise bilinear
wavelets (right) on the unit square. The numbers represent the coefficients of the re-
spective single-scale basis functions, while the color represents the wavelet’s support. For
the piecewise bilinear case, the coefficients would have to be linearly interpolated on the
support.

Compression of the system matrix 39

from ∆
[0,1]
j−1 while, for the second type of wavelets, k1 ∈ ∆

[0,1]
j and k2 ∈ ∇[0,1]

j . The
resulting two-dimensional wavelets are shown schematically in fig. 3.5a and fig. 3.5b for
the piecewise constant and the piecewise bilinear case, respectively.

By lifting the square onto the patches through the mappings γi, one finally gets the
representation of the basis on the surface. The evaluation of the single-scale basis or the
wavelets in a surface point, x ∈ Γi, is done by making use of the inverse diffeomorphism
to transform the point from the surface to the unit square, γ−1

i (x) ∈ �. The single-
scale basis function and the wavelet defined on the unit square are then evaluated. The
evaluation looks like

ϕi,j,k(x) = ϕ�j,k(γ−1
i (x)), k ∈ ∆�j ,

ψi,j,k(x) = ψ�j,k(γ−1
i (x)), k ∈ ∇�j ,

where i = 0, . . . , n� are the patches used to represent the surface and x ∈ Γi.

3.3. Compression of the system matrix

The main advantage of choosing the wavelet basis and not the standard single-scale
basis is described in [15], where a compression rule is presented that defines the sparsity
pattern of the system matrix without computing any integrals. It only employs the
properties of the wavelets and the elements in their support. This a priori compression
is done in two steps. First, contributions stemming from wavelets that are far enough
from each other are discarded, leaving only O(NnL log(NnL)) non-zero entries, with
NnL being the number of degrees of freedom for a uniform refinement on level nL. This
is carried out in a recursive fashion starting at the coarse level. Secondly, even more
elements of the system matrix by eliminating entries corresponding to wavelets that
lie in the smooth part of another wavelet. The number of non-zero matrix entries is
reduced to O(NnL). After applying these two a priori compression steps, an a posteriori
compression can be used to further reduce entries which have a very small contribution.

In order to understand the compression rules, we denote the convex hull of the support
of the wavelet ψi,j,k by

Ωi,j,k = conv hull (suppψi,j,k) (3.6)

and the singular support of the wavelet ψi,j,k by

Ω′i,j,k = sing suppψi,j,k. (3.7)

The singular support contains all the points in the support where the wavelet is non-
smooth. In the implementation, the convex hull of the support of the wavelets is taken
as the sphere that encloses all elements in the support of the wavelet at hand. These
bounding boxes can also easily be used to calculate the distance between the singular
support of different wavelets if the wavelets are far away from each other. Otherwise,
the distance can be computed element by element on the unit square if the support of
the wavelets intersect.

40 Wavelet Galerkin method

Since the wavelets are expressed as linear combinations of single-scale basis functions,
there is a direct link between the wavelets and the elements used for the spatial dis-
cretization. An index is stored in the wavelet structure towards all elements in the
linear combination and, likewise, an index is stored in the element structure towards
all wavelets which have the element in their support. The refinement of the quadran-
gular mesh naturally induces an inheritance relation between elements. One element
on level j is subdivided into four elements on level j + 1. This will be reflected in the
wavelet structure by introducing a parent-child relation between wavelets of consecutive
levels. A wavelet ψi,j+1,k on level j+1 is said to be the child of a wavelet ψi,j,k′ on level
j, if the elements in the support of the wavelet ψi,j+1,k are included in the refinement
of the elements of the parent wavelet, ψi,j,k′ . The compression rule makes use of these
relations in choosing which matrix entries are relevant. For example, if two wavelets
on the coarse level do not interact due to the distance between their support, their
children will also not produce a relevant matrix entry. That way, linear complexity can
be realized, see [15, 31] for details.

3.3.1. A priori compression

The a priori compression pre-calculates which entries of the system matrix have a
relevant contribution to the solution. It is governed by the following set of compression
rules

(AnL)(i,j,k),(i′,j′,k′) =

0, dist(Ωi,j,k,Ωi′,j′,k′)>Bj,j′ and j, j′>0,

0, dist(Ω′i,j,k,Ωi′,j′,k′)>B
′
j,j′ if j′ > j≥0,

dist(Ωi,j,k,Ω
′
i′,j′,k′)>B

′
j,j′ if j > j′≥0,

〈Aψi′,j′,k′ , ψi,j,k〉L2(Γ), otherwise,

(3.8)

where dist(·, ·) denotes the distance, either between the convex hull of the wavelets or
between the singular support and the convex hull, respectively. The first and second
conditions represent the first and second compression step, respectively. The param-
eters j, j′ are the levels of the wavelets under consideration and the level-dependent
cut-off parameters Bj,j′ and B′j,j′ are given by

Bj,j′ = amax

{
2−min{j,j′}, 2

nL(2d′−2q)−(j+j′)(d′+d̃)
(2d̃+2q)

}
,

B′j,j′ = amax

{
2−min{j,j′}, 2

nL(2d′−2q)−(j+j′)d′−max{j,j′}d̃
(d̃+2q)

}
,

where 2q is the order of the integral operator under consideration, as found in lemma 2.15.
The compression parameters a and d′ can be chosen in the ranges

a ≥ 1, d < d′ < d̃+ 2q. (3.9)

Therein, d is the approximation order of the trial spaces, i.e. d = 1 for piecewise
constant wavelets and d = 2 for piecewise bilinear wavelets, respectively. The integer

Compression of the system matrix 41

d̃ stands for the number of vanishing moments of the wavelet basis, which is d̃ = 3 for
the piecewise constant wavelets and d̃ = 4 for the piecewise bilinear wavelets.

The first compression rule neglects the matrix entry resulting from two wavelets, ψi,j,k
and ψi′,j′,k′ , on level j and j′, if the distance between the supports, dist(Ωi,j,k,Ωi′,j′,k′),
is large enough. By construction, all children have their support included in the ones of
the parents. This means that all the entries that result from the children of ψi,j,k and
ψi′,j′,k′ can also be ignored, since Bj,j′ ≥ Bj̃,j̃′ for all j̃ ≥ j and j̃′ ≥ j′. For the second
compression, the refinement structure of the wavelet tree can again be used. Let ψi,j,k
be in the smooth part of ψi′,j′,k′ . Wavelets that have their support included in Ωi,j,k

will also lie in the smooth part of ψi′,j′,k′ . This means that the interaction between the
children of ψi,j,k and ψi′,j′,k′ can be neglected, since B′j,j′ ≥ B′j̃,j′ for all j̃ ≥ j ≥ j′ and

likewise Bj,j′ ≥ Bj,j̃′ for all j̃′ ≥ j′ ≥ j, respectively. Thus, the compression pattern of
the system matrix can be calculated hierarchically in optimal complexity by starting
from the coarsest level.

3.3.2. A posteriori compression

The a priori compression already sets the sparsity pattern for the system matrix. After
computing the entries of the system matrix, the a posteriori compression is applied. It
leaves out other sufficiently small entries by the rule

(AnL)(i,j,k),(i′,j′,k′)

 0, if
∣∣∣(AnL)(i,j,k),(i′,j′,k′)

∣∣∣ ≤ εj,j′ ,
(AnL)(i,j,k),(i′,j′,k′) , otherwise,

(3.10)

where the level dependent coefficients εj,j′ are given by

εj,j′ = bmin

{
2−|j−j

′|, 2
−(2nL−(j+j′)) d

′−q
d̃+q

}
2−(d′−q)(2nL−(j+j′)). (3.11)

The a posteriori compression parameters have to satisfy b < 1, while d < d′ < d̃ + 2q
like for the a priori compression.

3.3.3. Influence of the compression

To understand the influence of the a priori and a posteriori compression, we will discuss
the matrix arising from the single layer operator on the boundary of a two-dimensional
domain, discretized on level nL = 10.

The behavior of the a priori compression parameters are illustrated in fig. 3.12 and
fig. 3.13, which show the patterns obtained by applying only the first or the full a
priori compression, respectively. One can see that the parameter a has an influence
on the overall accuracy of the matrix. This is reflected in the thickness of the sparsity
pattern rays, as depicted in fig. 3.12. The parameter d′ is directly related to the
precision on the coarse level. This, however, cannot easily be observed with the naked
eye. Tab. 3.14 summarizes the number of non-zero elements of the system matrix

42 Wavelet Galerkin method

(a) a = 1.0, d′ = d
nnz = 158 540 (15%)

(b) a = 2.0, d′ = d
nnz = 205 878 (19%)

Figure 3.12. Influence on the sparsity pattern for the system matrix representing the single layer
operator V in a piecewise linear wavelet basis of the first a priori parameter a. The
parameter d′ is kept fixed at its minimum value: d′ = d. The number of non-zero
elements (nnz) is reported below each matrix.

(a) First a priori compression.
nnz = 221 716 (21%)

(b) Full a priori compression.
nnz = 204 404 (19%)

Figure 3.13. Influence on the sparsity pattern for the system matrix representing the single layer
operator V in a piecewise linear wavelet basis of the first and second a priori compression.
Both parameters are kept fixed: a = 2.0 and d′ = d′1/2. The number of non-zero elements
(nnz) is reported below each matrix.

depending on the a priori compression parameters. The impact of the first and second
a priori compressions is also summarized. In all cases, the relevant part is the first a
priori compression which discards 80% of the entries on average, setting the sparsity
pattern of the system matrix. The second compression discards about 8% additional
negligible entries.

Compression of the system matrix 43

d d′1/2 d′max

First a priori compression
a = 1 158 540 169 550 180 022
a = 2 205 878 221 716 236 350

Full a priori compression
a = 1 136 456 155 214 170 082
a = 2 181 470 204 404 227 930

Table 3.14. Influence of the a priori compression parameters on the number of non-zero elements for

the single layer operator V in a piecewise linear wavelet basis. The value d′1/2 = d̃+2q+d
2

is
selected as an intermediate value for d′. The total number of elements of the full matrix
would be 1 048 576.

The memory requirement for both wavelet bases chosen grows linearly with the refine-
ment level as shown in [15] and fig. 3.15. Fig. 3.16 shows a comparison of the sparsity
pattern for piecewise constant and piecewise linear wavelets.

(a) Piecewise constant wavelets. (b) Piecewise linear wavelets.

Figure 3.15. Number of non-zero entries in the matrix with increasing level for piecewise constant
wavelets (left) and piecewise linear wavelets (right).

The same two-dimensional example is being used to illustrate the influence of the
a posteriori compression parameters. Tab. 3.17 summarizes the number of non-zero
elements for different choices of the a posteriori parameters b and d′. The influence of
the parameters for the a posteriori compression is not as large as the influence of the a
priori compression. The a posteriori compression discards an average of 3% additional
entries in the system matrix. This is also illustrated in fig. 3.18 where the effect of the
a posteriori compression is shown.

44 Wavelet Galerkin method

(a) Piecewise constant wavelets.
nnz = 155 450 (15%)

(b) Piecewise linear wavelets.
nnz = 236 350 (23%)

Figure 3.16. Comparison between the sparsity pattern of the first a priori compression for the piece-
wise constant (left) and for the piecewise linear (right) wavelet bases with parameters
a = 2.0 and d′ = d′max.

d d′1/2 d′max

b = 0.1 121 678 145 782 163 602
b = 0.01 131 852 152 218 168 186
b = 0.001 135 642 154 634 169 920

b = 0 136 456 155 214 170 082

Table 3.17. Influence of the a posteriori compression parameters on the number of non-zero elements

for the single layer operator V in a piecewise linear wavelet basis. The value d′1/2 = d̃+2q+d
2

is selected as an intermediate value for d′. The parameter for the first compression is
kept fixed a = 1. The total number of elements of the full matrix would be 1 048 576.

3.4. Implementation details

3.4.1. Control flow

The wavelet solver is a versatile tool that can be applied to any problem where the
fundamental solution and the parametrization of the surface are known. The control
flow diagram of the solver can be seen in fig. 3.19. The parameter that influences
the precision of the wavelet solver that is fixed from the beginning is the level of
refinement of the surface, nL, provided by the input file from the cavity generator.
The approximation order, d, and the number of vanishing moments, d̃, are set by the
ansatz functions chosen. The parameters that can be adjusted are the compression
parameters a, b, d′, and the precision of the iterative solver, ε. For all the details of the
implementation of the wavelet boundary element code, see [31].

Implementation details 45

(a) Full a priori compression parameters d′ =
d′1/2, b = 0.001
nnz = 154 634 (15%)

(b) Full a priori and a posteriori compression pa-
rameters d′ = d′1/2, b = 0.1
nnz = 145 782 (14%)

Figure 3.18. Influence on the sparsity pattern for the system matrix representing the single layer
operator V in a piecewise linear wavelet basis of the full a priori compression and the
a posteriori compression. The parameter for the a priori compression is set to a = 1.
The number of non-zero elements (nnz) is reported below each matrix.

3.4.1.1. Initialization

The wavelet solver starts off by reading in the vertices of the elements in a patchwise
manner and the parameters for the compression. The first step is to calculate an
appropriate interpolation of the surface points on each patch. This interpolation is used
as the diffeomorphism, γi, from the unit square to the surface. It can then be used to
calculate the quadrature points and the tangential and normal derivatives needed in
the calculation of the system matrix entries.

The number of the polynomials used is determined by the uniform refinement level, nL,
and the degree, degree, required for the polynomials. The formula 2nL mod degree =
0 has to hold. This way, the interpolation divides each patch into disjoint poly-
nomials covering the entire patch. A tensorized Newton interpolation is used for
each polynomial. In one dimension, the Newton interpolation through the points
(s0,p0), (s1,p1), . . . , (sn,pn) is given by

P s(x) = [p0] + [p0,p1](x− s0) + . . .+ [p0,p1, . . . ,pn](x− s0)(x− s1) . . . (x− sn)

with [p0, . . . ,pi] being the divided differences obeying the rules

[pi] ··= pi,

[pi, . . . ,pi+l] ··=
[pi+1, . . . ,pi+l]− [pi, . . . ,pi+l−1]

si+l − si
.

This can be generalized to a two-dimensional setting. For a given surface patch, Γi,

46 Wavelet Galerkin method

Initialization

readIn

read surface
parametrization
and parameters

surfaceInterpolation

construct tensorized
Newton interpola-
tion of each patch

Structure ini-
tialization

generateNet

construct element
list with

pointers to node list

generateWaveletList

build wavelet list
with pointers to the

elements in the support

completeLists

coarsen wavelets with
identical weights,

add wavelets
to elements

System matrix
construction

compression

calculate needed ele-
ments according to the

a priori compression

WEM

calculate integrals
by evaluating
the operators

postprocessing

use a posteriori
compression to leave

out other entries

Solving the system

RHS

assemble rhs de-
pending on equa-
tion to be solved

GMRES/CG

call solver depending
on system matrix

energy/charge

evaluate sought
properties, for ex-

ample by integrating
the charge density

Figure 3.19. Control flow for the wavelet solver.

PΓi
2,(0,0) PΓi

2,(1,0)

PΓi
2,(0,1) PΓi

2,(1,1)

Figure 3.20. Example of two-dimensional interpolation. The number of refinements of the underlying
patch is nL = 2 and the degree of the polynomials in each coordinate is degree = 2.

Implementation details 47

the interpolation polynomial through the gridpoints(
(s0, t0),p(0,0)

)
, . . . ,

(
(sk1 , tk2),p(k1,k2)

)
, . . . ,

(
(sn, tn),p(n,n)

)
is obtained by the formula

P Γi
n,k̃

(x1, x2) = [P s
n,t0(x1)] + [P s

n,t0(x1),P s
n,t1(x1)](x2 − t0) + . . .

+ [P s
n,t0(x1),P s

n,t1(x1), . . . ,P s
n,tn(x1)](x2 − t0)(x2 − t1) . . . (x2 − tn)

with P s
n,ti(x1) being the one-dimensional interpolation polynomial in s-direction with

constant t = ti and the index k̃ a two-dimensional index that identifies the polynomial
uniquely. In fig. 3.21, an illustration of the construction of one polynomial can be seen.
First, the interpolation is done in the s-direction and then the resulting polynomials
are interpolated in the t-direction.

P Γi
n,k̃

P s
n,j0

P s
n,j1

P s
n,j2

...

P s
n,jn

t0

t1

t2

tn

s0 s1 s2 sn

P Γi
n,k̃−→

p00 p01 p02

p0n

pn0
pn1 pn2

pnn

p10

p20

p1n

p2n

Figure 3.21. Construction of the two-dimensional interpolation of degree = 4. Note that the following
equalities hold: t0 = j0 ·h = j · h̃, ti = i ·h and tn = (j+ 1) · h̃. Here, h is the mesh size,
meaning 2nL ·h = 1, and h̃ is the step size for the polynomials, meaning 2nL ·h̃ = degree.

In fig. 3.20, the interpolation of degree 2 on a grid of refinement level 2 is illustrated
for a single patch. The evaluation of the local mapping γi,j,k with k = (k1, k2) is

thus approximated by the evaluation of the polynomial P Γi
degree,k̃

, where the index k̃ is

given by k̃ = (k1/degree, k2/degree). The Horner scheme, described in [70], can be used to
evaluate the polynomials and their derivatives in a stable way by factoring out common
differences. For the one-dimensional example, it would look like:

P (x) =
(
· · ·
(
[p0, . . . ,pn](x− sn−1) + [p0, . . . ,pn−1]

)
(x− sn−2)+

+ . . .+ [p0,p1]
)

(x− s0) + [p0].

For the two-dimensional case, this is done for each polynomial in s-direction and for
the interpolation of the polynomials in t-direction analogously.

48 Wavelet Galerkin method

3.4.1.2. Structure initialization

The structure initialization block from fig. 3.19 starts with the definition and initial-
ization of an element tree. The element tree replicates the refinement strategy of the
mesh. For one element, e, on level j, we store a reference to the four elements resulting
from the refinement from level j to level j + 1. In a forest fashion, each root node is
assigned the information of one patch. Each entry in the tree contains the indices of the
vertices of the element of the patches and four pointers to the four children stemming
from one refinement. Since this code works with a uniform refinement, the resulting
element trees are well-balanced.

Similarly, a wavelet tree can be constructed with regard to the elements in the support
of the wavelets. The children of a wavelet are the wavelets whose supports are included
in the refinement of the elements in the support of the parent wavelet. This means that
ψi,j+1,k is a child of ψi,j,k if Ωi,j+1,k ⊂ Ωi,j,k. Using this information, the wavelet tree is
initialized by starting with the coarsest level, i.e. the scaling functions on the patches.
The entries in the wavelet tree contain also the weights employed in the representation
of the wavelet as a linear combination of single-scale basis functions, as represented
schematically in fig. 3.5.

The last block is concerned with associating to one element all the wavelet indices which
contain the element in their support. Additionally, wavelets that do not contribute new
weights on a lower level element are replaced with wavelet weights for the element on
the coarser level. This is done by checking the value of the weights of the children of
each element, e, in the support of the wavelet. If the values of the weights corresponding
to the single-scale functions of the children of e are equal, the contribution is coarsened
to the contribution of e.

3.4.1.3. System matrix construction

Having the element and wavelet trees at hand, the a priori compression found in
eq. (3.8) can be applied to mark which entries of the system matrix need to be computed.
Two matrices are assembled synchronously, the matrix corresponding to the single layer
operator, V, and the matrix corresponding to the double layer operator, K, for all the
needed boundary integral operators as defined in lemma 2.15. The system matrix is
never assembled in a dense way. The entries that need to be computed are calculated
by applying the appropriate boundary integral operator in an element-wise fashion and
by applying a tensor product Gaussian quadrature on the unit square. Singular and
nearly singular integrals are treated as in [63]. The a posteriori compression found in
eq. (3.10) can then be applied to further reduce the number of elements of the system
matrix.

3.4.1.4. Solving the system

Assembling the right hand side of the equation is done by applying the corresponding
boundary integral operators in the order that they appear in the integral equations sum-

Implementation details 49

marized in lemma 2.15. When more than one operator needs to be applied, the Gramian
matrix, GnL =

(
〈ϕi, ϕj〉L2(Γ)

)
i,j

, is used in-between to project into the single-scale ba-

sis. The Newton potential, Nρ, is assumed to be known. The Restarted Generalized
Minimal Residual (GMRES) iterative solver described in [62] is then used, restarted
after 100 iterations, in order to compute the right hand side.

Since the system matrix is ill conditioned if the operator has an order different from
zero, condAnL ∼ 22nL|q|, a preconditioner as introduced in [26] is applied. This pre-
conditioner is based on the norm equivalences of the wavelet basis:

‖u‖2Hq(Γ) ∼
∑
i

∑
j

∑
k

22qj |〈u, ψi,j,k〉L2(Γ)|2, q ∈ (−1/2, 1/2).

It combines the diagonal matrix (Dq
nL)(j,k),(j′,k′)

··= 2qjδj,j′δk,k′ with the Gramian ma-
trix, GnL . The Gramian matrix is represented in the single-scale basis and needs to be
transformed into the wavelet bases by means of the fast wavelet transform, see [26] for
more details.

The linear system is then solved, either by applying a conjugate gradient (CG) solver,
[33], in the case of a symmetric and positive definite system matrix like in the standard
PCM case from eq. (1.31), or by applying again the GMRES solver for the equa-
tions (1.24), (1.28), and (1.32).

3.4.2. Class structure

Fig. 3.22 shows the class diagram for the wavelet classes. It describes a C++ abstract
implementation of a generic class GenericAnsatzFunction, which contains all aspects
of the code that do not depend on the particular choice of ansatz functions. For
example, the function generating the element tree does not depend on the choice of
basis functions and is located in the generic class. Both compressions, a priori and a
posteriori compression, only depend on the parameters a, b, d̃, and d′. The method
is implemented in the GenericAnsatzFunction and the parameters are initialized as
class members in the respective derived classes.

Two derived classes have been implemented, the ConstantAnsatzFunction for the
piecewise constant ansatz functions and the LinearAnsatzFunction for the piecewise
bilinear ansatz functions. The derived classes initialize the constants which are specific
to their definition and implement the quadrature routines and the wavelet tree genera-
tion. Among the constants and parameters are those relevant for the compression. The
quadrature is carried out on the reference element and employs the bijective mapping,
γi,j,k, from the unit square to the surface element under consideration. It distinguishes
between four cases, namely the integration on the same element or the integration of
two elements having a common edge, a common vertex, or nothing in common at all.
For the last three cases, the integral contains the singularity and the Duffy trick can
be used to calculate the value of the integral, see [26] and [63] for more details. The
method simplifyWaveletList is the one concerned with the coarsening of the wavelets
with identical weights.

50 Wavelet Galerkin method

GenericAnsatzFunction

+ elementTree

+ waveletTree

generateNet

compression

postprocessing

printGeometry

ConstantAnsatzFunction

+ noPhi = 1

+ td = 3

+ dp

integrateFunctions

generateWaveletList

simplifyWaveletList

completeElementList

LinearAnsatzFunction

+ noPhi = 4

+ td = 4

+ dp

integrateFunctions

generateWaveletList

simplifyWaveletList

completeElementList

Figure 3.22. Class diagram for the wavelet solver.

C H A P T E R 4

Generating the cavity

4.1 Surface decomposition . 51

4.2 Initialization and level set function 53

4.3 Initial triangulation . 62

4.4 Generating patches . 71

4.5 Surface parametrization 80

4.6 Mesh improvement . 81

4.7 Summary. 88

To use the BEM to solve the PCM equations, eq. (1.24) or eq. (1.27), the molecular
cavity has to be discretized. In the specific case of the wavelet BEM, the cavity needs
to be discretized into smooth quadrangular patches, which are uniformly refined up to
a specific level nL. The proposed algorithm is a versatile tool that can be used in most
cases where a level set function or a characteristic function of the sought surface is
known. Here, for the case of molecules defined by atoms, a level set function, χ(x), is
constructed which returns a negative number if the point x is outside of the molecule
and a positive number if it is inside the molecule. The inside of the molecule is herefore
broken down into three simpler geometrical forms.

4.1. Surface decomposition

The geometry described by the atoms and the probe radius can be split up into
parts stemming from three types of partial surfaces: convex molecular partial sur-
faces, toroidal partial surfaces, and concave spherical partial surfaces, as illustrated in

52 Generating the cavity

fig. 4.1. The first and simplest part of the level set function is the one coming from
the atoms, shown in fig. 4.1a. A point x is inside the molecule if it is inside one of the
atoms. This means that the point needs to be inside the sphere defined by the position
of the nucleus and the van der Waals radius.

(a) Partial surface stemming
from visible atoms of the
molecule.

(b) Partial surface stemming
from the interaction of two
atoms.

(c) Partial surface stemming
from the interaction of
more than two atoms.

Figure 4.1. Surface decomposition.

The second type of partial surface arises when only two atoms interact with the probe
sphere. The resulting shape is that of a sliced torus, since the probe sphere can orbit
around the two atoms. This can be seen in fig. 4.1b. A more in depth illustration is
found in fig. 4.2. The visible part of the torus is depicted in gray. In order to construct
the level set function, one starts with the circles on the interacting spheres, denoted by
c1 and c2, and the orbit of the probe, central. The radii of the circles c1 and c2 are
not necessarily equal. A more in depth description and a formula for calculating the
level set function will follow shortly.

central

c1
c2

. .

Figure 4.2. Torus detail.

The last type of partial surface comes up when more than two atoms of the molecule
interact with the probe sphere at the same time, as is shown in fig. 4.1c. This happens
when the probe sphere touches the molecular surface at three or more points at once.
The position of the probe is thus fixed and the visible partial surface is a concave
spherical partial surface defined by a partial surface of the probe sphere. In fig. 4.3, the
example of three interacting atoms is depicted. The level set function for the interaction
of three atoms would then return a positive number for points inside the possibly up
to two tetrahedra formed by the position of the atoms and the position of the probe

Initialization and level set function 53

sphere, but outside of the probe sphere, as depicted in fig. 4.3. This means, that for
the level set function of the interaction of more than three atoms, all combinations of
three interacting atoms are taken into account.

Figure 4.3. Spherical partial surface detail.

4.2. Initialization and level set function

The starting point of the algorithm is a list of atoms with their respective positions and
van der Waals radii and the radius of the probe sphere, pr. These entities are defined
as instantiations of a derived class. The base class can be found in lst. 4.4, where pos

is the position of the atom and rad is its radius.

Listing 4.4 SphereBase class definition.

class SphereBase{

Eigen:: Vector3d pos;

double rad;

};

The first step is to calculate which spheres interact. To this end, an adjacency matrix
is being constructed, where spheres have a direct interaction if the distance between
the centres is smaller than the sum of their radii as given by

‖si.pos− sj.pos‖2 < si.rad− sj.rad.

Other entries that generate an interaction are the indirect neighbours, where the spheres
only form an interaction due to the probe radius pr:

‖si.pos− sj.pos‖2 < si.rad− sj.rad + 2pr.

The complexity of constructing the adjacency matrix is O(n2
atoms), where natoms is the

number of atoms. This matrix is being used to calculate further interactions, for exam-
ple, when calculating the tori. The adjacency matrix is stored in a sparse compressed

54 Generating the cavity

row format and, since the interactions are symmetric, only the upper triangular part
needs to be stored.

4.2.1. Intersection of two spheres

The intersection of two spheres is needed in the construction of the molecular surface,
when determining the toroidal and concave spherical partial surfaces. This intersection
is either a point, a circle, or nothing at all, according to the distance between the
centres and the radii, as follows

‖s1.pos− s2.pos‖2

> s1.rad + s2.rad : no intersection,

= s1.rad + s2.rad : point intersection,

< s1.rad + s2.rad : circle intersection.

Only the last case is relevant for the construction of the molecular surface since the
radii of the atoms can be augmented by the probe radius and the case of the single
point intersection becomes irrelevant. This case is depicted in fig. 4.5.

circle

s1 s2

s2.rads1.rad

a

h

Figure 4.5. The intersection circle of two spheres.

In order to uniquely define the intersection circle circle, the position of the centre,
the radius, and the normal of the circle plane have to be computed. The position of
the centre is located on the connection line between the centres of the spheres s1 and
s2. The distance a between the sphere s1 and the centre of the circle and the radius,
h, of the circle satisfy the equations

h2 + a2 = s1.rad2,

h2 + (‖s1.pos− s2.pos‖2 − a)2 = s2.rad2.

This leads to the following equations for the distance a

a = (‖s1.pos− s2.pos‖22 + s1.rad2 − s2.rad2)/(2 ∗ ‖s1.pos− s2.pos‖2) (4.6)

and the radius h of the circle

h =
√
s1.rad2 − a2. (4.7)

Initialization and level set function 55

The position of the sought circle and the normal of the circle plane in the direction of
the first sphere are thus given by

circle.nrm =
s1.pos− s2.pos

‖s1.pos− s2.pos‖2
,

circle.pos = s1.pos− a · circle.nrm.

4.2.2. Circle line intersection

Another intersection that needs to be computed in the calculation of the molecular
surface is the intersection of a circle with a line which lies in the plane of the circle.

The intersection of a circle with a line defined by the direction d and the point p0 starts
by calculating the projection of the centre of the circle c.pos onto the line

c⊥ = p0 + 〈c.pos− p0,d〉d,

where c⊥ is the projection of the point c.pos onto the line.

Three different cases arise as depicted in fig. 4.8. The first case occurs if ‖c.pos−c⊥‖2 >
c.rad and, in this case, the circle and the line do not intersect. The second case happens
if ‖c.pos− c⊥‖2 = 0 and the intersection is a single point given by c⊥. The last case,
‖c.pos − c⊥‖2 < c.rad, results in two intersection points for the line and the circle
under consideration, p− and p+, obtained by the equation

p± = c⊥ ± b · d

with

b =
√
c.rad2 − ‖c.pos− c⊥‖22.

dp0 c⊥
dp0 c⊥

d

c.rad
b

p0 p+p− c⊥

Figure 4.8. The cases for the circle-line intersection.

4.2.3. Molecular partial surface

Having the positions and the radii of the atoms at hand, the first level set function of
the convex molecular partial surface, seen in fig. 4.1a and marked in blue, can easily be

56 Generating the cavity

defined. A point p is inside an atom if the following function returns a positive value:

χa(p) =

{
1, if there exists a sphere si such that ‖p− si.pos‖2 ≤ si.rad,

−1, otherwise.

4.2.4. Toroidal partial surface

The second partial surface consists of tori, as seen in fig. 4.1b and marked in gray. The
first step towards defining a toroidal partial surface is the calculation of the intersection
circles between the neighbours as seen in fig. 4.2. An index reference to these circles is
stored in the definition of each torus. The class definition of the circle and the torus
can be found in lst. 4.9.

Listing 4.9 Definitions used for the intersection of atoms.

class Circle:public SphereBase{

Eigen:: Vector3d nrm;

int left , right;

int index;

std::vector <int > points;

};

class Torus{

int c1 , c2 , central;

};

The construction of the circles and tori lists makes use of the adjacency matrix com-
puted from the spheres. The complexity of computing the tori is thus O(n), where
n is the number of interacting atoms given by the number of non-zero entries in the
adjacency matrix. For each entry in the adjacency matrix, three circles need to be
computed, c1, c2, and central, in order to define the toroidal partial surface. The
intersection between two spheres is depicted in fig. 4.5.

The three circles that need to be computed to completely define a toroidal partial
surface stem from three intersections involving spheres at the positions s1.pos and
s2.pos, illustrated in fig. 4.10a. The circle c1 comes from the intersection of the sphere
s1 with radius s1.rad and of the sphere s2 with the modified radius of s2.rad+pr. The
second circle, c2, is analogously constructed by incrementing the radius of the sphere
s1 by the probe radius and calculating the intersection. The last circle, central, comes
from the intersection of s1 and s2 with the radii both augmented by the probe.

The level set function of the toroidal partial surface is not so easily written down. A
graphical approach is better suited. In order to check if a point is inside a toroidal
patch, the algorithm illustrated in fig. 4.10 is used. First, the point has to be between
the two planes of the circles c1 and c2. This can be seen in fig. 4.10a, where only
the points inside the hatched gray area are still considered. The points thus belong

Initialization and level set function 57

to the set {p ∈ R3 : 〈c1.nrm,p〉 · 〈c2.nrm,p〉 > 0}, where c1.nrm and c2.nrm are
the normals to the circles c1 and c2, which point towards the centre of the spheres
that they are located on. The second test checks if the point is inside the cylinder of
radius max{c1.rad, c2.rad}, as illustrated in fig. 4.10b. To this end, the distance to
the rotation axis, s1.pos − s2.pos, is needed:

‖d2ax‖22 = ‖p− c1.pos‖22 − 〈p− c1.pos, c1.nrm〉2.

If ‖d2ax‖2 < max{c1.rad, c2.rad}, the point p is inside the cylinder between the
planes of the circles, c1 and c2, and radius max{c1.rad, c2.rad} depicted in hatched
gray in fig. 4.10b. The next step uses a, the distance between the sphere s1 and the
circle central, given by eq. (4.7), and the radius central.rad, defined in eq. (4.7) as
h.

If ‖d2ax‖2 > 0, the point p and the two circle centres, c1.pos, c2.pos, form a plane.
In this plane, the position of the two probe sphere centres o± where the probe sphere
touches the spheres s1 and s2, as depicted in fig. 4.10e are computed:

o± = central.pos± h · d2ax/‖d2ax‖2.

Here, d2ax is given by

d2ax = p− c1.pos− 〈p− c1.pos, c1.nrm〉c1.nrm.

We will denote by o+ and o− the upper and lower centre coordinates of the position
of the probe, respectively. The point p is inside the cavity if ‖p − o+‖2 > pr and
‖p − o−‖2 > pr, meaning that the points that lie inside the probe spheres are being
discarded.

If ‖d2ax‖2 ≈ 0, the point p is almost collinear with the circle centres c1.pos and
c2.pos. This means that there is no well defined plane in which the positions, o±, of
the probe sphere can be computed. If h − pr > 0, then p is inside the molecule, as
illustrated in light gray in fig. 4.10c. If h− pr < 0, then the probe sphere intersects the
connection line and the point, p, needs to be outside of the probe sphere. The resulting
surface is the spindle case seen in fig. 4.10e. The intersection points of the probe sphere
and the connection line are calculated, resulting in a segmentation of the connection
line in a sequence of points [c1.pos, c−, c+, c2.pos]. All the test points that lie in the
segments [c1.pos, c−] and [c+, c2.pos] are marked as inside the torus.

If the point is inside one of the toroidal partial surfaces, the algorithm returns the value
2 and is marked gray in the figures.

4.2.5. Intersection of three spheres or more

Whenever two or more central circles from different tori intersect, a concave spherical
patch has to be generated, as illustrated in fig. 4.3. The intersection of two circles in
three dimensions can be one or two points, the entire circle, or nothing at all. Since,
the circles are distinct, we are interested in the case of point intersections with one or
two points. These intersection points are stored in a vector of CirclePoints with the

58 Generating the cavity

central

c1
c2

. .

(a) Only points between the planes of the cir-
cles are considered.

central

c1
c2

. .

(b) Torus points need to be in the cylinder
of radius max{c1.rad, c2.rad}.

central

c1
c2

. .
a

h

(c) If h− pr > 0, all points in the cylinder of
radius h− pr are in the molecule.

central

c1
c2

. .
a

h

(d) Remaining points should be outside the
probe sphere.

.
o+

.
o−

c1 c2c− c+

(e) If h − pr < 0 and the point lies on the
connecting axis, the point should not be
between c− and c+.

Figure 4.10. Algorithm for detecting points inside a toroidal patch.

Initialization and level set function 59

definition found in lst. 4.11. The case of concentric circles or identical circles cannot
appear in our situation. Concentric circles would only appear if two atoms would be
entirely enclosed in another set of two atoms. The second situation can happen if again
fully enclosed atoms exist in the system or if two atoms appear two times each.

Listing 4.11 Definitions used for the intersection of circles on atoms.

class CirclePoints{

Eigen:: Vector3d pos;

std::vector <int > circles , spheres;

int addCircles(int index);

int addSphere(int index);

};

Two relevant cases arise when calculating the intersection between two circles, c1 and
c2, in three dimensions. The case of circles residing in parallel planes is one of them,
but it has a contribution only if the circles are in the same plane. The cases for parallel
circles are depicted in fig. 4.12. Hence, eq. (4.6) and eq. (4.7) can be used to calculate
the possibly up to two intersection points.

c1 c2

c2.radc1.rad

a

h

h

(a) Coplanar circles: two intersection points.

c1 c2a

(b) Coplanar circles: one intersection point.

c1 c2. .

(c) Coplanar circles: no intersection points.

c1 c2..

(d) Parallel, non-coplanar circles.

Figure 4.12. Possible intersections between parallel circles.

The second relevant case appears when the circles belong to intersecting planes, as
seen in fig 4.13. In this situation, the first step is to check if the spheres defined

60 Generating the cavity

by (c1.pos, c1.rad) and (c2.pos, c2.rad), respectively, are intersecting. In case the
spheres do not intersect, also the circles cannot intersect. Otherwise, the common line
of the two planes of the central circles, c1 and c2, is found. The direction of the line
is given by the cross product d = c1.nrm × c2.nrm, as seen in fig. 4.13a. In order
to completely define the line, a point on the line has to be determined. In case the
z-component of the direction of the line is non-zero, dz 6= 0, the point p0 given by

p0x =
c2.nrmy〈c1.nrm, c1.pos〉 − c1.nrmy〈c2.nrm, c2.pos〉

dz
,

p0y =
c1.nrmx〈c2.nrm, c2.pos〉 − c2.nrmx〈c1.nrm, c1.pos〉

dz
,

p0z = 0,

belongs to the common line. Analogous equations can be found for the case of dx 6= 0
or dy 6= 0. Since the normals, c1.nrm and c2.nrm, are not parallel, at least one of the
entries is different to zero and a point can be determined. The intersection of the line
with each circle c1 and c2 is computed, as described earlier. The possible cases are
depicted in fig. 4.13. The equal intersection points are stored as a component of the
CirclePoints vector. Note that the interaction of at least three atoms results in up
to two CirclePoints, defined by the positions where the probe sphere remains fixed.

The points inside the molecule are also inside the tetrahedron formed by the three
sphere atoms interacting and the position of the probe, but outside of the probe sphere.
To check if a point p is inside the tetrahedron, one has to solve the system of linear
equations

s1.pos

s2.pos

s3.pos

pr.pos

x = p.

The solution x represents the barycentric coordinates of the point p in the tetrahedron
formed by the positions s1.pos, s2.pos, s3.pos, and pr.pos. If all the entries are
between 0 and 1, the point p is inside the tetrahedron. If the distance to the position of
the probe sphere is larger than the radius of the probe, ‖pr.pos− p‖2 > pr, the point
is inside the molecule and the algorithm returns the value 3 and marks the surface in
red.

If a point is in none of the partial surfaces, the point under consideration is outside of
the molecule.

4.2.6. Domain decomposition

Testing for each point whether or not it belongs to any of the partial surfaces involved
might take a long time, which is why a domain decomposition technique is used to make
the search run in O(1). During the initialization phase, the bounding box surrounding
the molecule is split up into cubes of size

step_size = min{si.rad,pr}/geometryFactor, (4.14)

Initialization and level set function 61

n2n1

d
c2c1 . .

(a) Intersection of two planes.

c2c1 . .

(b) Non-coplanar circles: two intersection
points.

c2c1 . .

(c) Non-coplanar circles: one intersection
point.

c2c1 . .

(d) Non-coplanar circles: no intersection
points.

Figure 4.13. Possible intersections between non-coplanar, non-parallel circles.

62 Generating the cavity

where geometryFactor is a parameter that can be set. For each cube, an index to the
relevant partial surfaces is stored. A point p, that needs to be tested, is only to be
tested against the partial surfaces relevant for the associated cube.

The domain decomposition itself can be improved by using the information of the rele-
vant atoms in determining whether or not a toroidal or spherical surface is important.
This way, the search for the more complex partial surfaces is simplified. An atom is
considered to be relevant if the midpoint of the cube is in the neighbourhood of the
atom. The neighbourhood is defined by a sphere at the same position with the radius
augmented by the radius of the probe sphere and the cube size. If the subsequent
more complex geometries contain at least one relevant atom, they need to be tested,
otherwise the cube is not within the volume covered by that partial surface.

After the initialization phase, the information of the cube domain decomposition can
be used to find the relevant partial geometries in constant time for all points that will
be generated.

4.3. Initial triangulation

The starting point of the initial triangulation contains additionally to the input of the
program also the points and circles resulting from sphere-sphere interactions, circle-
circle interactions, the tori, the CirclePoints and the domain decomposition. This
information is used to find out if a point, p is inside the geometry or not. The first
step is to generate a fine approximation of the surface, by using the marching cubes
algorithm. This initial mesh has to guarantee that the fine structures of the geometry
are resolved and that quadrangular patches can be formed.

4.3.1. Marching cubes

The initial triangulation is obtained from a marching cube algorithm, as originally
described in [46], applied inside the bounding box of the molecule. The bounding box
of the molecule is defined as the cuboid that fully encloses the molecule. The lengths
of the sides are given as a function over all atoms s of the molecule as follows:

lx = max
s
{s.posx + s.rad + pr} −min

s
{s.posx − s.rad− pr} ,

ly = max
s

{
s.posy + s.rad + pr

}
−min

s

{
s.posy − s.rad− pr

}
,

lz = max
s
{s.posz + s.rad + pr} −min

s
{s.posz − s.rad− pr} .

The molecule is translated such that the origin of the cuboid lies in the origin of the
coordinate system. This is done by transporting each sphere centre by

xmin = min
s
{s.posx − s.rad− pr} ,

ymin = min
s

{
s.posy − s.rad− pr

}
,

zmin = min
s
{s.posz − s.rad− pr} .

Initial triangulation 63

Uniformly distributed gridpoints are generated with the stepsize given as a function of
the radii of the atoms and the probe radius, like in eq. (4.14). The gridpoints can be
separated by means of the level set functions defined earlier into inner points and outer
points. The cubes which have corner points both, outside and inside the molecule,
are the cubes which contain the surface. There are several cases of boundary cubes
which are summarized in fig. 4.15, depending on the way that the surface cuts the
cube. The points belonging to the same group, inside or outside the cavity, are marked
with the same color, blue or green. If the points belonging to the same group do not
form a connected graph with respect to the edges of the cube, the refinement was not
chosen fine enough and the stepsize for the cubes has to be adjusted. The complexity
of classifying the cubes into exterior, interior and boundary cubes is of order O(n3).

Figure 4.15. Intersection of the surface with the cubic grid.

By using the bisection algorithm shown in algo. 4.16, the surface points, marked in red
in fig. 4.15, can be found up to a given precision.

Algorithm 4.16 Bisection algorithm for finding the surface.

procedure bisection(P ,Q) . find point on surface between points P and Q
if ‖P −Q‖ < εsurf then

return P . points are close enough

let M = 0.5(P +Q) . find midpoint
if M on the same side as P then

return bisection(M , Q)
else

return bisection(P , M)

The resulting surface description is an unstructured grid stemming from the intersec-
tions, as seen in fig. 4.15. The elements of the unstructured grid can potentially be
very small or have very small edges, as seen in fig. 4.17.

4.3.2. First triangular mesh

In the next step, non-triangular elements of the surface grid are subdivided into tri-
angles by recursively inserting a new edge with the shortest length. This leads to
a triangular mesh with possibly ugly triangles. Nonetheless, since the elements are
convex, the division into triangles can be generated without any further tests.

64 Generating the cavity

Figure 4.17. Unstructured grid resulting from the marching cubes algorithm.

For the triangle ∆ with edges e1, e2, and e3, we associate a fitness measure defined by

fit(∆) =
4
√

3|∆|∑
i |ei|2

, (4.18)

where |ei| denotes the length of the edge ei in ∆. This fitness measure takes values
between 0 and 1. An equilateral triangle would have a fitness of 1. The further the
triangle deviates from being equilateral, the smaller the value of the fitness becomes.
This definition takes only the angles, α, β, and γ, of the triangle, ∆, into account and
can be rewritten as

fit(∆) =
2
√

3 sin(α) sin(β) sin(γ)

sin2(α) + sin2(β) + sin2(γ)
.

Different definitions of the fitness measure can also be used, for example

fit2(∆) =
6
√

3 sin(α) sin(β) sin(γ)

(sin(α) + sin(β) + sin(γ))2
=

12
√

3|∆|
(|e1|+ |e2|+ |e3|)2

,

fit3(∆) =
2
√

3 3
√

sin(α) sin(β) sin(γ)

3
=

4
√

3|∆|
3
√

(|e1| |e2| |e3|)2
.

(4.19)

These measures also have values between 0 and 1, with 1 for the equilateral case.
A comparison plot can be found in fig. 4.20, where two angles of the triangle vary
according to α+ β ≤ π and the third is computed by γ = π−α− β. This figure shows
that all measures have a maximum for the equilateral triangle and go to zero the more
the triangle degenerates. The measure (4.18) chosen here decays the fastest.

The first triangular mesh improvement step replaces edges in an ascending order of
the replacement error. This coarsening stops when the fitness level of the worst tri-
angle reaches a certain threshold. The algorithm for replacing an edge is presented in
algo. 4.22.

Initial triangulation 65

(a) First fitness measure fit(∆). (b) Second fitness measure fit2(∆).

(c) Third fitness measure fit3(∆).

Figure 4.20. Comparison of fitness measures for triangles as described in eq. (4.18) and eq. (4.19).

Algorithm 4.22 Replacing an edge with a point.

procedure replaceEdge(mesh, ei) . replace edge with index ei in mesh
let mesh→edgeNodes[ei] = (n1, n2) . node index of the edge
let mesh→ edgeElements[ei] = (e1, e2) . elements of the edge
let mesh→nodes[ni] = qi, i = 1, 2 . vertices of the edge
find elements = {∆ ∈ mesh : n1 ∈ ∆ or n2 ∈ ∆}
calculate A ∈ R|elements|×3, Ai,: = n∆i , ∆i ∈ elements
calculate b ∈ R|elements|, bi = 〈n∆i , qi〉, ∆i ∈ elements, qi ∈ ∆i

calculate via QR decomposition pnew ≈ A−1b
for each ∆j = ∆(p1,p2,p3) ∈ elements do . compatibility condition
d = p1 − p2, with the point p3 on the edge ei
n = d× n∆j

check that 〈n,p3 − p1〉 · 〈n,pnew − p1〉 > 0 . points pnew and p3 on the same
side of plane defined by d and n∆j

66 Generating the cavity

(a) Situation before edge replacement. (b) Situation after edge replacement.

Figure 4.21. Edge replacement by a point.

It takes the mesh description and the index of the edge, e = (q1, q2), to be replaced as
input and gives the new point, pnew, and the error, error(e), made by the replacement
as an output. The point pnew is chosen as the least squares solution of the following
problem:

pnew = arg min
q∈R3

‖Aq − b‖2. (4.23)

Here, the matrix A is given by ni, the normals to the triangles containing either q1 or
q2, and b = 〈ni,pi〉, where pi is a point in the triangle corresponding to the index i of
the system matrix. In order to get a better understanding of the entries of the matrix
A and the vector b, let us consider the situation found in fig. 4.24. The matrix A and
the vector b are here given by

A =

nT1
...
nT4
nT5
...
nT9

and b =

〈n1, q2〉
...

〈n4, q2〉
〈n5, q1〉

...
〈n9, q1〉

.

The new point is calculated by a QR decomposition of the system matrix A from
eq. (4.23). The norm of the residuum of the solution is used to decide upon which edge
to replace first. The error for the edge marked with magenta is thus given by

error(e) = ‖Apnew − b‖2.

The system represents the plane equations of all triangles that are involved in the
replacement of the edge by pnew. The perfect point would thus lie in all the planes
involving q1 and q2. The edge that will be chosen is the one that has the smallest error.

Initial triangulation 67

∆1

∆2

n1

n2

n3n4 = n∆1
n5

n6

n7 n8

n9 = n∆2

q1 q2
pnew

Figure 4.24. Example of edge replacement.

The chosen point is then projected onto the surface in the direction of the mean of the
normals of the two triangles, ∆1 and ∆2, containing the edge to be replaced:

n1/2 =
1

2
(n∆1 + n∆2). (4.25)

Before the edge is replaced, the point has to pass an admissibility test to guarantee that
the new surface does not have self-intersections. Namely, we have to check whether the
new point is on the same side of a plane as the old point for each triangle still contained
in the new mesh. Let the old triangle be ∆old = ∆(p1,p2,p3) with the normal n∆ and
the new triangle ∆new = ∆(p1,p2,pnew), where p3 is either q1 or q2. The admissibility
check ensures that the following inequality holds:

〈(p1 − p2)× n∆,pnew − p1〉〈(p1 − p2)× n∆,p3 − p1〉 > 0. (4.26)

The test looks at the plane perpendicular to each of the old triangles, ∆old, which con-
tain both, p1 and p2, marked in blue in fig. 4.27. If the new point is in the hatched side
of the blue plane it is admissible, otherwise it is discarded. This plane is characterized
by the normal given by n = (p1 − p2)×n∆. If there is at least one triangle where the
inequality (4.26) does not hold, the replacement would result in a self-intersection of
the surface and the edge is not replaced, independent of the error being made.

A simple case, where such a self-intersection occurs, is illustrated in fig. 4.28. The
triangles are all in one plane. In the left subfigure, the situation before the replacement
is depicted. Replacing the edge in the centre, highlighted in magenta, for example by
its midpoint, results in a self-intersecting surface involving the marked green, red, and
blue triangles.

The complexity of the mesh improvement by the coarsening algorithm is governed by
the complexity of calculating the sorted list of errors for the edge replacement. A
naive implementation would use a standard vector and the quick-sort algorithm which
would result in a complexity of O(ne log(ne)), with ne being the number of edges.
The drawback consists in the fact that the vector needs to be computed anew every
time an edge is replaced. The method used to improve the complexity in the present
implementation is the usage of a doubly linked list instead of a vector. The doubly
linked list is initialized from a vector, built as previously described, and kept up to date

68 Generating the cavity

p1

p2

p3

p1 − p2

n∆

n

Figure 4.27. Example of admissibility test.

Figure 4.28. Example of a self-intersecting surface after an edge replacement. The triangles that form
a problem are highlighted in green, red, and blue.

Listing 4.29 Node structure of the doubly linked list.

struct node{

int edgeIdx;

double val;

Eigen :: Vector3d point;

node* next;

node* prev;

};

Initial triangulation 69

with every replacement. The nodes of the doubly linked list contain the information
found in lst. 4.29.

A reverse access vector of pointers is also employed in order to easily find the nodes of
specific edges. A schematic of the structure can be seen in fig. 4.30, where for example
the edge with the index 1 has the smallest error of replacement and the largest error
belongs to the edge with the largest index, ne − 1.

∅ nodei nodej · · · nodek ∅ doubly linked list

· · · reverse access vector

0 1 ne − 1

Figure 4.30. Structure of the doubly linked list and the reverse access vector.

The replacement of the magenta edge from fig. 4.31 will be taken as reference to ex-
emplify the changes that need to be done to the mesh and the doubly linked list. The
edges marked magenta and dashed black need to be removed from the mesh. Likewise,
the triangles coloured lightgray are deleted as well as one of the nodes of the magenta
edge. The remaining node of the magenta edge changes the coordinates to the new
point, pnew, calculated by algo. 4.22. The blue edges will need to update their node
information. The orange triangles are altered as well, since their nodes, edges, area,
normal, and fitness will change. Finally, the doubly linked list needs to be updated for
both the green and the blue edges.

The update of the linked list is performed in two steps, the reverse access list is used
to remove the edge information from the list in O(1). Calling the algo. 4.22 for all the
edges that need to be updated gives the new information that needs to be added to the
list. One addition has complexity O(ne), where ne is the current size of the list. This
leads to the overall complexity O(nupdatene), where nupdate depends on the degree of
the nodes in the direct neighbourhood of the edge being replaced. This implementation
performs much faster compared to the naive implementation when the number of edges
in the mesh is very large and has similar computation times for small meshes.

4.3.3. Even number of triangles

Since the goal is to create quadrangular patches on the surface, the next step ensures
an even number of triangles in the surface grid. Several methods can be employed to
discretize one triangle into an even number of triangles, as seen in fig. 4.32. After the
first improvement step, described in the previous section, the remaining triangles should
be closer to equilateral triangles, such that the first refinement method of fig. 4.32 is
used. This keeps the overall quality of the mesh the same and introduces points only on
the edges of the elements, which is of linear complexity in the number of edges, O(ne).
The third refinement of fig. 4.32 could be used to decrease the size of the longest edges.
The implementation, however, can be tricky, since it does not symmetrically refine all
edges and the best choice of edges to be refined has to be found. A combination of

70 Generating the cavity

Figure 4.31. Edges that need to be updated by replacing the edge marked in magenta. The blue
edges are directly affected by the edge replacement. One of the nodes will be updated
to be the new point. The triangles in orange need to update area, normal, fitness, indices
of nodes and edges. The green edges are affected by the change of the normals of the
orange triangles and the edge replacement algorithm needs to be evaluated again.

(a) Refinement of one triangle
into four triangles.

(b) Refinement of one triangle
into six triangles.

(c) Refinement of one triangle
into two triangles.

Figure 4.32. Refinement methods for triangles.

Generating patches 71

different refinement methods can also be used. This would result in a refinement of one
triangle in twelve new triangles if for example the first two methods are employed. Since
the first mesh improvement guarantees triangles with high fitness, the first refinement
into four triangles is applied.

4.3.4. Final improvement

The refinement and projection onto the surface can lead to a few triangles that have a
fitness under the given threshold, so the new mesh is again improved until the threshold
in the fitness of the elements is reached again. This eliminates mainly very small
elements that have been created due to the refinement. This elimination is done via
the algorithm found in algo. 4.22. Although edges are being replaced by points, it
does not change the fact that we now have an even number of triangles, since each
replacement removes exactly two triangles from the mesh.

All steps described so far are depicted in fig. 4.33 for a toy example. On the first line,
the initial configuration of the interlocking spheres and the unstructured grid are shown.
On the second line, the initial triangulation obtained from splitting the unstructured
grid and the optimized initial triangulation are depicted. The final triangulation, seen
in fig. 4.33d, would enable the use of boundary element methods which are based on
the standard surface representation by planar triangles.

4.4. Generating patches

In order to generate the subdivision of the surface into rectangular patches, the same
algorithm for replacing edges by points is used, as in the previous section, namely
algo. 4.22. This is done until a given number of triangles is left in the surface description,
n∆ = 2n�. The desired final number of patches is determined by the input parameter
n�. The resulting coarse geometry can be seen in fig. 4.36a. A graph based algorithm
is used to calculate a minimum-cost matching that reflects which triangles should be
put together.

4.4.1. Convexity in three dimensions

Not any two triangles can be merged into a patch. An obvious requirement for a patch
in a plane would be the fact that it should be convex. The concept of convexity will be
extended to three dimensions in the context of generating patches for wavelet BEM.

4.4.1.1. Convexity from plane projection

Convexity of a quadrangle can be claimed in a plane if the diagonals are inside the
quadrangle, as represented in fig. 4.34a. For a quadrangle given by its four vertices
p1,p2,p3 and p4, one needs to check that the diagonals lie between the edges. For
example, the vector p4 − p2 should be between the vectors p1 − p2 and p3 − p2, all

72 Generating the cavity

(a) Input of the program. (b) Unstructured grid.

(c) Initial triangulation. (d) Improved initial triangulation.

Figure 4.33. First steps of the mesh generation.

Generating patches 73

located in the origin, and likewise the vector p1 − p3 should be between the vectors
p2−p3 and p4−p3, also located in the origin. Given three vectors in R3 located in the
origin, a, b, and c, the test checks if c is between a and b by checking if the following
conditions are fulfilled: {

〈a× b,a× c〉 ≥ 0,

〈b× c, b× a〉 ≥ 0.

The first equation checks whether the vectors b and c are on the same side of the vector
a. This is done mainly through the calculation of the cross product. If the sine changes
sign, the vector from the cross product will be pointing in the opposite direction. The
second equation, similarly, checks that the vectors a and c are on the same side of the
vector b. Since the surface is a three dimensional construct, the vertices of the polygon
need to be projected onto a plane to check the position of the diagonals. The plane
chosen is the median plane resulting from the arithmetic mean of the normals of the
two triangles involved and the common points.

p1

p2

p3

p4

(a) Simple plane
convexity for a
given quadrangle.

(b) Representation of the
quadrangle in the median
plane.

(c) Representation of the
quadrangle on the surface.

Figure 4.34. Convexity check by means of the diagonals.

Let the triangles be ∆1 = ∆(p̃1,p2,p4) and ∆2 = ∆(p2, p̃3,p4) with the common edge
(p2,p4), as depicted in fig. 4.35. Only two points need to be projected, namely the
points that do not belong to the common edge, p̃1 and p̃3. Let the median plane be
defined by n1/2 = (n∆1

+ n∆2
)/2 and the point p2. It can be easily shown that the point

p4 also belongs to the median plane. A point x belongs to the plane if it fulfils the
plane equation

〈n1/2,x− p2〉 = 0.

We now insert the point, p4, into the plane equation and get the relation

〈n1/2,p4 − p2〉 =

〈
n∆1 + n∆2

2
,p4 − p2

〉
=
〈n∆,p4 − p2〉+ 〈n∆2 ,p4 − p2〉

2
.

Since the points, p2 and p4, belong to both planes defined by ∆1 and ∆2, they satisfy
the plane equation for each of the triangles taken separately and thus also the plane

74 Generating the cavity

equation of the median plane

〈n1/2,p4 − p2〉 = 0.

p̃1 p̃3

p2

p4

p1 p3

∆1 ∆2

Figure 4.35. Projection for the plane convexity check for two triangles.

This naive approach works well when the triangles are in the same plane to begin with,
but fails miserably otherwise. This is illustrated in fig. 4.34b and fig. 4.34c, where the
projected triangle vertices form a convex quadrangle while the partial surface has an
angle seemingly close to π.

A different approach for checking convexity is to consider the angles between the edges
of the projected polygon. This means that the angles should be as close to π/2 as
possible. Similar results as the check for the diagonals can be achieved. Since this
approach can fail depending on the median of the normals chosen, a different method
needs to be used.

4.4.1.2. Convexity on the surface

The approach used in our implementation approximates the angles between the edges
on the surface instead of a plane. Patches should be chosen such that the resulting
elements form a nice mesh on the surface, i.e., a mesh without degenerated elements.
This means that the angles on the surface should be as close to π/2 as possible.

In order to approximate the angles on the surface, points on the edges are generated by
a uniform refinement of the coarse triangles as shown in fig. 4.32a up to a given level
patchOptimize. Fig. 4.36 shows the successive uniform discretization of the coarse
mesh into a mesh of level one, a mesh of level two, and the final mesh of level four. The
new points generated by the splitting of the triangles are projected in the direction of
the normal onto the surface. For each point, as in eq. (4.25), the mean of the normals
of the two triangles to which the edge belongs to is being used.

Finding the order of the points on the edges can be naively done by using the Dijkstra
algorithm, [16], once for each sought path. The nodes and edges of the graph are in
this case the vertices and edges of the fine mesh. The start and end node for one run of
the Dijkstra algorithm would then be the nodes representing the ends of the path. The

Generating patches 75

(a) Coarse mesh. (b) Refinement on level one.

(c) Refinement on level two. (d) Edges and fine mesh on level four.

Figure 4.36. Coarse mesh and refinement up to the required level for the optimization,
patchOptimize.

76 Generating the cavity

algorithm finds the shortest path between the nodes with a complexity of up to O(n2
n)

per path, where nn is the number of nodes in the graph, being equal to the number of
vertices in the fine mesh.

We use a more clever algorithm that stores an additional integer per node in the fine
mesh where the corresponding index of the edge in the coarse mesh is stored, as depicted
in fig. 4.37. In case the node is a node of the coarse mesh, the particular value of −1 is
used. Special attention is given to the first refinement, which initializes the first nodes
corresponding to the first vertices that are inserted on the edges. The new nodes are
assigned the edge index of the coarse mesh edge that they belong to and are inserted
in a path vector for the edge under consideration. Every subsequent refinement checks
the value assigned to the vertices of the fine edge to be refined. For one edge with node
indices, e = (n1, n2), the midpoint generated by the refinement checks the values of the
help vector at the indices n1 and n2, helpEdgeVector[n1] and helpEdgeVector[n2],
respectively. If the values are equal, the new node belongs to the same coarse edge and
the new node is marked accordingly and inserted into the path vector. The node also
belongs to the coarse edge if one of the vertices is a vertex of the coarse mesh marked
with −1. The new node is otherwise marked with −2 and is an inner node. This is
done in constant time while calculating the refinements.

−1

−1

−1 −1

−1

−1
e1

e3 e2

−1

−1

−1
e1

e3 e2

e1

e3
−2

e1

−2
e2

−2

e3 e2

Figure 4.37. Refinement of the elements with path information.

By repeating this procedure recursively, the points on the edges, highlighted in white in
fig. 4.36d, can be determined. The runtime of this refinement step can be improved by
refining the elements only towards the boundary. This is however not done here, since
the tests showed that the refinement time is not the bottleneck of the mesh generation.

The angles are finally approximated by calculating them using points on the edges
under consideration, as schematically shown in fig. 4.38a.

The convexity of the respective patch can, in this case, be checked by the following
equations:

α̂ ≤ π : 〈(p1→4 − p1)× (p1→2 − p1),np1〉 ≥ 0,

β̂ ≤ π : 〈(p2→1 − p2)× (p2→3 − p2),np2〉 ≥ 0,

γ̂ ≤ π : 〈(p3→2 − p3)× (p3→4 − p3),np3〉 ≥ 0,

δ̂ ≤ π : 〈(p4→3 − p4)× (p4→1 − p4),np4〉 ≥ 0.

(4.39)

Here npi is the normal at point pi calculated as the mean of the normal of all elements

Generating patches 77

p1

p2

p3
p4

p1→2

p2→1 p2→3

p3→2

p3→4
p4→3

p4→1

p1→4
α̂

β̂

γ̂δ̂

(a) Convexity check using surface angles. (b) Convexity check in three dimensions.

Figure 4.38. Convex check by means of angles.

on the fine mesh containing pi:

npi =

∑
pi∈∆n∆

deg pi
.

4.4.2. Combining triangles to quadrangles

Even if all non-convex combinations are left out, each triangle has up to three possible
combinations for generating quadrangular patches. The challenge is to find out which
triangles should be merged to a patch such that the overall mesh fitness is the best.
The dual graph can be used to transform the problem into a graph based problem. The
dual graph is defined as the graph where each node represents a triangle in the mesh.
The neighbouring relations in the mesh form the edges of the graph. The edges can
be equipped with weights corresponding to the quality of the patch generated by the
two underlying triangles. A perfect matching represents a choice of edges in the graph
such that all nodes are covered by exactly one edge in the matching. A matching is
the equivalent of a valid choice of patch generation. The best matching is sought after
such that the overall fitness is minimized. To this end, the non-convex combinations
are penalized by the maximum possible weight of 106. For the convex combinations,
the weight is set by the fitness measure chosen. Several fitness functions have been
investigated. We will present them here shortly and analyse their advantages.

4.4.2.1. Plane fitness measure

The first type of fitness measure looks at the projected vertices of the patch under
consideration. Let the triangles for which the fitness measure is calculated be defined

78 Generating the cavity

by ∆ = ∆(p̃1,p2,p4) and ∆2 = ∆(p2, p̃3,p4) with the common edge (p2,p4), as
depicted in fig. 4.35.

The plane onto which the triangles are projected is determined by the mean of the
normals

n1/2 =
n∆1 + n∆2

2

and the two common points p2 and p4. The only points that need to be projected
onto this plane are the two points p̃1 and p̃3. These are projected onto p1 and p3,
respectively.

The first of the plane fitness measures takes the area, A(p1,p2,p3,p4), and the perime-
ter, P (p1,p2,p3,p4), of the quadrangle into consideration:

fit(∆1,∆2) =
P (p1,p2,p3,p4)2

16A(p1,p2,p3,p4)
.

This function is one for a square and has values between zero and one for all other
quadrangles.

An alternative version of the plane fitness measure is to consider the angles between
the vertices of the patch. Recall that the sine has values in [0, 1] for angles between
0 and π with a maximum at π/2. The square of the sine can be calculated by means
of the dot product of adjacent edges. This leads to the fitness measure given by the
algorithm found in lst. 4.40. It calculates the inverse of the square of the sine of the
angles and penalizes the patches with angles further away from π/2.

Listing 4.40 Plane fitness by means of angles.

Eigen:: Vector3d a = (p1 -p2).normalized ();

Eigen:: Vector3d b = (p3 -p2).normalized ();

Eigen:: Vector3d c = (p3 -p4).normalized ();

Eigen:: Vector3d d = (p1 -p4).normalized ();

double sin_alpha = 1./(1-a.dot(d)*a.dot(d));

double sin_beta = 1./(1-a.dot(b)*a.dot(b));

double sin_gamma = 1./(1-b.dot(c)*b.dot(c));

double sin_delta = 1./(1-c.dot(d)*c.dot(d));

double max;

if(sin_alpha < sin_beta) max = sin_beta;

if(max < sin_gamma) max = sin_gamma;

if(max < sin_delta) max = sin_delta;

return fabs(max);

Generating patches 79

4.4.2.2. Normal fitness measure

The category of the plane fitness measures have the disadvantage of not taking the
curvature of the surface into account. This leads in general to a bad combination of
patches, which might look good in the median plane, where the fitness has been calcu-
lated, but that are distorted into ugly combinations on the surface, as seen previously
for the convexity check in fig. 4.34. By using the normals of the coarse triangles, one
can favour pairs of triangles that have a small difference in the normals. This can be
expressed through the fitness measure

fitn(∆1,∆2) =
1

1− 〈n∆1 ,n∆2〉2
.

This means that triangles which are almost in the same plane are preferred over triangles
with a big difference in the angle between the normals, which would in turn lead to
a resulting patch with a high curvature. This however does not take the shape of the
triangles and the resulting quadrangle into account.

4.4.2.3. Surface fitness measure

The third type of fitness measure presented is a surface fitness measure, where the
surface angles of the patches are taken into account. This leads to the best results and
is used in the code. Such a fitness measure can be constructed by using the same points
as for the convexity check seen fig. 4.38a. This enables us to approximate the sine of
the surface angles in accordance with

sin2 α̂ ≈ 1−
(
〈(p1→4 − p1), (p1→2 − p1)〉
‖p1→4 − p1)‖2 · ‖p1→2 − p1‖2

)2

,

sin2 β̂ ≈ 1−
(
〈(p2→1 − p2), (p2→3 − p2)〉
‖p2→1 − p2‖2 · ‖p2→3 − p2‖2

)2

,

sin2 γ̂ ≈ 1−
(
〈(p3→2 − p3), (p3→4 − p3)〉
‖p3→2 − p3‖2 · ‖p3→4 − p3‖2

)2

,

sin2 δ̂ ≈ 1−
(
〈(p4→3 − p4), (p4→1 − p4)〉
‖p4→3 − p4‖2 · ‖p4→1 − p4‖2

)2

.

The angles are closest to π/2 if

fit� =
1

min{sin2 α̂, sin2 β̂, sin2 γ̂, sin2 δ̂}
, (4.41)

is closest to one. A similar algorithm as in lst. 4.40 is exploited for calculating the sine
of the angles.

4.4.2.4. The blossom algorithm

The blossom algorithm, [41], is used to find a perfect matching. Recall that a matching
is a set of disjoint edges and a perfect matching is a matching where all the nodes are

80 Generating the cavity

being covered. In particular, this means that each triangle is matched to one of its
neighbours. In our case, there are several perfect matchings possible. The one which
optimizes the cost functional, represented here by the fitness measure, is being chosen.

The blossom algorithm finds the perfect matching, if one such matching exists, in a
complexity O(nm log n), where n is the number of nodes in the graph and m is the
number of edges. For the case of the triangular mesh, the number of nodes in the
graph is equal to the number of triangles in the mesh, n = n∆. A triangle has three
neighbours, which leads to a total number of neighbours, for a closed surface, given
by 3n∆/2. The number of edges in the graph used for the matching is thus given
by the number of neighbouring relations, m = 3n∆/2. This leads to a complexity of
O(n2

∆ log n∆), with n∆ = 2n� being in general a relatively small number.

4.5. Surface parametrization

Another input parameter sets the number of desired refinements, nL, of the coarse
surface representation. It defines the number of levels in the resulting quadrangular
mesh. The starting point of the patch parametrization is the coarse mesh depicted in
fig. 4.36a together with the output of the blossom algorithm. The refinement is done
iteratively until the mapping from the unit square to the patch described in chpt. 3,
in particular in fig. 3.1, can be calculated by interpolation. This yields a subdivision
scheme which is illustrated in fig. 4.43. For the subdivision scheme to work, we define
an element as the smallest bilinear quadrangular unit on the current level of refinement.
In particular, this means that the coarsest level has n� elements. Each refinement step
divides each element of the surface mesh into four new elements.

In order to achieve the refinement on level nL, one recursively refines the elements.
This is done by using the mapping from the unit square, �, to the bilinear element,
described by its points p1, p2, p3, and p4. The element is refined and the new points
are lifted onto the surface in normal direction. The bilinear interpolation between the
points p1, p2, p3, and p4 is given by

Q�i(s, t) = (1− s)((1− t)p1 + tp4) + s((1− t)p2 + tp3). (4.42)

The surface point corresponding to (s, t) ∈ � is calculated by projecting the result of
the bilinear interpolation in the direction of the normal at this point. The normal is
calculated by taking the partial derivatives in s and t and applying the cross product

n�i(s, t) =
∂Qi

∂s
(s, t)× ∂Qi

∂t
(s, t).

On the boundary between two elements the arithmetic mean between the normals from
both sides is taken.

The first image of fig. 4.43 illustrates the coarse mesh including the normals at the patch
corners and the element normal calculated in the centre of the element. The other
images show the next refinements. The points are calculated by taking the bilinear
interpolation from (4.42) and evaluating it in the element vertices. In particular, for

Mesh improvement 81

one refinement step, the inner point found at (1/2, 1/2) and the boundary points at
(0, 1/2), (1, 1/2), (1/2, 0), and (1/2, 1) have to be computed for each element. All points
on the element boundaries are calculated only once.

4.6. Mesh improvement

If the initial position of the vertices on the coarse quadrangular representation of the
surface does not lead to satisfying results, improvements of the mesh can be applied
by repositioning the vertices of the coarse mesh. These improvements do not allow for
changes in the underlying matching, but move the vertices instead such that the fitness
of the patches is improved. The improvement step is done on the patchOptimize level
of refinement.

4.6.1. Doubly neighbours

The first improvement treats the case of patches with two common edges, seen in
fig. 4.44. This has to be avoided and treated before any improvement algorithm can
run. It cannot be optimized by discrete movements of the vertices of the coarse mesh,
since in each step the point that belongs to both adjacent edges will be moved to
optimize one patch while worsening the fitness of the other patch. We overcome this
situation by removing the common point in the coarse representation altogether and
using less patches to discretize the surface. This step is performed on the output of the
blossom algorithm before the mesh improvement starts.

4.6.2. Angle improvement

The best discretization has the same surface angle for each angle attached to a vertex.
In order to achieve that, the vertex nodes of the coarse mesh are being moved, such
that the difference in the angles is decreased as seen schematically in fig. 4.48. In the
continuous approach, the point pi would be replaced by the point p̃i which minimizes∑

j(αj −αopt)2, where αj are the surface angles measured as in fig. 4.38a. The optimal
angle, αopt, depends on the degree, deg pi, of the coarse node, pi, with respect to the
quadrangular patches which contain the node: αopt = 2π/degpi. Two cases arise, the
convex and the non-convex surface angle case.

4.6.2.1. Convex improvement

If all the angles belonging to a node are smaller than π, the functional containing the
squared difference in the cosine value is used. This can easily be calculated by taking
the dot product of the normalized edges that span the angle under consideration:

fit(pi) =

∑
j(〈p

j
i→i−1 − pi,p

j
i→i+1 − pi〉 − cos(αopt))

2

deg pi
. (4.46)

82 Generating the cavity

(a) Coarse mesh, including element normals. (b) Refinement on level one, including ele-
ment normals.

(c) Refinement on level two, including element
normals.

(d) Refinement on level three, including ele-
ment normals.

(e) Refinement on level four, including ele-
ment normals.

(f) Refinement on level four.

Figure 4.43. Coarse patches and refinement up to required level.

Mesh improvement 83

Figure 4.44. Problem with local optimization in case of two patches with two common edges.

p0
i→i−1

p2
i→i−1

p1
i→i+1

p2
i→i+1

pi

p0
i→i+1p1

i→i−1

α0

α1

α2

Figure 4.45. Description of angles around a patch vertex.

84 Generating the cavity

Here, each angle of the node, pi, taken inside the patch j is schematically seen in fig. 4.45
and thus approximated by](pji→i−1,pi,p

j
i→i+1) on the finest level. The direction, in

which the point pi is moved, is the direction of steepest descent given by

∇fit(pi) =
2
∑

j(〈p
j
i→i−1−pi,p

j
i→i+1−pi〉−cos(αopt))(2pi−pji→i−1−p

j
i→i+1)

deg pi
. (4.47)

The step size, h, used for the update depends on the length of the shortest edge, e,
between two vertices belonging to the coarse mesh, taken with respect to the polygonal
approximation of the surface given by the fine quadrangular mesh, h = mine ‖e‖/2. If
the new point p̃i = pi − h∇fit(pi) is outside of the geometry, the bisection algorithm
from algo. 4.16 can be used to find the closest point on the surface in the direction of
steepest descent. If the point p̃i is inside the geometry, the normal direction at the
point pi, npi , is used to lift the point onto the surface.

If ‖∇fit(pi) − 〈∇fit(pi), npi〉npi‖2 ≈ 0, the update would require a movement exclu-
sively in the normal direction of pi and the update is not performed.

4.6.2.2. Non-convex improvement

The situation changes if one of the angles is not convex. Convexity can be checked as
in eq. (4.39). In this case, the value of the other angles does not play such an important
role and the sole purpose of the improvement is to reduce the non-convex angle. This
can be done by moving the point in the direction of the bisector of the angle that needs
to be improved.

(a) Moving a convex surface angle according
to eq. (4.47).

(b) Moving a non-convex surface angle in the
direction of bisector of large angle.

Figure 4.48. Moving points to improve surface angles.

The improvements to the angles are summarized schematically in fig. 4.48. The left
subfigure shows the convex case, where the direction is given by eq. (4.47), while the
right subfigure shows the case of one non-convex angle. Please note that the program
does not always perform as expected in the case of non-convex angles, since the projec-
tion to the surface of the molecule leads often to a self-intersecting mesh. The program
still tries to improve the situation, the user is however notified and the result should
be checked thoroughly.

Mesh improvement 85

fitNodes

0.06 0.120.000e+00 2.553e-010.18(a) Initial boundary mesh with worst node fitness
0.7098.

fitNodes

0.06 0.120.000e+00 2.553e-010.18(b) Final boundary mesh with worst node fitness
0.2505.

Figure 4.49. Initial and final boundary mesh after mesh improvement for a toy example.

4.6.2.3. Extreme obtuse or acute angle

The fitness measure described in eq. (4.46) fails in one situation. Let one node have
the degree three, one of the angles be close to π, and the other two angles close to π/2.
A simple calculation leads to the approximate value of the fitness function

fit(pi) =
1
4 + 1

4 + (−1 + 1
2)2

3
=

1

4
= 0.25.

This is why, in the case of angles with extreme values for the cosine, for example
| cosα| > 0.8, a similar approach as for the non-convex angles is taken, namely, the
update direction is set to be equal to the direction of the bisector, if the cosine is
positive, or the opposite direction of the bisector, if the cosine is negative. This direction
would then optimize only the angle under consideration. the threshold of 0.8 can be
changed in the file containing all the relevant parameters.

4.6.3. Null length edge

The direction of steepest descent as described in eq. (4.47) does not take into account
the lengths of the edges in the mesh. This is in general not a big problem, but, when
an edge is in a configuration similar to that seen in fig. 4.50, the resulting steepest
descent direction would push the points closer and closer together, which can result in
a self-intersecting mesh. The projected gradient scheme can be used in this case by a
restricting the contraction of the edges. When this option is enabled, the lengths of the
edges on the surface on the level for the optimization, patchOptimize, are calculated.
If a node is connected to an edge that is very small, relative to the largest edge in the

86 Generating the cavity

mesh calculated on the first configuration, the direction of this edge is removed from
the steepest descent direction if this would lead to an even smaller edge. This can be
done by calculating the dot product between the normalized edge direction ej and the
direction that the point is moved in, ∇fit(pi). If the dot product is larger than zero,
the direction of the edge is subtracted from the steepest descent direction:

∇f̂ it(pi) ··= ∇fit(pi)− 〈∇fit(pi), ej〉ej .

If the resulting direction after subtracting the normal component is almost zero, the
update for the current node is aborted.

Figure 4.50. Situation where the improvement results in edges of length zero.

4.6.4. Improvement strategy

The improvement is done in two steps. In the first step, all nodes are moved which
have an associated fitness larger than 1/2 stopNodeMoveglobal, where

stopNodeMoveglobal = 0.2,

until an overall fitness smaller than stopNodeMoveglobal is reached. This step allows
for some worsening iterations, where the new fitness is larger than the original one. If
more than three worsening iterations are performed, the version of the mesh with the
smallest fitness is kept.

The second improvement step moves only the worst node. This can change from iter-
ation to iteration. The second step stops whenever the fitness is increased. After each
movement, the relevant boundary points and elements are recomputed.

The global improvement can be seen in fig. 4.51, where the evolution of the mesh is
seen for the toy example. A total of 12 global improvements steps have been performed
and no local improvement was necessary. The fitness of the meshes is shown under
each figure.

4.6.5. Runtime improvement

In each improvement step, only the points on the patch boundaries are considered. In
order to improve the runtime, the mesh points are calculated in an adaptive manner

Mesh improvement 87

fitNodes

0.06 0.120.000e+00 2.553e-010.18(a) Initial boundary mesh with worst node fitness
0.7098.

fitNodes

0.06 0.120.000e+00 2.553e-010.18(b) Boundary after four steps with worst node fit-
ness 0.5745.

fitNodes

0.06 0.120.000e+00 2.553e-010.18(c) Boundary after eight steps with worst node fit-
ness 0.4036.

fitNodes

0.06 0.120.000e+00 2.553e-010.18(d) Final boundary mesh after twelve steps with
worst node fitness 0.2505.

Figure 4.51. Improvement steps for the toy example.

88 Generating the cavity

only towards the boundary. The associated refinement can be seen in fig. 4.52. The
information needed in order to compute the normals and thus the points on the bound-
ary are the innermost elements on the next coarsest level than the level required for
the boundary, patchOptimize. The complete refinement up to the levels requested is
then done after the improvement step.

(a) Coarse mesh, level
zero, and level one
refinement of the
boundary.

(b) Level one refine-
ment of the inner
boundary elements,
level two refinement
of the boundary.

(c) Level two refinement
of the inner bound-
ary elements, level
three refinement of
the boundary.

(d) Level three refine-
ment of the inner
boundary elements,
level four refinement
of the boundary.

Figure 4.52. Adaptive refinement for quadrangles.

4.7. Summary

The control flow diagram found in fig. 4.53 summarizes the order in which the operations
are being performed. The first column includes the reading of the input file and the
initialization of the geometry. The geometrical constructs needed by the evaluation of
the level set function are computed. This includes the circles, the circle points, the
tori, the description of the spherical concave patches and the domain decomposition.

The second column contains the generation of the coarse mesh. The marching cubes
algorithm is first used to generate an approximation of the surface. The resulting
unstructured grid is divided into triangles and then improved by applying the coarsening
through edge replacement as found in algo. 4.22. The measure for the fitness of the
triangles is given in eq. (4.18). For generating quadrangular patches we ensure an even
number of triangles in the mesh by refining each triangle into four triangles, as seen
in fig. 4.32a. Since n� patches are requested, the triangular mesh is coarsened further
until n∆ = 2n� is reached. If the automatic patch detection is enabled, the number of
patches is determined by the highest fitness of the mesh between the refinement into
an even number of triangles and the coarse mesh.

The green column of the mesh generation control flow diagram shows the steps needed
from the coarse mesh to the final output. Firstly, the coarse mesh is uniformly re-
fined in order to use the surface fitness function found in eq. (4.41) and the convexity
check from eq. (4.39). The blossom algorithm is then used to calculate a minimum
cost matching which determines the triangles that are paired to a patch. Finally, the
resulting quadrangular mesh is improved with respect to the fitness found in eq. (4.46),
by taking all the special cases into account: the doubly neighbours, the the non-convex

Summary 89

angles, the extreme obtuse or acute anclgs, the null length edge. This is all done in
each iteration of the improvement strategy applied.

90 Generating the cavity

Initialization

readIn

read positions,
radii of atoms,

and probe radius

initGeometry

calculate circles, circle
points, tori, concave

spherical patches and
domain decomposition

Coarse sur-
face generation

initialTriangulation

calculate surface
cubes, unstructrured

surface mesh, and
initial triangulation

edgeReplace1

first edge replacement
until fitness reached

uniformRefinement
ensure even num-
ber of elements

by one refinement

edgeReplace2

replace edges up
to coarse mesh

Quadrangular
mesh generation

edgePoints

calculate edgePoints
by recursive uni-
form refinement
of coarse mesh

matching

calculate matching us-
ing blossom algorithm

improveMesh

improve position of
coarse mesh vertices
to get a better mesh

Figure 4.53. Control flow for the cavity generator.

C H A P T E R 5

Validation

5.1 Geometry description by atoms 92

5.2 Geometry description by isosurfaces 99

5.3 PCM for ionic solutions 104

5.4 PCM for liquid crystals 106

This chapter is concerned with the validation of the mesh generator on one hand and
of the wavelet BEM solver on the other hand. The validation of the wavelet BEM
solver is done by computing different levels for a small sample of molecules, solving the
PCM equation found in eq. (1.9) on this mesh and comparing the result to the exact
analytical value as obtained by the Gauss’ theorem,

∆σ = σcalc − σexact, σexact =
1− ε
ε

∑
i

Qi, (5.1)

where ε is the relative permittivity and Qi are the nuclear point charges localized in the
centres of the atoms. This gives rise to the nuclear interaction energy. The validation
of the mesh generator will asses the performance and the limits of the cavity generator
described in chpt. 4. Since the mesh generator can be used for any geometries where
a level set function or a characteristic function of the molecule is known, this chapter
will first explore both, the geometry description given by atoms and radii, as tediously
described in the previous chapter, and the geometry description by isosurfaces. The last
part of this chapter touches also the application of the wavelet BEM to ionic solutions
and liquid crystals.

92 Validation

5.1. Geometry description by atoms

The geometry description given by atoms as seen in chpt. 4 is tested by the generation of
cavities for different molecules. The test molecules chosen in this work are ethyl alcohol,
aspirine, benzylpenicillin, caffeine, cubane and glucose to cover a broad spectrum of
different molecular geometries. The graphical output of the mesh generator will be
shown here only for ethyl alcohol. For the other molecules, please refer to appendix A.

The input file for ethyl alcohol is shown in lst. 5.2. The first line contains the number
of atoms in the molecule, followed by one line per atom containing the coordinates
of the atom and the van der Waals radius. All the other input files can be found in
appendix A.

Listing 5.2 Input file ethyl alcohol.

9

-3.89983 -0.51196 -0.05537 1.70

-2.37851 -0.46398 0.00593 1.70

-4.32950 -0.26380 0.93819 1.20

-4.23092 -1.53126 -0.34574 1.20

-4.27313 0.21628 -0.80625 1.20

-1.99314 -1.21202 0.73553 1.20

-1.94286 0.82372 0.34649 1.52

-1.96225 -0.72745 -0.98924 1.20

-2.06475 0.91513 1.32761 1.20

5.1.1. Parameter file

Lst. 5.3 summarizes the general input parameters used for all mesh generation calcu-
lations within this chapter. The points on the surface are calculated with a precision
tol_point. At the end, after all optimizations are done, the final points are projected
onto the surface with a higher precision tol_end. The values improveValRawFine

and improveValEvenFine correspond to fitness values of triangles as calculated by
eq. (4.18). The first value influences the number of coarsening iterations done before
the triangles are refined into four triangles to ensure an even number of triangles in
the mesh. The second value defines the point in time at which the recording of the
fitness of the mesh starts. The coarsening is carried out until the number of triangles is
equal to twice the required number of patches, nPatches. In the case of the automatic
patch detection, the mesh with the best fitness is hereafter used as a coarse mesh and
the number of patches is adapted. The level of refinement, patchOptimize, is used to
calculate which triangles are merged in the patch generation step and defines also the
level at which the mesh improvement is carried out. For the mesh improvement steps,
the globalOpt flag is set, which means that the vertex improvement is first done for
all vertices until the worst vertex fitness is smaller than stopNodeMoveGlobal or the
number of iterations that worsen the fitness, worseningIterationsGlobal, is reached.

Geometry description by atoms 93

The flag useEdgeLengthInfo determines whether or not the contraction of an edge is
allowed beyond edgeLengthContraction of the shortest edge in the initial mesh.

Listing 5.3 List of parameters for the cavity generator.

// scaling factor for radius of atoms

const double scalingFactorRadius = 1.2;

// tolerance for point comparison , or length

const double tol_point = 1e-4;

const double tol_end = 1e-7;

const double improveValRawFine = 0.5;

const double improveValEvenFine = 0.5;

// level for mesh improvement and patch generation

const int patchOptimize = 4;

// lambda for stopping Global Improvements

const bool globalOpt = true;

const double stopNodeMoveGlobal = 0.2;

const int worseningIterationsGlobal = 3;

const bool useEdgeLengthInfo = true;

const double edgeLengthContraction = 0.7;

// constant used to declare angles as dangerous

const double tol_cosine = 0.9; // cos (25) = 0.9063

5.1.2. Fitness versus number of patches

The first validation test shows the influence of the number of patches on the resulting
mesh. The number of patches has been varied from 40 to 60. The quality of the mesh
is taken as the worst value of the node fitness in the mesh as given in eq. (4.46). The
parameters used for calculating the mesh are summarized in lst. 5.3. Additionally, the
factor from eq. (4.14) is chosen to be geometryFactor = 5 or geometryFactor = 10

as mentioned in the legend. The summary can be found in fig. 5.5. The results from
the automatic detection of patches are shown in fig. 5.4 for ethyl alcohol. See fig-
ures A.2, A.5, A.8, A.11, A.14, and A.17 in the appendix for the resulting parametriza-
tions of the other molecules. Fig. 5.5 shows the final fitness calculated as in eq. (4.46)
over the fixed requested number of patches. It can be seen that the fitness varies be-
tween 0.28 and 3.5 and does not directly correlate with the number of patches. This
is due to the fact that the coarsening is governed by the error of the edge replacement
and the resulting quadrangular patches are not taken into account.

The time needed to compute the surface is split into nine main components. The first

94 Validation

Figure 5.4. Ball and stick description of ethyl alcohol and the mesh resulted by automatic detection
of the number of patches on level 4, n� = 40, fit = 0.43.

40 45 50 55 60
0.2

0.3

0.4

0.5

0.6

Number of patches

F
it

n
es

s

alcohol (gF=5)

aspirine (gF=10)

benzene (gF=10)

benzylpenicillin (gF=10)

caffeine (gF=10)

cubane (gF=5)

glucose (gF=10)

Figure 5.5. The worst node fitness versus the number of patches for the set of molecules calculated
on level 4.

Geometry description by atoms 95

() point in time recorded is after determining the cubes situated on the surface. The
second () point in time marks the computation of the surface points by means of the
bisection algorithm seen in algo. 4.16. This time period depends on the number of
surface cubes, which in turn also factors in the constant geometryFactor. The time
needed to triangulate the resulting unstructured mesh is negligible and is thus not
taken into account. The third () point in time recorded is the time needed to compute
the fine mesh by means of edge replacement, as seen in algo. 4.22. The fourth ()
point in time is closely related to the third and marks the computation of the coarse
mesh. The fifth () point in time pinpoints the time needed for the refinement up to
the optimization level patchOptimize. The patch initialization and refinement towards
the boundary that will be used for the improvement strategy are stored in the sixth ()
point in time. The seventh () and the eighth () point in time mark the time needed
for the global and the local improvement strategies, respectively. The last and ninth
() point in time contains the shift back to the original coordinates, the projection onto
the surface with accuracy tol end, the refinement up to the required level, nL, and the
output of the grid on all relevant levels in a format that can be read by the wavelet
BEM code.

The time needed for the refinement and the output depends on the number of patches
and the time needed to project the points onto the surface. This is a balancing act:
if the number of patches is small, then the approximation of the surface is poorer and
the time needed to project the refined patches onto the surface might take longer. On
the other hand, the approximation of the surface is better if the number of patches
is larger, but more points need to be projected onto the surface. Fig. 5.6 contains a
representation of the time needed for the ethyl alcohol molecule. The pie chart on the
left shows the time distribution for the automatic patch detection. The total time there
is 116 sec. On the right the time for a fixed number of patches varies between 150 sec
and 220 sec. For the other test molecules, please see figures A.3, A.6, A.9, A.12, A.15
and A.18.

The conclusion that can be reached is that most of the time is spent in the edge
replacement algorithm and the final refinement and output steps. While the output
cannot be optimized, a better, coarser starting mesh would save a lot of time currently
spent in the edge replacement algorithm. The starting mesh, however, has to resolve
all the fine structures of the geometry. This is not guaranteed with a larger cube size
for the marching cubes algorithm.

5.1.3. Convergence of the wavelet BEM solver

In order to test the wavelet BEM solver, meshes on levels 2, 3, 4, 5, and 6 have been gen-
erated. The wavelet BEM solver was first used to solve the boundary integral equation
in eq. (1.31) on these meshes. The results are shown in fig. 5.7 for piecewise constant
ansatz functions and in fig. 5.8 for piecewise bilinear ansatz functions. In this configu-
ration, the wavelet BEM code parameters are chosen as a = 2, d′ = 1.25 and d′ = 2.25
for the constant ansatz and bilinear ansatz functions, respectively, and b = 10−3. For
the iterative solver, the precision ε = 10−6 was taken. The figures show the difference
in the ASC compared to the expected theoretical value described in eq. (5.1). Both

96 Validation

40 45 50 55 60

0

50

100

150

200

250

Number of patches

T
im

e
(s

)

surface cubes surface points fine mesh
coarse mesh refined mesh patch init
global improve local improve final output

Figure 5.6. Time distribution for ethyl alcohol: On the left, the time for the automatic patch number
detection can be seen, total time = 116 sec. On the right the version for fixed number of
patches is depicted.

choices of ansatz functions converge for all molecules tested, starting with errors in the
region of 10−1 and reaching up to 10−3 for the piecewise constant ansatz functions and
reaching errors of around 10−5 for the piecewise bilinear ansatz functions. Hence, the
piecewise bilinear ansatz functions perform better than the piecewise constant ansatz
functions.

Secondly, the solution of the eq. (1.32) using the wavelet BEM solver was analyzed in
fig. 5.9 for the piecewise constant ansatz functions and in fig. 5.10 for piecewise bilinear
ansatz functions. The compression parameters were chosen the same as before, namely
a = 2, d′ = 1.25 and d′ = 2.25 for the piecewise constant and bilinear ansatz functions,
respectively, and b = 10−3. For the GMRES solver, the precision ε = 10−6 was taken.

Again, we can see that the bilinear ansatz functions perform better, having errors
between 10−1 and 10−4 compared to the constant ansatz functions that only reach a
precision of about 10−1. Moreover, one can see that the application of the wavelet
BEM solver to eq. (1.31) performs better than on eq. (1.32).

For a more detailed analysis of the convergence of the wavelet BEM solver for the PCM,
we refer to [5].

5.1.4. Time versus atoms

A simple scalability test that can be done for the cavity generator is to take a look at the
polyalkane chains CnH2n+2, n = 4, 8, 16, 32. We look at the time needed to generate the

Geometry description by atoms 97

2 3 4 5 6

10−7

10−5

10−3

10−1

Level

E
rr

o
r

ethyl alcohol
aspirine
benzene
benzylpenicillin
caffeine
glucose

2−4level

2−3level

2−2level

Figure 5.7. Convergence of the wavelet BEM solver for the standard PCM case found in eq. (1.31)
for the definition of the surface using position and radii of atoms using piecewise constant
ansatz functions, calculated as a difference to the theoretical value.

2 3 4 5 6

10−7

10−5

10−3

10−1

Level

E
rr

or

ethyl alcohol
aspirine
benzene
benzylpenicillin
caffeine
glucose

2−4level

2−3level

2−2level

Figure 5.8. Convergence of the wavelet BEM solver for the standard PCM case found in eq. (1.31)
for the definition of the surface using position and radii of atoms using piecewise bilinear
ansatz functions, calculated as a difference to the theoretical value.

98 Validation

2 3 4 5 6

10−4

10−3

10−2

10−1

100

Level

E
rr

o
r

ethyl alcohol
aspirine
benzene
benzylpenicillin
caffeine
glucose

2−3level

2−2level

Figure 5.9. Convergence of the wavelet BEM solver for the standard PCM case found in eq. (1.32)
for the definition of the surface using position and radii of atoms using piecewise constant
ansatz functions, calculated as a difference to the theoretical value.

2 3 4 5 6

10−7

10−5

10−3

10−1

Level

E
rr

or

ethyl alcohol
aspirine
benzene
benzylpenicillin
caffeine
glucose

2−4level

2−3level

2−2level

Figure 5.10. Convergence of the wavelet BEM solver for the standard PCM case found in eq. (1.32)
for the definition of the surface using position and radii of atoms using piecewise bilinear
ansatz functions, calculated as a difference to the theoretical value.

Geometry description by isosurfaces 99

mesh using an automatic patch number detection with the resulting number of patches
n�(C4H10) = 389, n�(C8H18) = 399, n�(C16H34) = 603, and n�(C32H66) = 1999.
The patches that have been generated, coloured corresponding to their fitness value,
are shown on the left side in fig. 5.11. On the right side, the pie chart of the time
distribution for the automatic patch detection on refinement level 4 is shown. One can
see that the time required for each step is similar for every molecule.

(a) C4H10 patch representation with automatic patch detection, n� = 389, fit = 0.58.

(b) C8H18 patch representation with automatic patch detection, n� = 399, fit = 3.6.

(c) C16H34 patch representation with automatic patch detection, n� = 603, fit = 3.4.

(d) C32H66 patch representation with automatic patch detection, n� = 1999, fit = 1.56.

Figure 5.11. Surface description with automatic number of patch detection.

The blue line in the logarithmic plot found in fig. 5.12 depicts the total time needed
for the run, while the black line represents the total time divided by the number of
patches used. The black line shows that the time needed per patch is proportional to
the number of carbon atoms found in the molecule under consideration. Nonetheless,
the test does not show linear scalability in the total time needed because the number of
patches that were automatically detected does not scale with the size of the molecule.

5.2. Geometry description by isosurfaces

As mentioned in chpt. 4, the only information needed by the mesh generator is a
characteristic function. As used in the IPCM version implemented Gaussian, [19],
the charge distribution in space can be used to find the surface of the molecule. The
isosurface is a set of points that have the same value, which in this case means the same
charge value. The surface that will eventually be used as a description of the molecular
cavity is then given by the isosurface with a certain charge value. In our example, the
value 0.02 has been chosen.

100 Validation

C 4
H 10

C 8
H 18

C 16
H 34

C 32
H 66

213

214

215

T
ot

a
l

ti
m

e
(s

)

24

24.5
T

im
e

ov
er

n
u

m
b

er
of

p
at

ch
es

(s
)

Figure 5.12. Time analysis for the polyalkane chains, CnH2n+2, (n = 4, 8, 16, 32), n�(C4H10) = 389,
n�(C8H18) = 399, n�(C16H34) = 603, n�(C32H66) = 1999.

5.2.1. Input file of the isosurface

The benzene molecule is used to prove the applicability of this approach. The input
file was generated by Gaussian09, using Hartree-Fock and the 6-311++G** basis set.
The structure of the input file generated is shown in lst. 5.13. The first two lines are
comments and are ignored during parsing. The third line contains the number of atoms
and the position of the centre of the bounding box. The next three lines contain the
number of cells and the axis vectors for the x-, y-, and z-direction. The sizes are given
in Bohr if the number of the cells is positive, while the sizes are given Ångström if the
number of the cells is a negative number. In our version of the file, the sizes are given
in Bohr, which also means that the charge values for the cubes are given in Bohr−3.
The current version of the code works only when the bounding box is parallel to the
axis and defined by linearly independent vectors. The lengths of the axes defining the
bounding box are proportional to the size of the cells in each direction. The last part
of the header contains a line for each atom including the atom number, the atomic
charge and the x-, y-, and z-position of the centre of the atoms. These lines are used to
generate the charge input file for the wavelet BEM code. In order to achieve a resulting
mesh with respect to these positions of the atoms, the mesh needs to be translated at
the end in the opposite direction of the centre of the bounding box. The following lines
contain the value at the each voxel.

The main function that needs to be adapted is the method checking whether a point is
inside or outside the molecule. A point is inside the molecule if the value of the interpo-
lated voxels evaluated at the given point is larger than the constant isoSurfaceValue.
We have chosen isoSurfaceValue = 0.02 for our initial test.

A cubic Newton interpolation is used, placing the requested point in the middle voxel

Geometry description by isosurfaces 101

Figure 5.14. The atom information as found in the cube file, the isosurface for isoSurfaceValue =

0.02 extracted directly from the cube file and the mesh generated with automatic patch
number detection, n� = 243 patches on level 4, fit = 0.6.

102 Validation

Listing 5.13 Input file for isosurface calculations.

Hartree -Fock in vacuo , benzene potential=scf

Electrostatic potential from Total SCF Density

12 0.000000 -7.264863 -23.367220

246 0.083333 0.000000 0.000000

212 0.000000 0.083333 0.000000

281 0.000000 0.000000 0.083333

6 6.000000 9.966416 3.777563 -16.191174

6 6.000000 12.523215 3.813467 -15.512762

6 6.000000 13.919723 1.566583 -15.499534

6 6.000000 12.759431 -0.716206 -16.164717

6 6.000000 10.202631 -0.752111 -16.841239

6 6.000000 8.806124 1.494773 -16.854467

1 1.000000 8.889272 5.510441 -16.200622

1 1.000000 13.418945 5.574692 -15.000646

1 1.000000 15.892597 1.594929 -14.977969

1 1.000000 13.836575 -2.449085 -16.153379

1 1.000000 9.306901 -2.513336 -17.353355

1 1.000000 6.833250 1.466427 -17.377922

8.23514E-04 8.34400E-04 8.45257E-04 8.56080E-04

8.66862E-04 8.77596E-04 ...

of the interpolant. The size of the marching cube algorithm is chosen to be a multiple
of the voxel size found in the cube file, step_cube, as follows

step = geometryFactor * step_cube,

where geometryFactor is a constant and step and step_cube are vector values for
each spatial direction. In our example, we have

step_cube =

 0.0833333

0.0833333

0.0833333

 ,

found in lines 4 − 6 of the input file and we have chosen geometryFactor = 4. The
resulting mesh for the benzene example using automatic patch detection can be found
in fig. 5.14, where the information stored in the cube file is also shown. In the first
subfigure the atom information extracted from the cube file is depicted. The second
image illustrates the cubes in the file where the associated value is larger than the
chosen isoSurfaceValue = 0.02. The time needed for this implementation is much
smaller than for the description given by atoms as introduced in chpt. 4. This can
be seen in fig. 5.15 where the y-scale is in the order of seconds. The test if one point
is inside or outside the molecule is done much faster, which also leads to a different
distribution of the time. The final point in time containing the refinement and the
output is no longer dominant, now most of the time is spent in the edge replacement

Geometry description by isosurfaces 103

algorithm, as seen in the fixed number of patches. For the automatic patch detection,
more time is spent in the refinement step, maybe due to the fact that we have a large
number of patches, namely n� = 243. For a more reliable conclusion more molecules
would need to be examined.

40 45 50 55 60

0

2

4

6

8

10

12

Number of patches

T
im

e
(s

)

surface cubes surface points fine mesh
coarse mesh refined mesh patch init
global improve local improve final output

Figure 5.15. Time distribution for benzene described by isosurfaces. On the left the automatic patch
number detection can be seen, total time = 39 sec and on the right the version for fixed
number of patches is shown.

5.2.2. Convergence of the wavelet BEM solver

In this subsection, the convergence of the wavelet BEM solver on the mesh generated
by isosurfaces is examined. To this end, meshes for benzene are generated for different
levels in the same way as before. The resulting meshes are used as an input for the
wavelet BEM solver for eq. (1.31) using piecewise constant and piecewise bilinear ansatz
functions. The convergence behaviour is shown in fig. 5.16 for the parameter choice
a = 2, d′ = 1.25 for the piecewise constant ansatz functions and d′ = 2.25 for the
piecewise bilinear ansatz functions and b = 10−3. For the iterative solver, the precision
is ε = 10−6 taken. The overall convergence rate is seen to be similar to the one shown
in fig. 5.7 and fig. 5.8 for the description given by atoms and radii. This shows that
the cavity generator produces meshes of similar quality in both cases.

104 Validation

2 3 4 5 6

10−8

10−6

10−4

10−2

100

Level

E
rr

o
r

piecewise constant
piecewise bilinear

2−4level

2−3level

2−2level

Figure 5.16. Convergence of the wavelet BEM solver for the standard PCM case for the definition of
benzene by an isosurface with the isovalue isoSurfaceValue = 0.02.

5.3. PCM for ionic solutions

Applying the wavelet BEM solver to the ethyl alcohol surface under variation of κ
in the range from 0 to 1 at several discretization levels reveals the influence of the
ionic strength of the solution on the ground state energy. The results are depicted in
fig. 5.17. An increase of the value for κ from 0 to 1 leads to a decrease in the ground state
energy. This decrease is not linear and can be seen in fig. 5.18. Independently of the
discretization level, the drop in ground state energy is much bigger at the beginning
of the range, κ ∈ [0, 1], compared to its end. The decrease in ground state energy
can be rationalized by considering the polar nature of the ethanol molecule. The
dipole moment of ethyl alcohol becomes more stable in a stronger ionic environment.
Therefore, the ground state energy drops with κ.

The usage of PCM in the case of ionic solutions was described in [7]. Like in the original
paper, the dielectric constant for the medium is chosen ε = 78.5 and the ionic screening
constant is taken in the range κ ∈ [0, 1], with 0 being normal water and 1 being a fully
ionic liquid.

Tab. 5.19 shows the compression behaviour for different values of κ. The a priori
compression of both, the interior and the exterior boundary integral operators, and
the a posteriori compression of the interior boundary integral operators are the same
for all values of κ. For the exterior boundary operators, the a posteriori compression
shows a slight decrease in the number of non-zero elements in the system matrices for
larger values of κ. One can notice also a slight increase in the non-zero elements of the
exterior boundary integral operators compared to the interior ones, for all values of κ.
This test demonstrates that the wavelet BEM solver can also be applied in the case of
ionic solutions. Further investigation and validation is however needed.

PCM for ionic solutions 105

2 3 4 5 6
−16.45

−16.4

−16.35

−16.3

−16.25

Level

E
n

er
gy

κ = 0.0
κ = 0.1
κ = 0.3
κ = 0.5
κ = 0.8
κ = 1.0

Figure 5.17. Ground state energy for ionic solutions with ε = 78.5 as introduced in [7] using piecewise
bilinear wavelets on the surface of ethyl alcohol depending on the level of refinement.

0 0.2 0.4 0.6 0.8 1
−16.45

−16.4

−16.35

−16.3

−16.25

κ

E
n

er
gy

Level = 2
Level = 3
Level = 4
Level = 5
Level = 6

Figure 5.18. Ground state energy for ionic solutions with ε = 78.5 as introduced in [7] using piecewise
bilinear wavelets on the surface of ethyl alcohol depending on the ionization constant.

106 Validation

Table 5.19. Effect of the ionic screening constant κ on the a priori and a posteriori matrix compression
for ethyl alcohol for piecewise bilinear ansatz functions. The compression parameters are
set to the values a = 1, d′ = 2, and b = 0.001.

level
a priori a posteriori a posteriori

compression compression compression (exterior)
(int/ext) (interior) κ = 0.0 κ = 0.1 κ = 0.3 κ = 0.5 κ = 0.8 κ = 1.0

2 27.16310 % 24.87055 % 24.86752 % 24.85800 % 24.82586 % 24.79410 % 24.72091 % 24.65369 %
3 13.39761 % 10.37040 % 10.36739 % 10.36096 % 10.34199 % 10.31283 % 10.25253 % 10.19618 %
4 4.39581 % 3.25333 % 3.25243 % 3.25196 % 3.24790 % 3.24113 % 3.22563 % 3.21189 %
5 1.27997 % 0.95150 % 0.95135 % 0.95126 % 0.95056 % 0.94926 % 0.94637 % 0.94363 %
6 0.34789 % 0.26583 % 0.26580 % 0.26578 % 0.26567 % 0.26546 % 0.26498 % 0.26451 %

5.4. PCM for liquid crystals

The last case that the PCM can has been tested on is the case of liquid crystals, as
described in [6, 7]. The subject of this paragraph is to show that also the wavelet BEM
implementation of the PCM is applicable in this situation. To this end, the dielectric
tensor for the liquid crystal 7CB (4-n-heptyl-4’-cyanobiphenyl) given by

ε =

 5.54 0 0
0 5.54 0
0 0 17.1

 (5.20)

has been used. The test molecule chosen is ethyl alcohol and the ground state energy
in the liquid crystal solution of ethyl alcohol has been compared to the ground state
energy in the isotropic medium characterized by the dielectric constant given by the
maximum, εmax = 17.1, and the minimum, εmin = 5.54, found in the tensor. The values
for this comparison can be found in tab. 5.22. They show that the energy in the crystal
is situated in between the two values of the isotropic mediums. Fig. 5.21 compares the
convergence rates of the piecewise constant and the piecewise bilinear ansatz functions
compared to the energy value calculated on refinement level 6 when using piecewise
bilinear ansatz functions. The compression parameter chosen are a = 2, d′ = 1.25 for
the piecewise constant ansatz functions and d′ = 2.25 for the bilinear case, respectively,
and b = 10−3. The precision of the iterative solver was again taken ε = 10−6.

Tab. 5.23 points out the compression rates found in this case. The a posteriori com-
pression of the interior and the exterior operator are proven to be of comparable size.
This time, however, the exterior boundary integral operator is a little denser than the
interior one. This little test shows that the wavelet BEM solver can be applied also in
the case of liquid crystals and yields results that behave like the ones described in [7].
Further investigation is required in order to compare the wavelet BEM solver with
different PCM codes in order to examine the performance and accuracy.

PCM for liquid crystals 107

2 3 4 5

10−6

10−5

10−4

10−3

10−2

10−1

100

Level

E
rr

o
r

piecewise constant
piecewise bilinear

2−4level

2−3level

2−2level

Figure 5.21. Convergence of the ground state energy of ethyl alcohol for the liquid crystal case of
7CB with the dielectric tensor given by ε = diag(5.54, 5.54, 17.1) as described in [7] as
a difference to the value calculated on the discretization level 6.

Table 5.22. The ground state energy for ethyl alcohol for piecewise constant ansatz functions and
piecewise bilinear ansatz functions in the liquid crystal solution with the dielectric ten-
sor given by ε = diag(5.54, 5.54, 17.1). Comparison to two isotropic dielectric solutions
described by εmin = 5.54 and εmax = 17.1 as in [7].

level
constant bilinear

constant bilinear
bilinear constant

εmin = 5.54 εmin = 5.54 εmax = 17.1 εmax = 17.1

2 59.5972 59.5493 64.2534 64.2095 68.8066 68.7634
3 59.5655 59.5401 64.2189 64.1935 68.7689 68.7444
4 59.5474 59.5350 64.2007 64.1878 68.7520 68.7390
5 59.5375 59.5349 64.1901 64.1876 68.7412 68.7387
6 59.5349 59.5349 64.1876 64.1876 68.7387 68.7387

Table 5.23. The a priori and a posteriori matrix compression for ethyl alcohol for piecewise bilinear
ansatz functions in a liquid crystal solution. The compression parameters are set to the
values a = 1, d′ = 2, and b = 0.001.

level
a priori a posteriori a posteriori

compression compression compression
(int/ext) (interior) (exterior)

2 27.16310 % 24.87055 % 24.97164 %
3 13.39761 % 10.37040 % 10.46560 %
4 4.39581 % 3.25333 % 3.30614 %
5 1.27997 % 0.95150 % 0.96576 %
6 0.34789 % 0.26583 % 0.26903 %

C H A P T E R 6

Conclusions

In chemistry and nature, molecules often reside in solutions. Thus, simulating the
solute-solvent interaction has become a very important field of research. One method,
the polarizable continuum model, discards the molecular structure of the solvent en-
tirely, reducing the interaction to the boundary of the solute molecule, the cavity sur-
face. The drawbacks of implementations using standard boundary element ansatz func-
tions are the dependency on an accurate description of the molecular surface and the
limitation due to the resulting dense system matrices.

A new C++ implementation of the wavelet boundary element method has been devel-
oped, which shows flexibility in the type of ansatz functions that can be used. The
advantages of the wavelet method stem from the quasi-sparsity of the system matrices
which allow the use of finer discretization, solving larger problems or at a higher ac-
curacy. C++ has been chosen due to its class structures and template variables and
functions.

Since wavelets are defined as a tensor product of one dimensional functions, a new
mesh generator was designed that discretizes the surface into uniform quadrangular
patches. In order to calculate a surface mesh, it needs only a characteristic function or
a level set function. The description of the molecular surface can be given by atoms
or, alternatively, the isodensity of the charge distribution can be used as a level set
function. This makes it a very versatile tool for generating meshes on any smooth
surfaces.

The mesh generator starts by using the marching cubes algorithm to find an initial
description of the surface. Several types of fitness functions quantify the quality of the
mesh at different points in time: the fitness functions for triangles, the fitness function
used to calculate the triangle pairs for the patches, and the fitness function of the
quadrangular patch used for the mesh improvement. An intermediate step generates
a triangular mesh of good quality with planar triangles that could also be used with

110 Conclusions

standard boundary element method codes, especially with fast multipole methods.

The validation of the mesh generator was done by examining seven test molecules and
using the wavelet boundary element method to calculate the difference in the apparent
surface charge. The three different cases of the polarizable continuum model have also
been implemented, namely the cases of neutral solutions, of ionic solutions, and of
liquid crystals. Therefore, this work opens the gates towards larger systems that can
be computed with tremendous accuracy.

“The reward of work well done is the opportunity to do more.” – Jonas Salk. Replacing
the marching cubes algorithm by a well distributed point cloud that resolves the ge-
ometry without superfluous points can speed up the computation. Secondly, the final
meshes could be improved by finding fitness functions that take into account the cur-
vature and the resulting quadrangles. Finally, the wavelet boundary element method
can be extended to geometrical updates, by changing the position of the atoms under
the influence of the solution compared to the initial position in vacuum. In each step,
the surface gradient needs to be computed, the atoms need to be moved, and a new
surface mesh has to be generated.

A P P E N D I X A

Molecules used

Listing A.1 Input file aspirine.

21

-6.96612 1.50927 0.10692 1.70

-5.55275 1.52902 0.04836 1.70

-4.88412 2.78054 -0.01210 1.70

-5.64356 3.96767 -0.02855 1.70

-7.03583 3.92328 0.02026 1.70

-7.69394 2.69942 0.09045 1.70

-3.39396 2.86991 -0.06364 1.70

-4.81062 0.38411 0.07174 1.52

-5.19277 -0.89694 -0.18920 1.70

-4.24048 -2.00971 0.11028 1.70

-3.29964 -1.85424 -0.45793 1.20

-4.67564 -2.99128 -0.17544 1.20

-4.01317 -2.01950 1.19656 1.20

-2.63328 1.75371 -0.05298 1.52

-2.84817 3.96308 -0.11641 1.52

-6.26839 -1.14991 -0.70972 1.52

-1.66736 1.80415 -0.08619 1.20

-7.51833 0.58665 0.18034 1.20

-8.77513 2.67144 0.13679 1.20

-5.15620 4.93346 -0.07815 1.20

-7.60639 4.84309 0.00862 1.20

112 Molecules used

Figure A.2. Ball and stick description of aspirine and the mesh resulted by automatic detection of
the number of patches on level 4, n� = 159, fit = 2.26.

45 50 55 60

0

200

400

600

800

Number of patches

T
im

e
(s

)

surface cubes surface points fine mesh
coarse mesh refined mesh patch init
global improve local improve final output

Figure A.3. Time distribution for aspirine. On the left the automatic patch number detection can
be seen, total time = 2644 sec. On the right the version for fixed number of patches is
depicted.

113

Listing A.4 Input file benzene.

12

1.212 -0.700 0.002 1.7

1.212 0.700 0.002 1.7

0.000 1.400 0.000 1.7

-1.212 0.700 -0.002 1.7

-1.212 -0.700 -0.002 1.7

0.000 -1.400 0.000 1.7

2.148 -1.240 0.003 1.2

2.148 1.240 0.003 1.2

0.000 2.480 0.000 1.2

-2.148 1.240 -0.003 1.2

-2.148 -1.240 -0.003 1.2

0.000 -2.480 0.000 1.2

Figure A.5. Ball and stick description of benzene and the mesh resulted by automatic detection of
the number of patches on level 4, n� = 327, fit = 0.457338.

114 Molecules used

45 50 55 60
0

200

400

600

800

1,000

Number of patches

T
im

e
(s

)

surface cubes surface points fine mesh
coarse mesh refined mesh patch init
global improve local improve final output

Figure A.6. Time distribution for benzene. On the left the automatic patch number detection can
be seen, total time = 2321 sec. On the right the version for fixed number of patches is
depicted.

Figure A.8. Ball and stick description of benzylpenicillin and the mesh resulted by automatic detec-
tion of the number of patches on level 4, n� = 159, fit = 0.614.

115

Listing A.7 Input file benzylpenicillin.

38

-4.34515 0.69991 0.54911 1.70

-3.22398 1.58638 -0.22539 1.70

-2.47684 0.38611 -0.38603 1.55

-3.33068 -0.35661 0.27724 1.70

-2.10750 2.67551 0.74049 1.80

-0.64739 1.86379 -0.02753 1.70

-1.04227 0.36386 -0.21197 1.70

-0.38902 2.58902 -1.36621 1.70

0.57397 2.02571 0.89221 1.70

-3.03351 -1.32487 0.96272 1.52

-0.36325 -0.33991 -1.37609 1.70

-1.02969 -0.73981 -2.31870 1.52

0.96825 -0.55992 -1.37798 1.52

-5.28030 0.64726 -0.04650 1.20

0.38870 1.54011 1.87419 1.20

0.77702 3.10258 1.07510 1.20

1.48613 1.58789 0.44477 1.20

-1.26314 2.50260 -2.04520 1.20

0.49725 2.16499 -1.88344 1.20

-0.19228 3.66844 -1.18910 1.20

-3.55913 1.97887 -1.21016 1.20

-4.49467 0.98071 1.96880 1.55

-0.81835 -0.21344 0.71383 1.20

1.52699 -0.32044 -0.62941 1.20

-3.78590 1.57429 2.42070 1.20

-5.58908 0.64879 2.72559 1.70

-5.65526 1.11105 3.85656 1.52

-6.73977 -0.21368 2.26402 1.70

-6.63756 -1.18396 1.23969 1.70

-7.74505 -1.95604 0.87490 1.70

-5.71437 -1.38323 0.73199 1.20

-8.96740 -1.78372 1.52181 1.70

-7.65080 -2.69670 0.09074 1.20

-9.08521 -0.84659 2.54617 1.70

-9.82142 -2.38363 1.23506 1.20

-7.98290 -0.07384 2.92114 1.70

-10.03280 -0.71754 3.05342 1.20

-8.10522 0.64764 3.71969 1.20

116 Molecules used

40 45 50 55

0

0.5

1

·104

Number of patches

T
im

e
(s

)

surface cubes surface points fine mesh
coarse mesh refined mesh patch init
global improve local improve final output

Figure A.9. Time distribution for benzylpenicillin. On the left the automatic patch number detection
can be seen, total time = 6022 sec. On the right the version for fixed number of patches
is depicted.

Figure A.11. Ball and stick description of caffeine and the mesh resulted by automatic detection of
the number of patches on level 4, n� = 44, fit = 2.13.

117

Listing A.10 Input file caffeine.

24

-2.58577 -0.23840 0.00000 1.70

-2.29749 1.08599 -0.00000 1.55

-0.94360 1.15140 -0.00000 1.70

-0.45954 -0.11567 0.00000 1.70

-1.47055 -1.00380 0.00000 1.55

0.86612 -0.40408 0.00000 1.55

-0.05635 2.23540 -0.00000 1.70

1.31478 1.96725 -0.00000 1.55

1.76669 0.64775 -0.00000 1.70

-0.47482 3.38138 -0.00000 1.52

2.96659 0.41484 -0.00000 1.52

2.32343 3.04343 -0.00000 1.70

-3.30988 2.14267 -0.00000 1.70

1.34423 -1.79146 0.00000 1.70

1.87886 4.05804 -0.00000 1.20

2.97197 2.94802 -0.89958 1.20

2.97197 2.94802 0.89958 1.20

0.50914 -2.52245 0.00000 1.20

1.96035 -1.97196 0.90593 1.20

1.96035 -1.97196 -0.90593 1.20

-3.58881 -0.64435 0.00000 1.20

-4.32908 1.68905 -0.00000 1.20

-3.22225 2.76766 -0.91148 1.20

-3.22225 2.76766 0.91148 1.20

118 Molecules used

40 45 50 55
0

1,000

2,000

3,000

Number of patches

T
im

e
(s

)

surface cubes surface points fine mesh
coarse mesh refined mesh patch init
global improve local improve final output

Figure A.12. Time distribution for caffeine. On the left the automatic patch number detection can
be seen, total time = 1899 sec. On the right the version for fixed number of patches is
depicted.

Listing A.13 Input file cubane.

16

-7.39867 -0.22073 0.21783 1.70

-5.95167 -0.21898 0.76709 1.70

-6.90522 0.20352 -1.18646 1.70

-5.46910 0.19338 -0.63446 1.70

-7.59768 1.25653 0.63447 1.70

-7.11512 1.66889 -0.76708 1.70

-5.66812 1.67064 -0.21782 1.70

-6.16156 1.24639 1.18646 1.70

-8.57631 1.39044 1.14111 1.20

-7.30535 2.58276 -1.36790 1.20

-4.92868 2.47879 -0.40397 1.20

-4.49047 0.05947 -1.14110 1.20

-5.67467 1.86024 1.97288 1.20

-5.76144 -1.13285 1.36791 1.20

-7.39212 -0.41032 -1.97287 1.20

-8.13810 -1.02888 0.40398 1.20

119

Figure A.14. Ball and stick description of cubane and the mesh resulted by automatic detection of
the number of patches on level 4, n� = 253, fit = 0.401.

40 45 50 55 60

0

500

1,000

Number of patches

T
im

e
(s

)

surface cubes surface points fine mesh
coarse mesh refined mesh patch init
global improve local improve final output

Figure A.15. Time distribution for cubane. On the left the automatic patch number detection can
be seen, total time = 2760 sec. On the right the version for fixed number of patches is
depicted.

120 Molecules used

Listing A.16 Input file glucose.

24

-0.29225 -2.79946 0.21441 1.70

0.82402 -2.76264 0.20176 1.20

-0.80114 -1.86295 1.32573 1.70

-0.72946 -4.11698 0.42357 1.52

-0.75966 -2.30135 -1.17564 1.70

-0.39782 -0.41698 0.98412 1.70

0.71505 -0.33081 0.97343 1.20

-0.94621 0.46866 1.92663 1.52

-0.91695 -0.06845 -0.43387 1.70

-0.37633 -0.95321 -1.40819 1.52

-0.30189 -2.24863 2.58247 1.52

-1.90886 -1.91492 1.38008 1.20

-0.54660 1.36856 -0.83176 1.70

-2.02947 -0.11090 -0.44874 1.20

-2.13038 -2.49836 -1.44352 1.52

-0.21823 -2.93076 -1.91390 1.20

-2.65971 -2.29288 -0.63458 1.20

-0.11245 -4.52357 1.08648 1.20

0.68837 -2.18182 2.54853 1.20

-0.33193 0.47678 2.70641 1.20

0.84578 1.53249 -0.90184 1.52

-1.00075 2.10604 -0.12955 1.20

-0.97221 1.59265 -1.83311 1.20

1.14280 1.87741 -0.01970 1.20

Figure A.17. Ball and stick description of glucose and the mesh resulted by automatic detection of
the number of patches on level 4, n� = 57, fit = 3.55.

121

45 50 55
0

1,000

2,000

3,000

4,000

5,000

Number of patches

T
im

e
(s

)

surface cubes surface points fine mesh
coarse mesh refined mesh patch init
global improve local improve final output

Figure A.18. Time distribution for glucose. On the left the automatic patch number detection can
be seen, total time = 2567 sec. On the right the version for fixed number of patches is
depicted.

Bibliography

[1] K. Aidas, C. Angeli, K. L. Bak, V. Bakken, R. Bast, L. Boman, O. Christiansen,
R. Cimiraglia, S. Coriani, P. Dahle, E. K. Dalskov, U. Ekström, T. Enevoldsen,
J. J. Eriksen, P. Ettenhuber, B. Fernández, L. Ferrighi, H. Fliegl, L. Frediani,
K. Hald, A. Halkier, C. Hättig, H. Heiberg, T. Helgaker, A. C. Hennum, H. Het-
tema, E. Hjertenæs, S. Høst, I.-M. Høyvik, M. F. Iozzi, B. Janśık, H. J. Aa. Jensen,
D. Jonsson, P. Jørgensen, J. Kauczor, S. Kirpekar, T. Kjærgaard, W. Klopper,
S. Knecht, R. Kobayashi, H. Koch, J. Kongsted, A. Krapp, K. Kristensen, A. Lig-
abue, O. B. Lutnæs, J. I. Melo, K. V. Mikkelsen, R. H. Myhre, C. Neiss, C. B.
Nielsen, P. Norman, J. Olsen, J. M. H. Olsen, A. Osted, M. J. Packer, F. Pawlowski,
T. B. Pedersen, P. F. Provasi, S. Reine, Z. Rinkevicius, T. A. Ruden, K. Ruud,
V. V. Rybkin, P. Sa lek, C. C. M. Samson, A. S. de Merás, T. Saue, S. P. A. Sauer,
B. Schimmelpfennig, K. Sneskov, A. H. Steindal, K. O. Sylvester-Hvid, P. R. Tay-
lor, A. M. Teale, E. I. Tellgren, D. P. Tew, A. J. Thorvaldsen, L. Thøgersen,
O. Vahtras, M. A. Watson, D. J. D. Wilson, M. Ziolkowski, and H. Ågren. The
Dalton quantum chemistry program system. WIREs Comput. Mol. Sci., 4(3):
269–284, 2014.

[2] M. Bebendorf. Approximation of boundary element matrices. Num. Math., 86(4):
565–589, 2000.

[3] A. D. Becke. Density-functional exchange-energy approximation with correct
asymptotic behavior. Phys. Rev. A, 38:3098–3100, 1988.

[4] A. D. Becke. Density-functional thermochemistry. III. The role of exact exchange.
J. Chem. Phys., 98(7):5648–5652, 1993.

[5] M. Bugeanu, R. Di Remigio, K. Mozgawa, S. S. Reine, H. Harbrecht, and L. Fredi-
ani. Wavelet formulation of the polarizable continuum model. II. Use of piecewise
bilinear boundary elements. Phys. Chem. Chem. Phys., 17(47):31566–31581, 2015.

[6] E. Cancès and B. Mennucci. New applications of integral equations methods for
solvation continuum models: Ionic solutions and liquid crystals. J. Math. Chem.,

124 Bibliography

23:309–326, 1998.

[7] E. Cancès, B. Mennucci, and J. Tomasi. A new integral equation formalism for
the polarizable continuum model: Theoretical background and applications to
isotropic and anisotropic dielectrics. J. Chem. Phys., 107:3032–3041, 1997.

[8] J. Č́ıžek. On the correlation problem in atomic and molecular systems. Calcu-
lation of wavefunction components in Ursell-type expansion using quantum-field
theoretical methods. J. Chem. Phys., 45(11):4256–4266, 1966.

[9] A. Cohen, I. Daubechies, and J. Feauveau. Biorthogonal bases of compactly sup-
ported wavelets. Pure Appl. Math., 45:485–560, 1992.

[10] M. L. Connolly. Analytical molecular surface calculation. J. Appl. Crystallogr., 16
(5):548–558, 1983.

[11] M. Costabel. Boundary integral operators on Lipschitz domains: Elementary re-
sults. SIAM J. on Math. Anal., 19(3):613–626, 1988.

[12] C. J. Cramer. Essentials of Computational Chemistry: Theories and Models. Wi-
ley, West Sussex, 2002.

[13] C. Curutchet, A. Muñoz Losa, S. Monti, J. Kongsted, G. D. Scholes, and B. Men-
nucci. Electronic energy transfer in condensed phase studied by a polarizable
QM/MM model. J. Chem. Theory Comput., 5(7):1838–1848, 2009.

[14] W. Dahmen, A. Kunoth, and K. Urban. Biorthogonal spline-wavelets on the
interval. Stability and moment conditions. Appl. Comput. Harmon. Anal., 6:132–
196, 1999.

[15] W. Dahmen, H. Harbrecht, and R. Schneider. Compression techniques for bound-
ary integral equations. Asymptotically optimal complexity estimates. SIAM J.
Numer. Anal., 43(6):2251–2271, 2006.

[16] E. W. Dijkstra. A note on two problems in connexion with graphs. Numer. Math.,
1(1):269–271, 1959.

[17] P. A. Dirac. Quantum mechanics of many-electron systems. Proc. Math. Phys.
Eng. Sci., 123(792):714–733, 1929.

[18] V. Fock. Näherungsmethode zur Lösung des quantenmechanischen Mehrkörper-
problems. Z. Phys., 61(1):126–148, 1930.

[19] J. B. Foresman, T. A. Keith, K. B. Wiberg, J. Snoonian, and M. J. Frisch. Sol-
vent effects. 5. Influence of cavity shape, truncation of electrostatics, and electron
correlation on ab initio reaction field calculations. J. Phys. Chem., 100(40):16098–
16104, 1996.

[20] L. Greengard. The rapid evaluation of potential fields in particle systems, 1988.

[21] L. Greengard and V. Rokhlin. A fast algorithm for particle simulations. J. Comput.
Phys., 73(2):325 – 348, 1987.

[22] L. Greengard and V. Rokhlin. A new version of the fast multipole method for the
laplace equation in three dimensions. Acta numerica, 6:229–269, 1997.

125

[23] W. Hackbusch. Integral Equations. Theory and Numerical Treatment. Birkhäuser,
Basel, 1995.

[24] W. Hackbusch. Hierarchische Matrizen: Algorithmen und Analysis. Springer,
Dordrecht, 2009.

[25] W. Hackbusch and Z. P. Nowak. On the fast matrix multiplication in the boundary
element method by panel clustering. Num. Math., 54(4):463–491, 1989.

[26] H. Harbrecht. Wavelet Galerkin schemes for the boundary element method in three
dimensions. PhD thesis, Technische Universität Chemnitz, Germany, 2001.

[27] H. Harbrecht and M. Peters. Comparison of fast boundary element methods on
parametric surfaces. Comput. Methods Appl. Mech. Eng., 261-262:39–55, 2013.

[28] H. Harbrecht and M. Randrianarivony. Wavelet BEM on molecular surfaces:
parametrization and implementation. Computing, 86:1–22, 2009.

[29] H. Harbrecht and M. Randrianarivony. Wavelet BEM on molecular surfaces: sol-
vent excluded surfaces. Computing, 92:335–364, 2011.

[30] H. Harbrecht and R. Schneider. Biorthogonal wavelet bases for the boundary
element method. Math. Nachr., 269(1):167–188, 2004.

[31] H. Harbrecht and R. Schneider. Wavelet Galerkin schemes for boundary integral
equations. Implementation and quadrature. SIAM J. Sci. Comput., 27(4):1347–
1370, 2006.

[32] D. Hartree. The wave mechanics of an atom with a non-Coulomb central field.
Part I. Theory and methods. Math. Proc. Cambridge Philos. Soc., 24(1):89–110,
1928.

[33] M. R. Hestenes and E. Stiefel. Methods of conjugate gradients for solving linear
systems. J. of Research of NBS, 49(6):409–436, 1952.

[34] P. Hohenberg and W. Kohn. Inhomogeneous electron gas. Phys. Rev., 136:B864–
B871, 1964.

[35] J. D. Jackson. Classical Electrodynamics. Wiley, New York, NY, 3rd edition, 1999.

[36] F. Jensen. Introduction to Computational Chemistry. Wiley, West Sussex, 2006.

[37] V. Karasiev, T. Sjostrom, J. Dufty, and S. Trickey. Local density approximation
exchange-correlation free-energy functional. Bull. Am. Phys. Soc., 59(1), 2014.

[38] J. G. Kirkwood. On the theory of strong electrolyte solutions. J. Chem. Phys., 2
(11):767–781, 1934.

[39] J. G. Kirkwood. The dielectric polarization of polar liquids. J. Chem. Phys., 7
(10):911–919, 1939.

[40] W. Kohn and L. J. Sham. Self-consistent equations including exchange and corre-
lation effects. Phys. Rev., 140:A1133–A1138, 1965.

[41] V. Kolmogorov. Blossom V: a new implementation of a minimum cost perfect
matching algorithm. Math. Prog. Comp., 1(1):43–67, 2009.

126 Bibliography

[42] R. Kress. Linear Integral Equations. Springer, Berlin, 1989.

[43] A. W. Lange and J. M. Herbert. Polarizable continuum reaction-field solvation
models affording smooth potential energy surfaces. J. Phys. Chem. Lett., 1(2):
556–561, 2010.

[44] A. W. Lange and J. M. Herbert. A smooth, nonsingular, and faithful discretization
scheme for polarizable continuum models: the switching/Gaussian approach. J.
Chem. Phys., 133(24):244111, 2010.

[45] B. Lee and F. Richards. The interpretation of protein structures: Estimation of
static accessibility. J. Mol. Biol., 55(3):379 – IN4, 1971.

[46] W. E. Lorensen and H. E. Cline. Marching cubes: A high resolution 3D surface
construction algorithm. SIGGRAPH Comput. Graph., 21(4):163–169, 1987.

[47] S. Miertuš, E. Scrocco, and J. Tomasi. Electrostatic interaction of a solute with
a continuum. A direct utilizaion of ab initio molecular potentials for the prevision
of solvent effects. J. Chem. Phys., 55(1):117–129, 1981.

[48] J. M. Olsen, K. Aidas, and J. Kongsted. Excited states in solution through polar-
izable embedding. J. Chem. Theory Comput., 6(12):3721–3734, 2010.

[49] L. Onsager. Electric moments of molecules in liquids. J. Am. Chem. Soc., 58(8):
1486–1493, 1936.

[50] R. M. Parrish, L. A. Burns, D. G. A. Smith, A. C. Simmonett, A. E. DePrince,
E. G. Hohenstein, U. Bozkaya, A. Y. Sokolov, R. Di Remigio, R. M. Richard, J. F.
Gonthier, A. M. James, H. R. McAlexander, A. Kumar, M. Saitow, X. Wang,
B. P. Pritchard, P. Verma, H. F. Schaefer, K. Patkowski, R. A. King, E. F. Valeev,
F. A. Evangelista, J. M. Turney, T. D. Crawford, and C. D. Sherrill. Psi4 1.1:
An open-source electronic structure program emphasizing automation, advanced
libraries, and interoperability. J. Chem. Theory Comput., 2017.

[51] J. L. Pascual-Ahuir and E. Silla. GEPOL: An improved description of molecular
surfaces. I. Building the spherical surface set. J. Comput. Chem., 11(9):1047–1060,
1990.

[52] J. L. Pascual-Ahuir, E. Silla, and I. Tuñon. GEPOL: An improved description of
molecular surfaces. III. A new algorithm for the computation of a solvent-excluding
surface. J. Comput. Chem., 15(10):1127–1138, 1994.

[53] W. Pauli. Über den Zusammenhang des Abschlusses der Elektronengruppen im
Atom mit der Komplexstruktur der Spektren. Z. Phys., 31(1):765–783, 1925.

[54] C. S. Pomelli and J. Tomasi. DefPol: New procedure to build molecular surfaces
and its use in continuum solvation methods. J. Comput. Chem., 19(15):1758–1776,
1998.

[55] C. S. Pomelli, J. Tomasi, M. Cossi, and V. Barone. Effective generation of molec-
ular cavities in polarizable continuum model by DefPol procedure. J. Comput.
Chem., 20(16):1693–1701, 1999.

[56] J. A. Pople, J. S. Binkley, and R. Seeger. Theoretical models incorporating electron

127

correlation. Int. J. Quantum Chem., 10(S10):1–19, 1976.

[57] C. Quan and B. Stamm. Mathematical analysis and calculation of molecular
surfaces. J. Comput. Phys., 322:760–782, 2016.

[58] C. Quan and B. Stamm. Meshing molecular surfaces based on analytical implicit
representation. J. Mol. Graph. Model., 71:200–210, 2017.

[59] R. D. Remigio, R. Bast, L. Frediani, and T. Saue. Four-component relativistic cal-
culations in solution with the Polarizable Continuum Model of solvation: Theory,
implementation, and application to the group 16 dihydrides H2X (X = O, S, Se,
Te, Po). J. Phys. Chem., 119(21):5061–5077, 2015.

[60] M. Repisky, S. Komorovsky, V. G. Malkin, O. L. Malkina, M. Kaupp, K. Ruud,
with contributions from R. Bast, U. Ekstrom, S. Knecht, O. I. Malkin, and
E. Malkin. ReSpect, version 3.3.0 (beta) Relativistic Spectroscopy DFT program,
2013.

[61] V. Rokhlin. Rapid solution of integral equations of classical potential theory. J.
of Comput. Phys., 60(2):187–207, 1985.

[62] Y. Saad. Iterative Methods for Sparse Linear Systems. SIAM, Philadelphia, 2003.

[63] S. Sauter and C. Schwab. Quadrature for hp-Galerkin BEM in R3. Num. Math.,
78(2):211–258, 1997.

[64] G. Scalmani and M. J. Frisch. Continuous surface charge polarizable continuum
models of solvation. I. General formalism. J. Chem. Phys., 132(11):114110, 2010.

[65] E. Schrödinger. An undulatory theory of the mechanics of atoms and molecules.
Phys. Rev., 28(6):1049–1070, 1926.

[66] H. M. Senn and W. Thiel. QM/MM methods for biomolecular systems. Angew.
Chem. Int. Edit., 48(7):1198–1229, 2009.

[67] E. Silla, I. Tuñón, and J. L. Pascual-Ahuir. GEPOL: An improved description
of molecular surfaces II. Computing the molecular area and volume. J. Comput.
Chem., 12(9):1077–1088, 1991.

[68] J. C. Slater. Note on Hartree’s method. Phys. Rev., 35:210–211, 1930.

[69] O. Steinbach. Numerical Approximation Methods for Elliptic Boundary Value
Problems. Finite and Boundary Elements. Springer, New York, 2008.

[70] J. Stoer and R. Bulirsch. Introduction to Numerical Analysis, volume 12 of Texts
in Applied Mathematics. Springer, New York, 2002.

[71] P. Su and H. Li. Continuous and smooth potential energy surface for conductorlike
screening solvation model using fixed points with variable areas. J. Chem. Phys.,
130(7):074109, 2009.

[72] J. Tao, J. P. Perdew, V. N. Staroverov, and G. E. Scuseria. Climbing the den-
sity functional ladder: Nonempirical meta-generalized gradient approximation de-
signed for molecules and solids. Phys. Rev. Lett., 91:146401, 2003.

[73] J. Tomasi, B. Mennucci, and R. Cammi. Quantum mechanical continuum solvation

128 Bibliography

models. Chem. Rev., 105(8):2999–3094, 2005.

[74] V. Weijo, M. Randrianarivony, H. Harbrecht, and L. Frediani. Wavelet formulation
of the Polarizable Continuum Model. J. Comput. Chem., 31(7):1469–1477, 2010.

[75] J. Wloka. Partial Differential Equations. Cambridge University Press, Cambridge,
1987.

[76] D. C. Young. Computational Chemistry: A Practical Guide for Applying Tech-
niques to Real World Problems. Wiley, New York, 2002.

Curriculum Vitae

Personal Data

Name Monica Bugeanu

Date of birth 5th of October 1985

Place of birth Bucharest

Nationality Romanian

Education

Oct 2012 – Sep 2017 PhD student in Mathematics
University of Basel, Basel

Oct 2009 – Feb 2012 MSc student in Simulation Sciences
RWTH Aachen University, Aachen
Graduation: February 2012

Oct 2004 – Sep 2009 Diploma student in Computer Science
Politehnica University of Bucharest, Bucharest
Graduation: September 2009

Sept 1992 – Jun 2004 School
Deutsches Goethe Kolleg, Bucharest

	Solving the Schrödinger equation
	Schrödinger equation
	Born-Oppenheimer approximation
	Ab-initio methods
	Density functional theory
	Continuum models
	Polarizable continuum model

	Solving boundary integral equations
	Function spaces
	Discretization of the solution
	Collocation method
	Galerkin method
	Computational chemistry packages
	Conclusion

	Wavelet Galerkin method
	Surface parametrization and inner products
	Representation in a wavelet basis
	Compression of the system matrix
	Implementation details

	Generating the cavity
	Surface decomposition
	Initialization and level set function
	Initial triangulation
	Generating patches
	Surface parametrization
	Mesh improvement
	Summary

	Validation
	Geometry description by atoms
	Geometry description by isosurfaces
	PCM for ionic solutions
	PCM for liquid crystals

	Conclusions
	Molecules used

