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Abstract

The present article is dedicated to the solution of elliptic boundary value
problems on random domains. We apply a high-precision second order shape
Taylor expansion to quantify the impact of the random perturbation on the
solution. Thus, we obtain a representation of the solution with third order
accuracy in the size of the perturbation’s amplitude. The major advantage
of this approach is that we end up with purely deterministic equations for
the solution’s moments. In particular, we derive representations for the first
four moments, i.e., expectation, variance, skewness and kurtosis. These mo-
ments are efficiently computable by means of boundary integral equations.
Numerical results are presented to validate the presented approach.

Keywords: Boundary value problem; random domain; perturbation
method.

1. Introduction

Often, practical problems from science and engineering result in the task
of solving a boundary value problem for an unknown function. The numer-
ical solution of such boundary value problems is in general well understood,
at least if the problem’s input parameters are known exactly. Often, how-
ever, the input parameters are not known exactly. Hence, the challenge is to
obtain high-precision approximations also in the presence of uncertainties.
Typically, random input parameters are then modelled in terms of random
fields and, as a consequence, the given boundary value problem is turned
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into a random one. This yields a solution which is a random field itself.
In this article, to keep the presentation simple for the reader’s convenience,
we shall consider the Dirichlet problem for the Poisson equation which is
formulated relative to a random domain:

−∆u(ω) = f in D(ω), u(ω) = g on ∂D(ω). (1)

Here, D(ω) denotes the domain under consideration with boundary ∂D(ω)
which both depend on the random parameter ω ∈ Ω. Of course this problem
can be easily extended for the case of more complex data, as for example a
more complex diffusion coefficient, cf. [16]. The idea of taking random com-
putational domains into account is inspired by tolerances in the fabrication
process of a mechanical device or by damages of the boundary which appear
during the life cycle of a device. Typically, such devices are close to a nominal
shape but differ of course from its mathematical definition. Since these tol-
erances are in general small, we can also make the crucial assumption of the
smallness of the random perturbations. Uncertainty quantification for com-
putational domains arouses recently more interest, see [4, 13, 14, 17, 25, 30].

By identifying domains with their boundary, a random domain D(ω),
which is close to a given nominal domain D0, can be described as a normal
perturbation of this nominal boundary ∂D0:

∂D(ω) = {y ∈ Rn : y(x) = x + ϕ(x, ω)n(x), x ∈ ∂D0}. (2)

In this context, the random field ϕ(ω) : ∂D0 → R is a scalar function which
is defined with respect to the nominal boundary ∂D0. It uniquely deter-
mines the domain perturbation via ϕ(ω)n : ∂D0 → Rn, with n denoting the
outward normal to the domain D0.

The most simple methodology to deal with randomness in numerical
computations is the Monte-Carlo method, cf. [22, 28]. Here, numerous draws
of the random input data are sampled according to some a-priorily known or
empirical distribution. Each draw entails the computation of a deterministic
boundary value problem. Then, the statistics like the mean and the variance
of these samples are formed. Nevertheless, for boundary value problems on
random domains, each sample implies a new domain and thus a new mesh,
the assembly of new mass and stiffness matrices, etc. Therefore, the Monte-
Carlo method is extremely costly and rather difficult to implement for the
problem at hand. Note that the same accounts for other more sophisticated
quadrature techniques like the quasi-Monte Carlo quadrature, cf. [3], or
sparse quadrature methods, cf. [2].

Thus, we aim here at a different approach, namely the perturbation
approach, see [1, 13, 14, 17, 20, 21]. It facilitates to approximate the random
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solution on an arbitrary compactum inside the fixed nominal domain D0.
The pivotal idea of the perturbation approach for random boundary value
problems is the expansion of the underlying random field around the related
input parameter’s expectation, in our case the domain D0, via a (shape-)
Taylor expansion. For the boundary value problem (1) at hand, this will
involve shape calculus, cf. [7, 26, 29]. With the help of the shape Taylor
expansion, we can derive asymptotic expansions of the random output’s
expectation, variance and also higher order moments.

More precisely, we employ a second order shape Taylor expansion and de-
rive corresponding asymptotic expansions for the first four moments. These
can be computed explicitly under the finite noise assumption. This means,
the random domain perturbation in (2) is of the form

ϕ(x, ω) =
N∑
i=1

ϕi(x)Yi(ω) (3)

with centered random variables Yi : Ω→ [−1, 1] which are independent and
identically distributed, see [5, 30].

As we will show, in the setting (3), i.e., having N terms in the series
expansion of the random perturbation field ϕn, the expectation and the
variance can be computed with a computational cost of order O(N). The
skewness and kurtosis can be computed with a computational cost of order
O(N2).

We remark that similar approach for scalar output functionals of par-
tial differential equations on uncertain domains has already been considered
in [6]. Such shape functionals can be linearized by means of shape calcu-
lus, which, in particular, involves the computation of the shape Hessian of
the functional under consideration. However, employing the adjoint method,
which is well-known in shape optimization, only the first order shape deriva-
tive of the partial differential equation under consideration has to be com-
puted. Whereas, for the problem considered in the present article, also the
second order shape derivative of the partial differential equation has to be
computed. The latter is computationally much more demanding.

The rest of this article is organized as follows. In Section 2, we introduce
the basic ideas of shape calculus and derive the asymptotic expansions for
the random solution’s statistics. Then, in Section 3, we propose a way to
compute these expansions by means of a boundary element method. Numer-
ical results are presented in Section 4. Finally, we state concluding remarks
in Section 5
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ε-tube

Dε

Figure 1: Illustration of the perturbed domain Dε (red boundary), the nominal domain
D0 (black boundary), and the ε-tube around ∂D0 (yellow).

2. Perturbation analysis

To avoid the extreme high-dimensionality of a direct discretization of
(1) by means of the domain mapping method, see e.g. [30], which is driven
by the size N of the expansion (3), a technique can be applied which is
mainly known from shape sensitivity analysis, namely the so-called local
shape derivative, see [8, 27]. It has been established as a measure of the
solution’s dependence on domain or boundary perturbations. Such shape
derivatives are in principle known since Hadamard, cf. [12] and nowadays
well established in shape optimization, see [7, 18, 26, 29]. Since the solution’s
nonlinear dependence on the shape of the domain is Fréchet differentiable,
we can linearize it around the nominal domain D0. Thus, deterministic
expressions for the solution’s statistics can be derived.

2.1. Shape calculus

Consider a sufficiently smooth domain D0 and a boundary variation in
the direction of the outward normal n:

ϕn : ∂D0 → Rn such that ‖ϕ‖C2,1(∂D0) ≤ 1.

Then, the perturbed domainDε can be defined as the interior of its boundary

∂Dε = {y ∈ Rn : y(x) = x + εϕ(x)n(x), x ∈ ∂D0}.

The perturbed domain Dε is well defined for sufficiently small ε > 0, see
Figure 1 for a visualization of this situation.
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We intend to linearize the solution uε of the boundary value problem on
the perturbed domain

−∆uε = f in Dε, uε = g on ∂Dε,

around the nominal domain D0. To that end, we assume throughout this ar-
ticle that the data f, g : Rn → R are sufficiently smooth in order to guarantee
that the solution uε is always contained in C2(Dε). This can be guaranteed
if there holds f ∈ C(Rn) and g ∈ C(Rn), respectively cf. [10].

Under our smoothness assumptions, we can expand uε, for ε > 0 suffi-
ciently small, in a shape Taylor expansion by using first and second order
local shape derivatives:

uε(x) = u0(x) + εδu0[ϕ](x) +
ε2

2
δ2u0[ϕ,ϕ](x) +O(ε3), x ∈ K b D0. (4)

Here, K is an arbitrary compact subset of D0, cf. [8, 9, 27], and u0 is the
solution of the boundary value problem on the nominal domain

−∆u0 = f in D0, u0 = g on ∂D0. (5)

Moreover, the function δu0[ϕ] denotes the first order local shape derivative,
which is given by

∆δu0[ϕ] = 0 in D0,

δu0[ϕ] = ϕ
∂(g − u0)

∂n
on ∂D0,

(6)

and δ2u0[ϕ,ϕ′] is the second order local shape derivative. The latter can be
computed according to

∆δ2u0[ϕ,ϕ′] = 0 in D0,

δ2u0[ϕ,ϕ′] = ϕϕ′
∂2(g − u0)

∂n2
− ϕ∂δu0[ϕ′]

∂n
− ϕ′∂δu0[ϕ]

∂n
on ∂D0.

(7)

Notice that the convergence in (4) is uniform with respect to L∞(K) as ε→ 0
provided that the set K is fixed and contained in Dε for every sufficiently
small ε > 0.

2.2. Random domains

So far, we have introduced shape calculus to describe the solution’s de-
pendence on the domain’s shape. In this section, we extend this approach
towards random boundary variations. To that end, let (Ω,F ,P) denote
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a complete probability space, where Ω is the set of outcomes, F is a σ-
algebra containing the possible events and P is a probability measure which
describes the likeliness of each event, i.e., P : F → [0, 1]. In this context,
complete means that F contains all P-null sets. Then, we define the random
perturbation field

ϕ(ω)n : ∂D0 → Rn

such that ‖ϕ(ω)‖C2,1(∂D0) ≤ 1 P-almost surely. For sufficiently small ε > 0,
we thus arrive at the random domain Dε(ω) which is given via its boundary

∂Dε(ω) = {y ∈ Rn : y(x) = x + εϕ(x, ω)n(x), x ∈ ∂D0}. (8)

In view of the first and second order local shape derivatives, the solution
uε(ω) of the random boundary value problem

−∆uε(ω) = f in Dε(ω), uε(ω) = g on ∂Dε(ω),

can be expanded by the random shape Taylor expansion. For notational
convenience, we introduce the abbreviations

δu0(x, ω) := δu0[ϕ(ω)](x) and δ2u0(x, ω) := δ2u0[ϕ(ω), ϕ(ω)](x).

It holds

uε(x, ω) = u0(x) + εδu0(x, ω) +
ε2

2
δ2u0(x, ω) +O(ε3), x ∈ K b D0. (9)

A visualization of the random domain with the inscribed compactum K of
evaluation is found in Figure 2. We arrive at the following theorem which
is an extension of the corresponding result for the first order shape Taylor
expansion, see [17].

Theorem 2.1. Assume that the random boundary perturbation ϕ is cen-
tered, i.e. E[ϕ](x) = 0 for all x ∈ ∂D0. Then, there exists ε0 > 0 such
that for all ε ≤ ε0 and for all x ∈ K b D0, the expectation E[uε] and the
variance V[uε] admit the asymptotic expansions

E[uε](x) = u0(x) +
ε2

2
E[δ2u0](x) +O(ε3),

V[uε](x) = ε2E
[
(δu0)2

]
(x) + ε3E

[
δu0δ

2u0

]
(x) +O(ε4).

(10)

Proof. Using the fact that E[δu0](x) = 0 since ϕ(ω) is centered, the first
equation follows immediately from taking the expectation on both sides of
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K

Figure 2: Illustration of the random domain with evaluation region K.

the shape Taylor expansion (9), cf. [15, 17]. The second equation is obtained
in accordance with

V[uε] = E
[
(uε − E[uε])

2
]

= E
[(
u0 + εδu0 +

ε2

2
δ2u0 − u0 −

ε2

2
E
[
δ2u0

]
+O(ε3)

)2]
= ε2E

[(
δu0 +

ε

2
δ2u0 −

ε

2
E
[
δ2u0

])2
]

+O(ε4)

= ε2E
[
(δu0)2

]
+ ε3E

[
δu0δ

2u0

]
+O(ε4),

where we again use that E[δu0](x) = 0, implying that

E
[
δu0E

[
δ2u0

]]
= E[δu0]E

[
δ2u0

]
= 0.

This theorem provides asymptotic expansions of the first two moments
which are third and fourth order accurate in the perturbation size ε, respec-
tively. In complete analogy, one can compute asymptotic expansions of the
third and fourth moment (and even higher order moments if required).

Corollary 2.2. The third centered moment is given by

M3[uε](x) = E
[(
uε(x)− E[u0](x)

)3]
= ε3E

[(
δu0(x)

)3]
+

3ε4

2
E
[(
δu0(x)

)2(
δ2u0(x)− E

[
δ2u0(x)

])]
+O(ε5)

(11)
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and the fourth centered moment is given by

M4[uε](x) = E
[(
uε(x)− E[u0](x)

)4]
= ε4E

[(
δu0(x)

)4]
+ 2ε5E

[(
δu0(x)

)3(
δ2u0(x)− E

[
δ2u0(x)

])]
+O(ε6).

(12)

2.3. Computation of the asymptotic expansions

Let us assume that the random field is given in form of the expansion

ϕ(x, ω) =

N∑
i=1

ϕi(x)Yi(ω), (13)

where the random variables Yi : Ω → [−1, 1] are centered, independent and
identically distributed and where the spatial coefficient functions {ϕi}i form
a subset of C2,1(∂D0). Notice that, if ϕ(x, ω) is not centered, we can redefine
the reference domain D0 as the interior of the boundary

∂D̃0 = {y ∈ Rn : y(x) = x + E[ϕ](x)n(x), x ∈ ∂D0}.

The random perturbations are then centered with respect to the transformed
reference domain D̃0.

Lemma 2.3. Let ϕ(x, ω) be given by (13). Then, there holds

δu0[ϕ(x, ω)] =
N∑
i=1

δu0[ϕi](x)Yi(ω)

and

δ2u0[ϕ(x, ω), ϕ(x, ω)] =

N∑
i,j=1

δ2u0[ϕi, ϕj ](x)Yi(ω)Yj(ω).

Proof. The claim for the first order local shape derivative follows directly
from the linearity of the first order local shape derivative with the repre-
sentation (13). For the second order local shape derivative, the assertion is
obtained from its bilinearity, again, together with the representation (13)
for the random field.
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With this lemma at hand, together with the multinomial theorem where
α = (α1, . . . , αN ) denotes an N -dimensional multiindex, we derive

E
[
(δu0)k

]
(x) = E

[( N∑
i=1

δu0[ϕi](x)Yi

)k]

= E
[ ∑
|α|=k

(
k

α

) N∏
i=1

(
δu0[ϕi](x)Yi

)αi

]

=
∑
|α|=k

(
k

α

) N∏
i=1

(
δu0[ϕi](x)

)αiE
[ N∏
i=1

Y αi
i

]
.

In order to obtain expressions for the first order local shape derivative’s
moments up to order four, we discuss these cases now explicitly. As we
will see, the expressions become more involved for increasing k due to the
increasing number of possible configurations for |α| = k.

• For k = 1, we have only the situation {αi = 1} for one i ∈ {1, . . . , N}
and thus, due to the centeredness of the Yi, that

E
[ N∏
i=1

Y αi
i

]
= 0.

• In the case k = 2, we face the situations {αi = 1, αj = 1} and {αi = 2}
for distinct i, j ∈ {1, . . . , N}. This results in

E
[ N∏
i=1

Y αi
i

]
= V[Yi] if αi = 2

Otherwise, we end up with E
[∏N

i=1 Y
αi
i

]
= 0 by the independence of

the random variables.

• For k = 3, we have the situations {αi = 1, αj = 1, αk = 1}, {αi =
2, αj = 1} and {αi = 3} for distinct i, j, k ∈ {1, . . . , N}. Again, the

independence and the centeredness imply that E
[∏N

i=1 Y
αi
i

]
= 0 in

the first two cases. In the third case, we obtain

E
[ N∏
i=1

Y αi
i

]
= E[Y 3

i ] if αi = 3.
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• Finally, for k = 4, we face the situations {αi = 1, αj = 1, αk = 1, α` =
1}, {αi = 2, αj = 1, αk = 1}, {αi = 2, αj = 2}, {αi = 3, αj = 1} and
{αi = 4} for distinct i, j, k, ` ∈ {1, . . . , N}. In cases one and three,
the independence and the centeredness of the random variables imply
that E

[∏N
i=1 Y

αi
i

]
= 0. Thus, we finally obtain

E
[ N∏
i=1

Y αi
i

]
=

{
V[Yi]V[Yj ] if αi = αj = 2,

E[Y 4
i ] if αi = 4.

By combining these computations, we have just shown the following

Lemma 2.4. For random fields of the form (13), it holds

E
[
(δu0)k

]
(x) =



0, k = 1,

V[Y ]

N∑
i=1

(
δu0[ϕi](x)

)2
, k = 2,

E
[
Y 3
] N∑
i=1

(
δu0[ϕi](x)

)3
, k = 3,

(
E
[
Y 4
]
− 3V[Y ]2

) N∑
i=1

(
δu0[ϕi](x)

)4
+ 3
(
E
[
(δu0)2

]
(x)
)2
, k = 4.

Notice that the aforementioned equations are also feasible to compute
the terms

E
[
(δu0)kE[δ2u0]

]
(x) = E

[
(δu0)k

]
(x) · E[δ2u0](x)

for k = 2, 3 which appear in the asymptotic expansions (11) and (12) of the
third and fourth centered moments.

Another term we shall provide is E
[
(δu0)kδ2u0

]
(x) for k = 0, 1, 2, 3. It

can be computed in complete analogy by employing Lemma 2.3. We find

E
[
(δu0)kδ2u0

]
(x)

= E
[ ∑
|α|=k

(
k

α

) N∏
`=1

(
δu0[ϕ`](x)Y`

)α`

N∑
i,j=1

δ2u0[ϕi, ϕj ](x)YiYj

]

=
∑
|α|=k

(
k

α

) N∏
`=1

(
δu0[ϕ`](x)

)α`

N∑
i,j=1

δ2u0[ϕi, ϕj ](x)E
[
YiYj

N∏
`=1

Y α`
`

]
.

10



In view of the previous computations and

|α| = 5 =⇒ E
[ N∏
i=1

Y αi
i

]
=


V[Yi]E[Y 3

j ], if αi = 2, αj = 3,

E[Y 3
i ]V[Yj ], if αi = 3, αj = 2,

E[Y 5
i ], if αi = 5,

0, otherwise,

straightforward calculation yields the subsequent result.

Lemma 2.5. For random fields of the form (13), it holds

E
[
(δu0)kδ2u0

]
(x)

=



V[Y ]

N∑
i=1

δ2u0[ϕi, ϕi](x), if k = 0,

E
[
Y 3
] N∑
i=1

δu0[ϕi](x)δ2u0[ϕi, ϕi](x), if k = 1,

(
E
[
Y 4
]
− 3
(
V[Y ]

)2) N∑
i=1

(
δu0[ϕi](x)

)2
δ2u0[ϕi, ϕi](x)

+E
[
(δu0)2

]
(x)E

[
δ2u0

]
(x)

+ 2
(
V[Y ]

)2 N∑
i,j=1

δu0[ϕi](x)δu0[ϕj ](x)δ2u0[ϕi, ϕj ](x), if k = 2,

(
E
[
Y 5
]
− 10V

[
Y 2
]
E
[
Y 3
]) N∑

i=1

(
δu0[ϕi](x)

)2
δ2u0[ϕi, ϕi](x)

+E
[
(δu0)3

]
(x)E

[
δ2u0

]
(x)

+ 3E
[
(δu0)2

]
(x)E

[
δu0δ

2u0
]
(x)

+ 6E
[
Y 3
]
V[Y ]

N∑
i,j=1

(
δ2u0[ϕi](x)

)2
δu0[ϕj ](x)δ2u0[ϕi, ϕj ](x), if k = 3.

To summarize, we have provided by now easily computable expressions
that are feasible to evaluate the asymptotic expansions for the expectation
and the variance in accordance with (10), as well as the skewness (11) and
the kurtosis (12). The computational cost is O(N) for the expectation and
the variance while the computational cost is O(N2) for the third and fourth
centered moment.

Remark 2.6. If the law of Y is symmetric, then it holds E
[
Y (ω)3

]
= 0

and E
[
Y (ω)5

]
= 0. Consequently, the asymptotic expansion of the variance

simplifies in accordance with

V[uε](x) = ε2E
[(
δu0(x, ω)

)2]
(x) +O(ε4), x ∈ K b D0.
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The same accounts for the fourth moment, which simplifies to

M4[uε](x) = ε4E
[(
δu0(x)

)4]
+O(ε6).

See in particular (25) for a representation of all four moments in the case
of the uniform distribution.

3. Boundary integral equations

In this section, we shall provide a means to compute the solution u0

to the boundary value problem (5) and the associated local shape deriva-
tives δu0[ϕ] and δ2u0[ϕ] given by (6) and (7), respectively. Since we only
deal with boundary perturbations here, a natural approach is based on a
boundary integral formulation, which circumvents the discretization of the
entire domain. In particular, we shall explain how one may compute first
and second order normal derivates of the solution u0 to (5) by the boundary
element method. For the sake of simplicity in the representation, we restrict
ourselves from now on to the two-dimensional situation, i.e., n = 2. Nev-
ertheless, we emphasize that the three-dimensional situation can be treated
in complete analogy.

3.1. Newton potential

In order to apply the boundary element method to the Poisson equation
with non-homogenous loading, we make the ansatz

u0 = v +Nf (14)

for a suitable Newton potential Nf which satisfies the equation −∆Nf =
f and a harmonic function v which solves the associated boundary value
problem with homogeneous right hand side

∆v = 0 in D0, v = g −Nf on ∂D0. (15)

The Newton potential has to be either known analytically or it has to be
computed in advance in a fairly simple domain D̂ which contains the domain
D0. To this end, efficient solution techniques for the Poisson equation, like
higher-order finite elements and multigrid methods, can easily be applied,
see [19].
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3.2. Dirichlet-to-Neumann map

Now, in order to determine the solution v of the Laplace equation (15),
we employ a reformulation in terms of a boundary integral equation. Due to
the knowledge of the Green’s function of the underlying differential operator,
we can easily represent the solution v(x) of (15) at each point x inside the
domain D0 according to the representation formula

v(x) =

∫
∂D0

{
G(x,y)

∂v

∂n
(y)− ∂G(x,y)

∂ny
v(y)

}
dσy. (16)

Therefore, the solution v is uniquely determined from the knowledge of its
Cauchy data (v, ∂v/∂n) on ∂D0. Letting x ∈ D0 tend to the boundary ∂D0

in (16) and taking into account the jump properties of the layer potentials,
cf. [23], we obtain the direct boundary integral formulation of the problem:

1

2
v(x) =

∫
∂D0

G(x,y)
∂v

∂n
(y) dσy −

∫
∂D0

∂G(x,y)

∂ny
v(y) dσy, x ∈ ∂D0.

(17)
Next, we introduce the boundary integral operators which are associated

with the Laplace operator in two spatial dimensions. Since the fundamental
solution is then given by

G(x,y) = − 1

2π
log ‖x− y‖,

the single layer operator reads as

V : H−1/2(∂D0)→ H1/2(∂D0),(
Vρ
)
(x) = − 1

2π

∫
∂D0

log ‖x− y‖ ρ(y) dσy,
(18)

while the double layer operator is given by

K : L2(∂D0)→ L2(∂D0),(
Kρ
)
(x) =

1

2π

∫
∂D0

〈x− y,ny〉
‖x− y‖2

ρ(y) dσy.
(19)

Hence, by incorporating the Dirichlet boundary condition u = g − Nf on
∂D0, we can rewrite (17) in accordance with

V ∂v
∂n

=

(
1

2
+K

)
(g −Nf ) on ∂D0. (20)
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This is the Dirichlet-to-Neumann map for the harmonic function v. It fa-
cilitates the computation of the missing Neumann data from the known
Dirichlet data g − Nf on ∂D0. The single layer operator on the left hand
side is symmetric and H−1/2(∂D0)-elliptic provided that diam(∂D0) < 1.
In view of the Lax-Milgram lemma, this is sufficient to ensure the unique
solvability of the boundary integral equation (20).

3.3. Computing first and second order local shape derivates

In complete analogy, the Neumann data of the local shape derivative
δu0[ϕ] are easily computable by applying again the Dirichlet-to-Neumann.
It holds

V ∂δu0[ϕ]

∂n
=

(
1

2
+K

)(
ϕ
∂(g − v −Nf )

∂n

)
on ∂D0. (21)

Thus, similarly to (16), the local shape derivative at the point x ∈ D0 is
given by

δu0[ϕ](x) =

∫
∂D0

{
G(x,y)

∂δu0[ϕ]

∂n
(y)−∂G(x,y)

∂ny

(
ϕ(y)

∂(g − v −Nf )

∂n
(y)

)}
dσy.

The computation of the second order local shape derivative δ2u0[ϕ,ϕ′]
is more sophisticated since its Dirichlet boundary data involve the term
∂2u0/∂n

2, cf. (7). The next lemma provides a formula that facilitates the
computation of this term.

Lemma 3.1. There holds the identity

∂2u0

∂n2
= −∂

2g

∂t2
− κ

(
∂v

∂n
−
∂(g −Nf )

∂n

)
− f,

where κ denotes the curvature of ∂D0.

Proof. Since u0 ∈ C2(D0), it holds the following identity for the Laplace-
Beltrami operator ∆Γ:

−f = ∆u0 =
∂2u0

∂n2
+ κ

∂u0

∂n
+ ∆Γu0.

In view of u0 = v +Nf , ∆Γ(u0 − g) = 0 and

∆Γg =
∂2g

∂t2
− κ ∂g

∂n
,

we obtain the assertion.
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For the computation of the random shape Tayler expansion (9) and thus
also for the computation of the random solution’s statistics, the second order
local shape derivative has only to be known inside the set K b D0. Hence,
we can use the indirect ansatz

δ2u0[ϕ,ϕ′](x) =

∫
∂D0

G(x,y)ρ(y) dσy, x ∈ D0.

The unknown density ρ ∈ H−1/2(∂D0) is thus given by the first kind integral
equation, see [23],

Vρ = ϕϕ′
∂2(g − u0)

∂n2
− ϕ∂δu0[ϕ′]

∂n
− ϕ′∂δu0[ϕ]

∂n
on ∂D0. (22)

3.4. Solving boundary integral equations

The next step towards the solution of the boundary value problem is the
numerical approximation of the integral operators included in (20), (21) and
(22), which involves a suitable parametrization of the occuring integrals. To
that end, we introduce the parametrization γ : [0, 2π]→ ∂D0 for the bound-
ary ∂D0. A very efficient numerical method for the approximation of the
unknown Cauchy data is obtained by the collocation method when using
trigonometric polynomials as ansatz functions. Then, the application of the
trapezoidal rule for the numerical quadrature and an appropriate regular-
ization to deal with the singular integrals yields a second order convergent
method. If the data at hand and also the boundary are arbitrarily smooth,
it is easy to show that this method is even exponentially convergent, cf. [23].

4. Numerical results

For the numerical examples, we consider the Poisson equation

−∆u(ω) = 1 in Dε(ω), u(ω) = 0 on ∂Dε(ω), (23)

on the randomly varying disc

Dε(ω) =

{(
ρ(φ) cos(φ), ρ(φ) sin(φ)

)
∈ R2 :

0 ≤ ρ(φ) < r(φ, ω) =
2

5
+

ε

80

5∑
`=1

Y2`(ω) cos(`φ) + Y2`−1(ω) sin(`φ)

}

15



with ε ≤ 1/2 and independent random variables Y1, . . . , Y10 ∼ U([−1, 1]).
The nominal domain D0 is thus the disc of radius 2/5:

D0 =

{(
ρ(φ) cos(φ), ρ(φ) sin(φ)

)
∈ R2 : 0 ≤ ρ(φ) <

2

5
, 0 ≤ φ < 2π

}
.

A visualization of different realizations of the randomly varying domain in
case of ε = 1/2 is found in Figure 3.

-0.5 0 0.5

-0.5

0

0.5

Figure 3: Different realizations (blue) of the boundary of D1/2(ω) with inscribed non-
varying compactum K (grey).

One readily verifies that the moments of the random variables satisfy

E[Y k
` ] =

{
0, if k odd,

1
k+1 , if k even.

Consequently, we obtain along the lines of Lemmata 2.4 and 2.5 the expan-
sions

E[uε](x) = u0(x) +
ε2

6

N∑
i=1

δ2u0[ϕi, ϕi](x) +O(ε3),

V[uε](x) =
ε2

6

N∑
i=1

(
δu0[ϕi](x)

)2
+O(ε4),

(24)

for the expectation and variance. Whereas, for the skewness and the kurto-
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sis, we arrive at

M3[uε](x) =
3ε4

2

[
2

9

N∑
i,j=1

δu0[ϕi](x)δu0[ϕj ](x)δ2u0[ϕi, ϕj ](x)

− 2

15

N∑
i=1

(
δu0[ϕi](x)

)2
δ2u0[ϕi, ϕi](x)

]
+O(ε5),

M4[uε](x) = ε4

[
1

3

( N∑
i=1

(
δu0[ϕi](x)

)2)2

− 2

15

N∑
i=1

(
δu0[ϕi](x)

)4]
+O(ε6).

(25)
For varying ε, we will compare these asymptotic expansions with results
derived by a sparse grid quadrature based on Clenshaw-Curtis quadra-
ture points1, cf. [11]. To that end, we evaluate the samples on the com-
pactum K = {x ∈ R2 : ‖x‖2 ≤ 0.3} in order to compute the solution’s
first four moments. Notice that, for all ε ≤ 0.5, the compactum K is al-
most surely contained in Dε(ω), see also Figure 3. In order to validate

0 0.1 0.2 0.3 0.4 0.5
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Figure 4: Error of the sparse grid quadrature for the mean.

the sparse grid quadrature, Figure 4 provides a convergence plot of the ex-
pectation for increasing numbers of quadrature points. We have N(q) =
1, 23, 265, 2069, 12497, 63097, 280017 quadrature points for q = 0, 1, . . . , 6.
As it turns out, from level q = 3 on, we already have a very accurate ap-
proximation for the mean and expect a similar behavior for the higher order
moments.

1The employed implementation of the sparse grid quadrature is available on
https://github.com/muchip/SPQR.
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The computation of the solution u0 of the unperturbed problem and
the associated first and second order local shape derivaties are computed as
introduced in Section 3 by employing 200 collocation points. The numerical
solution of (23) for the particular samples is likewise determined by using the
Dirichlet-to-Neumann map. A suitable Newton potential for (23) is given
by the function

Nf (x) = −1

4
(x2

1 + x2
2).
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Figure 5: Visualization of the mean in case of ε = 1/2 and the asymptotic behavior of the
asymptotic expansion.

Figure 5 shows a visualization of the approximate mean in case of ε = 1/2
on the left hand side. On the right hand side, the asymptotic behavior of
the perturbation approach is presented in terms of the mean’s L∞-error. It
is evaluated on a grid similar to the one depicted in Figure 3 with about
2000 points. As a comparison, we also depicted the results which would be
obtained by a first order shape Taylor expansion, resulting in the approxima-
tion E[uε](x) = u0(x) +O(ε2). As it turns out, the first order perturbation
approach perfectly provides the predicted quadratic rate, indicated by the
dashed line. Here and in the sequel, the polynomial fits are obtained by a
least squares fit of the coefficient of the respective monomial. For the sec-
ond order perturbation approach, the cubic rate is not entirely met. In this
concrete example, a quartic fit would reflect the error curve better.

As can be derived from (24), the first and second order perturbation
approach coincide in case of the variance since the third order term just
vanishes due to the symmetry of the random variables’ distribution. A
visualization of the approximate variance in case of ε = 1/2 can be found
on the left hand side of Figure 6. Whereas, the asymptotic rate for the
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Figure 6: Visualization of the variance in case of ε = 1/2 and the asymptotic behavior of
the asymptotic expansion.

L∞-error of the variance is shown on the right hand side of Figure 6. As
can be seen, the error perfectly reflects the quartic fit.
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Figure 7: Visualization of the skewness in case of ε = 1/2 and the asymptotic behavior of
the asymptotic expansion.

The next moment to be considered is the random solution’s skewness.
On the left hand side of Figure 7, we find a visualization of the skewness
in case of ε = 1/2. The right hand side of Figure 7 contains the corre-
sponding error for different sizes of ε. In difference to (11), the first order
perturbation approach amounts to the expansion M3[uε](x) = O(ε4). In-
deed, we exactly observe this quartic rate in our computations. Compared
to this, the expansion of the second order perturbation approach is up to
one order of magnitude more precise. Nevertheless, the expected quintic
rate is not entirely met. Due to the very small numbers that are involved
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in the corresponding computation, we assume that this effect is caused by
cancellation.

10
-1

10
-18

10
-17

10
-16

10
-15

10
-14

10
-13

L
-E

rr
o
r

error 1
st

/2
nd

-order

sextic fit

Figure 8: Visualization of the kutorsis in case of ε = 1/2 and the asymptotic behavior of
the asymptotic expansion.

Finally, we consider the random solution’s kurtosis. It is depicted on
the left hand side of Figure 8 for the choice ε = 1/2. As in the case of the
variance, the first and second order perturbation approach coincide due to
the symmetry of the random variables. As can be seen in the right hand side
of Figure 8, the asymptotic expansion’s error exhibits the predicted sextic
rate, except for the first value ε = 0.05.

5. Conclusion

In the present article, we have applied the second order perturbation
approach to boundary value problems that are defined with respect to ran-
dom domains. To that end, we have derived asymptotic expansions for
the expectation, the variance, the skewness and the kurtosis. In particu-
lar, we developed a boundary element method to efficiently compute these
expansions. The application of the exponentially convergent Nyström ap-
proximation for this boundary integral equations keeps discretization errors
at a low level. By numerical experiments, we have demonstrated that the
second order perturbation approach is much more accurate than the first
order perturbation approach. Especially when computing the expectation,
we have observe rather a quartic rate than the expected cubic rate, whereas
for the third moment, we still achieve an error that is up to an order of mag-
nitude better than the error of the corresponding first order method. For
the variance and the kurtosis, both approximations coincide. Therefore, the
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results corroborate our theoretical findings, except for the approximation of
the skewness, where we assume that the reduced rate is caused by roundoff
errors.
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