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Stokes–anti-Stokes Correlations in Raman Scattering from Diamond Membranes
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We investigate the arrival statistics of Stokes (S) and anti-Stokes (aS) Raman photons generated
in diamond membranes. Strong quantum correlations between the S and aS signals are observed,
which implies that the two processes share the same phonon, that is, the phonon excited by the S

process is consumed in the aS process. We show that the intensity cross-correlation g
(2)
S,aS(0), which

describes the simultaneous detection of Stokes and anti-Stokes photons, decreases steadily with laser

power as 1/PL. Contrary to many other material systems, diamond exhibits a maximum g
(2)
S,aS(0)

at very low pump powers, implying that the Stokes-induced aS photons outnumber the thermally
generated aS photons. On the other hand, the coincidence rate shows a quadratic plus cubic power
dependence, which indicates a departure from the Stokes-induced anti-Stokes process.

Raman scattering, conventionally used as a method
for probing the vibrational modes of a system, can be
used to create correlated Stokes–anti-Stokes photon pairs
[1–11]. In the uncorrelated regime, Raman scattering is
spontaneous and, without laser heating, both Stokes and
anti-Stokes intensities are linear with excitation laser
power (see Fig. 1a). However, if the phonon energies
are high enough that the thermal phonon occupation is
low, the spontaneous aS process is rare and correlations
between Stokes and anti-Stokes photon generation set in
(see in Fig. 1b). In this regime the aS intensity depends
on the squared excitation laser power, since one laser
photon writes the phonon, and another laser photon
reads it. Recent work has shown both theoretically and
experimentally that the Stokes-generated phonon acts
as a quantum memory, where the Stokes and anti-Stokes
signals act as write and read commands [1–11]. In
parallel, research in photon pairs produced through
four-wave mixing (FWM) in optical fibers has shown ex-
tremely high nonclassical correlations [12, 13], analogous
to studies in spontaneous parametric downconversion
(SPDC) [14].

In this paper, we report the generation of highly
nonclassical photon superbunching in diamond at low
excitation powers and analyze Stokes–anti-Stokes photon
correlations as a function of pump power. Our data re-
veal the range of conditions under which Stokes-induced
anti-Stokes scattering (SaS) can be used to generate
correlated photons in diamond. This information is
useful for designing efficient phonon-based quantum
memories and heralded single-photon sources for quan-
tum communication. Contrary to four-wave mixing
measurements in optical fibers [12] and spontaneous
parametric down conversion in nonlinear crystals [14], we
observe a saturation of Stokes–anti-Stokes correlations
at very low intensities.

In our experiments, we measure Stokes and anti-Stokes
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photons in diamond as a function of laser power PL.
The excitation wavelength is λ = 785 nm and the Stokes
and anti-Stokes photons appear at the wavelengths
λS = 880 nm and λaS = 710 nm, respectively, as defined
by the phonon frequency of 1332 cm−1 in diamond. The
duration of the excitation laser pulses is τ = 130 fs,
with a repetition rate of ∆f = 76MHz. The sample
is a freestanding 50µm thick diamond membrane. As
shown in Fig. 2, the Stokes signal shows a linear power
dependence, whereas the anti-Stokes signal exhibits
a quadratic power dependence at high intensities, as
expected for the SaS process illustrated in Fig. 1b.
At low powers, on the other hand, the spontaneously
generated aS process is stronger than the SaS process,
and hence the aS signal shows a linear power dependence.

To understand the interplay between the spontaneous
and the Stokes-induced aS processes, we measure the

second-order intensity cross-correlation g
(2)
S,aS(0) as a

function of average laser power. g
(2)
S,aS(0) corresponds to

the total number of Stokes and anti-Stokes coincidences
measured at zero time delay, normalized by the number

S & aS SaS(a) (b)

FIG. 1. Schematic representation of Stokes (S) and anti-
Stokes (aS) Raman scattering. (a) Uncorrelated S and aS
processes (S&aS). The phonons responsible for the aS pro-
cess are generated thermally. (b) In the absence of thermal
phonons, anti-Stokes photons are generated by the phonons
created through the Stokes process. Stokes photons and
Stokes-induced anti-Stokes (SaS) photons become correlated.
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of accidental coincidences. Classically, g
(2)
S,aS(0) is bound

by the products of the autocorrelations through the

inequality g
(2)
S,aS(0) ≤

√

g
(2)
S,S(0) g

(2)
aS,aS(0) [1, 15]. In

turn, the autocorrelations are classically bound by

g
(2)
S,S(0), g

(2)
aS,aS(0) ≤ 2, where the equality holds for a

thermal source [1, 15]. For a large range of intensities,

the SaS process dominates and the value of g
(2)
S,aS(0)

strongly violates the inequality since the photon arrival
statistics cannot be described classically.

Our experimental setup for measuring correlations
between Stokes and anti-Stokes photons is illustrated
in Fig. 3a. A representative coincidence measurement
is shown in Fig. 3b. The coincidence rate is calculated
by dividing the coincidence counts at time delay ∆t = 0
by the measurement time. As shown in Fig. 4a, the
power dependence of the coincidence rate is mostly
quadratic, but for very high powers it becomes necessary
to include a cubic term in the fit. Using the recorded
coincidence counts we can evaluate the second-order
cross-correlation function g

(2)
S,aS(0) by dividing the peak

at ∆t = 0 by the average of the peaks at ∆t 6= 0.

g
(2)
S,aS(0) initially increases as the power is decreased and

then eventually reaches a maximum value (see Fig. 4c).

The coincidence rate and the cross-correlation g
(2)
S,aS(0)

can both be written in terms of probabilities of generat-
ing Stokes and anti-Stokes photons. We assume that the
number of Stokes photons generated per pulse is small
enough that the probability of generating a Stokes pho-
ton is always linear with laser power, which ensures that
we are not in the regime of stimulated Raman scattering
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FIG. 2. Dependence of Stokes signal (red circles) and anti-
Stokes signal (blue triangles) on average excitation power
measured in the forward direction. The data points are the
area of Gaussian fits to the spectral lines, normalized by the
integration time. The Stokes signal is linear with laser power,
whereas the anti-Stokes signal shows a linear power depen-
dence for low laser powers and quadratic dependence for high
laser powers, suggesting that the SaS process becomes much
stronger than spontaneous aS scattering. The aS data and fit
have been multiplied by a factor of 5 to show it on the same
scale as the S data. The two gray lines are the linear (dotted)
and quadratic (dashed) components of the aS fit.
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FIG. 3. (a) Experimental setup. A 0.5NA objective (not
shown) focuses 785 nm light (shown in green) from a Ti:Sapph
laser into a 50µm thick diamond sample. The scattered light
is collected with a 0.9NA air objective. The light can either be
sent to a spectrometer (not shown), or to a pair of avalanche
photodiodes (APD). A dichroic beamsplitter (DBS) separates
the Stokes (red) and anti-Stokes (blue) signals, sending them
to separate APDs. (b) A typical coincidence measurement.
Count rates for this experiment were 4.2 kHz for Stokes and
200Hz for anti-Stokes. The incident power was 8.6mW

(SRS). We further assume that the number of thermal
phonons in diamond is negligible compared to the num-
ber of Stokes-induced phonons. This assertion is justified
by the fact that the thermal population of phonons in dia-
mond is small at room temperature because of diamond’s
large phonon energy (1332 cm−1, or 40THz). Therefore,
if we detect an anti-Stokes photon, we know it was pro-
duced by the SaS process. This assumption should fail
at very low powers, when the number of Stokes-induced
phonons becomes comparable to the number of thermal
phonons. Given these considerations, we can explain the
power dependence of the number of coincidences per sec-
ond through the probability of measuring a Stokes–anti-
Stokes pair P (S, aS). An application of the product rule
allows this to be rewritten as

P (S, aS) = P (aS|S)P (S) = P (S|aS)P (aS) , (1)

where P (aS|S) denotes the conditional probability of
detecting an anti-Stokes photon given that a Stokes
photon has already been detected, and similarly for
P (S|aS) [1]. P (S) and P (aS) are the unconditional prob-
abilities for detecting Stokes and anti-Stokes photons.
Because of the absence of thermal phonons, P (S|aS)
is given by the collection and detection efficiency ηS
at the Stokes frequency. In other words, detection of
an anti-Stokes photon requires that a Stokes photon
was created, though it may be undetected. The power
dependence of the coincidences is therefore ruled by
the power dependence of the anti-Stokes signal, that
is, P (S, aS) = ηSP (aS). In the absence of thermal



3

phonons, the anti-Stokes signal scales quadratically with
laser power PL (see Fig. 2) and hence P (S, aS) ∝ PL

2,
which is confirmed by our coincidence measurements
shown in Fig. 4a. Note, however, that spontaneously
generated coincidences also exhibit a quadratic power
dependence. In this case, Stokes and anti-Stokes pro-
cesses are independent, that is, P (S|aS) = P (S), and
hence P (S, aS) = P (S)P (aS) ∝ PL

2. Different to the
SaS process, spontaneous coincidences are independent
of time delay ∆t and therefore their contribution is
always smaller than the height of the off-center peaks in
Fig. 3b.

At very high pump powers (PL > 150mW), we
observe the onset of a cubic term in the coincidence rate.
At these high powers, we need to account for stimulated
processes, such as coherent Raman scattering (CRS).
Alternatively, for strong interactions, the system can
undergo multiple phonon-photon swapping cycles as the
beam propagates through the sample [16]. Furthermore,
once the anti-Stokes signal becomes comparable to the
Stokes signal, the aS signal will increase more slowly
with power, since in this regime most of the available
Stokes-induced phonons are converted into anti-Stokes
photons. Any of these contributions can lead to the
observed deviations from the expected PL

2 dependence
of the coincidence rate at high powers.

We can use a similar analysis to understand the power
dependence of the second-order cross-correlation [1]

g
(2)
S,aS(0) =

P (S, aS)

P (S)P (aS)
=

P (S|aS)

P (S)
. (2)

As noted above, P (S|aS) ≈ ηS, which leads to

g
(2)
S,aS(0) = ηS / P (S) = ηS / (kSP), where kS is a constant
describing the strength of the Stokes process as well as
the collection and detection efficiencies. The correlation
is therefore expected to increase with decreasing laser
power as 1/PL. At very high powers, we can no longer
exclude the generation of multiple photon pairs per

pulse and hence the value of g
(2)
S,aS(0) becomes dependent

on the photon pair statistics. This can be understood as
a transition from a single quantum state at low powers
to an ensemble state which can be described classically
at high power. At very low powers, the SaS process is
no longer much stronger than the thermally generated
anti-Stokes, which leads to a maximum attainable

g
(2)
S,aS(0). As the laser power is further reduced, we

expect that eventually the value of g
(2)
S,aS(0) will decrease,

since the uncorrelated, spontaneously generated Stokes
and anti-Stokes photons will dominate the signals.
However, the integration time for such a measurement is
prohibitively long. In the absence of thermally generated

anti-Stokes scattering we would expect that g
(2)
S,aS(0) will

increase without limit as power is reduced, similar to
SPDC [14].

Even at low pump powers, a significant number of
phonons is produced per pulse (∼4 phonons per pulse at

5mW) [17]. Because of momentum conservation, only
a small fraction of these phonons are actually available
for generating anti-Stokes photons [8, 18]. An accurate
estimate of when the spontaneous aS and SaS processes
are equal therefore requires a careful consideration of
the phase-matching conditions, as well as experimental
factors such as collection volume and NA.

It may seem unintuitive that g
(2)
S,aS(0) falls with

increasing laser power even though the coincidences
per second rise with power. The reason is that while
the coincidences at ∆t = 0 (center peak in Fig. 3b)
rise as PL

2 or PL
3 (depending on pump power), the

coincidences for ∆t 6= 0 (off-center peaks in Fig. 3b) rise
even faster. These are the correlations between Stokes
and anti-Stokes photons excited by different laser pulses.
Consider, for example, the probability of measuring a
Stokes photon from one pulse and an anti-Stokes photon
from the pulse immediately following. This corresponds
to the peak at ∆t = 13 ns in figure 3(b). It requires
that a Stokes photon is generated in one pulse, followed
by a Stokes and anti-Stokes photon generated in the
subsequent pulse, that is, although we detect only one
Stokes photon from the first pulse and one anti-Stokes
photon from the next pulse, a Stokes photon must still
be generated in the second pulse for the anti-Stokes
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FIG. 4. Correlation of Stokes and anti-Stokes photons as a
function of laser power. (a) Coincidence rate at ∆t = 0. The
fitting curve is quadratic for low P and cubic for high P. (b)
Coincidence rate at ∆t 6= 0. (c) Second-order correlation

for zero time delay g
(2)
S,aS(0). The dashed line indicates the

asymptotic 1/PL behavior. At low powers, g
(2)
S,aS(0) stops in-

creasing because the yield of Stokes-induced anti-Stokes pho-
tons becomes comparable to the yield of thermally induced
anti-Stokes photons.
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photon to be created. In total, the peak at ∆t = 13 ns
includes the generation of a second Stokes photon,
which implies that its power dependence is one order
higher than the peak at ∆t = 0ns. This argument holds
for any Stokes–anti-Stokes pair that is not produced
within the same pulse. The conclusion is that the peaks
at ∆t 6= 0 rise faster than the peaks at ∆t = 0 by a

rate proportional to P . When we calculate g
(2)
S,aS(0)

by dividing the peak ∆t = 0 by the average of the
peaks at ∆t 6= 0, the ratio will therefore fall as P−1,
which agrees with our measurements shown in Fig. 4c.
Furthermore, using a thinner sample will reduce the
peaks at ∆t 6= 0 more than the peaks at ∆t = 0. It is
therefore beneficial to use membranes to achieve values
of g

(2)
S,aS(0) far greater than 2.

In conclusion, by studying the correlations between
Stokes and anti-Stokes photons as a function of laser
pump power, we have shown that the second-order

cross-correlation g
(2)
S,aS(0) can be varied over a large

range of values. We have discussed distinct regimes
for producing Stokes–anti-Stokes photon pairs: 1)
uncorrelated photons from thermal phonons and 2)
correlated photons from the SaS process. The relative
strengths of these processes depends on experimental
parameters (particularly pump power), as well as ma-
terial properties. For quantum computing, the optimal
material should be in the SaS regime for a large range
of pump powers, which can be achieved, for example,
by exploiting material resonances. Future work will
therefore focus on developing engineered samples [19]
with distinct resonances, such as optical cavities [20].
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[11] J. Peřina, V. Peřinová, C. Sibilia, and M. Bertolotti,
“Quantum statistics of four-wave mixing,” Optics Comm.
49, 285–289 (1984).

[12] J. Fan, A. Migdall, and L. J. Wang, “Efficient generation
of correlated photon pairs in a microstructure fiber,” Opt.
Lett. 30, 3368–3370 (2005).

[13] L. J. Wang, C. K. Hong, and S. R. Friberg, “Genera-
tion of correlated photons via four-wave mixing in optical
fibers,” J. Opt. B: Quantum Semiclass. Opt. 3, 346–352
(2001).

[14] K. Akiba, K. Kashiwagi, M. Arikawa, and M. Kozuma,
“Storage and retrieval of nonclassical photon pairs and
conditional single photons generatead by the parametric
down-conversion rpocess,” New J. Phys. 11, 1–11 (2009).

[15] R. Loudon, The Quantum Theory of Light (Oxford Univ.
Press, Oxford, 2010).

[16] C. Galland, N. Sangouard, N. Piro, N. Gisin, and T. J.
Kippenberg, “Heralded single-phonon preparation, stor-
age, and readout in cavity optomechanics,” Phys. Rev.
Lett. 112, 143602 (2014).

[17] M. H. Grimsditch and A. K. Ramdas, “Brillouin scatter-
ing in diamond,” Phys. Rev. B 11, 3139–3148 (1975).

[18] M. W. Sørensen and A. S. Sørensen, “Three-dimensional
theory of stimulated raman scattering,” Phys. Rev. A 80,
033804 (2009).

[19] E. Neu, P. Appel, M. Ganzhorn, J. Miguel-Sánchez,
M. Lesik, V. Mille, V. Jacques, A. Tallaire, J. Achard,
and P. Maletinsky, “Photonic nano-structures on (111)-
oriented diamond,” Appl. Phys. Lett. 104, 153108
(2014).

[20] B. J. M. Hausmann, B. Shields, Q. Quan, P. Maletinsky,
M. McCutcheon, J. T. Choy, T. M. Babinec, A. Kubanek,
A. Yacoby, M. D. Lukin, and M. Loncar, “Integrated
diamond networks for quantum nanophotonics,” Nano
Lett. 12, 1578–1582 (2012).


