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ABSTRACT

The regulation of gene expression is fundamental to all life on Earth. Dy-
namic but precise control is vital to cell survival and function, and takes place
at various tightly interwoven levels. In this thesis, we review and study the
crosstalk between different types of regulators, including epigenetic regula-
tors, transcription factors (TFs), RNA-binding proteins (RBPs) and microR-
NAs (miRNAs). First, we focus on the interplay between miRNAs and other
types of regulators, in particular TFs and epigenetic regulators, both of which
are strongly enriched among the predicted targets of miRNAs. Indeed, the
direct interplay of miRNAs with other regulators that have genome-wide im-
pact is one possible explanation for the reported importance of miRNAs to
fundamental biological processes, including cell fate. We introduce a compu-
tational strategy that we apply in order to infer the transcription regulatory
circuitries that act downstream of embryonic miRNAs. More precisely, we
analyze genome-wide expression changes with an extended motif activity re-
sponse analysis (MARA) model in order to identify transcriptional regulators
that are direct targets of embryonic miRNAs and change in activity upon
expression of the miRNAs. We experimentally validate our most promising
predictions and integrate the extended MARA model into an automated sys-
tem in order to make it available to other researchers. We demonstrate its
application by modeling diverse high-throughput datasets, including paired
liver biopsies of patients with chronic hepatitis C virus infections. Finally,
we study alternative cleavage and polyadenylation, a process that impacts
gene expression in various ways, including modulating the presence of cis-
regulatory elements, such as miRNA and RBP binding sites, which tend to
be located at the 3’ ends of transcripts. We demonstrate that global shorten-
ing of untranslated transcript regions, which is associated with proliferative
states, has a very limited effect on mRNA stability and protein output. By
analyzing a large array of high-throughput 3’ end sequencing data, we cre-
ate comprehensive catalogs of 3’ end processing sites for both human and
mouse. Moreover, we identify novel cis-regulatory motifs that are involved
in cleavage and polyadenylation, and point out a regulator, HNRNPC, that
binds to one of the motifs, thereby globally impacting the usage of cleavage
and polyadenylation sites.
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INTRODUCTION

Although our planet exists for 4.5 billion years [1, 2] the oldest ecosystem
discovered so far dates back to almost 3.5 billion years [3]. Hence, life has
emerged relatively early in Earth’s history. Various theories about the emer-
gence of life from inanimate matter have been proposed. While many aspects
of life’s origin remain a matter of speculation, most models build on the pi-
oneering work of Stanley Miller and Harold Urey published in the 1950s
[4, 5]. The so called “Miller-Urey” experiment has demonstrated that inor-
ganic chemicals, as have been present on the “primitive” Earth, favor chemi-
cal reactions that synthesize organic compounds, including amino acids. How
life could have emerged from these compounds is not entirely clear. However,
obviously today our planet is densely populated by living organisms of incred-
ible diversity. And amazingly, despite all this variety, there exist fundamentals
that are universal to all life on earth.

The minimum self-reproducing, basic building block of all living organisms
is the cell. Although bacteria, animal and plant cells differ in many aspects,
they all share the same basic components and mechanisms, which allow them
to read, interpret and inherit their genetic information, that is stored in form
of double-stranded deoxyribonucleic acid (DNA). Indeed, the code that en-
ables the production of specific proteins from DNA is so universal, that one
can take a piece of human DNA, place it into a bacterium and the code will
still be successfully translated into protein and without difficulty inherited to
its progeny. The fact that many basic, cellular components are so highly con-
served, that their genetic information can be found within every cell on Earth,
strongly suggests that all life on our planet, from bacteria, to flowers and hu-
man, stems from a common ancestor [6]. Studying and understanding cell
biology enables the targeted development of effective drugs and therapies for
all kinds of diseases. Moreover it provides us with answers to fundamental
questions we have about our own existence. Thus, conducting my PhD was
not solely about discovering and characterizing principles and mechanisms of
cell biology, but also about gaining personal knowledge and insights on the
nature of life, which has in addition helped me to shape thoughts and answers
to deep, personal questions.

1.1 REGULATION OF GENE EXPRESSION

Parts of each cell’s DNA — genes — serve as templates for the synthesis of
ribonucleic acid (RNA) polymers, in a process called “transcription”. Tran-
scribed RNA can either be an operating cellular component itself, such as
ribosomal RNA (rRNA), or serve as template for the production of amino
acid polymers, i.e. peptides and proteins, in a process termed “translation”.
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In a broader sense, any process by which the information encoded in a gene
is used to synthesize a gene product, can be referred to as gene expression [7].
The genome of a cell contains all the genetic information necessary to instruct
the cell how to function. However, even though the cells of an individual have
identical genome sequences, they can greatly differ in their phenotype and
functional characteristics (e.g. hepatocytes versus neurons). That is, because
distinct cell types express different sets of genes, enabling them to carry out
cell type-specific tasks. Gene expression patterns can also be changed by ex-
tracellular stimuli that allow cells to adapt to new environments or react to sig-
naling molecules. Thus, the regulation of gene expression is a highly dynamic
and complex process that involves numerous levels, including chromatin ac-
cessibility, transcription and post-transcriptional/translational processes [6].
The work presented within this thesis touches multiple levels of gene expres-
sion regulation in order to shed light on interactions taking place between dif-
ferent types of regulators, including epigenetic regulators, transcription fac-
tors (TFs), RNA-binding proteins (RBPs) and microRNAs (miRNAs). In the
following subsections, regulatory layers that are of relevance to this thesis,
will be discussed in sufficient detail, so that the reader can easily place the
conducted work discussed in the subsequent chapters in its wider context.

1.1.1 Chromatin accessibility impacts gene expression

Eukaryotic DNA is organized in a set of chromosomes. Each chromosome
consists of an extremely long, unbranched DNA polymer and associated
proteins, some of which help to pack the thread of DNA into a more compact
structure, referred to as chromatin. At the first level of packaging, DNA is
wrapped around cores of histone proteins, thereby forming bead-like units,
termed nucleosomes [6] (Figure 1.1). Nucleosomes can be compacted into
30-nm fibers, that can be further folded and packed, which enables DNA to
condense into very dense structures, such as metaphase chromosomes [8].
Importantly, DNA packaging is a highly dynamic process, that is able to
prevent or permit access to defined regions of the DNA [9]. The degree of
accessibility of specific DNA loci, such as transcription initiation regions
(promoters), is known to affect the ability of regulators, such as TFs, to
associate with their binding sites. Thus, the local chromatin state is able to
modulate the access of TFs on their targets. And TF binding to DNA has
been demonstrated to feed back on the chromatin state [9, 10]. Accordingly,
promoter activity has been shown to correlate with the presence/absence of
chemical modifications (marks) associated with specific chromatin states
[11-14]. Such modifications are mainly found on DNA or histones and are
referred to as epigenetic marks, while the term “epigenetics” broadly refers
to heritable changes in gene expression that are not due to alterations of the
DNA sequence [15]. However, there are ongoing discussions regarding a
complete and valid definition of this term [16].
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Figure 1.1: Gene expression regulation. Gene expression is modulated by epige-
netic regulators (e.g. HDACs, SWI/SNF complexes, DNMTs, Polycomb repressive
complexes) which alter chromatin accessibility. In contrast to “closed” chromatin
(Heterochromatin), where loci are transcriptionally silent, Euchromatin is accessible
to the transcriptional machinery. Transcribed pre-mRNAs, consisting of exons and
introns, are bound by various RNA-binding proteins (RBPs) that act in pre-mRNA
processing (e.g. alternative splicing) as well as in mRNA transport. Spliced-out in-
trons can contain regulatory RNAs, such as pri-miRNAs, which are further processed
and then exported from the nucleus to the cytoplasm where they finally act as post-
transcriptional regulators (miRNAs). mRNAs harbor additional cis-regulatory ele-
ments at their 3 ends, which enable additional regulation of mRNA stability, local-
ization and translation. These can be dynamically modulated through the usage of
alternative poly(A) sites. Finally, translated protein products may be regulators, such
as RBPs, transcription factors (TFs) or epigenetic regulators, that act at the indicated
regulatory layers.

Chapter 2 extensively reviews epigenetic regulators, associated marks and
their effect on DNA accessibility. At this point are discussed only a few se-
lected examples in order to introduce the basic mechanisms and the corre-
sponding terminology.
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A relatively well described example of an epigenetic mark is DNA methyla-
tion, which consists of methylation of cytosines by DNA methyltransferases
(DNMTs) [17]. In human, DNA methylation of promoter regions with a high
content of CG dinucleotides (CpGs) comes along with transcriptional inac-
tivity of the corresponding genes [18]. It is thought that methylation marks
generally weaken TF—-DNA interactions [19-21]. Moreover, methylated DNA
has been shown to attract proteins, such as the Methyl CpG Binding Protein
2 (MECP2) [22], that in turn recruit epigenetic repressors, such as histone
deacetylases (HDACSs) [23], thereby making promoter regions inaccessible
to the transcriptional machinery [19-21] (Figure 1.1). Trimethylation of H3
histones at lysine 27 (H3K27me3), a mark mediated by Polycomb repressive
complex 2 (PRC2), was found to correlate with CpG-rich regions [24]. In-
terestingly, PRC2 has been shown to recruit DNMTs. Thus, there exists a
regulatory crosstalk between DNA methylation and Polycomb-mediated re-
pression [25]. However, even though exogenous CG-rich sequence elements
seem to be sufficient to attract PRC2 [26], the mechanisms of PRC2 recruit-
ment appear to be more complex [27-32] (see Chapter 2 for further details).
While repressive marks, such as DNA methylation or H3K27me3 chro-
matin modifications contribute to “closed”, transcriptionally silent chromatin
(named Heterochromatin), marks associated with transcriptionally active
chromatin (termed Euchromatin) also exist. For instance, acetylation of hi-
stone tails is thought to reduce the affinity of histones for DNA thereby pro-
moting an “open”, transcriptionally active state of the chromatin [33]. Con-
sistently, by removing the acetyl group from acetyl-lysine, HDACs act as
transcriptional corepressors [34] (Figure 1.1).

Chromatin structure can be altered by nucleosome remodeling complexes,
such as the SWItch/Sucrose NonFermentable (SWI/SNF) complexes. These
complexes impact chromatin by sliding as well as by adding or removing hi-
stones (Figure 1.1). SWI/SNF complexes impact gene expression [35] and
have been found to interact synergistically or antagonistically with other reg-
ulators, such as Polycomb repressive complexes [36] and HDACs [37].

1.1.2  Gene expression regulation by transcription factors

Albeit the interactions between epigenetic regulators and TFs are by far not
understood in all details, it is well established that Euchromatin is accessible
to components of the transcription initiation complex, including RNA poly-
merase II (RNAP II) and TFs present in the nucleus (Figure 1.1). TFs can
either repress or activate transcription [38]. Many TFs require to be post-
transcriptionally “switched” into an active state before they can shuttle to
the nucleus and modulate the expression of their target genes [39-41]. This
“switch” in TF activity allows rapid signal transduction and thus fast response
to intra- or extracellular stimuli. TF activation/inactivation takes place in re-
sponse to ligand binding [42, 43], phosphorylation [44] or interaction with
other proteins [45, 46]. A relatively well studied example, in which the latter
two mechanisms co-occur, illustrating the regulatory complexity of transcrip-
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tion factor activation, is the interferon (IFN)-mediated immune response in
human. At first, in IFN-induced JAK/STAT signaling [47, 48], type I IFNs
associate with the IFN-a Receptor (IFNAR) located at the plasma membrane,
thereby activating the receptor—associated tyrosine kinases Janus Kinase 1
(JAK1) and Tyrosine Kinase 2 (TYK2). The active kinases in turn activate
the two TFs Signal Transducer and Activator of Transcription 1 (STAT1)
and 2 (STAT2), respectively [49]. Activated STAT1 molecules can form ho-
modimers that translocate to the nucleus and bind to gamma-activated se-
quences (GAS) in order to induce transcription of IFN-stimulated genes
(ISGs). Alternatively, activated STAT1 can associate with STAT2 and IFN
Regulatory Factor 9 (IRF9), thereby forming the IFN-Stimulated Gene Fac-
tor 3 (ISGF3), which can shuttle to the nucleus and activate hundreds of target
genes that have IFN-stimulated response elements (ISRE) in their promoter
region. Thus, IFN-induced JAK/STAT signaling triggers the formation of at
least two different transcription factor complexes, both of which contain acti-
vated STAT1 protein, but feature distinct binding specificities (GAS or ISRE,
respectively).

The example of IFN-induced JAK/STAT signaling illustrates the point that
for many transcriptional regulators, it is not suitable to use the abundance of
the regulator estimated with RNA sequencing or proteomics as a measure of
the regulatory impact of the regulator on its target genes, because in many
cases, the cellular concentration of the regulator will be very different from
the concentration of its active form, present in the nucleus.

During my PhD I got the opportunity to work with Erik van Nimwegen,
a leading scientist in the field of modeling gene expression regulation at
genome-wide scale. And in collaboration with the research group lead by
Markus Heim we studied the impact and dynamics of IFN-« treatment mak-
ing use of Motif Activity Response Analysis (MARA) [50], a method de-
scribed in Chapters 3 and 4 in great detail. Briefly, in contrast to standard
transcriptome analyses, which for instance attempt to identify differentially
expressed genes (including transcriptional regulators), MARA aims to infer
the impact (also referred to as “activity”) of regulator’s binding motifs (such
as ISRE or GAS) by modeling gene expression measurements as a linear func-
tion of the unknown activity of each motif and the number of predicted motif
binding sites occurring in gene promoter regions.

Chapter 5 presents the outcome of the study conducted in collaboration with
the Heim group. Analyzing IFN-ax—induced signaling in paired liver biopsies
obtained from 18 patients with chronic hepatitis C virus infections, we were
able to shed light on the relative contribution of transcription factor binding
motifs to the global changes in gene expression observed during the first week
after IFN-« injection.

1.1.3  Co- and post-transcriptional regulation of gene expression

Post-transcriptional gene regulation (PTGR) comprises many processes that
shape the transcriptome in a highly dynamic manner. After transcription initi-
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ation, RNAP II synthesizes precursor messenger RNAs (pre-mRNAs). These
nascent RNAs undergo various processing steps before they reach their ma-
ture form (mRNA), that is finally exported to the cytoplasm [51] (Figure 1.1).
Processing of pre-mRNAs into mature mRNAs has three main steps: (i) cap-
ping, (ii) splicing and (iii) polyadenylation [52]. The latter two processes are
highly dynamic and involve regulatory layers that significantly contribute to
transcriptome diversity (see 1.1.3.2 and 1.1.3.3, below) [53].

Beyond pre-mRNA processing, PTGR further includes processes that take
place during mRNA transport, translation and metabolism [54]. Importantly,
regulatory factors involved in PTGR largely consist of RBPs that associate
with RNA thereby forming ribonucleoprotein (RNP) complexes [51]. Below,
post-transcriptional processes and corresponding regulators that are relevant
to this thesis will be discussed in more detail. However, the interested reader
is referred to more extensive literature on these topics (see e.g. [6]).

1.1.3.1 Capping

“Capping” refers to the attachment of a methylated guanosine (7-
methylguanosine) to the 5’ end of a newly transcribed RNA. The resulting
5’ cap protects mature mRINAs against degradation by exonucleases and is
required for their efficient translation into proteins. Moreover it has been
demonstrated that the cap structure promotes the export of mRNAs from the
nucleus to the cytoplasm [55].

1.1.3.2  Splicing

The vast majority of eukaryotic pre-mRNAs have their regions which en-
code for parts of mature mRNAs (called exons) interrupted by intervening
regions (called introns) [56]. Thus, in order to obtain a continuous and mean-
ingful protein-coding mRNA sequence that can be translated into protein, in-
tronic regions need to be removed from nascent transcripts by a process called
“splicing”. Importantly, splicing is a highly dynamic process that adds an ad-
ditional regulatory layer, allowing the production of different isoforms from
individual pre-mRNA species [57]. This is done through the joining of exon
sequences to each other in a dynamic process called “alternative splicing”.
Various types of alternative splicing events have been described, including
(i) skipping or inclusion of exons (so called cassette exons), (ii) selection
of one of multiple possible exons (mutually exclusive splicing), (iii) elonga-
tion/shortening of exons by selection of different 5’ or 3’ splice sites and (iv)
intron retention [58, 59]. Ultimately, alternative splicing contributes to pro-
teome diversity [60] and evolution [61-63].

Splicing is catalyzed by the so called spliceosome (Figure 1.1), a multisub-
unit complex that is composed of numerous proteins and small nuclear ri-
bonucleoprotein particles (snRNPs) [64], which belong to the core compo-
nents of the spliceosome [65]. snRNPs are composed of specific proteins and
small nuclear RNAs (snRNAs), the latter guiding the interaction with short
pre-mRNA located motifs, such as the branch point or the 5’ splice site con-
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sensus sequences [66]. The sequence elements recognized by snRNPs are
found within nearly all potential splice sites, including sites that form rarely,
if ever, spliced pseudo-exons [67, 68]. Consequently, additional cis-acting se-
quence features are required for high fidelity splicing events. Based on their
location and regulatory function, these additional elements are classified into
intronic and exonic splicing enhancers (ISEs and ESEs, respectively) and si-
lencers (ISSs and ESSs, respectively)[69]. Enhancer elements act predomi-
nantly as binding sites for members of the serine-arginine-rich (SR) protein
family, that help to recruit the snRNP subunits to the splice site and to assem-
ble the spliceosome [65]. In contrast, silencer elements are often bound by
heterogeneous nuclear RNPs (hnRNPs), which thereby inhibit spliceosome
build-up and consequently splice site usage [64]. A relatively well studied ex-
ample of antagonistic splicing regulators are hnRNP A1l and the SR protein
SF2/ASF [70-72].

1.1.3.3 Cleavage and polyadenylation

Endonucleolytic cleavage and polyadenylation of nascent transcripts defines
the 3’ end boundary of mRNAs [73]. It is mediated by the 3’-end processing
complex (Figure 1.1), which consists of more than 80 proteins [74], includ-
ing the subcomplexes: Cleavage stimulation Factor (CstF), Cleavage Factors
I (CFIm) and II (CFIIm), the Cleavage and Polyadenylation Stimulation Fac-
tor (CPSF) and further factors such as the Nuclear Poly(A) Binding Protein 1
(PABPN1), RNAP II and nuclear Poly(A) Polymerase (PAP) [75, 76].

CstF is a trimeric complex that is composed of CstF-50, CstF-77 and CstF-
64 or its paralog CstF-64t. The latter, CstF-64 and CstF-647, enable CstF to
recognize U/GU-rich downstream sequence elements (DSEs) [77-79]. The
CFIm subcomplex is a tetramer that consists of two CFIm25 and two further
subunits made up of CFIm68 and/or CFIm59. CFIm binds to “UGUA” mo-
tifs via CFIm25 [80, 81] and CFIm25-knockdown results in a transcriptome-
wide increase in proximal poly(A) site usage, demonstrating its decisive role
in poly(A) site usage [81, 82]. The CFIIm subcomplex includes PCF11 and
CLP1 [83]. PCF11 has been demonstrated to be involved in transcription ter-
mination, whereas CLP1 interacts with the CFIm and CPSF subcomplexes
[84]. The CPSF subcomplex, consists of WDR33, FIP1, CPSF30, CPSF100,
CPSF160 and CPSF73 [85—-87], the latter being the endonuclease that cleaves
the nascent RNA within a relatively small sequence window [88, 89]. CPSF
recognizes the so called polyadenylation signal, a cis-regulatory element lo-
cated approximately 10-30 nucleotides upstream of the cleavage site [90]. Re-
cent studies suggest that the canonical polyadenylation signal (“AAUAAA”)
is recognized by the CPSF30 and WDR33 subunits [91, 92]. Moreover, FIP1
contributes to the interaction of CPSF with RNA, by binding to U-rich se-
quence elements upstream of the polyadenylation signal [81, 87, 91, 93] and
together with CPSF160 it recruits PAP to the cleavage site [87, 94]. Finally,
PAP adds a poly(A) tail to the nascent transcript, the precise length of which
is determined by PABPN1 [95, 96]. In recent years, high-throughput mea-
surements have pointed out that the majority (approximately 70-80%) of pre-
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mRNAs have multiple possible cleavage and polyadenylation (poly(A)) sites
[97, 98]. Thus, alternative cleavage and polyadenylation (APA) turns out to
be a widespread phenomenon that is influenced by the abundance of a number
of RBPs [75], thereby adding an additional layer of complexity to transcrip-
tome diversity [99]. In detail, APA events can be classified into four different
types: (i) APA at tandem 3’ untranslated region (UTR) sites (ii) APA at al-
ternative terminal exons (iii) APA at intronic sites and (iv) APA at exonic
sites located within protein coding regions. The latter three types are able to
change the coding DNA sequence (CDS), thereby giving rise to distinct pro-
tein isoforms. In contrast, the first mentioned APA type, although the most
common, can only lead to transcript isoforms with different 3° UTR length
[99]. Importantly, 3° UTRs usually harbor a multitude of cis-regulatory ele-
ments that serve as binding sites for trans-acting factors, such as RBPs and
miRNAs (see 1.1.3.4, below).

Interestingly, it has been shown that fast proliferating cells undergo a system-
atic shift towards shorter 3° UTRs [100, 101]. Consistently, a similar shift
has been demonstrated to take place upon activation of T lymphocytes [102].
However, the cause and functional consequences of such global changes in 3’
UTR length are largely unknown. Early studies suggested that global short-
ening of 3’ ends enable the cell to bypass the regulation mediated by miRNA
binding sites located within the lost 3> UTR regions, thereby causing in-
creased mRNA stability and protein levels [101, 102]. However, a more recent
genome-wide analysis reported surprisingly small changes in the mRNA sta-
bility and translation rates of isoforms having different 3° UTR length [103].
Consistent with these findings, in Chapter 6 we present a study in which we
find very limited changes taking place upon systematic 3’ end shortening, at
both, the mRNA and the protein level. In detail, we have used large-scale
3’ end sequencing in combination with high-throughput proteomics measure-
ments to characterize the significance of shortened 3° UTRs on mRNA sta-
bility and protein output in activated compared to naive T cells of human
and mouse. These findings raise the question of the functional significance
of APA. Besides mRNA stability and translation, APA has previously been
demonstrated to influence mRNA [104] as well as protein localization [105].
Thus, regulatory effects might take place at other levels. For instance, in a re-
cent study it has been shown that via 3> UTR-dependent protein localization
(UDPL), APA is able to determine whether transmembrane proteins are trans-
ported from the endoplasmic reticulum to the plasma membrane. This is due
to the addition/removal of alternative 3° UTR regions that contain binding
sites for the ELAVLI (also called HuR) RBP. Thus, rather unexpectedly, al-
ternative cleavage and polyadenylation has been demonstrated to regulate the
localization of proteins without changing their amino acid sequence [105].

In Chapter 7 we have put efforts in analyzing a huge array of previously pub-
lished 3’ end sequencing libraries in order to (i) generate a comprehensive and
reliable catalog of poly(A) sites and (ii) to identify novel cis-regulatory ele-
ments that impact cleavage and polyadenylation. These efforts resulted in an
extended list of known poly(A) signals by 6 variants that are conserved in hu-
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man and mouse. Moreover, we found that the binding motif of the HNRNPC
RBP, poly(U), has a specific positional profile around cleavage sites. Follow-
ing this up experimentally, we showed that knockdown of HNRNPC entails
global changes in poly(A) site usage, including 3’ UTR extension/shortening.
The alternatively regulated regions are rich in binding sites of the ELAVL1
RBP and include the region that has recently been demonstrated to be decisive
for UDPL of the Cluster of Differentiation 47 (CD47) protein [105]. We con-
clude that HNRNPC is a potent regulator of 3’ end processing, presumably
modulating the A/U-rich element interactome.

1.1.3.4  Gene expression regulation by microRNAs

miRNAs are small (~22 nucleotides long), regulatory RNAs that inhibit the
expression of their target genes by reducing mRNA stability [106] and/or
mRNA translation [107-109]. The majority of miRNAs are produced by
RNAP II, whereupon the primary miRNA precursors (pri-miRNAs) are tran-
scribed as independent transcripts or as part of other genes (intronic miRNAs,
Figure 1.1) [110]. After transcription, the pri-miRNAs are processed into
mature miRNAs, which are finally loaded into the RNA-induced silencing
complex (RISC) [111]. Loaded RISC is able to bind target mRNAs, which
are partially complementary to the sequence of the miRNA [112]. In Chapter
2 we review the mechanism of action and functions of miRNAs in detail.
We highlight that other types of regulators, in particular TFs and epigenetic
regulators, are strongly enriched among the predicted targets of miRNAs.
Indeed, the targeting of other regulators that have genome-wide impact
is one possible explanation for the documented importance of miRNAs
to biological processes, such as development, as has been impressively
demonstrated by experiments with embryonic stem cell lines that are entirely
deficient in mature miRNAs due to the lack of a vital miRNA biogenesis
factor, such as Dicer [113] or Dgcr8 [114]. Both, Dicer—/~ and Dgch*/ -
embryonic stem cells (ESCs) exhibit highly similar proliferation defects,
suggesting that the defect is caused by the deficiency in mature miRNAs
rather than the lack of one of the two factors. The vital role of ESC-specific
miRNAs to cell identity suggests that they target key regulators, which in
turn, themselves are crucial to cell identity and fate.

In Chapter 3 we present a study, in which we have made use of MARA (see
above) to gain insights into the transcription regulatory networks that lie
immediately downstream of embryonic miRNAs. Towards this goal, we have
extended the MARA model to also account for miRNA effects on mRNA
stability. Applying this approach to transcriptome profiling data of cells that
do or do not express embryonic miRNAs, we have identified transcriptional
regulators that are direct targets of the miRNAs and whose activities were
significantly altered, as inferred from genome-wide expression changes. In
particular, we have shown that embryonic miRNAs target chromatin and cell
cycle regulators at multiple levels. Moreover, they impact Irf2-dependent
transcription and canonical NF-xB signaling.






MODULATION OF EPIGENETIC REGULATORS AND
CELL FATE DECISIONS BY MIRNAS

2.1 ABSTRACT

Mammalian gene expression is controlled at multiple levels by a variety of
regulators, including chromatin modifiers, transcription factors and miRNAs.
The latter are small, ncRNAs that inhibit the expression of target mRNAs
by reducing both their stability and translation rate. In this review, we sum-
marize the recent work towards characterizing miRNA targets that are them-
selves involved in the regulation of gene expression at the epigenetic level.
Epigenetic regulators are strongly enriched among the predicted targets of
miRNAs, which may contribute to the documented importance of miRNAs
for pluripotency, organism development and somatic cell reprogramming.

2.2 INTRODUCTION

miRNAs are small RNAs, approximately 22 nucleotides long that regulate
the expression of target mRNAs. Through high-throughput sequencing and
computational analyses, thousands of miRNA-encoding loci have been iden-
tified in the human genome [116]. The identification of their targets, although
proceeding at a fast pace, to some extent lags behind. The TarBase database
catalogs miRNA targets for which supporting experimental evidence has been
obtained [117]. Much about the principles of miRNA-target interactions has
been inferred through computational analysis, and especially through com-
parative genomics [118, 119]. Although the first characterized function of a
miRNA was the inhibition of target mRNA translation [120, 121], more re-
cent evidence from high-throughput studies points to the impact of miRNAs
on mRNA decay [106]. Translation inhibition appears to be a rather early
outcome of miRNA—target interactions [107, 108] and/or an outcome that de-
pends on the location of miRNA-binding sites within transcripts [119]. It has
also been clear since their discovery, that miRNAs are necessary for organism
development [122]. It is generally believed that miRNAs confer robustness to
biological processes through a variety of mechanisms, including reinforce-
ment of transcriptional programs that are essential for the establishment of
cell lineages [123]. Not surprisingly, deregulated expression of miRNAs has
been observed in a variety of pathological conditions, including cancers [124].
Epigenetic silencing is one of the mechanisms behind deregulated expression
of miRNAs, which has been reviewed in a number of publications [125-128].
Surprising in light of their demonstrated involvement in cell fate determi-
nation is the relative paucity of reports on the epigenetic regulators whose
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GENE REGULATION BY MICRORNAS

expression is in turn regulated by miRNAs. This is the topic of the present
article.

2.3 MECHANISM OF ACTION & FUNCTIONS OF MIRNAS

Translational
Repression

Target
Degradation

CCR4-NOT PAN2-PAN3
complex complex

decapping
deadenylase complexes complex

Figure 2.1: Mechanism of action of miRNAs. Molecular mechanisms underlying
miRNA-dependent inhibition of gene expression. miRNAs are incorporated in Arg-
onaute proteins, which they guide to mRNAs. Through the interactions of Argonaute
proteins with various protein complexes, miRNAs induce translational repression,
decapping and deadenylation of the target mRNAs.

The vast majority of human miRNAs are transcribed by RNA polymerase
II, either as part of the introns of other genes or as independent transcripts
[110]. Two endonucleolytic complexes, the first composed of Drosha and
DGCRS proteins acting in the nucleus [129] and the second composed of
Dicer and the HIV TARBP2, or TRBP acting in the cytoplasm [130], come
into play to produce the miRNA mature forms from the primary transcripts.
Numerous examples of post-transcriptional regulation of miRNA processing
leading to tissue-specific expression of mature miRNAs have been reported
(see e.g., [131] for a review). At the molecular level, evidence has been pro-
vided for a role of miRNAs in translation, as well as in mRNA degradation
(Figure 2.1). Very recently, an in vitro study employing rabbit reticulocyte
lysate demonstrated that miRNAs specifically repress translation by inhibit-
ing 43S ribosomal scanning [132]. This study further concluded that inhibi-
tion of miRNA-dependent translation depends on both the PABP and elF4G.
However, another study in Drosophila melanogaster did not find PABP to
be necessary [133], and in an in vitro translation system involving extracts
of ascites from Krebs2 mice, it was the cap recognition process that was
inhibited by miRNAs [134]. The literature on miRNA-dependent deadeny-
lation and degradation is much more extensive (see [135] for a recent re-
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view). A current model is that miRNA-induced silencing complexes induce
deadenylation of their targets through the PAN2-PAN3 and CCR4-NOT com-
plexes, and the decapping of the mRNAs through the DCP1-DCP2 complex
[109]. A variety of approaches have been employed towards the discovery of
miRNA targets and functions, from individual gene reporter assays to high-
throughput profiling of mRNA expression following changes in the expres-
sion of the miRNA [106, 136]. The latter approach takes advantage of the
effect of miRNAs on mRNA decay rates. Methods that evaluate the change
in protein levels [137, 138] or in mRNA translation [139] upon changes in
miRNA concentration have also been proposed. More recently, it has be-
come possible to directly identify transcriptome-wide miRNA-interacting
sites, through crosslinking and immunoprecipitation of the Argonaute pro-
teins [140-142]. The consequences of miRNA-target interactions reflect the
diversity of miRNA targets. Comparative genomic analysis suggested that
miRNAs recognize their targets predominantly through their 5’end, which is
typically referred to as the “seed” sequence [118]. Over 60% of human genes
are predicted to be miRNA targets [143]. Surprisingly, however, the impact of
miRNAs on the mRINA and protein level of their conserved targets is typically
small [137, 138]. This observation led to the view that miRNAs have quali-
tatively distinct effects on their targets, sometimes acting as on-off switches,
and sometimes simply “fine-tuning” gene expression [112]. Although the typ-
ically small effects would suggest that miRNAs rarely act as switches, the dif-
ferent sensitivity of phenotypes to the dosage of different genes makes it dif-
ficult to estimate the prevalence of switch versus fine-tuning targets. Another
hypothesis regarding the mechanisms through which miRNAs affect gene ex-
pression stems from the interplay they have with transcription factors. That
transcription factors are preferred targets of miRNAs has been noted from
the initial stages of miRNA target prediction [144]. Furthermore, it has been
observed that gene expression regulatory networks are enriched in small net-
work motifs known as feed-forward loops, in which a transcription factor and
a miRNA act on a common target [145-147]. A recent computational study
showed that when the transcription factor and the miRNA are part of an “inco-
herent” feed-forward loop (i.e., when the transcription factor upregulates the
expression of the miRNA and the common target while the miRNA represses
target gene expression), small changes in target gene expression coupled with
a reduced response to fluctuations in the levels of upstream regulators can
be achieved [148]. Although seemingly consistent with the observation that
miRNAs typically induce small changes in target gene expression, this model
would in fact predict a large change in the level of the miRNA target in re-
sponse to a large perturbation in miRNA concentration, as achieved in trans-
fection experiments. Thus, the mechanism underlying the limited response
of miRNA targets to miRNA perturbations remains unclear. Moreover, it re-
mains difficult to envision how these small, ’fine-tuning’ effects on individual
miRNA targets lead to distinguishable phenotypes on which evolutionary se-
lection can act so that the individual miRNA target sites remain conserved
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over large evolutionary distances. Interestingly, transcription factors, as well
as epigenetic regulators, are highly probable miRNA targets (Figure 2.2).

o

— |—— epigenetic regulators (148)
transcription factors (1304)

o |— allgenes (19802)

o

cumulative proportion of genes

0.0 0.2 0.4 0.6 0.8 1.0

T

probability of miRNA targeting

Figure 2.2: Preferred targets of miRNAs. Transcription factors and epigenetic reg-
ulators are preferred targets of miRNAs. We calculated the probability of each gene
in a specific functional class being targeted by miRNAs and then plotted the cumu-
lative distribution of the probability values for genes in individual functional cate-
gories. Briefly, targeting scores for each human gene and every miRNA seed family
were obtained by first averaging the TargetScan aggregate probability of conserved
targeting (Pcr) scores [143] of all transcripts that are associated with the gene. The
probability of a gene to be targeted by at least one miRNA (Pge) Was calculated
as: Peene = 1 =TT (1 — PuiR gene)> Where Pyr gene is the miR probability that the
gene is targeted by a specific miRNA miR, calculated as described above. Transcrip-
tion factors were obtained from the DBD database [149] and epigenetic regulators
by extracting genes that were annotated with epigenetic-related gene ontology terms
from the AmiGO database [150]. The number of genes in each category is indicated
in parentheses. Compared with all genes, epigenetic regulators and transcription fac-
tors tend to have higher probabilities of being miRNA targets.

2.4 EPIGENETIC REGULATION OF GENE EXPRESSION

Epigenetic modifications are thought to be central to cell fate and organism
development (see [151, 152] for recent reviews). Thus, substantial efforts
have been dedicated to the mapping of epigenetic marks in a variety of cell
types. The method of choice is chromatin immunoprecipitation (i.e., employ-
ing antibodies directed towards specific types of histone and DNA modifi-
cations) [153]. Additionally, methods such as FAIRE-Seq [154], Sono-Seq
[155] and DNasel-Seq [156, 157] have been developed for mapping “open”
chromatin regions that are free of nucleosomes and are accessible to micro-
coccal nuclease digestion [158, 159]. Such regions are typically associated
with promoters. Furthermore, metabolic labeling of histones is used to in-
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vestigate the kinetics of nucleosome turnover [160]. The plethora of chro-
matin marks and their significance for gene expression have been reviewed
extensively elsewhere [161]. Here, we will only introduce the aspects that are
relevant for understanding how miRNAs may exert their roles by acting on
specific epigenetic regulators.

2.4.1 DNA methylation

The majority of cytosines that occur within CG dinucleotides (CpGs) in
the human genome are methylated. The ease with which 5-methylcytosines
are deaminated and mutated through error-prone repair is thought to be
the reason for the general depletion of CpGs in the genome (see [162]
for a recent review). However, CpGs are not uniformly distributed across
the genome, but are specifically enriched in so-called CpG islands (CGIs),
regions that are, on average, 1 kbp in length and are typically associated
with promoters. Within CGIs, CpG dinucleotides tend to be maintained
in a demethylated state [163]. Appropriate DNA methylation is important
for many processes, including embryonic development [164]. It plays
a role in transcriptional regulation [18], genomic imprinting [165] and
X-chromosome inactivation [166]. Interestingly, DNA methylation has also
been associated with mRNA splicing [167], as have other chromatin marks
[168, 169]. While the methylation state of low CpG-content promoters is
not indicative of the activity of the corresponding genes, methylation of
high CpG-content promoters is generally associated with transcriptional
inactivity [18]. The repressive effect of methylation at CpG-dense regions
is thought to be mediated by methyl-CpG-binding domain (MBD) proteins
(e.g., MECP2 [22]) that further recruit repressive chromatin modifiers, such
as histone deacetylases (HDACsSs) [23], as well as by a general reduction of
transcription factor—DNA interactions at methylated DNA sites [19-21]. In
mammals, the transfer of a methyl group to the C5 position of cytosines is
catalyzed by DNA methyltransferases Dnmt1, Dnmt3a and Dnmt3b (Figure
2.3A) [17]. Once established, DNA methylation patterns are maintained
through cell divisions. The mechanism involves the interaction of the NP95
protein with hemimethylated DNA via the SET and RING-associated
domain of NP95 [170], the formation of complexes that also include the
proliferating cell nuclear antigen (PCNA) [171, 172], and recruitment of
Dnmtl by the NP95 protein at replication forks. Consistent with its function,
expression of Dnmt1 is weak in resting cells, but high in dividing cells [173],
particularly in the S-phase of the cell cycle [174]. By contrast, Dnmt3a
and Dnmt3b are de novo methyltransferases that are essential to embryonic
development [175]. Accordingly, Dnmt3b and Dnmt3a knockout mice
exhibit developmental defects or die shortly after birth, respectively [176].
Recent studies suggest that ten—eleven translocation dioxygenases (TET1,
TET2 and TET3) initiate the removal of methylation marks by oxidizing
5-methylcytosine to 5-hydroxymethylcytosine. 5-hydroxymethylcytosine is
subsequently converted into further derivatives and finally replaced with
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unmodified cytosine via base excision repair (see [177] for a recent review).

miRNA Target Targeting Reference
hsa-miR-302 MECP2 3’UTR [178]
hsa-miR-148a DNMT3B | CDS [179]
mmu-miR-290-295 cluster | Dnmt3a Indirect via Rbl2 [180, 181]
Dnmt3b Indirect via Rbl2
hsa-miR-29a/b/c DNMT3A | 3°UTR [182, 183]
DNMT3B | 3°’UTR
hsa-miR-29a TET1 3’UTR [184]
TET2 3’UTR
TET3 3’UTR
hsa-miR-29b DNMT1 Indirect via SP1 [183]
hsa-miR-152 DNMT1 3’UTR [185]
hsa-miR-148a 3’UTR
hsa-miR-302 DNMT1 Indirect via AOF2 | [178]
hsa-miR-26a EZH2 3’UTR [186]
hsa-miR-101 EZH2 3’UTR [187, 188]
mmu-miR-137 Ezh2 3’UTR [189]
mmu-miR-214 Ezh2 3’UTR [190]
hsa-miR-128 BMI-1 3’UTR [191]
mmu-miR-128 Bmi-1 3’UTR [192]
mmu-miR-183 3’UTR
mmu-miR-200c 3’UTR
mmu-miR-203 3’UTR
mmu-miR-294 Baf170 3’UTR [193]
hsa-miR-199a BRM 3’UTR [194]
mmu-miR-9% Baf53a 3’UTR [195]
mmu-miR-124 3’UTR
hsa-miR-449a HDACI 3’UTR [196]
mmu-miR-1 Hdac4 3’UTR [197]
mmu-miR-29b Hdac4 3’UTR [198, 199]
mmu-miR-206 Hdac4 3’UTR [198, 200]
hsa-miR-433 HDAC6 3’UTR [201]

Table 2.1: miRNAs that target epigenetic regulators. CDS: Coding DNA se-
quence; hsa: Homo sapiens; mmu: Mus musculus; UTR: Untranslated region.

DNA methylation is regulated directly and indirectly by multiple miRNAs
(Table 2.1 & Figure 2.3A). DNMT1 was found to be targeted by miR-148a
and miR-152, miRNAs that also reduce cell proliferation by indirectly up-
regulating the cell-cycle inhibitors CDKN2A and RASSF1A. Thus, miR-
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148a and miR-152 may couple cell-cycle progression and maintenance of
DNA methylation [185]. Interestingly, miR—148a was found to also regu-
late the de novo DNA methyltransferase DNMT3B [179], which suggests
that miR-148a, more generally, antagonizes DNA methylation. Similarly,
the miR-29 family miRNAs were found to directly target DNMT3A and
DNMT3B and, indirectly, through the SP1 transcription factor, to downreg-
ulate DNMT1. Consequently, miR-29 overexpression leads to global DNA
demethylation [182, 183]. A surprising recent finding is that the miR-29 fam-
ily miRNAs also target the TET enzymes, which would initiate the removal
of methylation marks [184]. The functional consequences of these antagonis-
tic miRNA effects on DNA methylation remains to be determined. During
somatic cell reprogramming, miR-302 contributes to global DNA demethy-
lation by downregulating several epigenetic regulators, including MECP2, as
well as DNMT1 via AOF2 [178].

Finally, the mouse-specific miR-290-295 cluster miRNAs target the Rbl2
repressor to indirectly regulate the expression of the de novo DNA methyl-
trasferases [180, 181].

17



GENE REGULATION BY MICRORNAS

miR-148a
miR-152

(B) (€)

miR-26a miR-128
miR-183
miR-200c

5-methylcytosine

5-hydroxymethylcytosine

H3K27me3
H2AK119ub1
acetyl group

20 open

chromatin

®
T [IRGESS miR-1 fo 4o e, closed
miR-29b NN chromatin
miR-206
@ . . ° @ @ @@

Figure 2.3: Epigenetic regulators that are targeted by miRNAs. (A) miRNAs that
directly or indirectly regulate targets in the DNA methylation/demethylation path-
ways. (B-E) miRNAs that target a catalytic subunit of (B) PCR2, (C) PCRI1, (D)
SWI/SNF complex subunits and (E) histone deacetylases.

2.4.2  Polycomb group proteins

Polycomb repressive complexes (PRCs) form another class of epigenetic reg-
ulators that contribute to stable gene repression. Two major PRC complexes,
PRC1 and PRC2, exist in mammals (see [202] for a recent review). PRC2
consists of four core subunits: RbAp48, SUZ12, EZH2 and EED (Figure
2.3B). EZH2 can be replaced by EZH1, RbAp48 by RbAp46 and EED has
multiple isoforms. EZH2 and EZH1 are the catalytic subunits with which
PRC2 methylates lysine 27 (K27) of histone H3. The resulting H3K27me3
histone mark is associated with Polycomb group (PcG)-mediated gene si-
lencing and was found to correlate with CpG-rich regions, such as CGls
[24]. Interestingly, exogenous GC-rich sequence elements were found to be
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sufficient to recruit PRC2 [26]. Accordingly, high-throughput experiments
revealed that many CGIs are bound by PRC2 and marked with the associ-
ated H3K27me3 mark [24, 203-206]. Moreover, EZH2 was shown to recruit
DNA methyltransferases, providing a direct link between PcG-mediated re-
pression and DNA methylation [25]. The mechanisms by which PRCs are
guided to their target regions appear to be very complex. Apart from CGls,
other DNA elements (PRE-kr and D11.12 [27, 28]) have been reported to re-
cruit PRC2. Interestingly, a recent study reported on the REST transcription
factor-dependent recruitment of PRC2 to gene loci during cell differentiation
[207]. Furthermore, IncRNAs, such as HOTAIR and Xist were found to play
a role in PcG-complex recruitment [29-32]. In contrast to PRC2, PRCI1 has
no methyl-transferase activity. Rather, PRC1 silencing is associated with the
ubiquitylation of histone H2A at lysine 119 (H2AK119ub1) [208], which is
brought about by a two-subunit PRC1 core complex formed by RINGIA or
RINGIB and a Polycomb group ring finger (PCGF) [209] protein such as
Bmi-1. The two-subunit PRC1 core complex further associates with either
CBX or RYBP (or the RYBP homolog YAF2, respectively) (Figure 2.3C).
In contrast to RYBP and YAF2, CBX binds H3K27me3 [202]. Accordingly,
CBX-containing PRC1 complexes colocalize with H3K27me3, whereas the
recruitment of RYBP/YAF2-containing PRC1 complexes was found to be
H3K27me3-independent [209, 210]. A IncRNA, ANRIL, was found to con-
tribute to transcriptional repression by PRC1 at the INK4b/ARF/INK4a locus
[211].

Some PRC components appear to be heavily regulated by miRNAs (Table 2.1
& Figure 2.3B & C). For example, Bmi-1 is regulated by miR-128, miR-183,
miR-200c and miR-203 [192], and miR-128 expression reduces H3K27me3
marks and self-renewal of glioma cells [191]. Moreover, multiple miRNAs
including miR-26a, miR-101, miR-137 and miR-214 regulate the EZH2 cat-
alytic component of PRC2. Interestingly, the upregulation of EZH2 expres-
sion by the pluripotency factor c-Myc appears to occur through reduction of
miR-26a expres- sion [186]. EZH2 is upregulated in many cancers, where
it silences several tumor suppressor genes. Thus, EZH?2 targeting miRNAs,
such as miR-26a and miR-101, may act as tumor suppressors by preventing
the inactivation of other tumor suppressors [187, 188]. Modulation of Ezh2
expression by additional miRNAs occurs during stem cell differentiation. In
adult neural stem cells, reduced miR-137 expression leads to increased Ezh2
expression and promotes differentiation [189]. On the other hand, miR-214 is
expressed during differentiation of skeletal muscle cells, negatively regulat-
ing Ezh2 and thereby supporting its own expression and cell differentiation
[190]. Consistently, miR-214 was found to reduce the efficiency of somatic
cell reprogramming [212].

2.4.3 SWI/SNF complexes

The SWI/SNF proteins (also called BAF) form multisubunit complexes, with
ATP-dependent nucleosome remodeling activity, in which the catalytic activ-
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ity resides in either Brgl (also called Smarca4) or Brm (also called Smarca?2;
see [35] for a recent review). SWI/SNF proteins have been shown to inter-
act synergistically or antagonistically with other chromatin regulators, in-
cluding HDACs [37] and Polycomb group proteins [36]. Several subunits
of SWI/SNF complexes are expressed in a lineage-specific manner, proba-
bly contributing to lineage-specific gene expression. Consistently, SWI/SNF
complex proteins were found to play important roles in development. For
example, Baf60c is specifically expressed in the heart and somites of the
mouse embryo and is required for the recruitment of SWI/SNF complexes
to heart-specific enhancers, and its knockdown causes defective heart devel-
opment [213]. On the other hand, neural stem and progenitor cells express
a specific SWI/SNF complex (termed neural progenitor-specific BAF com-
plex, brief npBAF), which contains Baf45a and Baf53a, both units being
required for self-renewal. During the differentiation of progenitor cells into
postmitotic neurons, Baf45a and Baf53a are replaced by Baf45b, Baf45c and
Baf53b, forming a neuron-specific BAF complex (termed nBAF). This sub-
unit switch seems to be important for neural development, since its inhibition
results in reduced neuronal differentiation [214]. Finally, an embryonic stem
cell (ESC)-specific SWI/SNF complex (termed esBAF) was described, con-
taining Brg, Baf155 and Baf60a, but not Brm, Baf170 and Baf60c. esBAF
is essential for pluripotency and self-renewal [215] and ChIP-Seq analysis
revealed that esBAF colocalizes with the pluripotency factors Nanog, Oct4
and Sox2, as well as with Stat3 and Smad1 [216]. Interestingly, esBAF ex-
erts both opposing, as well as synergistic, effects with respect to the Poly-
comb repressive complex in the maintenance of pluripotency [36]. Overex-
pression of Baf155 along with Oct4, Sox2 and Klf4 has been found to en-
hance the efficiency of somatic cell reprogramming and inclusion of Brgl
provides an even stronger improvement [217]. Although Baf155 has approx-
imately a 60% sequence identity with Baf170, they seem to have different
functions. Baf155 knockdown in ESCs results in reduced expression of the
pluripotency marker Oct4, decreased proliferation and increased apoptosis,
demonstrating its functional importance. This proliferative defect could only
be rescued by Bafl55, but not by Baf170 expression [215]. The BRM cat-
alytic subunit of the SWI/SNF complex appears to be a target of miR-199a
(Table 2.1 & Figure 2.3D), a miRNA that is expressed in ESCs, as well as
in various organs such as the ovary, uterus, testis, prostate, kidney and heart
[218]. The miRNA modulates the activity of SWI/SNF, which in turn modu-
lates the expression of the miRNA through a double-negative feedback loop.
Namely, miR-199a reduces the expression of BRM, a negative regulator of
EGRI, leading to increased EGR1 expression and EGR1-dependent transcrip-
tion activation from the miR-199a-2 locus, from which miR-199a and miR-
214 are expressed [194]. This type of network architecture is known to gener-
ate bistable gene expression patterns. Consistently, epithelial tumor cell lines
appear to be either EGR1-miR-199a-high and BRM-low, or BRM-high and
EGR1-miR-199a-low [194].
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2.4.4  Histone acetylation/deacetylation

Histone acetylation refers to the transfer of an acetyl group to the e-
amino group of a lysine residue catalyzed by histone acetyltransferases
[34]. This reduces the affinity of histones for DNA, thereby promoting
an “open”, transcription-permissive chromatin structure. Histone acetyltrans-
ferases therefore act as transcriptional coactivators and histone acetylation
positively correlates with transcriptional activity [33]. By contrast, HDACs,
which catalyze the reverse reaction removing the acetyl group from acetyl-
lysine, act as transcriptional corepressors (Figure 2.3E) [34]. Surprisingly, it
has been found that in ESCs, activating H3K9 acetylation marks co-occur
with repressive H3K27 trimethylation marks at many promoters [219]. It is
now thought that this pattern is characteristic to lineage-specific genes that
are maintained in a “poised” state, ready to be expressed.

Several HDACs are targeted by miRNAs (Table 2.1 & Figure 2.3E). HDACI
was shown to be a target of miR-449a. The expression of this miRNA is low
in prostate cancer compared with normal tissue, and overexpression of miR-
449a in prostate cancer cells results in cell cycle arrest and apoptosis [196].
miR-1, miR-29 and miR-206 promote myogenesis by targeting Hdac4, a re-
pressor of skeletal muscle genes [197, 198, 200]. Through Hdac4, as well
as other inhibitors of osteoblast differentiation, miR-29b also promotes os-
teogenesis [199]. Finally, HDACG6 appears to be regulated by miR-433 as a
mutation in the putative miR-433 target site of HDACG6 causes a specific form
of chondrodysplasia [201].

2.5 MIRNA-DEPENDENT MODULATION OF PLURIPOTENCY, DIF-
FERENTIATION & SOMATIC CELL REPROGRAMMING

Consistent with the first reported function of a miRNA, lin-4, in the regula-
tion of Caenorhabditis elegans development [120], animal models and ESC
lines deficient in expression of miRNA biogenesis factors revealed that miR-
NAs are essential for both the maintenance of pluripotency and for embryonic
development. Dicer-deficient mice die early in development, and lack pluripo-
tent stem cells [220]. Dicer~/~ ESCs, although viable, lack mature miRNAs
and show several differentiation defects in vitro as well as in vivo, [221]. The
similar proliferation defects observed in Dicer™/~ [113] and Dgcr8-deficient
[114] ESCs suggest that the underlying cause is the lack of mature miRNAs
rather than the loss of either of these proteins per se. The miRNA popula-
tion of mouse ESCs consists largely of members of the miR-290-295 clus-
ter [222, 223]. Three out of the seven miRNAs that are expressed from this
cluster, namely miR-291a-3p, miR-294-3p and miR-295-3p, share the seed
sequence AAGUGCU, as do many other miRNAs with an embryonic pat-
tern of expression (e.g., miR-302-367 cluster miRNAs). In contrast to the
miR-290-295 cluster miRNAs that are only found in mouse, the miR-302—
367 cluster is also present in human. The AAGUGCU-seed miRNAs from
the miR-290-295 cluster appear to play an important role in the maintenance
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of pluripotency. They target the cyclin E-Cdk2 pathway at multiple levels,
forcing the G1-S transition and rescuing the proliferation defect observed
in miRNA-deficient ESCs [224]. These miRNAs have also been found to
promote induced pluripotency [225]. Although it has been reported that the
miR-302-367 cluster miRNAs are able to reprogram somatic cells into in-
duced pluripotent stem cells, without any additional exogenous transcription
factors in both mouse and human [226], these findings were recently chal-
lenged [227]. The AAGUGCU family miRNAs regulate several processes
that are known to be important for somatic cell reprogramming, including cell
proliferation, epithelial-mesenchymal transition and epigenetic remodeling
[212, 228-230]. Among their targets, Lats2 and Cdknla [224] are involved in
establishing the cell cycling pattern specific to pluripotent stem cells, which
have a truncated G1 phase and a lengthened S phase [231]. By targeting the
TGF-b receptor 2 these miRNAs also downregulate TGF-b signaling, ulti-
mately promoting the mesenchymal—epithelial transition [228, 229] that is
crucial to the reprogramming of embryonic fibroblasts [230]. Consistent with
their role in the maintenance of pluripotency, the AAGUGCU family miR-
NAs regulate multiple epigenetic regulators. The positive correlation of the
expression of miR-290-295 cluster miRNAs and the expression of de novo
DNA methyltransferases in ESCs [180, 181] suggested that these enzymes
are indirect miRNA targets. Indeed, the AAGUGCU family miRNAs repress
the expression of Rbl2 [180], which is part of the DREAM repressor com-
plex [232]. Rbl2 was shown to directly repress the expression of Dnmtl in
both mouse and human [233], and the previously mentioned studies indi-
cate that the de novo DNA methyltransferases are under a similar control.
The picture that emerged from these studies is that the embryonic stem cell-
specific miR-290-295 cluster miRNAs maintain a low Rbl2 expression level,
which in turn allows the expression of de novo methyltransferases (Dnmt3a
and Dnmt3b) and an appropriate deposition of methylation marks. A more
recent study further determined that during somatic cell reprogramming, the
AAGUGCU family miRNAs downregulate AOF1, AOF2, MECP1-p66 and
MECP2, as well as Dnmtl via AOF2, thereby contributing to global DNA
demethylation [178]. The AAGUGCU family miRNAs also appear to tar-
get multiple components of the SWI/SNF chromatin-remodeling complexes.
For example, Subramanyam et al. found that these miRNAs appear to target
Baf170 (also called Smarcc2) [228], which is specific to the differentiated cell
BAF complex (dBAF) [234]. Consistently, Baf170 is downregulated during
somatic cell reprogramming, while the expression of Baf155, the component
specific to esBAF, is increased [217]. In recent work [193], we confirmed
that the AAGUGCU family miRNA, miR-294, directly targets Baf170. In-
terestingly, Baf155 is a high-confidence predicted target of the let-7 miRNA
[143], which has been shown to antagonize the effects of the miR-290-295
cluster miRNAs in early differentiation [235]. The interplay between let-7
and the miR-290-295 cluster miRNAs appears to be extremely complex and
important for the maintenance/loss of pluripotency. Let-7 family miRNAs
are broadly expressed in somatic tissues, but not in ESCs [236], where their
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processing is inhibited by the pluripotency—associated RNA-binding protein
Lin28 [237-239]. In turn, let-7 targets several genes crucial to pluripotent
stem cells, including n-Myc, c-Myc and Sall4 [235, 240]. Let-7 miRNAs
also target Lin28, thereby maintaining their own expression in differentiat-
ing cells [241]. Finally, miRNAs miR-9* and miR-124 synergistically target
the SWI/SNF complex component, Baf53a. Neurons in which the target sites
of these miRNAs in the 3’ untranslated region of Baf53a were mutated, ex-
hibited defective dendritic outgrowth. By contrast, overexpressing the miR-
NAs in neural progenitor cells decreased proliferation [195]. The importance
of miR-9* and miR-124 for neuronal fate determination was further under-
scored by a study in which human fibroblasts were converted into neurons
through miR-9/9* and miR-124 expression [242]. Consistent with their an-
tiproliferative and prodifferentiation effects, both miRNAs were found to act
as tumor suppressor miRNAs in various types of cancer, including glioblas-
toma multiforme [243-245]. A summary of the epigenetic regulators that are
targeted by miRNAs is shown in Table 2.1.

2.6 CONCLUSION

miRNAs form an extensive layer of post-transcriptional regulators of gene
expression. Among their preferred targets are transcription factors and epi-
genetic regulators, which in turn regulate the expression of individual miR-
NAs. Much of the work on miRNA-containing gene expression regulatory
networks has focused on transcription factors, which have been found to be
enriched among miRNA targets from the initial stages of miRNA target pre-
diction. The equally strong enrichment of epigenetic regulators appears to
have been underappreciated thus far, though it may be related to the observa-
tion that many of the known phenotypes brought about by the loss of miRNAs
are of a developmental nature. Consistent with the computational predictions,
many epigenetic regulators have been identified as miRNA targets in devel-
opmental contexts.

2.7 FUTURE PERSPECTIVE

Given the intricacy of the regulation of processes touched upon in this review,
predicting the dynamics of gene expression in these conditions is challenging,
and quantitative models will be necessary to evaluate the relative contribution
of individual players. Nonetheless, it is tempting to speculate that the impact
of miRNAs on processes such as development stems, in part, from their tar-
geting of other types of regulators that amplify the miRNA effects at the level
of the targets. With the availability of methods for experimental identifica-
tion of miRNA-binding sites in vivo, it has become possible to reconstruct
the miRNA-target interaction networks in individual cell types and during
specific processes such as development. These data should contribute to our
improved understanding of the cell fate specification mechanisms. This, in

23



24

GENE REGULATION BY MICRORNAS

turn, will enable more precise modulation of cell fates, which has numerous
applications in regenerative medicine.

2.8

EXECUTIVE SUMMARY

MECHANISM OF ACTION & FUNCTIONS OF MIRNAS

o

miRNAs guide Argonaute protein-containing silencing complexes to
target mRNAs.

Target mRNAs are predominantly recognized through the miRNAs’
“seed” sequence (nucleotides ~1-8 from the miRNA 5’ end).

The majority of human genes are predicted targets of miRNAs.

The outcome of miRNA-target interactions is an increased rate of tar-
get mRNA degradation and/or translation inhibition.

Quantitatively, the effects of miRNAs range from “fine-tuning” to off-
switching of gene expression.

Epigenetic regulators and transcription factors are among the preferred
targets of miRNAs.

EPIGENETIC REGULATION OF GENE EXPRESSION

(0]

DNA

Many methods have been developed to map genome-wide epige-
netic modifications. Histone and DNA modifications can be detected
with ChIP-Seq, and open chromatin regions with FAIRE-Seq, Sono-
Seq or DNasel-Seq. Nucleosome turnover Kinetics can be studied by
metabolic histone-labeling experiments.

Specific changes in the epigenetic marks were associated with organ-
ism development.

METHYLATION

DNA methylation is involved in many processes such as transcriptional
regulation, genomic imprinting and embryonic development.

DNA methylation is established by the de novo DNA methyltrans-
ferases (Dnmt3a, Dnmt3b) and maintained by Dnmt1 throughout cell
proliferation. Active DNA demethylation is probably carried out by the
ten—eleven translocation enzymes (TET1, TET2 and TET3).

miR-148a, miR-29 and miR-152 were found to regulate the expres-
sion of DNA methyltransferases, as well as ten—eleven translocation
enzymes.
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POLYCOMB GROUP PROTEINS

o The Polycomb repressive complexes, PRC1 and PRC2, contribute to
stable gene repression.

o PRC2-mediated repression is associated with the methylation of lysine
27 of histone H3 (H3K27me3). The EZH2 catalytic component of this
complex is regulated by numerous miRNAs, including miR-26a, miR-
101, miR-137 and miR-214.

o PRC1-mediated repression is associated with ubiquitylation of histone
H2A at lysine 119 (H2AK119ub1). The Bmi-1 component of this com-
plex is targeted by many miRNAs, including miR-128, miR-183, miR-
200c and miR-203.

SWI/SNF COMPLEXES

o SWI/SNF (BAF) complexes are ATP-dependent nucleosome-
remodeling complexes, with lineage-specific subunit compositions.

o Several BAF complex subunits are regulated by miRNAs, including
Baf170 by miR-294, BRM by miR-199a, and Baf53a by miR-9* and
miR-124.

HISTONE ACETYLATION/DEACETYLATION

o Acetylation reduces the affinity of histones for DNA, thereby pro-
moting an “open”, transcription-permissive chromatin structure, while
histone deacetylases (HDACs) remove acetyl groups from histones,
thereby acting as transcriptional corepressors.

o Many HDACs were found to be targeted by miRNAs, including
HDACI by miR-449a, HDAC6 by miR-433 and Hdac4 by miR-1, miR-
29b and miR-206.

MIRNA-DEPENDENT MODULATION OF PLURIPOTENCY, DIFFER-
ENTIATION & SOMATIC CELL REPROGRAMMING

o miRNAs are essential for pluripotency, as well as for embryonic devel-
opment.

o AAGUGCU seed family miRNAs contribute to pluripotency in vari-
ous ways. For example, the miRNAs force G1-S cell-cycle transition
and allow the expression of de novo DNA methyltransferases, thereby
promoting appropriate DNA methylation in embryonic stem cells.
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EMBRYONIC STEM CELL-SPECIFIC MICRORNAS
CONTRIBUTE TO PLURIPOTENCY BY INHIBITING
REGULATORS OF MULTIPLE DIFFERENTIATION
PATHWAYS

3.1 ABSTRACT

The findings that microRNAs (miRNAs) are essential for early development
in many species and that embryonic miRNAs can reprogram somatic cells
into induced pluripotent stem cells (iPSCs) suggest that these miRNAs act
directly on transcriptional and chromatin regulators of pluripotency. To eluci-
date the transcription regulatory networks immediately downstream of embry-
onic miRNAs, we extended the motif activity response analysis (MARA) ap-
proach that infers the regulatory impact of both transcription factors and miR-
NAs from genome-wide expression states. Applying this approach to multiple
experimental data sets generated from mouse embryonic stem cells (ESCs)
that did or did not express miRNAs of the ESC-specific miR-290-295 clus-
ter, we identified multiple transcription factors (TFs) that are direct miRNA
targets, some of which are known to be active during cell differentiation. Our
results provide new insights into the transcription regulatory network down-
stream of ESC-specific miRNAs, indicating that these miRNAs act on cell
cycle and chromatin regulators at several levels and downregulate TFs that
are involved in the innate immune response.

3.2 INTRODUCTION

Embryonic stem cells (ESCs) originate from the inner cell mass of mam-
malian blastocysts. Due to their ability to self-renew as well as differentiate
into various specialized cell types, they hold the promise of medical applica-
tions such as stem cell therapy and tissue engineering. Therefore, the regula-
tory mechanisms behind pluripotency, stem cell fate and renewal are of great
interest.

MiRNAs are short (~22 nt long), single-stranded RNAs that post-
transcriptionally regulate the expression of target genes [246]. Computational
and high-throughput studies suggest that a single miRNA can regulate hun-
dreds of target genes [106, 137] and that the majority of human mRNAs
are regulated by miRNAs [143]. Several studies found that the expression
of ESC-specific miRNAs is required for initiation of stem cell differentia-
tion and normal embryonic development [113, 114, 221]. The ESC-specific
miR-290-295 cluster accounts for approximately 50 percent of the miRNA
population of mouse embryonic stem cells [247-250] and its expression is
downregulated relatively rapidly during differentiation [223, 248]. Interest-
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ingly, three of the seven miRNAs that are co-expressed from the miR-290-
295 cluster, namely miR-291a-3p, miR-294 and miR-295, are sufficient to
force a G1—S transition [224] and promote induced pluripotency [225]. All
of these miRNAs, as well as those of another ESC-specific miRNA cluster,
miR-302-367 [223, 251], have the same sequence “AAGUGCU” at positions
2-8 (also called the “seed”) which define a family of miRNAs with related
targets [143]. In contrast to the miR-290-295 cluster, miR-302-367 is also
present in human and has been used to reprogram fibroblasts into induced
pluripotent stem cells (iPSCs) [226]. The reprogramming of differentiated
cells into pluripotent stem cells entails large gene expression and phenotypic
changes that are likely to be due to regulatory cascades that involve several
regulators. To identify transcriptional regulators that are immediate targets
of the AAGUGCU seed family miRNAs, we analyzed data obtained in sev-
eral previous studies that aimed to uncover the function of the miR-290-295
cluster. These data consist of microarray-based measurements of mRNA ex-
pression in ESCs that were either deficient in miRNAs or expressed subsets of
ESC-specific miRNAs (Supplementary Table A.1). Sinkkonen et al. [180] an-
alyzed mRNA expression of ESCs that express miRNAs (Dicert/ ), ESCs
that do not express miRNAs (Dicer_/ ) as well as Dicer~/~ ESCs trans-
fected with the miR-290-295 cluster miRNAs (miR-290, miR-291a-3p, miR-
292-3p, miR-293, miR-294 and miR-295 mimics). The study showed that
the expression profile of ESCs can be restored to a large extent in Dicer—/~
ESCs through transfection of miR-290-295 cluster miRNAs, and that these
miRNAs are important for appropriate de novo DNA methylation in differ-
entiating ESCs. Hanina et al. [252] profiled mRNA expression in Dicer ™/~
ESCs as well as in Dicer—/~ ESCs transfected with miR-294. Combining
these expression data with a biochemical approach to isolate Argonaute 2
(Ago2)-bound mRNAs, the study identified miR-294 targets in ESCs. It fur-
ther concluded that miR-294 regulates a subset of genes that are also targeted
by the Myc transcriptional regulator and that some of the effects of miR-294
expression may be due to the indirect upregulation of pluripotency factors
such as Lin28. Employing mRNA expression profiling of Dger8~/~ ESCs,
as well as miR-294-transfected Dgcr8_/ ~ ESCs, Melton et al. [235] showed
that self-renewal and differentiation of ESCs is regulated in an antagonistic
manner by miR-294 and let-7. Finally, Zheng et al. [250] profiled mRNA ex-
pression of miRNA expressing ESCs and Dicer~/~ ESCs and uncovered a
pro-survival, anti-apoptotic function of the miR-290-295 cluster of miRNAs.
Altogether, these studies provide five separate experimental data sets that can
be used to investigate the function of AAGUGCU seed family miRNAs in
ESCs. They all determined mRNA expression profiles of ESCs with impaired
miRNA expression (due to knockout of either Dgcr8 or Dicer components of
the miRNA biogenesis pathway), as well as of ESCs that expressed miRNAs
of the AAGUGCU seed family. The latter were either ES cells which ex-
pressed the full complement of miRNAs, or miRNA-deficient ESCs that were
transfected with either miRNAs of the miR-290-295 cluster, or only miR-294.
Although it has been observed that these studies resulted in sets of miRNA tar-
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gets that are only partially overlapping [249], a meta-analysis that combines
these data sets to identify the pathways that are most reproducibly targeted by
the AAGUGCU miRNAs has not been performed. In our study, we aimed to
infer transcriptional regulators that are directly and consistently targeted by
the AAGUGCU family of miRNAs, the pathways that these regulators con-
trol and the interactions that they have with each other. Towards this end, we
modeled genome-wide mRNA expression in terms of computationally pre-
dicted target sites of both transcription factors and miRNAs. This approach
allowed us to identify a number of transcriptional regulators whose activity
is consistently altered by miRNAs of the AAGUGCU seed family and that
could contribute to the maintenance of pluripotency. Through reporter assays
we validated these regulators as targets of AAGUGCU seed family miRNAs.
Employing Dicer™/~ mouse ES cells we showed that the expression of the
IRF2 transcription factor is strongly upregulated in the absence of miRNAs
and that the nuclear concentration of the RelA component of the NF-xB path-
way upon stimulation with TNF-« is also increased. Our results give new
insights into the functions of miRNAs in the regulatory circuitry of ESCs.

3.3 RESULTS
3.3.1 General relationship between data sets

A common, though perhaps naive expectation is that combining data from
experiments that have been independently performed in different labs, with
different experimental procedures, allows one to identify essential properties
of the system that are invariant with respect to details of the experimental ap-
proach. In our case, in any given experiment, confounding effects may have
led to some genes being spuriously identified as targets of AAGUGCU miR-
NAs (false positives), and true targets of AAGUGCU miRNAs being missed
(false negatives). For example, because it is unclear whether the miRNA pro-
cessing enzymes solely function in this pathway, it is important to analyze
data from ESCs in which the miRNA biogenesis has been impaired at dif-
ferent levels (Dicer in the studies of Sinkkonen et al. [180] and Hanina et
al. [252] and Dgcr8 in the study of Melton et al. [235]). Furthermore, al-
though ESCs expressing the full complement of miRNAs provide the most
physiological reference point for the function of the miR-290-295 cluster
miRNAs in normal, unstressed cells, the effect of these miRNAS in these
cells is confounded by the effects of other co-expressed miRNAs. Similarly,
if the profiled cell population was heterogeneous with respect to the pluripo-
tency/differentiation status, the let-7 miRNAs may have masked the effect
of miR-294, because these miRNAs have antagonistic effects [235]. Requir-
ing targets to show consistent downregulation across multiple data sets can
reduce the number of false positive miR-294 targets. On the other hand, re-
quiring perfect consistency across a large number of experiments is likely to
lead to too many false negatives, simply because different experiments have
different levels of accuracy or confounding effects. Thus, we first investigated
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the relationship of gene-level expression changes between ESCs that did or
did not express embryonic miRNAs in all pairs of experiments. Although
pairwise Pearson correlation coefficients were as low as 0.11 (Supplementary
Fig. A.1), three of the five experimental data sets (Fig. 3.1A), covering all
described conditions (expression of miR-294, miR-290-295 cluster miRNAs,
or the entire complement of embryonically expressed miRNAs in a miRNA-
deficient background) gave reasonably high pairwise correlation coefficients
(Fig. 3.1B). We therefore focused our discussion on these datasets, and for
completeness, we present the results of a similar analysis of all five data sets
in the Supplementary material. Of the approximately 4000 — 5000 genes that
were downregulated in a single experiment, a little less than 2000 genes were
downregulated in all three experiments. Importantly, the proportion of pre-
dicted AAGUGCU seed family targets among downregulated genes increased
when intersecting an increasing number of data sets (Fig. 3.1C), indicating
that the approach of a combined analysis of these data sets does have the po-
tential to reveal important regulators that are immediately downstream of the
AAGUGCU family of miRNAs. 252 of the genes downregulated in all three
experiments were predicted AAGUGCU seed family targets [143] (Supple-
mentary Table A.2).

(A) Publication Abbr. GEO Id First Condition | Second Condition
Melton et al. (2010) A GSE18840 Dgcr8 ~/~ miR-294 transfected Dgcr8 =/~
Sinkkonen et al. (2008) | B GSE8503 Dicer =/~ miR-290 cluster transfected Dicer ~/~
Sinkkonen et al. (2008) | C GSE7141 Dicer ~/~ Dicer ¥/~
(B) (C)
= AB,C .
Melton(2010) E < . er:jglte dattaset
Dgcr8KO © - atasets
gvs. 0.44 0.41 5 ° AB 3 datasets
miR-294 €8 o
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S5 ° | BC ’
Sinkkonen(2008) q:"g £ ’
DicerkO ¢ 2 2
vs. 0.42 o 3 S As
miR-290cluster © 8 Be
©
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Figure 3.1: Overview of the mRNA expression data sets. (A) Data sources. (B)
Matrix of scatter plots (below diagonal) and Pearson correlation coefficients (above
diagonal) of per-gene log, fold changes in pairs of experiments. The names of the
individual data sets are shown on the diagonal. (C) Proportion of predicted targets
of the AAGUGCU seed family of miRNAs (TargetScan aggregate Pc7 score based
predictions [143]) among genes that are consistently downregulated in all three (or-
ange), pairs (green) or individual data sets (blue) (indicated by the labels, key given
in the “Abbr.” column of the table in panel (A)), plotted against the number of genes
that are consistently downregulated in all of the considered data sets.
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3.3.2 The transcriptional network regulated by the miRNAs of the
AAGUGCU seed family in ESCs

As mentioned in the Introduction, the main aim of our study was to identify
transcriptional regulators that are targeted by the AAGUGCU seed family
and at the same time can account for the largest fraction of gene expression
changes that are observed in cells that do or do not express the miRNAs.
We therefore built on the motif activity response analysis (MARA) approach
[50] that we recently made available in the form of an easy to use web appli-
cation ([253], see Chapter 4). In contrast to standard transcriptome analyses
that strive to find genes (including transcription regulators) whose expression
changes significantly between conditions, MARA aims to infer changes of
the regulatory impact (also referred to as “activity””) of binding motifs. This
is achieved by modeling gene expression as a linear function of the number
of regulatory motif binding sites occurring in the promoter (for TFs) and 3’
UTR (for miRNAs) of the gene and the unknown activity of each motif. The
change in activity of a specific binding motif (e.g. of the Irf2 transcription
factor) in a specific condition (e.g. transfection of miR-294) is inferred from
the expression changes of all (predicted) targets of this motif (determined by
transcriptome profiling), taking into account the occurrences of sites for other
regulators in these targets. For example, a decrease in Irf2 activity is inferred
when the predicted Irf2 targets consistently show a decrease in expression that
cannot be explained by the occurrence of binding sites for other regulatory
motifs in the promoters or 3’ UTRs of these targets. This means that MARA
can uncover gene expression changes that are due not only to changes in the
mRNA expression level of a regulator, but also to changes in the active form
(e.g. for TFs through post-translational modifications such as phosphoryla-
tion) of the regulator. MARA was initially developed for the characterization
of transcription regulatory networks [50], and we have recently extended it to
also model miRNA-dependent changes in mRNA stability ([253], see Chapter
4). For this study we further extended the MARA approach to identify regu-
lators whose activity not only changes most significantly between samples
but also reproducibly across multiple data sets. Our approach is described in
detail in the Materials and Methods section. To verify that MARA can indeed
uncover the key regulator in these experiments, namely the miRNAs of the
AAGUGCU seed family, we first applied MARA taking into account all TFs
and miRNA seed families (see Supplementary Table A.4). In subsequent anal-
yses however, we performed the MARA analysis with only the AAGUGCU
seed family motif added to the full complement of transcription factor motifs.
This was because when all miRNAs are included in the analysis, MARA will
also infer nonzero activities for other miRNAs, e.g. those with significantly
overlapping sets of targets [254]. MARA quantifies the extent to which the
activity of each motif varies across conditions by a z-statistic, that roughly
corresponds to the ratio between the average deviation of the motif activity
from zero and the standard deviation of the motif activity (see Materials and
Methods). Supplementary Table A.3 shows all motifs ranked by their abso-
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lute z-values. MARA also predicts which promoters or 3’ UTRs are targeted
by each motif, quantifying the confidence in each predicted motif-target in-
teraction by a posterior probability (see Materials and Methods). We used
these probabilities to construct a regulatory network of motif-motif interac-
tions (Fig. 3.2) that provides a synthetic view of the regulatory impact of
the AAGUGCU seed family of miRNAs on the transcriptional network of
pluripotent stem cells. An arrow was drawn from motif A to motif B when-
ever motif A was predicted by MARA to regulate a transcription factor b
whose binding specificity is represented by motif B. Only motif-TF interac-
tions that were predicted in all data sets and that involved motifs with high
significance (z > 5) are shown.

[Cwars ] PRDM1_|

(Ek1.4.. ]

IRF1,; FOXI1,J2

-48 +48

(RFX1.5..

motif activity z-value

Figure 3.2: The transcriptional network inferred to be affected by the miRNAs
of the AAGUGCU seed family (represented by miR-294). A directed edge was
drawn from a motif A to a motif B if A was consistently (across data sets) predicted
to regulate a transcription factor b whose sequence specificity is represented by motif
B. The thickness of the edge is proportional to the product of the probabilities that
A targets b. For the clarity of the figure, only motifs with absolute z-values > 5 and
only edges with a target probability product > 0.3 are shown. The intensity of the
color of a box representing a motif is proportional to the significance of the motif
(the corresponding z-values can be found in Suppl. Table A.3). Red indicates an
increase and green a decrease in activity, corresponding to increased and decreased
expression, respectively, of the tagets of the motif when the miRNAs are expressed.
The full motif names as well as the corresponding transcription factors are listed in
Supplementary Table A.7.

The motif corresponding to the AAGUGCU seed family (represented by the
dark green “miR-294" motif in Fig. 3.2) is by far the most significantly chang-
ing motif (see also Supplementary Table A.3 ). Its negative change in activ-
ity upon miRNA expression is consistent with the destabilizing effect of the
miRNA on its targets. The motif with the second most significant change in
activity, “IRF1,2,7”, is bound by the interferon regulatory factors. MARA
predicts that this motif is directly targeted by miR-294, in line with previous
suggestions that the interferon regulatory factors are targets of the miR-290
cluster miRNAs [252]. We present a more detailed analysis of this motif in
the next section.



3.3 RESULTS

(A) (B) Foxj2 =28 (C) Foxj2
FOX{11,)2} -;_§} o g-
- motif 0g g |
3 °8 5
o) o - o
5 s§ 23
G 0] < Y]
T S < 8
s & =3
& ] £ 29
59| g
A T 2 il []Dgcr8(-/-) vs. miR-294 3 o
@ 1 [IDicer(-/-) vs. miR-290 cluster 27
% [IDicer(-/-) vs. Dicer(+/-) s
act|V|ty z- value 0 10 B EIMMo prediction % w
-5.62 §_) Q- W TargetScan prediction 2
I

Figure 3.3: Foxj2 is a direct target of miR-294. (A) The “FOX{I1,J2}” motif
shows a negative change in activity in the presence of miR-294. (B) Foxj2 mRNA
log, fold changes (=1.96*SEM; n=3) in the Melton et al. Dgcr8~/~ versus miR-
294 transfection (yellow), Sinkkonen et al. Dicer~/~ versus miR-290-295 cluster
transfection (dark brown) and Dicer~/~ versus Dicert/~ (light brown) data sets,
as well as the prediction scores for these genes as targets of miR-294 as given by
EIMMo [255] (dark red) and TargetScan (aggregate P-r) [143] (light red). (C) A
luciferase reporter construct carrying the 3’ UTR of Foxj2 is downregulated upon
co-transfection with miR-294 relative to a construct carrying the Foxj2 3’ UTR but
with a mutated miR-294 target site (n=9).

A second motif whose activity decreases significantly upon miRNA expres-
sion is “FOX{I1,J2}” (Fig. 3.3A). Of the TFs associated with this motif,
Fox;j2 is predicted within all data sets to be directly regulated by miR-294 (Fig.
3.2). Consistently, Foxj2 is downregulated upon miRNA expression on the
mRNA level (Fig. 3.3B). In order to validate that Fox;j2 is a direct target of the
miRNAs, as predicted by both ElImmo and TargetScan (Fig. 3.3B), we cloned
the 3° UTR of Foxj2 downstream of a luciferase reporter and co-transfected
this construct together with miR-294 in the murine mammary gland cell line
NMuMG. For comparison, we generated a construct in which the presumed
miRNA-294 target site was mutated and we performed similar co-transfection
experiments. The results of this experiment clearly show that Foxj2 is indeed
a functional target of miR-294 (Fig. 3.3C). We carried out similar transfec-
tion experiments with control siRNAs, that do not target the reporter, and a
standard analysis of these data is presented in Supplementary Fig. A.3. Little
is known about the function of Foxj2 in cell fate. It appears to be expressed
very early in development [256], but its overexpression has a negative effect
on embryogenesis [257]. Our results suggest that the AAGUGCU seed fam-
ily of miRNAs contributes to the maintenance of an adequate expression of
Foxj2 in pluripotent stem cells. The third most significant changing motif,
basic-helix-loop-helix (referred to as “bHLH..” in Fig. 3.2), can be bound by
many transcription factors (reviewed in [258]), some of which are predicted
direct targets of miR-294.

To further elucidate the transcription regulatory network downstream of the
AAGUGCU seed family of miRNAs, we analyzed in-depth the transcription
factors whose associated motif had the most significant activity change (z-
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value > 5) and that were consistently predicted by MARA to be direct targets
of the miR-294 seed family miRNAs across the multiple data sets (Table 3.1).

Name Motif Motif Ab- | Activity
breviation z-value
Irf2 IRF1,2,7.p3 IRF1,2,7 -16.29
Mxd3 bHLH_family.p2 bHLH.. 13.00
Clock bHLH_family.p2 bHLH.. 13.00
Arnt2 ARNT_ARNT2_BHLHB2_MAX_MYC_USF1.p2 | ARNT.. 11.60
Arnt2 AHR_ARNT_ARNT2.p2 AHR.. 8.39
BAF170 | DMAPI_NCOR({1,2} _SMARC.p2 .SMARC -6.98
E2f5 E2F1..5.p2 E2F1..5 6.62
Foxj2 FOX{I1,J2}.p2 FOXI11,J2 -5.62

Table 3.1: AAGUGCU seed family transcription factor targets as predicted by
combined MARA. Transcription factors consistently predicted by MARA to be a
direct target of miR-294 and whose absolute motif activity z-value is > 5 (due to the
presence of AAGUGCU seed family miRNAs).

We found that the majority of these direct target TFs fall into three categories
that have previously been associated with pluripotency: NF-xB-related inter-
feron response factors that control NF-xB signalling, cell cycle regulators,
and epigenetic regulators.

3.3.3 AAGUGCU seed family miRNAs modulate Irf2-dependent transcrip-
tion

The “IRF1,2,7” motif shows the second strongest activity change upon
changes in miR-294 expression (Fig. 3.4A and Suppl. Table A.3). Of the
individual factors associated with this motif, Irf2 is the one that was consis-
tently predicted by our analysis to be a direct target of the AAGUGCU seed
family miRNAs across data sets (Table 3.1), consistent with the predictions
of both EIMMo and TargetScan (Fig. 3.4B). I1f2 was down-regulated at the
mRNA level across all analyzed data sets (Fig. 3.4B). Consistently, we found
that Irf2 is strongly down-regulated in DCR//0%/flox compared to DCR~/~
ESCs, both at the mRNA level (Fig. 3.4C) as well as at the protein level
(Fig. 3.4D). To validate Irf2 as a direct target of miR-294, we conducted
luciferase assays as described above for Foxj2. Our results demonstrate that
Irf2 is indeed targeted by miR-294 (Fig. 3.4E). Although relatively little is
known about the function of this factor in ESCs, a recent study showed that
Irf2 overexpression causes differentiation of ESCs [259]. The strong impact
of AAGUGCU miRNAs on Irf2 levels and the relatively large impact of the
“IRF1,2,7” motif on gene expression suggest that this regulatory connection
plays an important role in maintaining ESC pluripotency.
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Figure 3.4: miR-294 targets the Irf2 transcription factor and modulates
“IRF1,2,7’ and “NFKB1_REL_RELA” activities. (A) The activity of the
“IRF1,2,7” motif is strongly decreased in the presence of miR-294. (B) The ex-
pression of Irf2 is downregulated within all analysed data sets (£1.96*SEM; n=3)
and Irf2 is predicted by EIMMo and TargetScan to be a direct target of miR-294
(color scheme as in Figure 3.3). Low levels of Irf2 mRNA (C) and (D) protein in
DCR/f!0x/ flox ES cells compared to miRNA deficient DCR~/~ ESCs are observed
with qRT-PCR and Western blot, respectively. qRT-PCR experiments were run in
triplicate (SEM; n=3). (E) The luciferase reporter construct carrying the Irf2 3’
UTR shows a strong response to miR-294 co-transfection compared to a similar
construct but with a mutated Irf2 target site (n=9). (F) Sequence logo [260] of the
“NFKB1_REL_RELA” motif that is associated with the canonical NF-xB pathway
and that exhibits a significant decrease in activity in the presence of miR-294. (G)
Western blots of RelA, GAPDH and Histone H3 in nuclear and cytoplasmic frac-
tions in ESCs that do and do not express miRNAs. The densitometric quantification
indicates an increased level of nuclear RelA in the DCR~/~ ESCs compared to
DCR/ox/ flox g§Cg (£SEM; n=3). (H) Proposed model of the inhibitory effect of
miR-290-295 cluster miRNAs on the canonical NF-xB pathway in pluripotent stem
cells. Regulatory motifs are denoted by colored rectangles and individual genes by
ovals. See text for the evidence of individual interactions.

Like the “IRF1,2,7” motif, the “NFKB1_REL_RELA” motif also exhibits
a significantly lower activity when the embryonic miRNAs are expressed
(Fig. 3.4F). Western blot confirms that after stimulation with tumor necro-
sis factor & (TNFa), DCRf!0¥/flox ESCs have lower levels of nuclear NF-xB
pathway-associated marker RelA compared with miRNA-deficient DCR ™/~
ES cells (Fig. 3.4G). This observation is consistent with a decreased activity
of the canonical NF-xB signalling pathway in the presence of the miRNAs,
which has been shown to be important for maintaining ESCs in a pluripo-
tent state yet poised to undergo differentiation [261, 262]. Indeed, the Nanog
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pluripotency factor directly interacts with components of the NF-xB complex,
inhibiting its transcriptional activity [261]. Combining our results with re-
cent reports that link the expression of the miR-290-295 cluster to signalling
through the canonical NF-xB pathway and the latter to Irf2, the following
model of the involvement of the miR-290-295 cluster in the regulation of NF-
kB signalling emerges. Expression of the RelA component of the NF-xB com-
plex is repressed post-transcriptionally by the miR-290-295 cluster members
miR-291b-5p and miR-293 both of which do not belong to the AAGUGCU
seed family of miRNAs [262]. In humans, RelA recruitment to the nucleus,
which is a pre-requisite for NF-xB complex-dependent transcription, appears
to depend on IRF2 [263], whose knockdown interferes with transcriptional
activation via NF-xB [263]. Here we found that in mouse, IRF2 expression
is also repressed by other members of the miR-290-295 cluster, namely the
AAGUGCU family of miRNAs. Thus, the miRNAs of the miR-290-295 clus-
ter may act in concert to inhibit the canonical NF-xB signalling in ESCs (Fig.
3.4H).

3.3.4 miRNAs of the AAGUGCU seed family impact the cell cycle at multi-
ple levels

AAGUGCU seed family members of the miR-290-295 cluster were previ-
ously shown to accelerate the G1—S transition and promote proliferation of
ESCs by targeting the cyclin E-Cdk?2 regulatory pathway [224]. Consistently,
we found that these miRNAs increase the activity of transcription regulatory
motifs associated with activation of the cell cycle (Fig. 3.5), in particular the
“ARNT-ARNT2-BHLHB2-MAX-MYC-USF1” motif that is bound by Myc.
This TF was previously found to increase upon miR-294 transfection [235].
How the miRNAs, with intrinsically repressive function, increase the Myc
activity on its targets is unknown. Our analysis suggests a few hypotheses.

ARNT, ARNT2,
BHLHB2, MAX,
bHLH-family E2F1..5 MYC, USF1
act|V|ty z-vaIue act|V|ty z- value act|V|ty z- value
13.0 6.6 11.6

Figure 3.5: miR-294 impacts cell cycle associated motifs. MARA analysis reveals
that miR-294 induces positive activity changes of multiple motifs involved in cell cy-
cle regulation. Shown are the sequence logos [260] and the corresponding activity z-
values (red shapes represent positive motif activity changes) of these motifs: the Myc-
and Arnt2-associated motif “ARNT-ARNT2-BHLHB2-MAX-MYC-USF1”, the pu-
tative Myc-regulating “E2F1..5” motif and the Mxd3-associated “bHLH-family” mo-
tif. Shapes scheme is as in Figure 3.4.
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Specifically, luciferase assays show that three cell cycle-associated TFs,
namely Mxd3 (also known as Mad3), E2f5 and Arnt2 are not only predicted
but also experimentally confirmed direct targets of the AAGUGCU seed fam-
ily miRNAs (Fig. 3.6A,B and Table 3.1). Mxd3 is one of the so-called "Mad’
partners of the Max protein (reviewed in [264]). In contrast to Myc, which
forms a heterodimeric complex with Max in proliferating cells [265], the Mad
factors Madl, Mad3 (i.e. Mxd3) and Mad4 are primarily expressed and form
complexes with Max in differentiating, growth-arrested cells [266]. Mxd3
was further shown to specifically regulate the S-phase [267]. Second, we
found that E2f5, one of the TFs associated with the “E2F1..5” motif, was
consistently downregulated at the mRNA level in all analyzed data sets (Fig.
3.6A) and luciferase assays further confirm that E2f5 is a target of miR-294
(Fig. 3.6B), albeit with a small response to the miRNA. Consistently, E2f5 ex-
pression is increased in DCR~/~ ES cells compared to DCR//¥/flox ESCs
(Fig. 3.6C). The positive activity change of the E2F1..5 motif in the presence
of the miRNAs (Fig. 3.5) suggests that this TF acts predominantly as repres-
sor (as proposed before, reviewed in [268]). Notably, Myc is among the pre-
dicted targets of E2F1..5, providing an indirect path to the upregulation of
Myc upon the presence of the miRNAs (Fig. 3.6A,C).
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Figure 3.6: miR-294 impacts cell cycle regulation at multiple levels. (A) log,
mRNA fold changes (£1.96*SEM; n=3) of Myc, Arnt2, E2F5 and Mxd3 (color
scheme as in Figure 3.3) in the analyzed data sets. (B) Luciferase constructs car-
rying the 3° UTR of Arnt2, E2f5 or Mxd3 respectively, are downregulated upon
co-transfection with miR-294 relative to constructs carrying the same 3° UTRs but
with mutated miR-294 binding sites (n=9). (C) qRT-PCR show decreased expres-
sion of Myc and increased expression of E2f5 in DCR™/~ ES cells relative to
DCR/f!ox/ flox ESCs. qRT-PCR experiments were run in triplicate (:SEM; n=3). (D)
Proposed model of miR-294-dependent regulation of the Myc-Max/Mxd-Max net-
work. Shapes scheme is as in Figure 3.4. Green or red shapes represent negative or
positive changes (in motif activities or gene expression fold changes) respectively.
Dashed lines indicate indirect and solid lines direct regulatory links between motifs/-
genes.
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Finally, Arnt2, a TF associated with the “ARNT-ARNT2-BHLHB2-MAX-
MYC-USF1” motif, but also with the “AHR-ARNT-ARNT?2” motif that cor-
responds to the complex of Arnt2 and Abhr, is also a predicted direct target
of the AAGUGCU seed family which we validated in a luciferase assay (Fig.
3.6B). This TF forms heterodimers with the aryl-hydrocarbon receptor (AHR)
[269] and appears to be involved in the differentiation of ESCs into endothe-
lial cells under hypoxic conditions [270], but otherwise little is known about
its function. Given that Arnt2 and Myc [271] share the same binding motif, an
interesting hypothesis is that Arnt2 competes with Myc for binding to targets
and that its downregulation by AAGUGCU miRNAs allows Myc to act at pro-
moters which would otherwise be bound by Arnt2. This hypothesis is again
consistent with a positive Myc activity in ESCs, in which these miRNAs are
expressed. The model that we propose based on these results is that miRNAs
of the AAGUGCU family regulate the cell cycle and the G—S transition
through multiple pathways that come together in the increased expression of
the crucial Myc regulator (Fig. 3.6D). The miRNAs are able to downregulate
the Mxd3 antagonist of Myc, the E2F5 repressor which would in turn result
in the increased expression of E2F5 targets including Myc, and can downreg-
ulate Arnt2 which may compete with Myc for binding to regulatory sites.

3.3.5 miRNAs of the AAGUGCU seed family control multiple epigenetic
regulators

As TFs, epigenetic regulators are also enriched among the targets of miR-
NAs [115]. A role for the miR-290-295 cluster in epigenetic regulation was
already proposed by Sinkkonen et al. [180], who found that expression of
retinoblastoma-like 2 (Rbl-2) protein, a known repressor of the de novo
methyltransferases, is controlled by these miRNAs. Through our analysis we
found that the AAGUGCU miRNAs directly target the epigenetic regulator
BAF170 (Smarcc2), a component of ATP-dependent, BAF (BRG1-associated
factor) complexes (also known as SWI/SNF complexes) that remodel the nu-
cleosome structure and thereby regulate gene expression (reviewed in [35]).
The activity of the BAF170 motif changed significantly upon AAGUGCU
miRNA expression in miRNA-deficient ESCs (Fig. 3.7A, Table 3.1), accom-
panied by consistent downregulation of BAF170 mRNA (Fig. 3.7B). Com-
paring constructs with and without the putative miR-294 binding site in the
BAF170 3° UTR in a luciferase assay we found that BAF170 is significantly
downregulated by miR-294 (Fig. 3.7C), indicating that BAF170 is indeed a di-
rect target of miR-294. Recently, it was shown that BAF170 is downregulated
during miR-302-367-based reprogramming and that BAF170 knockdown in-
creases the number of iPSC colonies in somatic cell reprogramming [228].
As miRNAs of the miR-302-367 cluster share the seed sequence with miR-
294, it is likely that miR-294 has similar effects on BAF170 expression and
pluripotency.
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Figure 3.7: The BAF170 (Smarcc2) component of the dBAF chromatin remod-
eling complex is a direct target of miR-294. (A) MARA analysis reveals a neg-
ative activity change of the “DMAP1-NCOR{1,2}-SMARC” motif in the presence
of miR-294. (B) Expression of BAF170 (Smarcc2) is consistently downregulated in
the presence of miR-294 in all considered experimental data sets (£1.96*SEM; n=3;
color scheme as in Figure 3.3). (C) A luciferase construct carrying the BAF170 3’
UTR is downregulated upon co-transfection with miR-294 relative to a construct car-
rying a mutated 3’ UTR (n=9). (D) Model of the possible involvement of miR-294
in the maintenance of the ESC-specific chromatin remodeling complex esBAF. The
miRNA-induced reduction in BAF170 levels may contribute to the maintenance of
appropriate levels of esBAF complexes in ESCs thereby maintaining self-renewal
and proliferation [215]. Color, shapes and lines scheme is as in Figure 3.6.

The model that emerges from these studies is that the AAGUGCU family of
miRNAs may play a role in the remodeling of BAF complexes. In ESCs, the
BAF complex (esBAF), which contains a BAF155 subunit, shares a large pro-
portion of target genes with the pluripotency-associated transcription factors
Oct4, Sox2 and Nanog [216] and is required for the self-renewal and main-
tenance of pluripotency in mouse ESCs [215]. Consistently, overexpression
of esBAF components was found to promote reprogramming [217]. In differ-
entiated cells however, the so-called differentiated cell BAF complex (dBAF)
[234], contains the BAF170 and not the BAF155 subunit [215]. The fact that
induced BAF170 expression in ESCs decreases the level of BAF155 protein
suggested that BAF170 can displace BAF155 from esBAF, thereby increas-
ing its degradation rate [215]. By preventing expression of BAF components
that are specific to differentiated cells and that antagonize embyonic state-
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specific BAF (Fig. 3.7D) the AAGUGCU family of miRNAs may promote
an ESC-specific epigenetic state.

3.4 DISCUSSION

It has been established that ESC-specific miRNAs that share an AAGUGCU
seed region are among the regulatory factors that are necessary to maintain a
pluripotent embryonic stem cell state. Strikingly, over-expression of a cluster
of ESC-specific miRNAs was found sufficient for inducing reprogramming
of differentiated cells into induced pluripotent stem cells. This suggests that
the miRNAs can set into motion an entire regulatory cascade that leads to
cell reprogramming. Several studies determined the gene expression profiles
of ESCs that did and did not express AAGUGCU family miRNAs. An insight
emerging from these studies were that miR-290-295 miRNAs regulate the cell
cycle and apoptosis, either directly or indirectly. To better understand how the
direct regulatory factor targets of these miRNAs contribute to pluripotency,
we made use of a recently developed method, called Motif Activity Response
Analysis, that models gene expression in terms of computationally predicted
regulatory sites. The approach originates in regression models that were first
proposed by Bussemaker et al. [272] for inferring regulatory elements from
gene expression data. However, MARA’s goal is different. It uses predicted
regulatory sites in combination with a linear model to infer from gene expres-
sion data the activities of transcriptional regulators. The first application of
MARA [50] to the reconstruction of the core transcriptional regulatory net-
work of a differentiating human cell line, demonstrated that the method can
successfully infer key regulatory interactions ab initio. Notably, it was found
that MARA accurately infers the activities of the key regulatory motifs, in
spite of computational predictions of regulatory sites being error-prone, and
of gene expression likely being a much more complex function of the regula-
tory sites. The power of the method stems from the fact that motif activities
are inferred from the statistics of expression of hundreds to thousands of pu-
tative target genes of each regulatory motif. Here we have used an extended
version of the MARA model, which also includes predicted miRNA bind-
ing sites, to infer both transcriptional and post-transcriptional regulators of
mRNA expression levels. A similar approach was recently applied by Setty
et al. [273] to reconstruct the regulatory networks in glioblastoma. The TF tar-
gets of the AAGUGCU miRNAs that we identified with the extended MARA
model had the following properties:

1. the activity of their corresponding motif changed significantly upon
expression of the AAGUGCU miRNA(s), meaning that the predicted
targets of these regulators showed, on average, consistent expression
changes.

2. their expression was consistently downregulated at the mRNA level
upon expression of the AAGUGCU miRNAC(s).
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3. they were predicted as direct targets of the AAGUGCU family of miR-
NAs by miRNA target prediction programs.

4. they were consistently (i.e. within every analysed data set) predicted
by MARA to be directly regulated by the AAGUGCU seed family of
miRNAs on the basis of the dependence on their expression changes
on the presence of the miRNA binding sites in their 3> UTRs.

5. they could be confirmed as AAGUGCU miRNA targets with luciferase
assays.

Altogether, these lines of evidence firmly establish these transcriptional regu-
lators as direct targets of the AAGUGCU seed family miRNAs, forming the
first layer downstream of this miRNAs in the regulatory network of pluripo-
tency. First, our analysis suggests that AAGUGCU miRNAs target the cell
cycle, and in particular the G1 —S transition, through multiple pathways. By
targeting the repressive cell cycle regulator E2f5, the miRNAs might directly
promote the G1—S transition. In addition, the miRNAs seem to increase
the activity of the proliferation-associated TF Myc through multiple indirect
routes, including shifting the balance between Myc and its antagonist Mxd3
within transcription regulatory complexes that act on Myc target genes. Sec-
ond, we found that the AAGUGCU miRNAs may affect the balance between
chromatin remodeling complexes that are active in ESCs and in differenti-
ated cells, a function probably important for keeping specific genomic regions
from being silenced through heterochromatin formation. Third, we found that
the AAGUGCU miRNAs directly target the interferon regulatory factor Irf2,
whose expression is strongly increased in DCR™/~ cells, consistent with a
significant change in the regulatory impact that we inferred for this factor.
Finally, our analysis uncovers a few transriptional regulators that have previ-
ously not been connected to the transcriptional network of pluripotent stem
cells, including Foxj2, whose expression is strongly affected by the miRNAs
and the Clock (circadian locomotor output cycles kaput) TF. Interestingly, cir-
cadian oscillations are not present in mouse ES cells, but are switched on dur-
ing differentiation, and then disappear again upon reprogramming of differ-
entiated cells into iPSCs [274]. It is thus tempting to speculate that circadian
oscillations in ESCs may be actively suppressed by the AAGUGCU miRNAs
and that downregulation of these miRNAs during development may be nec-
essary for the establishment of circadian rhythms. However, the response of
the 3° UTR of Clock in luciferase assays was very variable in our hands, and
we were not able to unambiguously validate it as a direct target of miR-294.
As mentioned before, the AAGUGCU seed motif is not unique to miRNAs of
the mouse-specific miR-290-295 cluster. It also occurs in the miR-302 family
of miRNAs that is present in human and in a shifted version (at positions 3-9
instead of 2-8) it occurs in the miR-17/20a miRNAs of the oncogenic miR-
17-92 cluster. Although miR-19 has been reported to be the key oncogenic
component of this cluster [275], the strong effects that AAGUGCU miRNAs
exert on the cell cycle raise the question of whether miR-17 and miR-20a
may not play a role similar to miR-294 in malignant cells. In summary, our
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analysis demonstrates that combining accurate predictions of regulatory el-
ements with analysis of transcriptome-wide mRNA expression changes in
response to specific manipulations is a general and powerful approach to un-
covering key regulators within gene expression networks. In the future, incor-
poration of measurements of miRNA expression as well as of predictions of
transcription factor binding sites in miRNA genes will enable identification
of feedback loops between miRNAs and transcription factors that are known
to operate in many systems.

3.5 MATERIALS AND METHODS
3.5.1 Experimental data sets

Supplementary Table A.1 summarizes the data sets that we obtained from the
GEO database of NCBI and that we have used in our study. Each data set cov-
ers at least two distinct experimental conditions, with three replicates per con-
dition. The first condition of every data set corresponds to an embryonic stem
cell line deficient in mature microRNAs due to Dicer- or Dgcr8-knockout.
The second condition corresponds to either an embryonic stem cell line ex-
pressing the entire complement of embryonically expressed microRNAs or
the knockout cell line transfected with miR-294 or with mimics of the miR-
290 cluster miRNAs (mir-290, mir-291a-3p, mir-292-3p, mir-293, mir-294
and mir-295).

3.5.2 Microarray analysis

3.5.2.1 Computational analysis of lllumina MouseWG-6 v2.0 Expression
BeadChips from Hanina et al. (2010)

We downloaded the processed data from the GEO database of NCBI (acces-
sion no. GSE20048). Probe-to-gene associations were made by mapping the
probe sequences (provided by the authors) to the set of mouse transcript se-
quences (downloaded 2011-02-19 from the UCSC Genome Bioinformatics
web site). We computed average gene expression levels as weighted averages
of the signals of all probes that perfectly matched to at least one transcript
of the gene. Whenever a probe mapped to multiple genes, a weight of 1/n
was assigned to each of the n genes to which the probe matched. For a given
replicate experiment, the log, expression fold change of each gene was then
determined by subtracting the log,-average expression of the gene in the first
condition (control) from the log,-average expression in the second condition
(treatment).

3.5.2.2 Computational analysis of Affymetrix Mouse Genome 430 2.0 chips
from Sinkkonen et al. (2008) and Zheng et al. (2011)

We downloaded the data from the GEO database (accessions GSE8503,
GSE7141 and GSE30012) and analyzed the CEL files with the R software
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(http://www.R-project.org) using the BioConductor affy package [276]. We
used the GCRMA algorithm [277] for background correction and the MClust
R package [278] to fit a two-component Gaussian mixture model to the
log,-probe intensities and classify probes as expressed or not expressed. A
probe was considered for further analysis if it was consistently classified
as expressed in all three replicates of at least one of the two experimental
conditions. The remaining probes were quantile normalized across all con-
ditions and replicates of a particular experiment. Probe-to-gene associations
were made by mapping probe sequences (provided on the Affymetrix web-
site, http://www.affymetrix.com) to mouse transcript sequences (as used by
motif activity response analysis (MARA), downloaded from UCSC Genome
Bioinformatics web site as described above). We then computed log,-gene
expression fold changes as described for [llumina Expression BeadChips (see
above).

3.5.2.3 Computational analysis of Affymetrix Mouse Gene 1.0 ST chips
from Melton et al. (2010)

We downloaded the data from the GEO database (accession no. GSE18840)
and analyzed the CEL files with the R Bioconductor oligo package [279]. We
used the RMA algorithm [280] for background adjustment. The rest of the
analysis, including the classification of probes into expressed/not expressed,
the quantile normalization, and the calculation of log, gene expression fold
changes, was carried out as described above.

3.5.2.4 Proportions of AAGUGCU miRNA seed family targets among
genes that are consistently downregulated in multiple experiments

For each gene and each experiment, we calculated the standard error in its
log, fold change across the replicates. A gene was considered significantly
downregulated when it was down-regulated more than 1.96 standard-errors.
We then determined the intersection set of significantly downregulated genes
for every possible subset of the experiments S={MeltonDGCREKOVs294,
SinkkonenDicerKOVs290, SinkkonenDiverKOVsWT]). Subsequently, for ev-
ery obtained intersection set, the proportion of AAGUGCU miRNA seed
family targets (TargetScan aggregate Pc7 score predictions [143]) was de-
termined and plotted against the size of the corresponding intersection set.

3.5.2.5 Combined motif activity response analysis of TFs and miRNAs

We carried out the MARA [253] separately for each experimental data set.
MARA relates the expression level E driven by individual promoters (mea-
sured by microarrays) to the number of binding sites N that various regulators
have in the promoters using a simple linear model:

Eps =Cs + Cp + ZNpmAms/ (31)
m
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where ¢y, is a term reflecting the basal expression of promoter p, ¢s reflects
the mean expression in sample s, and A, is the (unknown) activity of bind-
ing motif m in sample s (where with “sample” we refer to any individual
replicate of any condition of a data set, see section 3.5.1). That is, using the
predicted site-counts N, and the measured expression levels Eps we used
an approximation (4.1) to infer the activities A5 of all motifs across all sam-
ples by ridge regression. In our analyses, we considered a curated set of 189
transcription factor binding motifs (for detailed information about the motifs
and the corresponding transcription factors see Supplementary Table A.7).
Furthermore, we included the binding sites in the 3> UTRs of mRNAs of
85 miRNA families by incorporating aggregate Pcr scores as provided by
TargetScan[143] (predictions downloaded on the 27th of March 2012 from
the TargetScan website, http://www.targetscan.org). miRNAs are grouped
into families by their seed sequences and in particular the AAGUGCU seed
family corresponds to the following miRNAs: mmu-miR-291a-3p, mmu-miR-
294, mmu-miR-295, mmu-miR-302a, mmu-miR-302b and mmu-miR-302d. A
aggregate Pcr score was assigned to a promoter by averaging the aggregate
Pcr scores of transcripts associated with this promoter. For a given motif
m, MARA provides for each sample s motif activities A},; and associated
errors 0y,s. More specifically, marginalizing over all other motifs, the likeli-
hood P(D|A;s) of the expression data D given the activity of a given motif
is proportional to a Gaussian

1 (Ams — Af:ns)z

_ - 3.2
2 02, (3-2)

P(D | Aps) < exp

Given that all analysed experiments were performed in multiple replicates we
were interested in averaging motif activities across replicates and we used the
following Bayesian approach. For each motif m separately, we assumed that
the activities across a group ¢ of replicates belonging to a specific condition
of an experiment (see section 3.5.1) are normally distributed around some
(unknown) mean /_lmg with (unknown) variance 0'5‘18

L (Ans = Aug)”

2 Thig

P (Ams | Amg, Omg) = exp (3.3)

1
\/27wmg

By combining the prior (3.3) with the likelihood (3.2) for each replicate sam-
ple s € ¢ and integrating out the (unobserved) true activities A, in each of
the replicates, we obtained the probability of the form

_ 1
P (D | Amg omg) =11 exp
seg 4 /27(07e + O7s)

(A;s - Amg)z
2(0ng + 0is)

(3.4)

Formally, we would next integrate out the unknown standard deviation of ac-
tivities in the group 0y,¢ of this likelihood. Unfortunately, this integral cannot
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be performed analytically. We thus approximated the integral by the value
of the integrand at its maximum, i.e. we numerically found the value of y,¢
that maximizes (3.4). Assuming an uniform prior over mean activity Ag, we
obtained the expression for P (flmg ’ D) to be again a Gaussian with mean

*
Ams

Lseg )2t (om )2
e = o, (3.5)
Lseg g P (om)?
and error
. 1
T = S (3.6)

Liseg (g P+ (ome)?

where a,j;g is the maximum likelihood estimate of (3.4). We call (3.5) and
(3.6) averaged activities and averaged errors, respectively. To identify motifs
that consistently change in their activities across experiments, we wanted to
further average motif activities across these experiments. However, because
of the inherent variations in the scale of expression variations in the different
experiments, the motif activities also varied in scale across the experiments.
Thus, before averaging we first standardized the motif activities across the

two conditions a and b. That is, for a given experiment we defined a scale L

()" ()’

L= , 3.7
> (3.7
and rescaled the activities
A*
A% mg
Amg =71 (3.8)
and their errors
v Umg

These condition-specific, averaged and rescaled activities (A;g) and errors
((~7;1k1g) from the different experiments were then combined into two groups, i.e.
the group of a conditions and the group of b conditions, and for each group
we again averaged the activities exactly as described above for the replicates.
To rank the activity changes between two different experimental conditions
(presence/absence of miRNAs) we determined a z-value for every motif m
by dividing the change in averaged activities between the two different condi-
tions a and b by the averaged errors as follows:
Ap - A2
zZ= . (3.10)

(o) + ()

Consequently, from the results of equation (3.10) we obtained a global z-
value-based ranking of the motifs.
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3.5.2.6  Motif-motif interaction network

To uncover which transcription factors were targeted by a particular motif m,
we focused only on those transcription factor genes, whose promoters were
consistently (in all experiments) predicted by MARA to be targets of motif
m. MARA computes a target score S for each potential target promoter of
motif m. S corresponds to the log-likelihood ratio of the data D assuming the
promoter is indeed a target, and assuming the promoter is independent of the
regulator, i.e

P(D|target) } . 3.11)

5 =log [P(D|nottarget)

Assuming a uniform prior of 1/2 that the promoter is indeed a target, the
posterior probability p that the promoter is a target given the data is:

1

= —. 3.12
G (3.12)

p

To obtain a combined probability p. that a gene is a target of a particular
motif across N different experiments the probability product was calculated
by multiplying the probabilities p,, obtained in individual experiments #, i.e.

N
pe=[]pn (3.13)
n=1

3.5.3 Evaluating miR-294 targets with luciferase assays

3.5.3.1 Cloning, cell culture and luciferase Assay

We PCR-amplified 3> UTRs fragments of the putative target genes from Nor-
mal Murine Mammary Gland (NMuMG) genomic DNA and cloned them
into pGEM-T Easy vector (Promega; Cat. No.A1360). We used site-directed
mutagenesis and the QuickChange II kit (Stratagene; Cat. No.200524-5) to
generate deletion mutant constructs that differed in a few nucleotides in
the miR-294 seed-matching region from the wild type construct. All con-
structs, wild-type and mutated, were verified by sequencing and then sub-
cloned into the empty psiCHECK-2 vector (Promega; Cat. No.C8021) at
Xhol - Notl restriction sites. The sequences of the primers used for cloning
and mutagenesis can be found in Supplementary Tables A.9 and A.10, re-
spectively. NMuMG cells were reverse-transfected with Lipofectamine2000
reagent (Invitrogen; Cat. No.11668019), and the corresponding psiCHECK-2
constructs in the presence of 50nM Syn-mmu-miR-294-3p mimic (QIAGEN;
Cat. No. MSY0000372), or 50nM of non-targeting negative control siRNA
(Microsynth). Between 36 and 48 hours post-transfection cells were collected
and both renilla and firefly luciferase activities were measured using Dual Glo
Luciferase Assay System (Promega; Cat. No.E2940). For each gene, expres-
sion was measured for both constructs in 3 separate experiments, and each
experiment contained 3 technical replicates.

47



48

EMBRYONIC STEM CELL-SPECIFIC MICRORNAS

3.5.3.2 Analysis of the luciferase data

We denote by wj, the logarithm (base 2) of the expression level of the lu-
ciferase construct containing the wild type 3° UTR in experiment i replicate r
and by m;, the analogous expression for the mutant construct. For each gene
the data thus consist of 9 values w and 9 values m. We took into account two
sources of variability, namely true expression variability across experiments
and ‘measurement noise’ between replicates. We first describe the measure-
ment noise. Assuming the true expression of the wild type was w;, we as-
sumed the probability to measure expression level w;, (in a given replicate r)
is given by a Gaussian distribution with a certain variance T;:

1 1 [w; — w; 2
P i i, T) = —F—— — | —— ’ 3.14
(il ) = = Jam F [ 2 < T ) G

thus allowing for the possibility that each experiment i has a different level
of noise T; between replicates. The probability of the wild type data of ex-
periment i, assuming that T; is given, is simply the product of expressions
P(wj,|w;, 7;) over the three replicates ¥ = 1 through 3. Using (w;) and
var(w;) to denote the mean and variance of the measurement across the repli-
cates, we can rewrite this as

1
P({w;, }|w;, T;) o = exp

1

3 (me )"t

> - > ] . (3.15)

i
Integrating over the unknown variable 7; from O to infinity with a scale prior
P(t;) o< 1/7; we obtain

3/2
P({wy }|w;) <1 + WW) . (3.16)

var(w;)
Approximating this Student-t distribution by a Gaussian, that is, approximat-
ing the probability of the data in experiment 7 by a Gaussian with mean (w;)
and variance var(w;), we have

3(w; — <wi>)2} _ (3.17)

P({wir}|lw;) ~ Var?wi)e)(p [_ 2var(w;)

Since the variability between replicates is much smaller than the variability
across experiments, this approximation will have a negligible effect on the
final outcome. For the true variability between experiments, we denote by w
the ‘true’ average expression of the wild type construct. We assume that the
deviation of the level w; in experiment i from the mean w follows a Gaussian
distribution with variance ¢. We thus have

1 1 (w —w\?
P(wj|lw,0) = ﬁexp [—2 <w - w) ] . (3.18)

To obtain the probability of the data given w we multiply P({w;, }|w;) by
P(w;|w, o) and integrate over the unknown expression level w;. We then ob-

tain
1 () —w)?
Vo2 + var(w;)/3 p [ 2(0? + var(w;)/3)

P({w; }w, o) o

] . (3.19)



3.5 MATERIALS AND METHODS

The interpretation of this formula is straight-forward. The deviation between
the mean (w;) of the observations in experiment i, and the average level w
is Gaussian-distributed with a variance that is the sum of the variability o
across experiments, and the variability var(w;) /3 associated with estimating
w; from the 3 replicate measurements due to measurement noise. For the
measurements of the mutant construct in experiment { we obtain an analogous
equation

1 ((m;) —m)?

V72 + var(m;)/3 b ~ 2(2 + var(m;) /3)
(3.20)

P({m; }|m, )

where we have introduced the variability ¢ of the true expression of the mu-
tant construct across replicates. What we are interested in is the difference
w — m in log-expression of the wild type and mutant construct. To this end
we define y = w —m and y = (m + w)/2 and integrate over y. We then
obtain

1
\/02 + &2 + var(w;) /3 + var(m;) /3
B ((wi) — (mi) — p)?
2(02 + 52 + var(w;) /3 + var(m;) /3)
(3.21)

P({wi }, {mir}|p,0,5)

exp

This is again a Gaussian with mean (w;) — (m;) and a variance that is the
sum of all variances o2, 72, var(w;)/3, and var(m;)/3. Clearly, although
both ¢ and &2 are unknown, the only variable that enters in our equations is
their sum. We thus simplify the notation by defining this sum as

Similarly, we redefine the variance associated with measurement noise as
t?2 = var(w;) /3 + var(m;) /3, (3.23)

which leads to

P({wi }, {mir }|p, 7)

(@) = m) = 1] 550

1
fy2 4 12 2(92+2)

We now combine the data from the different experiments and remove the final
unknown variable 7. The probability of all data given the variable of interest
u and unknown variability parameter <y is simply the product

3

P(Dlp,v) =[] P(Hwi}, {mi} 1, 7). (3.25)

i=1

To obtain the probability of the data D given p we multiply this expression
with a scale prior for 7, i.e. P(7y) = 1/, and integrate over :

© d
Pl = [ POl (3.26)
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We performed the integration numerically with Mathematica to obtain
P(D|p), and used Bayes’ theorem to compute the posterior distribution of the
parameter y, P(u|D) as P(D|u)/ [, P(D|u)dyu. Finally, we determined
the 5 percentile, the 25 percentile, the median, the 75 percentile, and the 95
percentile of this distribution again with the Mathematica software.

3.5.4 mouse ESC (mESC) culture

The generation of Dicer(DCR)/!0x/flox and DCR~/~ mouse ES cell lines
has been described elsewhere [281]. The cells were routinely screened for
both pluripotency and differentiation markers (see Supplementary Figure
A.4). Both mESC cell lines were maintained in Dulbecco’s Modified Ea-
gles Medium (DMEM) (Gibco; 41966-029) supplemented with 15% of a
special batch of fetal bovine serum tested for optimal growth of mESCs.
In addition, the DMEM contained 1000 U/ml of a homegrown recombinant
LIF (a kind gift of Thomas Grentzinger), 0.1mM 2p-mercaptoethanol (Milli-
pore; ES-007-E), 1x L-Glutamine (Gibco; 25030-024), 1x Sodium Pyruvate
(Gibco; 11360), and 1x Minimum Essential Medium, Non-Essential Amino
Acids (MEM, NEAA) (Gibco; 11140-35). The cells were grown on gelatin-
coated (Sigma; G1393) dishes. The medium was changed daily, and the cells
were sub-cultured every 2-3 days. To induce NF-xB signaling, mouse ESCs
were treated with 20ng/ml TNFa (Cell Signaling Technology; 5178) for 24
hrs.

3.5.5 Quantitative RT-PCR

Total RNA was extracted from mESCs using Tri Reagent (Sigma; T9424)
following the supplier’s protocol. Contaminating DNA was removed using
the RQ1 RNase-Free DNase kit (Promega; M6101). The resulting DNA-free
RNA was then purified using the RNeasy MinElute Cleanup kit (Qiagen;
74204) and quantified using Nanodrop. Superscript III (Invitrogen; 18080)
was then used to create cDNA following the manufacturer’s recommenda-
tions. The cDNA was finally purified using QIAquick PCR Purification kit
(Qiagen; 74204), quantified using Nanodrop, and diluted to 8 ng/ul. Each
qRT-PCR reaction was run using 21 of the purified cDNA in triplicate (n=3)
using Power SYBR Green PCR Master Mix (Applied Biosystems; 4367659)
on a StepOne Plus RT-PCR System (Applied Biosystems). The following
primer pairs were used in this study:

Mouse IRF2 Fwd: 5’-CTG GGC GAT CCA TAC AGG AAA-3’

(e]

Mouse IRF2 Rev: 5°-CTC AAT GTC GGG CAG GGA AT-3’

o

Mouse E2F5 Fwd: 5’-GTT GTG GCT ACA GCA AAG CA-3’

@)

Mouse E2F5 Rev: 5’-GGC CAA CAG TGT ATC ACC ATG A-3’

o



3.5 MATERIALS AND METHODS

o Mouse c-Myc Fwd: 5°-GTT GGA AAC CCC GCA GAC AG-3’

o Mouse c-Myc Rev: 5’-ATA GGG CTG TAC GGA GTC GT-3’

o Mouse GAPDH Fwd: 5’-CAT CAC TGC CAC CCA GAA GAC TG-3’
o Mouse GAPDH Rev: 5°-ATG CCA GTG AGC TTC CCG TTC AG-3’

gRT-PCR data were normalized using GAPDH expression and evaluated us-
ing the 272ACf method [282]. Significant changes in gene expression were
identified based on Student’s t-test.

3.5.6  Western Blots

To extract total proteins from mESCs, Radioimmunoprecipitation assay
(RIPA) buffer supplemented with 1x Complete, EDTA-free protease inhibitor
cocktail (Roche; 11873580001) was used to lyze cell pellets. Cytosolic and
nuclear protein fractions were enriched using a series of lysis buffers as fol-
lows:

o Lysis Buffer 1 (LB1): 50 mM Hepes-KOH, pH 7.5; 140 mM NaCl; 1
mM EDTA, pH 8.0; 10% v/v Glycerol; 0.5% v/v NP-40; 0.25% v/v
Triton X-100.

o Lysis Buffer 2 (LB2): 10 mM Tris-HCL, pH 8.0; 200 mM NaCl; ImM
EDTA, pH 8.0; 0.5 mM EGTA, pH 8.0.

o Lysis Buffer 3 (LB3): 10mM Tris-HCL pH 8.0; 100 mM NaCl; 1 mM
EDTA, pH 8.0; 0.5 mM EGTA, pH 8.0; 0.1% v/v Na-Deoxycholate;
30% v/v N-Lauroylsarcosine.

All lysis buffers were supplemented with the protease inhibitor cocktail im-
mediately before use. The cytosolic fraction was extracted by lyzing the cell
pellets in LB1 that leaves the nuclear membrane intact. The nuclei were then
pelleted (1,350 x g; 4°C; 5 mins), washed with LB2, pelleted once more and
finally lyzed with LB3 to release the nuclear contents. All protein lysates were
quantified using the BCA Protein Assay kit (23227; Pierce). The following
antibodies (dilution 1:1000) were used in this study:

o Anti-IRF2 (Center) rabbit IgG (Abgent; AP11225c¢)

o Anti-NF-xB p65 (D14E12) XP rabbit IgG (Cell Signaling Technology;
8242)

o Anti-GAPDH (6C5) mouse IgG (Santa Cruz Biotechnology; sc-32233)
o Anti-Histone H3 (C-16) goat IgG (Santa Cruz Biotechnology; sc-8654)
o HRP-conjugated Polyclonal swine Anti-Rabbit (Dako; P0217)

o HRP-conjugated Polyclonal rabbit Anti-Mouse (Dako; P0260)
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o HRP-conjugated Polyclonal rabbit Anti-Goat (Dako; P0449)

Western blot signals were visualized with the enhanced chemiluminescence
(ECL) blotting detection reagents (RPN2106; GE Healthcare). Cytosolic en-
richment was confirmed via a postive GAPDH signal, while nuclear enrich-
ment was confirmed by Histone H3. Western blot quantifications were per-
formed using the ImageJ software by quantifying the pixels of each band and
normalizing against a housekeeper such as Histone H3.
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ISMARA: AUTOMATED MODELING OF GENOMIC
SIGNALS AS ADEMOCRACY OF REGULATORY
MOTIFS

4.1 ABSTRACT

Accurate reconstruction of the regulatory networks that control gene expres-
sion is one of the key current challenges in molecular biology. Although gene
expression and chromatin state dynamics are ultimately encoded by constel-
lations of binding sites recognized by regulators such as transcriptions factors
(TFs) and microRNAs (miRNAs), our understanding of this regulatory code
and its context-dependent read-out remains very limited. Given that there are
thousands of potential regulators in mammals, it is not practical to use direct
experimentation to identify which of these play a key role for a particular
system of interest.

We developed a methodology that models gene expression or chromatin mod-
ifications in terms of genome-wide predictions of regulatory sites, and com-
pletely automated it into a web-based tool called ISMARA (Integrated Sys-
tem for Motif Activity Response Analysis), located at http://ismara.unibas.ch.
Given as input only gene expression or chromatin state data across a set
of samples, ISMARA identifies the key TFs and miRNAs driving expres-
sion/chromatin changes and makes detailed predictions regarding their reg-
ulatory roles. These include predicted activities of the regulators across the
samples, their genome-wide targets, enriched gene categories among the tar-
gets, and direct interactions between the regulators.

Applying ISMARA to data sets from well-studied systems, we show that it
consistently identifies known key regulators ab initio. We also present a num-
ber of novel predictions including regulatory interactions in innate immunity,
a master regulator of mucociliary differentiation, TFs consistently disregu-
lated in cancer, and TFs that mediate specific chromatin modifications.

4.2 INTRODUCTION

Since the seminal work of Jacob and Monod [283], much has been learned
about the molecular mechanisms by which gene expression is regulated, and
the molecular components involved. Historically, most work has focused on
transcription factors (TFs), arguably the most important regulators of gene
expression, which bind to cognate sites in the DNA, and regulate the rate
of transcription initiation. However, more recently it has become clear that
the state of the chromatin, which can be modulated through modifications
of the DNA nucleobases and of the histone tails of nucleosomes, also plays
a crucial role. For example, the local chromatin state affects the ability of
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TFs to access their binding sites, and the chromatin state can in turn be mod-
ified through TF-guided recruitment of chromatin modifying enzymes. Fur-
thermore, an entirely new layer of post-transcriptional regulation has been
uncovered in recent years in the form of microRNAs (miRNAs) [112]. These
guide RNA-induced silencing complexes to target mRNAs, inhibiting their
translation and accelerating their decay [284]. In spite of these many insights,
our current understanding of the function of genome-wide gene regulatory
networks in mammals is still rudimentary. For example, we only know the
sequence specificity of less than half [285-287] of the approximately 1500
[288] TFs in mammalian genomes. Our knowledge of how TF binding is
affected by chromatin state, of the combinatorial interactions between TFs
and their co-factors, and the impact of post-translational modifications on TF
activity, is even more fragmentary. Our understanding of the transcriptome-
wide effects of miRNAs on gene expression remains similarly limited. Given
that we are clearly still far from being able to develop realistic quantitative
models of genome-wide gene regulatory dynamics, the most constructive con-
tribution that computational approaches can currently provide is to develop
models that help guide experimental efforts. Due to the dramatic decrease in
high-throughput measurement costs, it has become relatively straight forward
to measure gene expression (i.e. with micro-array or RNA-seq) or chromatin
state (with ChIP-seq) genome-wide across a set of samples for a particular
system of interest. Consequently, researchers interested in a particular devel-
opmental or cellular differentiation process, or in the response of a tissue to a
particular perturbation, have increasingly turned to genome-wide profiling of
expression and various chromatin marks, with the aim of using such data to
elucidate the key regulatory circuitry acting in their system. However, deriv-
ing insights into regulatory circuitry from high-throughput data requires so-
phisticated computational analysis methods. Over the last years comparative
genomic methods have been developed that allow relatively accurate compu-
tational prediction of regulatory sites for hundreds of TFs and miRNAs on a
genome-wide scale [143, 289, 290]. In addition, through extensive experimen-
tal efforts, genome-wide annotations of transcript structures [291, 292] and
promoters [293] have become available. Capitalizing on these developments,
we recently presented a general method, called Motif Activity Response Anal-
ysis (MARA) for inferring key gene regulatory circuitry from genome-wide
gene expression data by modeling the observed gene expression dynamics
in terms of computationally predicted regulatory sites. We showed that this
method can reconstruct core transcription regulatory networks in a human dif-
ferentiation system ab initio [50]. Furthermore, several recent studies confirm
that computational modeling of observed expression and chromatin dynam-
ics is a powerful approach to reconstructing regulatory circuitry [294, 295]
(to give just two examples), and show that MARA-like approaches can be
extended to include miRNA regulation [273] and the dynamics of genome-
wide histone modifications [207]. Unfortunately, applying MARA-like meth-
ods to high-throughput data is technically challenging and requires the ex-
pertise of dedicated computational biology groups. Thus, whereas many labs
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are now routinely producing high-throughput data-sets, and methodologies
for analyzing such data have been described in the literature, the vast major-
ity of groups that produce data have to develop collaborations with expert
computational groups to apply these methods. Indeed, over the last years our
group applied MARA to a large range of mammalian systems studied by var-
ious experimental collaborators, and experimentally validated predicted reg-
ulatory circuitry in these systems [296-306]. Although these studies further
validated the power of the method, they required a considerable investment
of time and effort for the analysis of each new data-set. Through these expe-
riences we became convinced that lack of easy access to such computational
analysis procedures is currently a major bottle-neck in the field, and decided
to invest our efforts into developing a completely automated system for per-
forming MARA. Here we present ISMARA (Integrated System for Motif Ac-
tivity Response Analysis), a completely automated computational tool that
aims to make the computational reconstruction of regulatory circuitry from
high-throughput data easily accessible to any researcher. Given as input a set
of genome-wide gene expression or chromatin state measurements across a
number of samples, ISMARA uses motif activity response analysis to identify
the key regulators (i.e. TFs and miRNAs) driving gene expression/chromatin
state changes across the samples, the activity profiles of these regulators, their
target genes, and the sites on the genome through which these regulators act.
The analysis combines pre-calculated annotations of regulatory sites for hun-
dreds of regulators across genes in mammalian genomes with automated pro-
cessing of input data, modeling and parameter inference, and post-processing
to provide a large collection of analysis results. To use ISMARA, users only
need to upload their data to the web-server http://ismara.unibas.ch/ and sub-
mit it to the system, without the need of setting or tuning any parameters. All
results are presented through a user-friendly graphical web-interface. In IS-
MARA the motif activity response analysis has been extended to model not
only gene expression data from various platforms (micro-array, RNA-seq),
but essentially any sequencing data reflecting a genomic mark (ChIP-seq) in-
cluding chromatin modifications or TF binding. In addition, ISMARA models
not only the effects of TFs on mammalian gene expression, but also the ef-
fects of miRNAs. Below we first outline the methodologies that we developed
for automating the computational modeling, and provide an overview of all
results that ISMARA provides by applying it to RNA-seq data of a human
tissue-atlas. After this, we further demonstrate ISMARA using a number of
example data sets that highlight different aspects of the method.

4.3 RESULTS

As schematically depicted in Figure 4.1, ISMARA takes raw gene expres-
sion (micro-array or RNA-seq) or chromatin state (ChIP-seq) data from any
number of samples and automatically models this data in terms of computa-
tionally predicted regulatory sites, thereby predicting the genome-wide reg-
ulatory interactions that drive the observed expression or chromatin state
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changes across the samples. ISMARA is available through a web interface
http://www.ismara.unibas.ch as part of our SwissRegulon resources [287].
Users can directly upload unprocessed micro-array (CEL files), RNA-seq, or
ChIP-seq data (BED or BAM files) which are then analyzed automatically
without the need for any additional input from the user (Figure 4.1B). The re-
sults are made available through a web interface and can also be downloaded
in flat-file format.

In order to be able to provide such completely automated analysis ISMARA
makes use of pre-calculated genome-wide annotations of promoters, sets of
transcripts associated with each promoter, multiple alignments of promoter
regions across 7 mammals, a curated collection of mammalian regulatory
motifs, TFBS predictions for all motifs across all promoters, and predicted
target transcripts of miRNAs (Figure 4.1A). Additionally, we developed a
substantial number of analysis procedures in order to automatically process
and normalize the raw input data (Figure 4.1B) and transform them into a
standardized format to which the motif activity response analysis can be ap-
plied (Figure 4.1C). The analysis procedures involved in all these steps are
outlined in the Methods and detailed in the Supplementary Methods (see Ap-
pendix B).

4.3.1 Overview of the analyses performed by ISMARA

To give an overview of the analysis results that ISMARA automatically pro-
vides for any data-set, and to outline how these analyses are performed, we ap-
plied ISMARA to an example RNA-seq data-set of expression profiles across
16 human cell types, i.e. data from the Illumina Body Map 2 (Geo Accession
GSE30611) (IBM2). The results as obtained after submitting the raw RNA-
seq data to ISMARA are available at http://ismara.unibas.ch/supp/dataset1_
IBM/ismara_report/.

As described in the Methods, ISMARA infers the motif activities according
to a linear model (Figure 4.1D) using a Bayesian procedure. Importantly, a
Gaussian prior on motif activities is used to avoid over-fitting and the parame-
ter of this prior is fit automatically by ISMARA for each input data-set using
a cross-validation scheme. Motif activities are fitted from 80% of the promot-
ers and the performance of the model, i.e. the fraction of the variance in Es
explained by the model, is assessed on the remaining 20% of promoters.
Although our model fits Eps, it is important to note that it is not the model’s
aim to provide an accurate fit of the signals Ej;. As discussed in the intro-
duction, we do not expect the highly simplified linear model to provide an
accurate fit to the signal Ejs at individual promoters. Indeed, the model ex-
plains 7.7% of the variance in Eps for the IBM2 data, and across the data-
sets studied here, we find that the model typically captures 5 — 15% of the
variance of Eps across samples (Supplementary Figure B.2). Although these
fractions are modest, given that tens of thousands of promoters are involved,
they are extremely significant, i.e. using randomization of the association be-
tween site-count and expression we estimate the p-value for explaining 7.7%
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Figure 4.1: Outline of the Integrated System for Motif Activity Response Analysis.

(A) ISMARA starts from a curated genome-wide collection of promoters and their associated
transcripts. Using a comparative genomic Bayesian methodology [290], transcription factor
binding sites (TFBSs) for ~ 200 regulatory motifs are predicted in proximal promoters. Simi-
larly, miRNA target sites for ~ 100 seed families are annotated in the 3’ UTRs of transcripts
associated with each promoter [143]. (B) Users provide measurements of gene expression
(micro-array, RNA-seq) or chromatin state (ChIP-seq). The raw data are processed automat-
ically and a signal is calculated for each promoter in each sample. For ChIP-seq data, the
signal is calculated from the read density in a region around the transcription start. For gene
expression data, the signal is calculated from read densities across the associated transcripts
(RNA-seq) or intensities of associated probes (micro-array). (C) The site predictions and mea-
sured signals are summarized in two large matrices. The components Ny, of matrix N contain
the total number of sites for motif m (TF or miRNA) associated with promoter p. The com-
ponents Eps of matrix E contain the signal associated with promoter p in sample s. (D) The
linear MARA model is used to explain the signal levels Eps in terms of bindings sites Npm and
unknown motif activities Ays, which are inferred by the model. The constants o and G5 cor-
respond to basal levels for each promoter and sample, respectively. (E) As output, ISMARA
provides the inferred motif activity profiles A;;s of all motifs across the samples s, sorted by
the significance of the motifs. A sorted list of all predicted target promoters is provided for
each motif, together with the network of known interactions between these targets (provided
by the String database, http://string-db.org), and a list of Gene Ontology categories that are
enriched among the predicted targets. Finally, for each motif, a local network of predicted
direct regulatory interactions with other regulators is provided.
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of the variance by chance is approximately 10~23° (Supplementary Methods
and Supplementary Figure B.3).

ISMARA’s main aim is to identify which regulatory motifs m play an im-
portant role, and how these motifs contribute to Eps across the samples. IS-
MARA'’s output first of all lists all regulatory motifs sorted by a z-score which
summarizes the importance of the motif for explaining the expression varia-
tion across the samples. This score roughly corresponds to the average num-
ber of standard-deviations the motif activity is away from zero (see Methods
and Supplementary Methods). Besides the z-score of each motif, the list also
displays the set of TFs or miRNAs that bind to sites of the motif, a thumbnail
of its activity across the input samples, and a sequence logo for each motif
(Supplementary Figure B.4). Following the link from the motif name leads to
a page with a large number of predictions regarding the motif’s precise reg-
ulatory role. To illustrate these, Figure 4.2 shows some of ISMARA’s results
for the HNF1A, MYB, hsa-miR-124/hsa-miR-506, and the SREBF motifs.
HNF1A was the most significant motif for the IBM2 data-set and its predicted
activity is highly tissue-specific, being almost entirely restricted to liver and
kidney (Figure 4.2A, and Supplementary Figures B.5 and B.6). The associ-
ated transcription factor hepatocyte nuclear factor 1 homeobox A (HNF1A)
is relatively well-studied and indeed known to be mainly expressed in liver,
kidney, stomach and intestine [307, 308], where it is essential for organ func-
tion [309]. Figure 4.2A also illustrates that the inferred motif activities are
highly reproducible. In fact, motif activities are more reproducible than the
expression profiles from which the motif activities were inferred (Supplemen-
tary Figure B.16). The reason for this high reproducibility of motif activities
is that each motif m typically targets hundreds to thousands of promoters and
that the inferred motif activities A, are statistical averages of the behaviors
of a large number of promoters. This averaging causes the complexities at
individual promoters to effectively cancel out and ensures that the overall
influence of a motif can still be reliably inferred.

For many of the regulatory motifs there are multiple TFs that can bind to
the sites of the motif and it is not a priori clear which of the TFs is most
responsible for the motif activity in a given system. ISMARA infers motif
activities from the behavior of the predicted fargets of the motif. That is,
roughly speaking, an increased activity is inferred when its targets show on
average an increase in expression, that cannot be explained by the presence
of other motifs in their promoters. The mRNA expression profiles of the TFs
associated with a motif thus provide independent information about the link
between the TFs and the motif activities, and ISMARA provides an analy-
sis of the correlation between motif activities and the expression profiles of
the associated TFs. For HNF1A, there is a good correlation between mRNA
expression of the TF and the inferred motif activity (Figure 4.2A inset). How-
ever, for the fourth most significant motif (POU2F), only one of the 3 POU2F
factors, POU2F2 (also known as OCT2), shows significant correlation of its
mRNA level with motif activity, and it is the most highly expressed. This sug-
gests that POU2F?2 is mainly responsible for the motif activity in these tissues
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(Supplementary Figures B.7 and B.8). The fact that the correlation is positive
also strongly suggests that POU2F2 acts as an activator. In contrast, whenever
a negative correlation between motif activity and TF expression is observed,
the TF most likely acts as a repressor, e.g. as observed for the known repres-
sor ZHX2 [310] (Supplementary Figure B.9). However, it should be noted
that motif activity does not need to be a direct function of TF expression, i.e.
the effect of a TF on its targets will not only depend on its expression, but
possibly on post-translational modifications, on cellular localization, and on
the presence of specific co-factors. Therefore, although a strong correlation
between TF expression and motif activity is a good indication that the TF is
responsible for the motif activity, the absence of such a correlation does not
imply that the TF is not involved in the motif’s activity.
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Figure 4.2: Results for the Illumina Body Map 2. Each panel corresponds to a
motif (indicated with name and sequence logo) and shows the inferred motif activ-
ities across the 16 tissues (activities with error-bars in panels A and C, and activity
z-values in panels B and D). Tables show Gene Ontology categories enriched among
predicted targets of each motif, and individual target promoters (panel D). The net-
works (panels B and C) show direct regulatory interactions between the motif and
other regulators. (A) Red and black curves correspond to motif activities from two
replicate measurements. The inset shows the correlation between motif activity and
HNF1A mRNA levels. (B) The inset shows that MYB is predicted to directly target
the RFX4 promoter with target score 8.134. (C) The regulatory network inset and
GO table show that hsa-miR-124/hsa-miR-506 is predicted to directly target many
TFs. (D) The red bars show z-values of the average motif activity of the SREBF
motif for samples coming from older (age 58-86) and younger (age 19-47) donors.

ISMARA predicts individual target promoters p for each motif m by calcu-
lating the difference Sy, of the log-likelihood of the model with the original
site-count matrix N and the log-likelihood of the model in which only the
binding sites for motif 7 in promoter p have been removed (Methods and
Supplementary Methods). For each motif, a searchable and resizable list is
provided of all target promoters, their associated transcripts, and associated
genes (Supplementary Figure B.10). For HNF1A, the accuracy of ISMARA’s
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target predictions is suggested by the fact that most of the top predicted tar-
gets are supported by the literature, including some of the oldest known direct
targets of HNF1A [311]. For each target promoter, ISMARA provides a link
to the genome browser view of the promoter (Supplementary Figure B.11),
showing the precise genomic location of the predicted regulatory site. To pro-
vide the user with a more intuitive picture of the predicted list of targets of the
motif, a link is provided to a network view of the target genes as provided by
the STRING database [312], where network links indicate known functional
associations between the genes. For HNF1A, the STRING network reveals
a large, highly connected cluster of predicted targets that are known to be
involved in the metabolism of drugs and toxins in the liver (Supplementary
Figure B.12). As another means to provide insights into the pathways targeted
by a given motif, ISMARA also provides lists of enriched Gene Ontology cat-
egories [313] (Figure 4.2 and Supplementary Figure B.13), which in this case
confirms that HNF1A targets genes involved in the metabolism of drugs and
xenobiotics.

To gain insight in the transcription regulatory networks that control expres-
sion profiles, it is of particular interest to identify direct regulatory connec-
tions between the TFs themselves. In ISMARA, a direct regulatory interac-
tion from motif m to m’ is predicted when motif m is predicted to target a
promoter of one of the TFs associated with m’. To visualize the predicted di-
rect regulatory interactions between regulators, ISMARA provides, for each
motif m, a local network picture that shows all predicted regulatory connec-
tions between m and promoters of TFs that are associated with other motifs
(Supplementary Figure B.14). The user can interactively change the cut-off
on the target score Sy, to draw this picture. For HNFIA we find that the
strongest predicted targets are HNF4A, FOXA2, NR5A2, and HNFIA itself
(Supplementary Figure B.14). In addition, HNF4A and FOXA?2 are predicted
to target the HNFIA promoter as well. Remarkably, all these predictions are
supported by independent experimental evidence [314-319].

ISMARA predicts that the MYB motif is by far most active in testis, and that
it targets genes are involved in meiosis and spermatogenesis (Figure 4.2B). In
addition, the MYB motif is predicted to target the RFX4, RFX2 and NR5A1
promoters. A literature search reveals that MYBL1, a close homolog of MYB
that binds to the same regulatory sites, is a master regulator of male meiosis
and spermatogenesis [320, 321]. Moreover, RFX2 has been implicated as a
direct target of MYBLI1 in spermatogenesis [322]. ISMARA'’s prediction that
RFX4 is also regulated by the MYB motif (presumably through MYBLI1)
is novel to our knowledge. Finally, ISMARA’s prediction that the MYB pro-
moter is targeted by the E2F motif is also supported by the literature [323].
To illustrate ISMARA’s predictions of the regulatory role of miRNAs, Fig-
ure 4.2C shows results for the second most significant miRNA seed family,
hsa-miR-124/hsa-miR-506. This seed family has strongest negative activity
in brain and its targets are highly enriched for TFs (Figure 4.2C). Indeed,
hsa-miR-124 is a well-known brain-specific miRNA [236]. Moreover, of the
top 9 predicted TF target genes of hsa-miR-124, 6 (TEADI, CEBPA, AR,
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SP1, SNAI2, NFATCI) are supported by independent experimental evidence
[106, 138, 324-326] again confirming the high accuracy of ISMARA’s target
predictions.

Of course, most of the results highlighted in Figure 4.2, such as the function
of HNF1A in liver and the brain-specific role of hsa-miR-124 are well-known
from the literature. However, all these results, including very specific predic-
tions of the precise targets of each regulator, were obtained by a completely
automated analysis of RNA-seq data from 16 human tissues, without any free
parameters or specific processing of the data. Moreover, they constitute only
a small selection of the predictions made by ISMARA.

By default ISMARA focuses on regulatory motifs that explain changes in ex-
pression levels across the input samples. However, some users may be inter-
ested in regulators that are predictive for a consistently high or consistently
low expression level across all samples. To address this, ISMARA also fits
the absolute expression levels of the promoters, i.e. averaged over all input
samples, in terms of “mean activities” (Methods and Supplementary Meth-
ods). For the IBM2 data-set we find that the TFs YY1 and NRF1 are most
predictive of high average expression, whereas the known repressors REST
and RREB1 are most predictive for low average expression (Supplementary
Figure B.15).

Experiments are often performed in multiple replicates and ISMARA imple-
ments procedures for specifically identifying motifs that behave reproducibly
across the replicates. The ISMARA results page links to a section where
users can provide batch and replicate annotation for their samples, which
is then used by ISMARA to calculate motif activity profiles that are aver-
aged over replicates using a rigorous Bayesian procedure (Supplementary
Methods). In addition, updated motif z-scores quantify to what extent a mo-
tif’s activity varies across samples in a way that is reproducible across the
replicates (Supplementary Methods). As an example, the replicate-averaged
results for the IBM2 data-set are available at http://ismara.unibas.ch/supp/
dataset]_IBM/averaged_replicates/averaged_report/.

Apart from replicate-averaging, this procedure can further be used to calcu-
late contrasts between subsets of samples. To illustrate this, we noted that
the samples of the 16 tissues of the IBM2 data-set derived from donors of
different ages, and we investigated whether any motifs have consistently dif-
ferent activities between samples from older and younger individuals. We
divided the samples into those deriving from donors aged 19-47 and those
deriving from donors aged 58-86. We then directed ISMARA to calcu-
late averaged activities for “young” and “old” samples for each motif (re-
sults at http://ismara.unibas.ch/supp/dataset]_IBM/averaged_age/averaged_
report/). We found that only the SREBF motif is significantly differently reg-
ulated between old and young samples (Figure 4.2D). The targets of SREBF
are up-regulated in older tissues relative to the younger ones and are highly
enriched for lysosomal genes. Lysosomes are responsible for degradation of
many macromolecules including proteins and increase in lysosomal mass is
a well-known characteristic of aging and senescence in cells [327, 328]. In
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addition, evidence is increasing that a progressive decrease in the efficiency
of autophagy and lysosomes with age plays a key role in aging-associated
degenerative changes in mammals [329]. Several recent findings support that
SREBP TFs play a key role in these processes. SREBF1 expression increases
with age in rat brains [330], SREBF1 mediated lipogenesis is involved in
senescence [331], SREBF2 regulates autophagy [332], and SREBF activity
is regulated by mTOR complex 1 [333]. It is remarkable that, simply by con-
trasting motif activities in tissues from younger and older donors, ISMARA
was able to automatically identify SREBF as a key regulator of aging-related
changes in expression of lysosomal genes.

As another example of the power of motif activity contrasts across sets of
samples, we searched for motifs consistently disregulated in cancer by joint
analysis of the human GNF atlas of 79 tissues and cell lines [334] and the NCI-
60 reference cancer cell lines [335] (full results at http://ismara.unibas.ch/
supp/dataset2/ismara_report/). Supplementary Tables B.2 and B.3 show the
motifs that are most consistently up-regulated or down-regulated in tumors,
including miRNAs. As discussed in the supplementary material, many of the
top dis-regulated motifs, such as HIF1A and hsa-miR-205 miRNA (Supple-
mentary Figure B.17), are well-known in cancer biology, again supporting
the accuracy of ISMARA’s predictions. Besides well-known oncogenes and
tumor suppressors, ISMARA also makes several novel predictions of regula-
tors consistently disregulated in cancers, including the TFs HAND1, KLF12,
BPTEF, FOXD3, and ZNF143.

4.3.2 Inferring motif activity dynamics: inflammatory response

To illustrate ISMARA’s analysis of time series data, we applied it to a time
series of expression data obtained after activation of human umbilical vein
endothelial cells (HUVECs) with tumor necrosis factor (TNF, also known
as TNFx). Messenger RNA expression was measured every 15 minutes for
the first 4 hours after treatment, and every 30 minutes for the next 4 hours
[336]. Whereas the original study focused solely on nascent transcription, we
here show that standard application of ISMARA to this data set (http://ismara.
unibas.ch/supp/dataset3/ismara_report/) uncovers the transcription regulatory
network involved in this inflammatory response in remarkable detail.
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Figure 4.3: Analysis of an inflammatory response time series of human umbil-
ical vein endothelial cells responding to TNF. (A) Time-dependent activities of
the 3 most significant motifs, i.e. NFKB1/REL/RELA (red), IRF1/2/7 (black), and
XBP1 (blue). Error-bars denote standard-deviations of the inferred activities. (B)
Summary of the inferred core regulatory network. Selected top motifs are shown
together with interactions between them and pathways/functional categories that are
enriched among the targets of these motifs. The intensity of the color corresponds to
the z-score of the motif, its time-dependent activity is indicated inside the node, and
the thickness of each edge corresponds to its target score Spy,.

The response of endothelial cells to TNF is known to be mediated by TFs
of the NFxB family, GATA2, IRF1, and JUN [337] TFs. TFs of the NFxB
family in particular are crucial for the resulting inflammatory response [338].
Indeed, ISMARA infers that the two most significant motifs are IRF1,2,7 and
NFKBI1/REL/RELA. The activity of NFKB1/REL/RELA increases sharply
in the first 45 minutes and slower afterwards, until it reaches a steady activity
after 3 hours. The activity of the IRF1,2,7 motif increases steadily starting
at 30 to 45 minutes after treatment until the end of the time course (Fig-
ure 4.3A). As shown by NFKB1/REL/RELA’s local network figure (Figure
4.3B and on the ISMARA results website), ISMARA predicts that IRFI is
activated directly at the level of transcription by these regulators, which is
confirmed by the experimental literature [339]. Other predicted targets of
NFKB1/REL/RELA that are also significantly upregulated in this process
are TNF receptor genes, components of the JAK-STAT pathway (note that
STAT2,4,6 is the 11th most significant motif, indicating that STAT activity
changes, affecting the level of ifs targets) and MHC class I genes. The lat-
ter are also predicted to be regulated by IRF1,2,7, which is confirmed by
experimental data [340]. ISMARA makes the novel predictions that both
NFKBI1/REL/RELA and IRF1,2,7 activate the 5th most significant motif,
PRDM1, which is an important developmental regulator in the B-cell and
T-cell lineages and is required for the secretory pathway in B-cells [341].
PRDM1 activity increases, like that of IRF, across the entire time course, and
these two regulators appear to share many of their predicted targets, includ-
ing type 1 interferon pathway genes, the immuno-proteasome [342], ubiquitin
conjugating enzymes, antigen peptide transporters, and MHC class I genes.



4.3 RESULTS

These targets suggest that the IRF and PRDM1 TFs may be responsible for
activation of the antigen presenting pathway.

We note that, although our TFBS predictions incorporate cross-species con-
servation analysis, this does not mean that the predicted targets must be con-
served across mammals. For example, the third most significant TF target of
the IRF motif is the ATF5 promoter, which is targeted through a TFBS that is
primate-specific (Supplementary Figure B.18).

To provide an example assessment of the accuracy of ISMARA’s
genome-wide target predictions, we compared the predicted targets of
NFKB1/REL/RELA with targets identified through ChIP-seq in lymphoblas-
toid cell lines derived from 10 individuals of African, European, and Asian
ancestry [343]. We find that almost two-thirds of the top 50 targets, more
than 50% of the top 150 targets, and about 40% of the top 300 targets are sup-
ported by ChIP-seq binding at the promoter (Supplementary Figure B.19). To
put these numbers in perspective, we compared the validation of ISMARA’s
targets with the variability in NFKB1/REL/RELA binding across individuals
and replicate samples. We used the ChIP-seq data from each sample to pre-
dict target promoters, and then ‘validated’ these ‘predictions’ using the other
ChIP-seq data-sets in complete analogy to the way we validated ISMARA’s
targets. The typical validation rate for the ChIP-seq data was higher than for
the ISMARA target predictions, i.e. 60 — 70% versus 40 — 66%. This is not
surprising given that all ChIP-seq data were obtained in the same lymphoblas-
toid cell type, which differs from the HUVEC cells. Still, we found significant
variability across the ChIP-seq data-sets, and the targets from some ChIP-seq
data-sets had lower intersection with the other ChIP-seq data-sets than IS-
MARA’s targets (Supplementary Figure B.19). This analysis shows that IS-
MARA’s genome-wide predictions can reach accuracies comparable to those
obtained from a ChIP-seq study.

Finally, the 3rd most significant motif is XBP1, which is activated only after
2.5 hours. Its predicted targets are highly over-represented for endoplasmic
reticulum (ER) genes and genes involved in vesicle-mediated and Golgi trans-
port, consistent with the fact that XBP1 is a major regulator of ER stress and
the unfolded protein response (UPR) [344]. Moreover, several studies sup-
port that the UPR is a general characteristic resulting from inflammation or
TNF activation in endothelial cells [345, 346]. Interestingly, the induction of
XBP1’s activity occurs at the same time as the NFKB1/REL/RELA activity
stops increasing which is in line with studies showing that the UPR can atten-
uate the induction of inflammation as mediated by TFs of the NFxB family
[347-349]. The induction of XBP1’s activity is not reflected in the expression
of XPBI itself, which is almost constant across the time course (Supplemen-
tary Figure B.20). This underscores that ISMARA infers a motif’s activity
from the expression of its predicted targets and does not use the regulator’s
own expression. Indeed, it has been established that XBP1 activity is regu-
lated post-transcriptionally through alternative splicing [350, 351]. Together
these results demonstrate that ISMARA reconstructs the core regulatory cir-
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cuitry of the innate immune response in HUVEC cells (Figure 4.3B) ab initio
using only time course expression data.

4.3.3 Identifying novel master regulators: Mucociliary differentiation of
bronchial epithelial cells

Next, we turned to an example system for which much less is known, namely
the mucociliary differentiation of bronchial epithelial cells on an air-liquid
interface. Aiming to elucidate the regulation of bronchial development, Ross
et al. [352] performed differentiation experiments in triplicate over a period
of 28 days with cells from three separate donors. This data was then analyzed
with commonly used bioinformatic procedures, i.e. genes were clustered into
co-expression clusters and the clusters were analyzed for over-represented
gene ontology categories and pathways. This analysis uncovered clusters as-
sociated with TGF-beta pathway genes, extra-cellular adhesion genes, and
genes associated with the microtubule cytoskeleton, but no key regulators or
regulatory interactions that drive these expression changes were identified.
In contrast, applying ISMARA to this gene expression data set, we obtain the
prediction that by far the most important regulatory motif in this system is
RFX, whose activity is strongly increasing over the period from roughly day 4
to day 10 in all 3 donors (Figure 4.4A, http://ismara.unibas.ch/supp/dataset4/
ismara_report/). The predicted targets of RFX are highly enriched in genes
known to be associated with cilium assembly, axoneme, and the microtubule
cytoskeleton genes (Figure 4.4B) suggesting that RFX directs ciliogenesis in
bronchial epithelial cells.
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Figure 4.4: Mucociliary differentiation. (A) Inferred RFX motif activity profile
in mucociliary differentiation of bronchial epithelial cells from three independent
donors (black, red, and blue lines). (B) Key predicted regulators and their targets in
this system. Selected top motifs are shown together with predicted interactions be-
tween them and pathways/functional categories that are enriched among predicted
targets of these motifs. The intensity of the color corresponds to the z-score of the
motif, its time-dependent activity for each donor is indicated inside the node, and
thickness of the edges corresponds to the target score Sp;;. (C) mRNA expression
profiles of the RFX2 (solid) and RFX3 (dashed) genes across the differentiation (col-
ors of the donors as in panel (A)).

The RFX family of TFs contains 7 members and it is not a priori clear which
of these are driving the bronchial differentiation. Comparison of the mRNA
expression profiles with activity profiles shows that two of the family mem-
bers, RFX2 and RFX3 exhibit a striking correlation in their expression with
the motif activity (Figure 4.4A and C). Together these results strongly sug-
gest that the TFs RFX2/3 are master regulators of ciliogenesis in this system.
This prediction is consistent with previous studies that have shown that Rfx3
is necessary for the ciliogenesis of nodal cilia in mouse embryonic develop-
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ment [353] and during ciliogenesis of motile cilia in a mouse cell-culture
system [354].

Strikingly, ISMARA'’s results on the IBM2 data-set also identified the RFX
motif as the key regulator of ciliogenesis in spermatogenesis. As discussed
above, in that system ISMARA predicted that the RFX2 and RFX4 promot-
ers were directly targeted by the MYB motif (most likely through the MYBL1
TF). We here find that ISMARA predicts MYB to target the RFX2 promoter in
the mucociliary differentiation system as well (Figure 4.4B). In addition, IS-
MARA'’s prediction that RFX directly upregulates FOXJ! in this system was
also made in the results on the IBM2 data-set. Indeed, RFX3 was found to ac-
tivate FOXJI during ciliogenesis in the mouse cell-culture system mentioned
above [354]. These observations suggest that the core regulatory network in-
volved in ciliogenesis, with MYBL1 targeting RFX promoters and RFX TFs
targeting FOXJ1, is conserved across multiple mammalian systems.

As indicated in Figure 4.4B, ISMARA additionally predicts that, in this sys-
tem, IRF1,2,7 upregulates innate immune response genes, and that a short
spike of E2F activity up-regulates cell-cycle genes at day one. Finally, there
is a group of motifs (TBP, FOS_FOS{B,L1}_JUN{B,D}, RXR{A,B,G},
HOX{A6,A7,B6,B7}, and GLI1..3) whose targets are progressively down-
regulated across the differentiation time course. The targets of these motifs
are generally enriched for extracellular proteins involved in cell adhesion,
cell-cell junctions, and signaling. More specifically, targets of GLI1..3 in-
volve genes from the TGF-beta pathway, targets of TBP involve nucleosomal
and intermediate filament cytoskeletal genes, and targets of the homeodomain
motif (HOX{A6,A7,B6,B7}) are enriched for developmental genes and tran-
scription factors. The genes in these pathways are most likely involved in
the transition of the tissue from squamous to columnar epithelial that occurs
during differentiation. Thus, in contrast to the methods used in the original
study [352], ISMARA predicts which regulators are directing various aspects
of the differentiation process, including ciliogenesis, the innate immune re-
sponse, and the transition from squamous to stratified epithelial. As far as
we are aware, these predictions of the core regulatory network controlling
mucociliary-differentiation are all novel.

4.3.4 Interactions between TFs and miRNAs: epithelial-mesenchyme tran-
sition

To illustrate ISMARA'’s ability to integrate the role of both TFs and miRNAs
in the gene regulatory network, we took advantage of data from a system in
which miRNAs are known to play important regulatory roles: the epithelial-
to-mesenchymal transition (EMT). We applied ISMARA to expression mea-
surements from epithelial and mesenchymal subpopulations [355] (results
at http://ismara.unibas.ch/supp/dataset5S/ismara_report/) and used replicate-
averaging to identify regulators that explain the differences between epithe-
lial and mesenchymal cells (results at http://ismara.unibas.ch/supp/dataset5/
averaged_report/). As discussed in the Supplementary Materials and Supple-
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mentary Figure B.21, ISMARA automatically inferred much of the key regu-
latory interactions between TFs and miRNAs involved in EMT (reviewed by
Polyak and Weinberg [356]) using only the gene expression data.

4.3.5 TF activities affecting chromatin state: analysis of ChlP-seq data

Beyond analyzing gene expression data, motif activity response analysis can
be applied to modeling any signal along the genome in terms of the local
occurrence of TFBSs. Indeed, in recent work [207] we applied the MARA
approach to ChIP-seq data mapping the dynamics of tri-methylation at lysine
27 of histone 3 (H3K27me3) and identified TFs involved in recruiting this
epigenetic mark that is set by the Polycomb system. In ISMARA the analy-
sis of ChIP-seq data has now been completely automated. In particular, given
a ChIP-seq data set, ISMARA quantifies the signal at all promoters across
all samples and models this in terms of the TFBSs at each promoter. For the
details of ISMARA’s processing and normalization of the ChIP-seq data we
refer to the Methods and Supplementary Methods. Note that, like for the tran-
scriptomic data, ISMARA thus by default focuses on the variation in ChIP-
seq signals at promoters only. However, the approach can easily be applied
genome-wide and to allow expert users to apply MARA to any collection of
genomic regions the ISMARA website includes an ‘expert mode’ that allows
users to upload their own signal and site-count matrices and apply MARA
with these matrices.

To illustrate ISMARA’s results on ChIP-seq data, we make use of data from
the ENCODE Project in which, besides gene expression, 9 different chro-
matin marks were measured across 8 different cell types [357] (all modifi-
cations and cell types are listed in Supplementary Tables B.4 and B.5). We
first ran ISMARA separately on each of the 10 data sets, i.e. expression and
9 chromatin modifications (see Supplementary Table B.6 for the URLs of
the results on all data sets). We observed that motifs that are highly signifi-
cant for explaining differences in levels of a particular chromatin mark across
tissues, were often also highly significant for explaining mRNA expression
differences. This was particularly the case for methylation of lysine 4 on hi-
stone H3 (H3K4me2, H3K4me3), for acetylation of histone H3 (H3K9ac,
H3K?27ac), and for tri-methylation of lysine 36 on histone H3 (H3K36me3).
For example, Figure 4.5A shows the activity profiles for these marks for the
SNAII..3 motif, which is recognized by the Snail TFs (see Supplementary
Figure B.22 for additional examples). As is clear from these figures, for these
motifs the activity profile for expression is highly similar to those of all of
these histone marks. Indeed, this reflects that these chromatin marks are as-
sociated with promoter activity [11], and several recent studies have shown
that the levels of these marks can be used to predict gene expression levels
[12-14].
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Figure 4.5: ISMARA predicts TFs involved in recruiting specific chromatin
marks. (A) Activity across cell types of the SNAII..3 motif in explaining expres-
sion (black), and levels of the chromatin marks H3K4me3 (dark green), H3K4me?2
(light green), H3K9ac (dark blue), H3K27ac (light blue), and H3K36me3 (brown).
(B) First principal component explaining the majority of variation in chromatin mark
levels across all cell types. The bars indicate the relative contributions to the principal
component of each mark. (C) Motif activities of the SNAI1..3 motif, as in panel A,
but after removal of the first principal component. (D) z-values and specificities (see
text) of motifs for explaining H3K27me3 levels. The REST motif, with both highest
z-value and highest specificity, is indicated in red. (E) As in panel D, for H3K9ac
levels. The two most significant motifs are shown in red. (F) As in panels D and E,
for H3K27ac levels. (G) Activity, after removal of the first principal component, of
the RFX motif for explaining H3K9ac (dark blue) and H3K27ac (light blue) levels.
(H) As in panel G, for the ATF5_CREB motif.



4.3 RESULTS

To investigate the correlations between the levels of the different chro-
matin marks more quantitatively, we performed principal component anal-
ysis (PCA) of the levels of the 10 different marks across all promoters, sep-
arately for each sample (Supplementary Methods). Strikingly, we find that
in each sample the first PCA component explains the majority of the vari-
ance across promoters, typically explaining around 60% of the total variance
(Supplementary Figure B.23). Moreover, we find that the first PCA compo-
nent looks virtual identical for each sample (Supplementary Figure B.23) and
Figure 4.5B shows the first principal component obtained using PCA on the
pooled data from all cell types. The first principal vector has its highest posi-
tive component along the expression axis, and the activation-associated marks
H3K4me3, H3K4me2, H3K9ac, H3K27ac, and H3K36me3, also all have a
strong positive component in this vector, whereas the known repressive mark
H3K27me3 has a negative component. These findings strongly suggest that
variation along the first principal vector corresponds roughly to variation in
“promoter activity”. In addition, the fact that this first principal vector is iden-
tical in all tissues suggests that the relative levels of the different marks in this
first principal vector result not from tissue-specific but from general factors,
e.g. conceivably they may result from the general transcription machinery
recruiting chromatin modifying enzymes.

Because the variation in promoter activity captures almost two-thirds of the
variation in all 10 measured levels at the promoter, any motif explaining varia-
tion in expression will also appear to explain variation in all chromatin marks
associated with promoter activity, and confounds identification of TFs that
are involved in affecting specific marks. To address this, for each motif we
discarded the part of its activity profile along the first PCA component, re-
taining only variation in motif activities orthogonal to promoter activity. As
illustrated in Figure 4.5C and Supplementary Figure B.22, after removal of
the first principal component, there are no longer any obvious correlations in
the remaining motif activity profiles for different activating marks.

We next analyzed the remaining motif activities and calculated, for each motif
and each mark, a z-value quantifying the motif’s contribution to explaining
the mark’s levels and also a “specificity” that measures the fraction of a mo-
tif’s overall significance that is associated with a given mark (Supplementary
Methods). Strikingly, we find that for many of the marks, the motifs that most
significantly affect the mark are also among the most specific for that mark.
For example, REST is the motif with the highest z-value for H3K27me3 lev-
els, and is also by far most specific for H3K27me3 (Figure 4.5D). Indeed, in
recent work [207] we showed that REST is involved in recruiting this mark
during the differentiation of murine embryonic stem cells into pyramidal neu-
rons, specifically at the neural progenitor state. With respect to the two acety-
lation marks, i.e. H3K9ac and H3K27ac, we find that the same two motifs, i.e.
RFX and ATF/CREB, are most significant for both these marks (Figure 4.5E
and F). It is well known that ATF/CREB TFs can recruit histone acetylases
(HATSs) such as CREB binding protein (CREBBP) and EP300 [358], and for
RFX TFs it has also been established that they can recruit HATs at partic-
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ular promoters [359]. Our results thus suggest that recruitment of HATSs by
TFs bound to ATF/CREB and RFX motifs make an important contribution to
genome-wide histone acetylation at promoters. Moreover, the activity profiles
of these motifs for H3K9ac and H3K27ac are highly similar, suggesting that
these two marks may be recruited through a common or highly overlapping
pathways. Supplementary Figure B.24 shows the most significant motifs for
each of the other marks. Among the additional predictions made by ISMARA
is that the PITX motif is associated with both mono- and di-methylation of
lysine 4 of histone 3. This prediction is supported by recent biochemical evi-
dence that PITX2 can recruit methyltransferases that methylate H3K4 [360].
As expected, CTCF is the most significant motif explaining CTCF binding.
ISMARA also makes several predictions that are completely novel, as far as
we have been able to determine: It predicts that the hepatocyte nuclear fac-
tors HNF1A and HNF4A have the most significant effect on the levels of the
H3K36me3 mark, which is known to be set by elongating RNA polymerase
[361, 362], and that YY1 and the NF-Y complex (consisting of NFYA, NFYB,
and NFYC) most significantly explain variations in H4K20mel levels.

4.4 DISCUSSION

The advent of high-throughput technologies now allows the routine measure-
ment of genome-wide mRNA expression across conditions, and such data
in principle provide the opportunity to systematically investigate gene reg-
ulation on a genome-wide scale across different models systems. However,
a major bottle-neck in the field is that such investigations require sophisti-
cated computational approaches that are not available to most experimental
researchers. Here we have presented ISMARA, a completely automated sys-
tem that enables any researcher to apply sophisticated computational model-
ing, on data from their system of interest, and obtain concrete predictions on
the key regulators acting in their system, their activities, their genome-wide
targets, and so on.

That the computational model at the core of ISMARA, i.e. motif activity
response analysis, is a powerful method for reconstructing regulatory inter-
actions from high-throughput data has already been demonstrated, not only
in its original application [50], but in a substantial number of recent studies
across a wide range of mammalian systems [207, 296-306]. In each of these
studies, MARA successfully inferred key regulators and their regulatory inter-
actions ab initio. The applications in this work not only further confirm that,
in systems where key regulatory interactions are already known, ISMARA
successfully infers them, but also provides a large collection of novel regu-
latory predictions across different systems in human and mouse, e.g. novel
regulators that are disregulated in cancers, novel regulatory interactions in
the inflammatory response, and the core regulatory circuitry involved in mu-
cociliary differentiation and ciliogenesis. We believe that, by empowering ex-
perimental researchers to automatically apply this approach to their own data,
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ISMARA can make a substantial contribution to the study of gene regulatory
networks.

The applications we presented highlighted several of ISMARA’s advantages.
First, by inferring a regulator’s activity from the behavior of its targets,
ISMARA does not rely on changes in a TF’s expression to infer activity
changes, and readily detects activity changes due to alternative splicing, post-
translation modifications, changes in cellular localization, etcetera. Second,
when motif activity is transcriptionally regulated, comparing motif activity
with TF expression allows ISMARA to identify the relevant TF(s), i.e. as il-
lustrated by the identification of RFX2 and RFX3 as the key regulators of
mucociliary differentiation. Such comparisons can also indicate whether a
regulator acts as a repressor or an activator. An important goal of ISMARA is
to provide predictions that are amenable to direct experimental follow-up. In
this respect, the GO enrichment and STRING network analysis are typically
very helpful in identifying the biological processes and pathways targeted by
each motif, often suggesting potential markers for experimentally validating
their predicted regulatory roles. Similarly, ISMARA’s predictions of direct
regulatory interactions between the key regulatory motifs provide concrete
hypotheses regarding the regulatory circuitry that is acting in a given sys-
tem, e.g. the predicted regulatory feedbacks between NFKB1/REL/RELA,
IRF TFs, and PRDMI, or the prediction that MYBL1 is an upstream activa-
tor of RFX TFs in ciliogenesis. Moreover, the links to the individual binding
sites on the genome [287] allow for targeted validation of such individual reg-
ulatory interactions. There are many indications that the actions of miRNAs
and TFs are tightly integrated [145, 363, 364] and ISMARA’s incorporation
of miRNA regulation allows for the automated identification of regulatory
interactions between TFs and miRNAs, as demonstrated by the analysis of
the EMT data. Finally, gene expression regulation involves a tight interplay
between the actions of TFs and changes in chromatin state. ISMARA’s abil-
ity to not only model expression data, but any ChIP-seq signal at promoters
genome-wide, allows for the identification of key TFs that are involved in
dynamic regulation of chromatin state, as exemplified here by the analysis
of ChIP-seq data from the ENCODE project which predicted, among other
things, regulatory factors involved in recruiting histone acetylations.

There are of course several limitations to ISMARA’s current approach which
we aim to address in future work. First, using a simple linear model [365] has
the advantage of being exactly solvable, but it ignores saturation effects that
undoubtedly occur in reality. Second, the approach currently assumes that a
given TF acts either mainly as an activator or mainly as a repressor, whereas it
is clear that some TFs can act as an activator on some targets and as a repres-
sor on others. Indeed, it has been recently shown [366] that allowing such dual
function of TFs can significantly increase correlation between model predic-
tions and measurement. Explicitly considering higher order constellations of
TFBSs, e.g the occurrence of pairs or triplets of TFBSs for particular combi-
nations of TFs, is another extension that we are currently evaluating. The reg-
ulatory motifs currently included in ISMARA represent approximately 350
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of the roughly 1500 mammalian TFs. However, through developments in pro-
tein array technology [367] and the decreasing cost in ChIP-seq experiments,
regulatory motifs for a rapidly increasing number of additional mammalian
TFs have recently become available. We are currently working on curating a
new, highly extended set of regulatory motifs, which we expect to incorporate
into ISMARA in the near future.

Finally, ISMARA currently focuses solely on predicted TFBSs in proximal
promoters, ignoring the effects of distal enhancers. In contrast to promot-
ers, accurate genome-wide maps of enhancers have not been available un-
til recently. However, the discovery that active enhancers exhibit characteris-
tic chromatin modification patterns [368], DNA methylation patterns [369],
and more generally DNA accessibility patterns [157], has now led to the first
genome-wide mappings of enhancers in specific cell types [370]. If a set of
relevant enhancers for a particular system of interest is available, it is in princi-
ple straight-forward to predict TFBSs in these enhancers and we are currently
developing methodology for automatically incorporating the effects of TFBSs
at distal enhancers into MARA. However, enhancers are highly cell-type spe-
cific and, in many cases, the data that users upload to ISMARA may come
from systems for which no accurate mappings of distal enhancers are avail-
able. Therefore, automated incorporation of the effects of distal enhancers
into ISMARA will only be possible when general methods for mapping active
enhancers in any system have become available. Of course, the dynamics of
chromatin accessibility and enhancer activity are themselves also controlled
by constellations of regulatory sites on the genome, and our ultimately goal is
to develop computational models that are able to predict genome-wide DNA
accessibility and enhancer activity in terms of local constellations of regula-
tory sites.

4.5 METHODS

In this section we outline the methods that were used for automated process-
ing and modeling of the data. More detailed descriptions of all procedures are
provided in the supplementary methods.

4.5.1 Promoteromes and regulatory site predictions

For each model organism of interest (in this work we will focus exclusively
on data from human and mouse) ISMARA relies on two pre-calculated re-
sources: a genome-wide annotation of promoters, and a comprehensive col-
lection of transcription factor binding site (TFBS) predictions in all promot-
ers (Figure 4.1A, C). The genome-wide annotation of promoters in human
and mouse, i.e. so-called “promoteromes”, were constructed primarily from
deep sequencing data of transcription start sites (deepCAGE data [371]) us-
ing Bayesian methods that we described previously [293]. To infer expression
levels of promoters from micro-array of RNA-seq data it is necessary to asso-
ciate all promoters with the transcripts that they drive. We thus collected the
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5’ ends of all known mRNA mappings from the UCSC Genome Database,
filtered these for mapping quality, and clustered all promoters and 5’ ends
that are within 150 base pairs (bps). In this way we obtained comprehensive
sets of promoters and their associated transcripts for both human (36’383 pro-
moters) and mouse (34’050 promoters). We also classified the promoters into
CpGe-island and non-CpG island promoters based on their CG and CpG con-
tent.

We next comprehensively predicted TFBSs in the proximal promoter regions
of all promoters. Briefly, we curated a collection of 190 WMs representing
~ 350 mammalian TFs using data from the JASPAR [285] and TRANSFAC
[286] databases, additional motifs from the literature, and our own analysis
of ChIP-chip and ChIP-seq data. For each promoter, we extracted 500 bps
upstream and downstream of the TSS, and orthologous segments in 6 other
mammals. The 7 orthologous sequences were then multiply aligned using T-
Coftee [372]. Using the 190 regulatory motifs and a phylogenetic tree of the
species (Supplementary Figure B.1) as input, we then applied our MotEvo al-
gorithm [290] to predict functional TFBSs for all TF regulatory motifs across
all promoters in human and mouse (Figure 4.1A,C). MotEvo is a Bayesian
algorithm which considers all possible ways in which configurations of bind-
ing sites for all motifs, as well as additional conserved elements of unknown
function, can be assigned to the input alignments, calculating likelihoods for
all configurations using a rigorous model of the evolution of TFBSs and neu-
tral sequence across the phylogeny. Since different motifs show different po-
sitioning preferences and abundances relative to TSS, which differ between
CpG and non-CpG promoters, we also incorporated position-dependent prior
probabilities for all motifs, separately for CpG and non-CpG promoters. We
summarize the TFBS predictions in a matrix N, where Ny, is the sum of the
posterior probabilities of all predicted TFBSs for motif 7 in promoter p.
When modeling expression levels in terms of regulatory sites using a linear
model, it is relatively straight-forward to extend the modeling to not only
include effects of TFBSs but also the effects of miRNA regulation, e.g. as re-
cently introduced in a supervised learning scheme for modeling regulation in
glioblastomas [273]. In ISMARA the effects of miRNA regulation have been
incorporated into a completely automated procedure that can be applied to
any expression data-set. Specifically, we used miRNA target site predictions
from TargetScan using preferential conservation scoring (Pcr) [143], which
assigns target scores for 86 miRNA seed families to all RefSeq transcripts. To
associate a target score Ny, for miRNA seed family m targeting promoter p,
we average TargetScan’s scores over all transcripts associated with promoter

p.
4.5.2  Processing of raw micro-array, ChlP-seq, and RNA-seq data
To perform ISMARA analysis, the user only needs to upload raw micro-array

(i.e. CEL files), RNA-seq, or ChIP-seq (BED or BAM files) data. The latter
should contain the genomic mappings of the raw sequencing reads. The first
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part of ISMARA’s analysis consists of processing these raw data into a matrix
E, where E,;s denotes the “signal” associated with promoter p for sample s.
When gene expression data is provided in the form of micro-arrays, ISMARA
first automatically detects the particular type of micro-array used, and then
applies corrections for background and unspecific binding tailored to that
micro-array type. Micro-Array platforms currently supported by ISMARA
are listed in Supplementary Table B.1. Using Gaussian mixture modeling,
probes are classified into “expressed” and “non-expressed” for each sample.
Probes that are consistently non-expressed are removed and the intensities
of the remaining probes are quantile normalized. Instead of relying on an-
notation of the manufacturer we map all probe sequences to all transcripts
associated with our promoters. The final log-expression of a given promoter
is given by a weighted average of the log-intensities of all probes mapping to
the transcripts associated with the promoter.

In many applications of next-generation sequencing data a main aim of the
analysis is to detect genomic regions that are significantly enriched, or tran-
scripts that are significantly differentially expressed, so that the analysis cru-
cially depends on the noise statistics of sequencing data [293, 373]. In con-
trast, ISMARA aims to model the variation in “signal” E, i.e. the amount
of chromatin immuno-precipitation or the amount of expression, across pro-
moters p and samples s in terms of predicted TFBSs. Our aim is thus not to
assess the statistical significance of changes in the signal, but to estimate the
relative strength of the signal across promoters and conditions. When process-
ing ChIP-seq data, the signal E; is calculated as the estimated logarithm of
the fraction of reads in sample s that map to a 2 kilobase region centered on
promoter p. To avoid large fluctuations in E,s at promoters with low signal
due to sequencing noise, this estimate involves using a uniform prior distribu-
tion across the genome.

When processing RNA-seq data, the mapped reads are first mapped to our
transcript set in a weighted manner. That is, when a read maps to n separate
transcripts, each transcript’s read-count is incremented by 1/n. The expres-
sion of each transcript is then estimated by dividing its read count by tran-
script length, and the expression of a promoter is calculated by summing the
expression of the transcripts associated with it. The final level Ep; is the log-
arithm of the estimated number of transcripts per million transcripts in the
cells of sample s that derived from promoter p.

4.5.3 Inference of motif activities

At the core of ISMARA is the MARA model [50] which, similar to previ-
ous linear modeling approaches [365, 374], assumes that the “signal” at each
promoter p is a linear function of its binding sites Np,:

Eps =Cs + Cp + ZNpmAms + noise, (4.1)
m

where ¢, is a term reflecting the average activity of promoter p across the
samples, Cs reflects the total expression in sample s, and the A are the
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(unknown) activities of each motif m in each sample s, which the model will
infer. We set the constants s and ¢, to their maximum likelihood values.
As aresult, equation (4.1) is renormalized into

E;,S = ZN;,mA:m + noise, (4.2)
m

where the matrix E' is obtained by subtracting the row and column averages
from the entries of E. Similarly, N’ is obtained by subtracting the column
averages, i.e. the average number of sites (Nj,) for each motif m, from the
entries of N. Finally, the activities A’ are obtained by subtracting the average
motif activities A, across the samples from the activities A;;s. That is, in
equation (4.2) the expression changes across the samples and promoters are
modeled in terms of changes in site counts across promoters and changes in
motif activities across the samples.

As explained in the supplementary methods, the noise term in the above equa-
tion is dominated not by measurement or biological replicate noise, but by the
error in the model and we assume these errors are Gaussian distributed with
an unknown variance o2, that is integrated out of the likelihood. To infer the
activities, ISMARA uses a Bayesian procedure which combines the Gaus-
sian likelihood model for the difference between the measured signal E;,S and
the predicted signal, with a Gaussian prior distribution for the activities. This
prior distribution, which a priori favors small activities is used to avoid over-
fitting. Its parameter is estimated automatically using 80/20 cross-validation:
The activities are inferred on a randomly chosen ‘training set’ of 80% of the
promoters, and the prior’s parameter is set so as to maximize the fit of the pre-
dicted expression profiles on the ‘test set’ consisting of the remaining 20% of
the promoters. In this way, ISMARA automatically adapts its prior to each
data-set that is submitted.

The final posterior distribution of motif activities is a multi-variate Gaussian
which is determined using singular value decomposition (see Supplementary
Methods). By projecting the multi-variate Gaussian onto individual motifs
ISMARA also calculates standard-deviations (SA;WS on all motif activities. Fi-
nally, the overall significance of each motif m in explaining variations in E/pS
is summarized by a z-like statistic,

1 & A )2
Zm S 5221 < 54 ) (4.3)
where S is the number of samples. The z-scores calculate how many standard-
deviations away from zero on average the inferred motif activities are.

Popular alternatives to a Gaussian prior include Laplacian priors, also referred
to as Lasso regularization [375], or a product of Gaussian and Laplacian pri-
ors, also referred to as elastic net regularization [376]. These priors are often
considered attractive because they induce sparsity, i.e. a subset of the fitted
parameters will be set strictly zero. However, since ISMARA by default sorts
motifs by their significance z,,, motifs with weak activities move to the bot-
tom of the list, where they will be ignored by most users. Moreover, in some
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cases a user might be interested in the inferred activity of a particular motif,
even if its significance is weak, and the Gaussian prior ensures that a nonzero
motif activity profile is inferred for every motif.

Although users will typically be primarily interested in motif activity changes
that explain expression changes across the conditions, in some situations it
would also be interesting to fit the average expression (E,) of each promoter,
i.e. averaged across all samples, in terms of average motif activities A,,. IS-
MARA fits such average activities using the same procedure, using a separate
prior for the average motif activities A,;,, and fitting this prior separately using
cross-validation.

4.5.4 Target predictions

ISMARA also predicts which individual promoters are regulated by each mo-
tif m. As detailed in the Supplementary Methods, for each promoter with
predicted TFBSs for the motif (i.e. Ny, > 0) ISMARA estimates the log-
likelihood ratio Sy, of the entire model with the TFBSs for 2 in p present,
and the model in which the entry N, has been set to zero. That is, we in
silico mutate the promoter p such that its TFBSs for motif m are removed,
and then recalculate the probability of the data E with this mutated site-count
matrix, integrating over all unknown activities. Thus, S, rigorously quanti-
fies how much removal of the sites for 72 in p decreases the fit of the model
to the data.

Finally, enrichment of targets within particular Gene Ontology categories is
done by selecting all targets where inclusion of motif m substantially helps
predicting the expression levels (S, > 1) and performing a standard hyper-
geometric test. Target networks between motifs are constructed by drawing a
link from motif m to m’ whenever m is predicted to target one of the promot-
ers associated with a TF that is associated with motif m’.

4.5.5 Materials

The publically available data sets of gene expression profiling were ob-
tained from Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo):
time course of HUVEC after TNF treatment (GSE9055), mucociliary dif-
ferentiation of airway epithelial cells (GSE5264), Novartis (GNF) SymAt-
las (GSE1133), epithelial and mesenchymal subpopulations within immor-
talized human mammary epithelial cells (GSE28681), ENCODE ChIP-seq
(GSE26386) and expression profiling (GSE26312) in human cell lines, and
the Illumina Body Map 2 (GSE30611). Micro-Array files from the NCI-60
samples were downloaded from the project web page (http://genome-www.
stanford.edu/nci60/).
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PEGYLATED IFN-«a REGULATES HEPATIC GENE
EXPRESSION THROUGH TRANSIENT JAK/STAT
ACTIVATION

5.1 ABSTRACT

The use of pegylated interferon-« (peglFN-«) has replaced unmodified re-
combinant IFN-« for the treatment of chronic viral hepatitis. While the supe-
rior antiviral efficacy of peglFN-« is generally attributed to improved pharma-
cokinetic properties, the pharmacodynamic effects of pegIFN-« in the liver
have not been studied. Here, we analyzed peglFN-a—induced signaling and
gene regulation in paired liver biopsies obtained prior to treatment and dur-
ing the first week following pegIFN-a injection in 18 patients with chronic
hepatitis C. Despite sustained high concentrations of pegIFN-« in serum, the
Jak/STAT pathway was activated in hepatocytes only on the first day after
pegIFN-a administration. Evaluation of liver biopsies revealed that pegIFN-
« induces hundreds of genes that can be classified into four clusters based
on different temporal expression profiles. In all clusters, gene transcription
was mainly driven by IFN-stimulated gene factor 3 (ISGF3). Compared with
conventional IFN-« therapy, peglFN-a induced a broader spectrum of gene
expression, including many genes involved in cellular immunity. IFN-induced
secondary transcription factors did not result in additional waves of gene ex-
pression. Our data indicate that the superior antiviral efficacy of pegIlFN-u«
is not the result of prolonged Jak/STAT pathway activation in hepatocytes,
but rather is due to induction of additional genes that are involved in cellular
immune responses.

5.2 INTRODUCTION

Interferons (IFNs) are central mediators of immune responses to viral infec-
tions [378]. They exert their antiviral activity by inducing the expression of
hundreds of genes that together establish an “antiviral state”, which restricts
the spread of virus among neighboring cells [379]. Type I IFNs (all IFN-«s
and IFN-f) bind to the IFN-« receptor (IFNAR) and activate the receptor—
associated tyrosine kinases Jak1 and Tyk2, which in turn activate signal trans-
ducer and activator of transcription 1 (STAT1) and STAT2 by phosphorylation
of a tyrosine in the C-terminal domain [49]. Activated STAT1 combines with
STAT?2 and IFN regulatory factor 9 (IRF9) to form IFN-stimulated gene fac-
tor 3 (ISGF3). ISGF3 translocates into the nucleus, binds to IFN-stimulated
response elements (ISREs) in gene promoters and induces the transcription of
hundreds of genes. Activated STAT1 can also form homodimers that bind to
v -activated sequences (GASs) and induce an overlapping but distinct set of
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IFN-stimulated genes (ISGs). IFN-induced Jak/STAT signaling is tightly con-
trolled by negative regulators. Suppressor of cytokine signaling 1 (SOCS1)
and SOCS3 are rapidly induced and strongly inhibit STAT1 phosphorylation
at the receptor-kinase complex within hours [380]. SOCS proteins are also
rapidly degraded and in most cells become undetectable within hours after
their induction. However, IFN signaling remains refractory for days in many
cell types [381]. In the liver of mice repeatedly injected with IFN-«, a long-
lasting upregulation of ubiquitin-specific peptidase 18 (USP18) was found to
be responsible for prolonged unresponsiveness of liver cells to IFN-« [382].
For more than 25 years, recombinant IFN-« has been used for the treatment
of hepatitis C virus (HCV) infections [383]. HCV is a parenterally transmitted
positive-strand RNA virus that replicates in human hepatocytes and can cause
chronic hepatitis with progressive fibrosis, leading to cirrhosis and hepatocel-
lular carcinoma [384]. Initially, unmodified recombinant IFN-a2a or -a2b
was used alone or in combination with the antiviral compound ribavirin. In
2001, pegylated IFN-a (peglFN-«) became the standard of care because of
its superior efficacy [385, 386]. The covalent attachment of polyethylene gly-
col (PEG) molecules to IFN-a produces a biologically active molecule with
a longer half-life. The delayed clearance allows once-weekly injections, com-
pared with three times a week for conventional IFN-«. It is generally assumed
that the sustained high serum concentrations of peglFN-a provide for unin-
terrupted antiviral activity through a permanent stimulation of the IFN signal-
ing pathways, whereas the serum concentrations of standard IFN-a (with an
elimination half-life of 4 to 10 hours) decline below pharmacologically active
levels in the second half of each 48-hour dosing interval [387, 388]. However,
there is no experimental evidence supporting prolonged pharmacodynamic
effects of peglFN-«. On the contrary, the refractoriness of Jak/STAT signal-
ing in mouse liver challenges the concept that pegIFN-« is more effective
because of prolonged stimulation of IFN signaling pathways [382]. We pre-
viously investigated peglFN-«—induced signaling and gene regulation in the
liver of 16 patients who started treatment of their chronic hepatitis C (CHC)
[389]. All patients had a pretreatment liver biopsy during the routine work-
up for CHC and a second liver biopsy 4 hours after the first subcutaneous
injection of peglFN-w«. Six patients had an induction of ISGs already before
treatment and showed no further activation of IFN signal transduction or ISG
expression in response to peglFN-«. None of these patients responded to ther-
apy [389]. It is now firmly established that patients with an activated endoge-
nous IFN system are poor responders to IFN-«—based therapies [389-392],
and quantification of the expression of a limited number of ISGs from liver
biopsies allows the most accurate prediction of response to peglFN-« and rib-
avirin [393]. In the 10 patients without a preactivation of the hepatic IFN sys-
tem, peglFN-a induced phosphorylation and nuclear translocation of STAT1
and the expression of hundreds of ISGs within 4 hours [389]. Nine patients
had a sustained virological response (SVR) later and were cured of CHC, and
1 patient had a virological response during treatment, but later relapsed. In the
present work, again using a paired biopsy approach, we extended the pharma-
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codynamic analysis of peglFN-« to the entire 1-week dosing interval in an
additional 12 patients. Three patients each had a second liver biopsy 16, 48,
96, and 144 hours after the first injection of pegIFN-a 2b. This unique analysis
of the molecular effects of peglFN-« in human liver revealed that Jak/STAT
signaling occurs in the first 24 hours and then becomes refractory in hepato-
cytes for the entire dosing interval despite persistently high peglFN-« serum
concentrations. Compared with conventional IFN-«, we found that peglFN-«
induced a broader spectrum of ISGs, including many genes involved in cel-
Iular immune responses. The initial activation of ISGF3 was the main driver
of ISG transcription during the entire week after the first injection of pegIFN-
«. The induction of secondary transcription factors and of unphosphorylated
STAT1 (U-STAT1) had negligible effects. We conclude that the superior ther-
apeutic efficacy of peglFN-« is not caused by a sustained activation of the
Jak/STAT pathway in hepatocytes, but rather by the sustained induction of
ISGs in liver-infiltrating immune cells.

5.3 RESULTS

5.3.1 peglFN-a2b induced STATI phosphorylation and ISG expression in
the liver

We studied peglFN-a2b—induced STAT1 phosphorylation and gene regula-
tion in 18 patients who underwent treatment for CHC with pegIFN-a and
ribavirin. All patients had a first liver biopsy before treatment during the rou-
tine clinical CHC work-up. A second biopsy was taken 4 hours (n = 6), 16
hours (n = 3), 2 days (n = 3), 4 days (n = 3), and 6 days (n = 3) after the
first injection of peglFN-a2b. The 6 patients whose second liver biopsy was
performed 4 hours after injection were selected from among the 16 patients
who had already been included in the previous study described above [389],
because they had no preactivation of the endogenous IFN system in the liver
and a normal response to peglFN-a2b. The patients were selected in a two-
step procedure for the later time points. First, liver biopsies from patients with
CHC who agreed to donate part of their liver biopsy for research were ana-
lyzed with a previously developed and validated four-gene classifier to predict
their likelihood of responding to peglFN-a [393]. Patients with a high prob-
ability of an unimpaired, normal response to pegIFN-a were then asked to
participate in our study and to consent to a second liver biopsy. This two-step
selection process was necessary, because in patients with preinduced hepatic
ISGs, the Jak/STAT signaling pathway is refractory in liver cells [389], and
a second liver biopsy would have been of little use for the study of pegIFN-
« pharmacodynamic effects in the liver. Indeed, the selection process with
the four-gene classifier was highly accurate in predicting a good response to
peglFN-a: all patients were treatment responders, and apart from 1 patient
who relapsed after treatment, all patients were cured of their HCV infection
(Table 5.1).
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Patient Age Sex HCV Viral load, log TU/mL Response METAVIR 1L28B Time Medication IFN conc.
no. (yr) GT | Baseline 4-wk 12-wk 4-wk 12-wk  Follow-up GT point (pg/mL)
1 52 m 3 7.14 neg neg RVR cEVR SVR A2/F2 cc 4h  PegIFN-a-2b 138
2 37 m 3 49 neg neg RVR cEVR SVR Al/F2 CT 4h  PegIFN-a-2b 530
3 54 f 2 4.95 neg neg RVR cEVR SVR A3/F3 CT 4h  PegIFN-a-2b 214
4 57 m 3 525 2.15 neg | Non-RVR cEVR Relapse A3/F4 cc 4h  PegIFN-a-2b 702
5 38 m 4 4.08 1.66 neg | Non-RVR CcEVR SVR A2/F2 CT 4h  PegIFN-a-2b 241
6 51 f 1 6.82 352  neg | Non-RVR cEVR SVR Al/F2 CT 4h  PegIFN-a-2b 419
7 26 m 3 4.58 neg neg RVR cEVR SVR Al/F1 TT 16h  PegIFN-a-2b 1194
8 42 f 3 549 neg neg RVR cEVR SVR Al/F2 CT 16h  PegIFN-a-2b 774
9 41 m 3 5.66 neg neg RVR cEVR SVR Al/F2 CT 16h  PegIFN-a-2b 973
10 30 m 3 7.07 neg neg RVR cEVR SVR A2/F2 CT 48h  PegIFN-a-2b 356
11 57 f 1 5.95 neg neg RVR cEVR SVR A2/F2 cc 48h  PegIFN-a-2b 414
12 37 m 3 6.72 128  neg | Non-RVR cEVR SVR A3/F2 CT 48h  PegIFN-a-2b 887
13 62 m 4 7.16 neg neg RVR cEVR SVR A3/F4 CT 96h  PegIFN-a-2b 1567
14 43 m 1 5.6 1.63  neg | Non-RVR cEVR SVR A3/F2 cc 96h  PegIFN-a-2b 155
15 40 m 1 5.16 1.41 neg | Non-RVR cEVR SVR A3/F4 CT 96h  PegIFN-a-2b 186
16 25 1 2.64 neg neg RVR cEVR SVR A2/F2 cc 144h  PegIFN-a-2b NA
17 70 m 2 6.86 1.84  neg | Non-RVR cEVR SVR A2/F3 CT 144h  PegIFN-a-2b NA
18 34 m 3 5.56 neg neg RVR cEVR SVR A2/F2 CT 144h  PegIFN-a-2b 233
19 57 f 2 5.18 neg neg RVR cEVR SVR A2/F2 cC 144h  PegIFN-a-2a 6564
20 57 m 1 6.54 459 333 | Non-RVR EVR interrupted A3/F4 CT 144h  PegIFN-a-2a 6146
21 38 f 4 6.32 507 neg | Non-RVR CcEVR SVR A3/F4 cc 144h  PegIFN-a-2a 15986

Table 5.1: Patient characteristics. conc, concentration; GT, genotype; Neg, nega-
tive; RVR, rapid virological response (undetectable viral load at 4 weeks); cEVR,
complete early virological response (undetectable viral load at 12 weeks); EVR,
early virological response (>l0g, reduction of viral load at 12 weeks); SVR, sus-
tained virological response (undetectable viral load 24 weeks after end of treatment);
METAVIR, liver histology score for grading inflammation (A1-A3) and staging fi-
brosis (FO-F4).

We analyzed peglFN-a2b-induced Jak/STAT signaling by immunohisto-
chemistry (IHC) with phosphorylated STAT 1-specific (p-STAT=specific) an-
tibodies. Because we selectively included only patients who had no pretreat-
ment induction of the endogenous IFN system, STAT1 was not activated in
the biopsies obtained before treatment (Figure 5.1A).
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Figure 5.1: peglFN-42b transiently induces the Jak/STAT pathway in the liver.
(A) Representative images of IHC analysis of p-STAT1 in liver biopsies obtained
before treatment (B1) and at several time points after the first injection of pegIFN-
a2b. Strong nuclear p-STAT1 signals were present at the 4- and 16-hour time points,
but not at later time points, where the signals were localized in nonparenchymal cells
(arrows). Scale bars: 20 #m. (B) Quantitative analysis of the mean percentage of p-
STAT 1—positive hepatocyte nuclei (5 x 100 cells counted per sample; the number of
samples is indicated) per time point. Bars show the mean with SEM.

Following the first peglFN-a2b injection, we observed a rapid and strong acti-
vation of STAT1 already 4 hours later, with nuclear p-STAT1 signals detected
in more than 60% of hepatocytes (Figure 5.1). p-STAT1 signals were still
strong after 16 hours, but then rapidly declined. In liver biopsies obtained
after 2, 4, or 6 days, p-STAT1 signals in hepatocytes were weak and were
detected in less than 5% of hepatocytes. In nonparenchymal cells, we de-
tected p-STAT1 signals at all time points. To further address the kinetics of
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ISG induction by peglFN-a2b, we adapted a highly sensitive and specific
in situ hybridization (ISH) method (QuantiGene ViewRNA) that allowed the
detection of ISG mRNAs in fresh-frozen liver biopsy samples. We detected
MX1 mRNA already 4 hours after the injection of pegIlFN-a2b and found
that it peaked at the 16-hour time point and then rapidly declined (Figure
5.2A). IFI27 mRNA expression peaked at 16 hours and declined at a much
slower rate. Of note, the intensity of the signals declined in all hepatocytes,
and at later time points we did not detect hepatocytes with the signal intensi-
ties found at the 16-hour point. Together with the absence of strong nuclear
p-STAT1 signals in hepatocytes at later time points (Figure 5.1A), these data
do not support the hypothesis that hepatocytes recover asynchronously from
the refractory state and that they are, in part, restimulated by pegIFN-a2b cir-
culating at high concentrations during the entire dosing interval (Table 5.1).
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Figure 5.2: ISH reveals distinct expression patterns of ISG mRNAs at different
time points. (A) Representative examples of ISH staining (green) in liver biopsies
for MX1 and IFI27 mRNA showing that ubiquitous expression gradually declined
over time with distinct kinetics. (B) ISH staining (green) in liver biopsies for SOCS1
and PDL1 mRNA revealed expression in hepatocytes and in nonparenchymal cells
at 4 hours. At 144 hours, SOCS1 and PDL1 were detected only in nonparenchymal
cells (black arrows). Scale bars: 20 ym.

In contrast to hepatocytes, we found that nonparenchymal cells showed strong
nuclear p-STAT1 signals also at later time points (Figure 5.1A, arrows). Ac-
cordingly, SOCS1 and PDL1 mRNAs, two ISGs that are only transiently in-
duced in hepatocytes, were also expressed at the 144-hour time point in non-
parenchymal cells (Figure 5.2B). We conclude that in hepatocytes, pegIFN-
a2b induces a transient activation of the Jak/STAT signaling pathway during
the first day, but not during the entire 1-week dosing interval, and this despite
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sustained high serum concentrations of peglFN-a2b at all time points (Table
5.1). We found that nonparenchymal cells remained IFN-a sensitive at all
time points investigated.

5.3.2 Induction of negative regulators of Jak/STAT signaling

We then assessed the induction of negative regulators of IFN signaling in
the liver biopsies. On the mRNA level, SOCS1 was strongly induced at 4
hours and 16 hours, but then returned to pretreatment expression levels (Fig-
ure 5.3A).
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Figure 5.3: The negative regulator USP18 is continuously upregulated during
the entire week after pegIFN-«2b injection. (A) Bar plot indicating the mRNA
expression fold change between the pretreatment biopsy (B1) and the on-treatment
biopsy (B2) of SOCS1, SOCS3, and USP18. Data represent the mean with SEM
(n = 6 for the 4-hour time point; n = 3 for all other time points). The black line
indicates the baseline measured in pretreatment biopsies from the same patients (n =
18). (B) USP18 protein expression by Western blot analysis using whole-cell extracts
of liver samples from B1 and B2. Patients are numbered according to Table 1. (C)
Representative images of IHC for USP18 of liver biopsies obtained before treatment
(B1) and at several time points after the first injection of pegIFN-a2b as indicated.
Scale bars: 20 pm.

SOCS3 was also upregulated in the first 16 hours, albeit to a lesser extent
(up to 2.5-fold) and remained slightly elevated for up to 4 days. USP18 was
also rapidly induced, but unlike SOCS1 and SOCS3, the expression level
of USP18 mRNA remained persistently high during the entire week (Figure
5.3A). Accordingly, USP18 protein was detectable from 16 hours on at all
time points by Western blot and IHC analyses (Figure 5.3B and C). Presum-
ably for technical reasons, we could not detect SOCS1 or SOCS3 proteins at
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any time point, despite testing several different antibodies. We conclude that
peglFN-a2b induces transient activation of the Jak/STAT signaling pathway
in hepatocytes because of the rapid induction of SOCS1, SOCS3, and USP18
and that the signaling pathway remains refractory to ongoing stimulation by
circulating peglFN-a2b because of the persistent induction of USP18.

5.3.3  peglFN-a2b—induced genes fall into four robust classes with distinct
temporal expression patterns

We assessed peglFN-a2b-regulated gene expression with transcriptome anal-
ysis using Affymetrix U133 Plus 2.0 arrays. Pairwise comparison of pretreat-
ment and on-treatment biopsies revealed a greater than 2-fold induction in
two-thirds of samples of hundreds of genes, with a peak at 16 hours (Figure
5.4A and Supplemental Table C.1).
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Figure 5.4: pegIlFN-a2b—induced genes fall into four robust classes with dis-
tinct temporal expression patterns. (A) Number of genes greater than 2-fold up- or
downregulated in two-thirds of the patients at each time point. (B) Clustering analy-
sis of the upregulated genes produced four robust clusters (numbers 1-4) composed
of early, intermediate, late, and very late ISGs. Boxes represent the quartiles, and
whiskers represent 1.5 times the interquartile range. Bold line indicates the median
expression value, and the number of genes in each cluster is indicated.

Likewise, up to 200 genes were downregulated (Supplemental Table C.2). To
gain insight into the temporal expression patterns of ISGs induced by pegIFN-
«2b in the human liver, we analyzed the transcriptome data using a Bayesian
clustering algorithm. The algorithm produced four robust clusters of upregu-
lated genes, which were termed early (144 genes), intermediate (31 genes),
late (299 genes), and very late ISGs (20 genes) (Figure 5.4B and Supplemen-
tal Table C.1). For over 95% of all upregulated genes, the peak mRNA lev-
els occurred 4 or 16 hours after injection, followed by a steady decline over
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the remaining 128 hours of treatment (Figure 5.4B). Because of the limited
amount of tissue obtained by percutaneous liver biopsies, we could not com-
prehensively analyze ISG protein expression. We therefore measured the pro-
tein expression of three exemplary ISGs. USP18 protein expression peaked at
the 16-hour time point and then gradually declined, but remained induced up
to the 144-hour time point. We found that USP18 mRNA expression peaked
already at 4 hours, but was also persistently induced up to the 144-hour time
point (Figure 5.3). STAT1 mRNA was induced up to the 96-hour time point,
whereas STAT1 protein expression was still increased at 144 hours (Supple-
mental Figure C.1). We found a very good correlation between IP10 mRNA
expression in the liver and IP-10 protein concentration in the serum (Supple-
mental Figure C.1). Taken together, we found a reasonably good correlation
between mRNA and protein expression of ISGs in this limited set of exem-
plary ISGs.

5.3.4 Compared with conventional IFN-a, peglFN-a2b induces a broader
range of genes including many ISGs involved in cellular immune re-
sponses

Given the known superior antiviral efficacy of peglFN-«, we could not treat
our study patients with conventional IFN-«. To compare IFN-« and pegIFN-
an—induced gene regulation, we therefore made use of previously published
transcriptome data obtained 24 hours after the injection of conventional IFN-
« [394]. Fortunately, the samples were analyzed on the same Affymetrix
U133 Plus 2.0 arrays, allowing a direct comparison of the data. The discrepant
time points after injection between the pegIlFN-« and the IFN-« studies were
a potential pitfall, but unsupervised hierarchical clustering of the combined
data positioned the IFN-a2a samples properly between the 16-hour time point
and the 48-hour time point of the peglFN-« samples. Importantly, the magni-
tude of mRNA upregulation in the IFN-a samples was comparable to that in
the peglFN-« samples from the 16- and 48-hour time points. The most strik-
ing difference between IFN-a and pegIlFN-« was the number of genes that
were induced more than 2-fold in two-thirds of the samples (Figure 5.5A).
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Figure 5.5: IFN-«x2a induces mainly "classical'" ISGs, while pegIFN-«2b leads
to transcription of additional immune cell-associated genes. (A) Venn diagram
of genes identified as being upregulated by more than 2-fold in two-thirds of the pa-
tients at 16 or 48 hours after peglFN-a2b injection (n = 3 each) or 24 hours after
conventional IFN-u injection (n = 6). (B and C) Heatmaps show expression patterns
(mean [og, fold change compared with paired pretreatment biopsies) of genes upreg-
ulated after IFN-a injection. (B) 43 ISGs were upregulated by conventional IFN-x2a
at 24 hours as well as by pegIFN-a2b at both 16 and 48 hours. (C) 70 ISGs were up-
regulated by pegIFN-a2b at both 16 and 48 hours, but not by conventional IFN-«2a
at 24 hours.

We found that most of the genes upregulated by IFN-a were also induced
by peglFN-a, but a substantially larger number of genes were induced more
than 2-fold exclusively by peglFN-a. Gene ontological (GO) analysis re-
vealed these to be genes associated with immune cells and adaptive immu-
nity, whereas the genes upregulated by both IFN-a and peglFN-« fell into
the "classical" ISG group (Figure 5.5B and C, and Supplemental Table C.4).
We conclude that while a common subset of ISGs is upregulated within the
first 1-2 days independently of the IFN-x formulation, an additional set of
genes associated with cellular immune responses is more markedly induced
by peglFN-«.
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5.3.5 peglFN-a2a and peglFN-a2b induce overlapping sets of genes in the
liver 144 hours after injection despite their different pharmacokinetic
properties

Two different formulations of peglFN-a2 with distinct pharmacokinetic prop-
erties are approved for the treatment of viral hepatitis: pegIlFN-a2b (Pegln-
tron) and peglFN-a2a (PEGASYS). While the single-chain PEG moiety of
pegIFN-a2b is subject to hydrolysis, which leads to release of IFN-a2b into
the human body and faster elimination of the drug, peglFN-a2a is not hy-
drolyzed, has a lower absorption rate, and is eliminated at a much slower rate
[395]. peglFN-a2a achieves maximal serum levels of 7,000 pg/ml about 80
hours after administration, and the peak extends up to 168 hours after injec-
tion [396], as opposed to a much earlier peak (15—44 hours) and a more rapid
decline of pegIFN-a2b. In order to investigate whether these distinct pharma-
cokinetic properties result in distinct pharmacodynamic effects, we included
3 additional patients in our study who were treated with peglFN-a2a and ob-
tained a second liver biopsy at the end of the 1-week dosing interval. As ex-
pected, peglFN-a2a serum concentrations were still high at the end of the first
week, whereas peglFN-a2b concentrations declined in the second half of the
dosing interval (Table 5.1). However, despite the difference in serum concen-
tration between peglFN-a2a and peglFN-a2b, we found that the number of
genes upregulated by greater than 2-fold in two-thirds of the patients in each
group was not significantly different (59 versus 49 genes, respectively). Fur-
thermore, we observed a considerable overlap of the gene sets, with 26 genes
being upregulated by both peglFN-a2a and pegIFN-a2b, and these common
genes comprised most of the typical ISGs (Supplemental Table C.3). We con-
clude that the different pharmacokinetic properties of the two peglFN-a2 for-
mulations do not cause significant differences in ISG expression at the end of
a 1-week dosing interval.

5.3.6 peglFN-a2b-induced gene transcription is mainly driven by IFN-
stimulated response element motifs during the entire dosing interval

Among the hundreds of genes induced by IFN-«a, one also finds several
transcription factors such as IFN regulatory factors (IRFs), cytokines and
chemokines that could directly or indirectly activate additional signal trans-
duction pathways and transcriptional programs (Supplemental Table C.1).
Such "secondary" transcription factors could be the drivers of gene transcrip-
tion at later time points when peglFN-a2b—induced Jak/STAT signaling is
refractory. We therefore analyzed the relative contribution of transcription
factor-binding motifs to global gene expression at 4 hours, 16 hours, 2 days,
4 days, and 6 days using a recently developed method called motif activity
response analysis (MARA) [50]. MARA infers the activities of transcription
regulators by modeling genome-wide expression profiles in terms of compu-
tationally predicted binding sites for a large array of mammalian regulatory
motifs such as IFN-stimulated response element (ISRE). Roughly speaking,
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MARA infers that a regulatory motif increases in activity when its predicted
target promoters show an overall increase in expression that cannot be ex-
plained by the occurrence of other regulatory motifs in these promoters. In
our current application, we used MARA to calculate changes in the activ-
ity of motifs across paired samples (pretreatment versus on-treatment). This
analysis revealed ISRE as the most substantially changing motif across all
time points up to 6 days (Figure 5.6A and B). We observed a strong positive
ISRE motif activity change in all patients (Figure 5.6A). MARA identified
additional motifs that contribute to gene expression changes such as GAS,
DMAPI_NCOR{1,2}_SMARC (DMAPI1), PRRX1,2, and ATF6. However,
the changes in their activities were relatively minor in comparison with ISRE
(Figure 5.6B). MARA results of the transcription factor—binding site (TFBS)
analysis were confirmed by motif discovery analysis using HOMER software
[397]. In each of the four ISG clusters (Figure 5.4B), ISRE was by far the
most significantly enriched motif (Supplemental Figure C.2).
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Figure 5.6: MARA reveals ISRE as the most significantly upregulated motif.
(A) Activity changes of the ISRE motif in each patient, as inferred by MARA,
showed a significant increase in ISRE activity for every patient at every time point.
Shown are inferred activity changes (points) &= 1 SD (bars). (B) Motif activity pro-
files of the top five motifs with the most significant positive activity changes. Shown
are the mean activity changes per time point (lines) = 1 SEM as well as the P values
and sequence logos of the motifs. (C) Fold change of IRF1, IRF7, and IRF9 mRNA
expression for every patient. Shown are the mean values with SEM at each time
point.

ISRE motifs are the binding sites for ISGF3 and also IRFs. ISGF3 is activated
by IFN-a—induced phosphorylation of STAT1 and STAT?2. IRFs are transcrip-
tionally induced and are also regulated by phosphorylation [398]. We there-
fore measured the expression of IRF mRNAs. Of the nine IRFs, only IRF1,
IRF7, and IRF9 were upregulated by pegIFN-a2b in the liver (Figure 5.6C).
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IRF1 is transiently induced at the 4- and 16-hour time points. IRF9 is part of
the ISGF3 complex, and its transcriptional activity depends on p-STAT1 and
p-STAT?2. IRF7 is upregulated during the entire dosing interval of pegIFN-
a2b and could also be involved in ISRE-mediated gene transcription. How-
ever, the transcriptional activity of IRF7 depends on serine phosphorylation
by IKK-« [399], a downstream component of cellular sensory pathways that
are activated by viral pathogen—associated molecular patterns (PAMPs).

5.3.7 Unphosphorylated STATI does not prolong ISG induction

The central IFN-a—induced signal transducer and transcription factor STAT1
is itself one of the most strongly induced ISGs. Indeed, we found STAT1
mRNA strongly induced in the first 4 days after peglFN-a2b injection (Sup-
plemental Table C.1). STAT1 protein was even upregulated during the en-
tire 1-week dosing interval (Supplemental Figure C.1). The functional signif-
icance of the expression of large amounts of U-STAT1 protein is unclear, but,
intriguingly, a recent paper described a role of U-STAT1 as an active tran-
scription factor that prolongs gene transcription after dephosphorylation of
p-STAT1 [400]. In that work, thirty ISGs were found to be upregulated by U-
STAT 1—driven transcription [400]. We therefore hypothesized that U-STAT1
could be involved in the prolonged ISG induction by pegIlFN-a2b. However,
when we took the list of U-STAT1-induced genes and investigated their ex-
pression during the first week of peglFN-a2b therapy, we did not find them
to be overrepresented in clusters 3 and 4 with late and very late induced ISGs,
respectively (data not shown). We therefore decided to address the potential
of U-STAT1 to induce gene transcription in a more rigorous way. To that
end, STAT1-deficient U3A cells [401] were stably transfected with STAT1
wild-type (STAT1-WT) or a mutant STAT1 with a phospho-tyrosine accep-
tor site at position 701 mutated to phenylalanine (STAT1-Y701F). For both
STATI1-WT and STAT1-Y701F, three clones with different STAT1 expres-
sion levels were selected. One clone each expressed the transfected STAT1 at
levels usually present in unstimulated parental 2fTGH cells, one clone each
expressed the constructs at levels found after maximal STAT1 expression ob-
tained in 2fTGH cells stimulated with IFN-« for 24 hours, and one clone each
expressed the transfected constructs at intermediate levels (Figure 5.7A).
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Figure 5.7: U-STAT1 does not induce ISGs. (A) Three clones with different ex-
pression levels of WT (WT cll, WT cl2, and WT cl3) or mutated STAT1 (Y701F cll,
Y701F cl2, and Y701F cl3) were stimulated with IFN-«. STAT1-deficient U3A cells
and STAT1 WT parental 2fTGH cells were used as controls. IFN-« induced STAT1
phosphorylation in 2fTGH and in all three WT clones. Actin is shown as a loading
control. The cells were either untreated or treated for 15 minutes with 1,000 U/ml of
IFN-a. WT cll and Y701F cll express STAT1 in an amount similar to that induced
by 2fTGH cells treated for 24 hours with 1,000 U/ml of IFN-«. Shown are repre-
sentative blots each from three independently performed experiments (black lanes
separate blots that were derived from the same gel, but were noncontiguous). (B)
IFN-a—induced OAS1 mRNA expression relative to GAPDH was assessed by qRT-
PCR. Cells were treated with 1,000 U/ml IFN-« for 8 hours. Upregulation of OAS1
was found only in cells with WT STAT1 after IFN-« treatment. Expression of maxi-
mal amounts of Y701F-mutated STAT1 in U3A cells did not induce ISG expression.
Shown are the mean values with SEM of three replicate experiments.

As we expected, IFN-a treatment of U3A cells transfected with STAT1-WT
induced ISGs. In contrast, we observed no ISG induction in U3A cells trans-
fected with STAT1-Y701F (Figure 5.7B and Supplemental Figure C.3). These
results do not support a role for U-STAT1 in prolonged ISG expression.
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5.3.8 Ongoing gene transcription and lower mRNA decay rates both con-
tribute to prolonged expression of "late" ISGs

Since ISRE seems to be the main TFBS in all transcription clusters and U-
STAT1 was not able to induce ISGs, we next hypothesized that the genes
belonging to the late ISG clusters might show prolonged expression due to
lower mRNA degradation rates, since such a mechanism was recently pro-
posed to play an important role in temporal expression patterns of genes in-
duced by TNF-a [402]. Decay of mRNAs can be regulated by specific mi-
croRNA recognition sequences present in the 3’ untranslated regions (UTRs)
of mRNAs [403]. We therefore analyzed our transcriptome datasets for spe-
cific binding sites of microRNAs to test whether the four ISG clusters defined
by our unbiased clustering approach (Figure 5.4) have distinct microRNA
binding sites in their 3’UTRs. However, we could not identify biologically
meaningful microRNA binding patterns that would predict or explain the dif-
ferences in decay rates of the four clusters (data not shown). We also ana-
lyzed the decay rates of mRNAs experimentally in IFN-a—treated Huh7 cells
by inhibition of gene transcription with actinomycin D. Relative to GAPDH
mRNA, early ISGs (RSAD2, USP18) showed faster mRNA decay, while the
late ISGs (IF127, LGALS3BP) decayed more slowly than GAPDH (Figure
5.8A).
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Figure 5.8: Late ISGs show a more prolonged transcriptional induction and a
slower mRNA degradation rate than early ISGs in vitro. (A) mRNA degradation
of early (RSAD2, USP18) and late (IFI27, LGALS3BP) ISGs was assessed in Huh7
after induction with 1,000 U/ml of IFN-a for 6 hours at the indicated time points.
Transcription was blocked with actinomycin D, and the mRNA degradation over
time was compared with GAPDH by qRT-PCR. Results from two independent exper-
iments run in duplicate are shown. (B) Transcription rates of early (RSAD2, USP18)
and late (IFI27, LGALS3BP) ISGs over time in Huh7 cells treated with 1,000 U/ml
of IFN-« for the indicated time points. In vitro transcription in isolated nuclei was
performed for 45 minutes. Newly transcribed mRNA labeled with biotinylated UTP
was isolated and assessed by qRT-PCR. Results depicted as relative transcription
compared with untreated baseline are shown from two independent experiments run
in duplicate.

However, a delayed mRNA decay rate cannot readily explain the expression
peaks at later time points such as those observed in cluster 4 genes (Fig-
ure 5.3). We therefore also analyzed the transcription of representative early
(RSAD?2, USP18) and late (IFI27, LGALS3BP) ISGs using a nuclear run-on
assay. Nuclei were isolated from Huh7 cells after 1, 2, 4, 16, and 24 hours
of stimulation with 1,000 IU/ml IFN-« and were then incubated with biotin-
labeled UTP for 45 minutes. The newly transcribed mRNA was purified on
streptavidin beads and quantified by quantitative PCR (qPCR). We found a
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markedly prolonged transcription of late versus early ISGs (Figure 5.8B). We
conclude that the temporal expression patterns of ISGs are determined by the
duration of gene transcription as well as by different mRNA decay rates.

5.4 DISCUSSION

Arguably, no other cytokine has been used in clinical medicine more exten-
sively than recombinant (peg)IFN-«. Hundreds of thousands of patients with
chronic hepatitis B and CHC have been treated worldwide in the past 20
years. Despite this clinical success story, amazingly little is known about the
mechanism of action and the pharmacodynamic effects of IFN-a and pegIFN-
«. In principle, IFN-« exerts its antiviral effect both through the induction
of antiviral effector systems in infected cells and through the regulation of
immune cells such as natural killer cells, dendritic cells, and T cells [378].
Immunomodulatory effects of IFN-& have been investigated in cells isolated
from blood in patients with CHC undergoing therapies with (peg)IFN-a. In-
deed, several studies reported that HCV-specific T cell reactivity is increased
by IFN-« treatment and correlates with treatment response [404—406]. How-
ever, other investigators have shown no association [407, 408]. The direct ef-
fects of (peg)IFN-a on hepatocytes are more difficult to study because of the
requirement of liver biopsies from patients undergoing pegIFN-« treatments.
In a previous study including 16 patients with CHC, we analyzed pegIFN-
a2b—induced Jak/STAT signaling and global gene expression in paired liver
biopsies obtained before treatment and 4 hours after the first injection of
peglFN-a2b [389]. Unexpectedly, in 6 patients we found an upregulation of
hundreds of ISGs already in pretreatment biopsies. In these "preactivated"
patients, we found no significant further increase in the number or expres-
sion level of ISGs induced by peglFN-a2b and no increase in the p-STAT1
nuclear signal intensity. Apparently, the constitutive activation of the endoge-
nous IFN system not only fails to eliminate the virus, but also inhibits Jak/-
STAT signaling and thereby inhibits a response to pegIFN-a2b treatments
[389]. In a follow-up study, we developed and validated a classifier based
on the expression of four genes in the liver that allows one to predict a re-
sponse to (peg)IFN-« in individual patients [393]. In the present study, we
made use of this classifier to screen patients with CHC and included 12 pa-
tients who did not have an activated endogenous IFN system in the liver. This
selection process allowed us to exclude patients with refractory Jak/STAT sig-
naling pathways. The results from our present study most likely reflect IFN
responses in general, because the patients with CHC who were included had
normal responsiveness of IFN-« signaling pathways in the liver. Ever since
the introduction of pegIFN-« into therapeutic regimens for CHC, the prevail-
ing explanation for the superior efficacy of peglFN-a compared with that of
conventional IFN-« was centered on the prolonged high serum concentration
of peglFN-« molecules. In this paradigm, the permanently high serum levels
of peglFN-a were equated with a permanent stimulation of the target cells,
i.e., the infected hepatocytes. The inferior efficacy of IFN-a was explained
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by the short serum half-life that caused serum levels to return to baseline in
the second half of the 2-day dosing interval, leaving the infected hepatocytes
unstimulated and thereby enabling a periodic resurgence of HCV replication.
Based on the results of our present study, we refute this model. Our data show
an activation of the Jak/STAT pathway in the liver only during the first day, de-
spite prolonged high serum concentrations of pegIFN-a2b. This finding is in
agreement with experimental data from studies in chimpanzees that showed
only transient induction of ISGs after pegIFN-«2a injection [409]. The molec-
ular mechanisms that temporally limit IFN-« signaling most likely involve
two negative regulators of IFN-a—induced Jak/STAT signaling. We observed
in our study that within hours after pegIFN-a2b injection, SOCS1 and USP18
were induced in the liver, and USP18 remained strongly upregulated during
the entire 1-week dosing interval. Solid evidence from experiments with ge-
netically modified mice shows that SOCS1 and USP18 have a central role in
inhibiting IFN-a—induced Jak/STAT signaling [382, 410, 411]. We therefore
conclude that SOCS1 and USP18 upregulation in the liver of patients treated
with peglFN-a2b restricts Jak/STAT signaling during the first day of the 1-
week dosing interval. This conclusion is further supported by the fact that we
did not observe a significant increase in the number or the expression level of
ISGs induced at the 144-hour time point in patients treated with peglFN-«a2a
compared with those treated with peglFN-a2b, despite the high serum con-
centrations of pegIFN-a2a in all 3 patients. The refractoriness of Jak/STAT
signaling pathways in the liver apparently overrides the potential benefits of
the prolonged serum half-life of peglFN-a2a. Indeed, in a large clinical study,
pegIFN-a2a had no superior antiviral efficacy compared with that of pegIFN-
a2b [412]. Taken together, the assumption that increasing the serum half-life
of IFN-« formulations necessarily improves their antiviral efficacy because of
an uninterrupted stimulation of IFN-« responses in hepatocytes cannot be sus-
tained. The comparison of the gene sets induced by conventional IFN-« ver-
sus peglFN-« supports a different mechanism: peglFN-« induces a more sus-
tained upregulation of a set of genes involved in cellular immune responses.
The superior antiviral efficacy is most likely caused by an increased stimula-
tion of the cellular immune response to HCV. It remains to be clarified which
immune cells are critically involved in peglFN-x—induced antiviral activities.
It also remains to be clarified why pegIFN-« can induce this broader set of
genes. For the 75 genes found in the intersection of conventional and pegIFN-
« (Figure 5.5A), the magnitude of mRNA expression and the fold induction
over baseline were equal for both IFN-« and pegIFN-a. Therefore, for the in-
duction of those classical ISGs in hepatocytes, IFN-a is not less potent com-
pared with peglFN-a. However, IFN-a’s short half-life of 6 to 8 hours might
become important for nonparenchymal cells, i.e., liver-resident immune cells
that were found to be responsive to peglFN-« during the entire week after
peglFN-« injection. Based on our data, we propose a model in which the su-
perior antiviral efficacy of pegIFN-a is the result of continuous stimulation of
immune cells and is not due to continuous stimulation of the Jak/STAT path-
way in HCV-infected hepatocytes. A large body of fundamental knowledge
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about the key signaling pathways and the biological role of IFN-a has been
acquired through cell culture experiments and mouse models with genetic
deletions of IFNs, IFN receptors, or components of the Jak/STAT pathway
[413]. On the other hand, the IFN-a—induced effects in target organs of hu-
man pathogens have been little investigated. Not surprisingly, the molecular
mechanisms responsible for the antiviral activity of (peg)IFN-« against HCV
are still not known. In the Huh7 cell-based HCV replicon system, overexpres-
sion and siRNA interference screens identified several ISGs involved in the
inhibition of replication, among them: IRF1, IRF2, IRF7, IFN-induced heli-
case C domain—containing protein 1 (IFIH1, also known as MDAS), retinoic
acid—inducible gene 1 (RIGI, also known as DDXS58), mitogen-activated pro-
tein kinase kinase kinase 14 (MAP3K14), IFN-induced protein with tetratri-
copeptide repeats 3 (IFIT3), IFN-induced transmembrane protein 1 (IFITM1),
IFITM3, phospholipid scramblase 1 (PLSCR1), TRIM14, RNASEL, and in-
ducible nitric oxide synthase (INOS, also known as NOS2) [414, 415]. With
the exception of MAP3K14 and NOS?2, all of these ISGs were indeed upreg-
ulated by pegIFN-a2b in the liver and can be considered bona fide candidate
antiviral effector genes. However, IRF1, IRF2, and IRF7 are transcription fac-
tors, and IFIH1 (MDAS), RIGI, IFIT3, and TRIM14 are involved in sensory
pathways that activate IFN-f in infected cells [416—418]. These seven ISGs
are most likely not direct-acting antiviral effector proteins. IFITM1 has been
recently shown to be a tight-junction protein expressed in hepatocytes and has
been found to inhibit HCV entry [419]. IFITM3 is an important restriction fac-
tor for the influenza virus and also acts through inhibition of cell entry [420].
PLSCRI1 restricts RNA viruses, probably by enhancing the induction of a
subset of ISGs including IFIT1 and IFIT2, two antiviral effectors that inhibit
translation at the ribosome by binding to eIF3 [421]. Finally, RNaseL is a non-
specific antiviral effector that degrades viral and host RNAs upon activation
by 2’-5’oligoadenylates [379]. Based on their proven direct antiviral effector
functions, their identification in the above-mentioned siRNA interference and
overexpression screens [414, 415], and their peglFN-a2b-induced upregula-
tion in the liver, IFITM1, IFITM3, PLSCR1, and RNaseL are prime candi-
dates for anti-HCV effectors in humans. Most likely, however, many more
of the upregulated ISGs are involved in an orchestrated antiviral effector pro-
gram that can eliminate HCV from chronically infected patients. On a more
fundamental level, our study also provides for the first time important insights
into how IFN-« regulates gene induction over a prolonged observation period
of 1 week. Our analysis of global gene expression data obtained from biopsies
performed at five time points up to 6 days after pegIFN-a2b injection with an
unbiased mathematical model, using an infinite Gaussian mixture model with
a Dirichlet process prior, produced four robust clusters of upregulated ISGs
with distinct kinetic patterns. Surprisingly, the ISRE promoter element was
by far the most important TFBS motif in all the clusters. This clearly demon-
strates that ISGs with late or delayed maximal expression are not induced by a
different set of transcription factors that could be upregulated by the primary
IFN-a—induced transcription factors ISGF3 and STAT1 homodimers and that
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could then stimulate a second (and third) wave of gene transcription. Based
on our nuclear run-on assays and mRNA decay rate measurements in cell cul-
ture experiments, we propose that a different duration of gene transcription
as well as a different mRNA stability are responsible for the distinct kinetic
expression profiles of ISG clusters. We examined the relative contribution of
transcription factor-binding motifs to the global gene expression by MARA,
which revealed ISRE to be the most significantly changing motif across all
time points up to 6 days. ISRE motifs are the binding sites for ISGF3 and also
IRFs. ISGF3 is activated by IFN-a—induced phosphorylation of STAT1 and
STAT?. In hepatocytes, signaling through the Jak/STAT pathway becomes re-
fractory within the first day after injection. We observed that the ISRE motif
activity indeed peaked at the 4-hour and 16-hour time points, but remained
increased even at later time points (Figure 5.6B). The persistent activation of
ISRE sites might be caused by ongoing activation of ISGF3 in hepatocytes at
lower levels that are not readily detectable by p-STAT1 immunoblotting. Al-
ternatively, it might reflect the persistent activation of the Jak/STAT pathway
in nonparenchymal cells that do not become refractory. Persistent ISRE motif
activity could also be driven by IRF7. IRF7 mRNA was induced during the
entire 1-week dosing interval of peglFN-a (Figure 5.6C), and it is likely that
IRF7 protein was upregulated as well. However, the transcriptional activity of
IRF7 is tightly regulated by serine phosphorylation by IKK-«, a downstream
component of cellular sensory pathways that are activated by viral PAMPs
[398, 399, 422, 423]. IRF7-mediated gene induction would occur only in
HCV-infected cells. The strong upregulation of IFI27 mRNA in more than
90% of hepatocytes at the 96-hour time point (Figure 5.2A) is not likely to
be caused by activated IRF7, because HCV rarely infects more than 50% of
hepatocytes [424], although we cannot rule out an alternative activation of
IRF7 in uninfected cells in the context of IFN treatment. Finally, our work
also sheds light on the role of U-STAT1 as a transcriptional activator that
has been proposed to be important in prolonging IFN-a—induced gene tran-
scription. We hypothesized that U-STAT1 target genes would also be strongly
expressed at later time points during the 1-week peglFN-a2b dosing interval,
because U-STAT1 was indeed strongly upregulated during the entire week
after peglFN-a2b injection, whereas STAT1 phosphorylation occurred only
during the first day. However, the U-STAT1 target genes identified by Cheon
and Stark [400] had expression kinetics not different from other p-STAT1-
driven ISGs. We therefore addressed the transcriptional activity of U-STAT1
on a STAT1-null background by expressing a mutant tyrosine 701 full-length
STAT1 in U3A cells that lack STAT1. Despite very high expression levels,
U-STAT1 did not induce ISGs in these cells. We conclude that in cells that
lack a WT STAT1, U-STAT1 cannot induce ISG transcription. These findings
do not support a role for U-STAT1 in prolonging peglFN-a—induced gene
transcription in the liver. Nevertheless, we would like to point out that these
findings might be specific for U3A cells, and therefore we cannot formally
exclude that U-STAT1 is driving gene transcription in human hepatocytes. In
conclusion, peglFN-« induces a transient activation of Jak/STAT signaling in
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hepatocytes that is terminated by the prolonged upregulation of USP18. The
predominant transcription factor is ISGF3. Hundreds of genes were induced
and can be classified into four robust clusters with distinct kinetic expres-
sion patterns. ISGs with peak expression levels at later time points were not
induced by secondary transcription factors, and we could not substantiate a
role for U-STAT1 in prolonged ISG induction. Our data do not support the
prevailing explanation for the superior antiviral efficacy of pegylated versus
conventional IFN-a, i.e., that the constantly high serum levels of peglFN-«
cause permanent stimulation of the IFN signal transduction pathways and
prolonged IFN-stimulated gene expression in infected hepatocytes. Rather,
we found that peglFN-a induced a broader range of genes, including many
genes involved in cellular immune responses. The prolonged serum half-life
of peglFN-« permits a continuous stimulation of nonparenchymal cells in the
liver which, contrary to hepatocytes, do not become refractory, but remain
sensitive to peglFN-a during the entire 1-week dosing interval. We therefore
propose that the superior efficacy of peglFN-a is caused by an indirect mech-
anism involving infiltrating or liver-resident immune cells.

5.5 METHODS
5.5.1 Patients

The patients were recruited between March 2006 and April 2010 at the Hepa-
tology Outpatient Clinic of the University Hospital Basel. Patients with CHC
who underwent a biopsy for diagnostic purposes (B1) and provided written
informed consent were screened for hepatic ISG expression. The four-gene
classifier was used to assess the probability of an SVR [393]. Patients with a
high probability of achieving an SVR were asked to participate in the study,
which included a second biopsy (B2) taken at a particular time point after
the first therapeutic injection of peglFN-«. We included 3 patients for each
of the following time points: 16, 48, 96, and 144 hours, and additionally, the
analysis included data on 6 patients from a previous study who had a biopsy
at 4 hours (patients 1, 2, 6, 7, 8, and 9) [389]. The patients received 1.5
ug/kg body weight pegIlFN-a2b (Essex Chemie). Weight-adjusted ribavirin
treatment was initiated only after the second biopsy to avoid confounding ef-
fects. An additional 3 patients treated with 180 ug of pegIFN-a2a (Roche)
were included for the 144-hour time point study. Blood for serum analysis
was taken at the time of the first and second biopsies. Serum HCV RNA was
quantified using the COBAS AmpliPrep/COBAS TagMan HCV Test and the
COBAS AMPLICOR Monitor (Roche Molecular Systems). Details regard-
ing the 6 patients treated with IFN-a2a have been described previously [394].
The patients included in the present analysis correspond to patients 2—7 in the
original publication [394].
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5.5.2 IL28B genotyping

DNA extraction and genotyping for the single nucleotide polymorphism
rs12979860 near the IL28B gene were performed as described previously
[393].

5.5.3 Measurement of serum proteins

Serum was collected before the first injection of pegIFN-« and at the time of
the second biopsy. Serum levels of IFN-a2b and pegIFN-a2a were measured
with an ELISA kit (Verikine 41100; PBL InterferonSource). Standard curves
were prepared separately for peglFN-a2a and -2b by a serial dilution starting
at 12.5 pg/ml. The patient serum samples were diluted 10 times in sample
diluent. IP-10 serum levels were measured with an ELISA (BD OptEIA Set
Human IP-10, 2732KI; BD Biosciences) according to the manufacturer’s in-
structions.

5.5.4 [HC

Four-micrometer-thick serial sections were cut from formalin-fixed, paraffin-
embedded liver biopsy specimens, rehydrated, pretreated for 20 minutes in
ER?2 solution, incubated with a monoclonal rabbit antibody against p-STAT1
(dilution 1:200, no. 9167; Cell Signaling Technology) or USP18 (1:100, cata-
log 4813; Cell Signaling Technology), and counterstained with hematoxylin.
Standard indirect immunoperoxidase procedures were used for IHC (ABC-
Elite; Vectra Laboratories). The staining procedure was performed with an
automated stainer (Bond; Vision BioSystems).

5.5.5 RNA extraction and microarray hybridization

Total RNA was extracted from human liver tissue using QIAzol reagent and
the RNeasy Mini Kit (QIAGEN) according to the manufacturer’s instructions.
Gene expression was assessed by microarray analysis using Affymetrix Hu-
man Genome U133 Plus 2.0 arrays. Total RNA (1 pg) from each sample
was reverse transcribed using a Genechip 3’ IVT Express Kit (Affymetrix) ac-
cording to the manufacturer’s instructions. The Hybridization and Wash Kit
(Affymetrix) was used to hybridize the samples. All original array data are
deposited in the NCBI’s Gene Expression Omnibus (GEO GSE48445).

5.5.6 RNAISH

For the present study, we adapted a highly sensitive and specific ISH
system (QuantiGene ViewRNA; Affymetrix). OCT-embedded and shock-
frozen biopsies were cryosectioned (10-pm-thick sections) in a cryostat and
mounted on Superfrost Plus Gold glass slides (Thermo Fisher Scientific).



5.5 METHODS

Upon fixation (4% formaldehyde, 16—18 hours at 4°C), washing, and dehy-
dration in ethanol, the sections were pretreated by boiling for 1 minute in Pre-
treatment Solution, followed by a 10-minute digestion in Protease QF (both
from Affymetrix). Sections were hybridized for 2 hours at 40°C with Quanti-
Gene ViewRNA probes against MX1, IFI27, SOCS1, and PDL1 (Affymetrix).
Bound probes were preamplified and subsequently amplified according to the
manufacturer’s instructions. Labeled oligonucleotide probes conjugated with
alkaline phosphatase (LP-AP) type 1 or type 6 were added, followed by the
addition of fast red or fast blue substrate used to detect ISG mRNAs. Finally,
the slides were counterstained with Meyer’s hematoxylin and embedded with
DAPI-containing aqueous mounting medium (Roti-Mount FluorCare DAPI;
Roth). Random images were acquired using a laser scanning confocal micro-
scope (LSM710; Zeiss) and Zen?2 software (Zeiss). All images were acquired
with identical settings and saved in the Zeiss confocal file format (.Ism).

5.5.7 MARA

Here, we provide a brief description of MARA and its particular use in this
work. For a detailed description of the general approach, the reader is referred
to the FANTOM Consortium study [50]. To model the activity A,, ; of a motif
m in sample s, MARA uses a simple linear model that relates the number of
binding sites Np,;, in promoter p, for each of a large number of regulatory
motifs m, to the expression E, s of promoter p in samples:

Ep,s =Cs+ Cp + ZNp,mAm,SI (5.1)
m

where ¢ represents the mean expression in sample s, and ¢, is the basal ex-
pression of promoter p. To determine promoter expression levels, we first
computed the transcript expression levels by averaging weighted probeset sig-
nals (preprocessed as described above) over all probesets that matched a par-
ticular transcript as annotated by Affymetrix (Affymetrix annotation, Release
31 [NM accession RefSeqs only]). In this averaging, a probeset’s signal was
weighted by the number of transcripts it matches. Subsequently, transcript
expression levels were mapped to the human promoterome by averaging the
weighted expression levels over all transcripts associated with a particular
promoter. In this averaging, each transcript’s signal was weighted by the in-
verse of the number of promoters that express this particular transcript. To
predict the TFBSs in each promoter, we used a curated set of transcription
factor-binding motifs from SwissRegulon [425] with minor changes: since
the SwissRegulon IRF1,2,7 motif only covered the IRF core consensus se-
quence, we replaced it with the ISRE (ThioMac-LPS-exp) motif to better
cover the ISGF3 and IRF9 binding sites in our analysis. In addition, we re-
placed the three highly redundant STAT motifs from Swiss-Regulon with a
single, high-quality GAS motif (HelaS3-STAT1-ChIP-Seq, as the GAS motif
representative). Both motifs were obtained with HOMER software [397]. By
applying MARA, we obtained for every motif m in each sample s an expected
activity Ay, s and a corresponding error oy, s.
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5.5.8 Determining donor-specific motif activity changes due to IFN-w treat-
ment

For every donor and every motif m, we calculated the difference between the
motif activity before IFN-a treatment (A%) and the motif activity after [FN-«
treatment (A7,):

b
AD = A — AV (5.2)
as well as the corresponding error:

o =/ (04)2 + (0h)2. (5.3)

Thus, for every motif m and each donor d, the expression data D imply an
expected activity change Aﬁ ;4 With corresponding error Jﬁ ;- Consequently,
the probability of the data D, assuming a true (unobserved) activity change
Aa 4» 18 @ Gaussian with the expected mean Aﬁ% 4 and error 0’7%, i
2
AN A
1 (Am,d - Am,d)

exp 5 (Uﬁ,d)z . 5.4

. 1
P(D|A% ;) = ————
(DlAna) V2nrah

5.5.9 Determining mean motif activity changes due to peglFN-a treatment
at certain time points

To obtain mean activity changes for every group of donors g€G whose sec-
ond biopsy was taken at an equal time point after peglFN-a treatment, we
assumed that the activity changes A% of motif m were Gaussian distributed
(with mean Aﬁq and variance ( ) ). Accordingly, the probability of an
activity change AnA1, ;4 in donor d is:

(A8, a8

1
AL = —-exp|—x . (5.5)
( d| m,g T, d) \/Z?Uyﬁ,d p 2 (o-nALd)z

For each donor deg, we combine Equations 5.4 and 5.5 and integrate out all
unknown (true activity changes) fla 4 S0 that we can calculate the probability
of the data D given the mean activity of the group A%Ig and the corresponding

error oy : mg:
PO o) = TT| [ PDIAR PR 14D g o8 )4,
deg L/ =
(5.6)
Solving these integrals analytically gives:
1
P(D|Ap g ome) =11
deg \/21((0h )2+ (05 1)?)
2o " (5.7)

(AB, — AB, )2
P [‘z«%)z n <o—,ﬁd>2>] '
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We then numerically determine the value U,ﬁ,*g that maximizes Equation 5.7.

A
m,g>

probability P (Aﬁ%, |D), which is a Gaussian with mean

Assuming a uniform prior for A% ., we obtain an expression for the posterior

A P
m,
B Zdeg (UI%Z’)Z—"_(Urﬁ,d)Z
mg — 1 ’ (5.8)
):dEg (gﬁl»ﬁg)z+(aﬁ/d)2
and error
1
=A
Img = 1 , (5.9)
Zdeg (gy%)zj%g’ﬁ/d)z
where (7,%2, is the maximum likelihood estimate of Equation 5.9. We call A%,g

the mean activity change for group ¢ and (7'7,A1’g the corresponding error. To
obtain a measure for the significance of the mean activity change for group g,
we calculate a corresponding z value:

A
Zye = a,%gg (5.10)

5.11)

To calculate a P value for a calculated z value z2, we used the null hypoth-
esis that the z statistic Z%g in each group g, i.e., the ratio between the motif
activity change and its error, was drawn from a Gaussian with mean zero and

variance 1. Under this null hypothesis, the distribution of the statistic,
A2 3 A 2
(Z)?* G = Zl(zm,g) (5.12)
g:

with G representing the number of groups (wherein each group represents a
time point), is Gamma-distributed, and we used this distribution to calculate
the P value corresponding to the z value of each of our motifs.

5.5.10 TFBS analysis

TFBS analysis was carried out using HOMER software [397] (http://biowhat.
ucsd.edu/homer/motif/index.html). Briefly, promoter regions (2 kbp upstream
and 500 bp downstream of the transcription start site) of all genes within each
cluster were screened for known TFBS. Enrichment of TFBS in our gene lists
relative to all human promoter regions was assessed by hypergeometric tests.
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5.5.11 Quantitative real-time RT-PCR

RNA was reverse transcribed by Moloney murine leukemia virus reverse tran-
scriptase (Promega) in the presence of random primers (Promega) and de-
oxynucleoside triphosphate. The samples were incubated for 5 minutes at
70°C and then for 1 hour at 37°C. The reaction was stopped by heating at
95°C for 5 minutes. SYBR real-time PCR was performed using the SYBR
Green PCR Master Mix (Applied Biosystems). Intron-spanning primers for
GAPDH, HERCS®, IFI27, IF144L, ISG15, LGALS3BP, MX1, OAS1, OAS2,
RSAD?2, and USP18 were used (Supplemental Table C.5). All reactions were
performed in duplicate on an ABI 7500 Real-Time PCR System (Applied
Biosystems). mRNA expression levels of the transcripts were normalized to
GAPDH using the ACt method.

5.5.12 Western blot analysis

Whole-cell extracts and blotting of human liver samples and cells were per-
formed as described [389]. The membranes were incubated with primary anti-
bodies against p-STAT1 (1:1,000, catalog 9171; Cell Signaling Technology),
STAT1 (1:1,000, catalog 610116; BD Transduction Laboratories), USP18
(1:1,000, no. 4813; Cell Signaling Technology), and B-actin (1:2,000, A5441;
Sigma-Aldrich) diluted in Tris-buffered saline containing Tween-20 (TBST)
overnight at 4°C. After three washes with TBST, membranes were incubated
for 1 hour at room temperature with fluorescent secondary goat anti-mouse
(IRDye 680) or anti-rabbit (IRDye 800) antibodies (both from LI-COR Bio-
sciences). Blots were scanned using the Odyssey Infrared Imaging System
(LI-COR Biosciences).

5.5.13 Cell culture

Huh7 cells were maintained in DMEM (Gibco) supplemented with 10% FBS.
2fTGH and U3A STAT1~/~ cells were maintained in DMEM with 10%
FBS and 250 pg/ml of hygromycin B (Sigma-Aldrich). The stably trans-
fected U3A STAT1~/~ cells were selected with 800 pg/ml of G418 (cata-
log 345810; Calbiochem). Cells were treated with 1,000 U/ml human IFN-«
(Roferon; Roche) and/or with 5 pg/ml actinomycin D (Sigma-Aldrich).

5.5.14 Site-directed mutagenesis and transfection

The STAT1-flag-pcDNA3 (STAT1-WT) was provided by J.E. Darnell (Rock-
efeller University, New York City, New York, USA). STAT1 (Y701F)-flag-
pcDNA3 was generated from STATI1-flag-pcDNA3 using the method de-
scribed by Mikaelian and Sergeant [426]. Briefly, two consecutive PCR
reactions with 30 cycles were performed using 20 ng of template DNA,
200 uM dNTP, 1 U of Pfu DNA polymerase (Promega), and 5 uM of
each of the following primers: 5’-CTGGCACCAGAACGAATGA-3’; 5°-
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ATTTAGGTGACACTATAG-3’; 5’-GGAACTGGATTCATCAAGACTGAG-
3’; and 5’-CTCAGTCTTGATGAATCCAGTTC-3’, in a final volume of 25
ul. The amplified products were loaded on a 1.5% agarose gel, excised, di-
gested by Blpl and Apal, and ligated into STAT1-flag-pcDNA3, previously
cut with the same restriction enzymes. Mutation of Tyr701 to Phe was con-
firmed by sequencing. U3A STAT1~/~ cells were transfected with 1 I(Eg
of the respective plasmid using Fugene HD (Roche) according to the manu-
facturer’s instructions. Cells were selected with 800 pg/ml of hygromycin B
(Roche) for 15 days, and single clones were chosen.

5.5.15 Nuclear run-on assay

After IFN-a treatment, cells were washed with 1x PBS, treated with
0.25% trypsin for 4 minutes (Gibco), suspended in 10 ml of ice-cold
diethylpyrocarbonate-treated (DEPC-treated) 1x PBS, and concentrated by
centrifugation (160 g, 10 minutes). Cells were then washed once with ice-
cold buffer 1 containing 10 mM Tris-HCI (pH 7.4), 150 mM KClI, and 8 mM
Mg acetate, centrifuged at 530 g for 10 minutes, and subsequently lysed with
buffer 1 with the addition of 0.5% Igepal (Sigma-Aldrich) for 10 minutes at
4°C. Nuclei were then isolated by a sucrose gradient (600 mM), then washed
and suspended in buffer containing 40% glycerol. Nuclei were immediately
used for the run-on assay. Nuclei (5 X 10° ) were incubated in reaction buffer
containing 5 mM Tris-HCI (pH 8.0), 2.5 mM MgCl 2, 150 mM KClI, and
2.5 mM each of ATP, GTP, CTP, UTP, and biotin-16-UTP (Roche) for 45
minutes at 30°C. RNA was then isolated with TRIzol according to the man-
ufacturer’s instructions. Subsequently, biotinylated RNA was purified with
streptavidin-coupled beads (Dynabeads M-280; Invitrogen) according to the
manufacturer’s instructions, and RNA was again isolated with TRIzol.

5.5.16 Statistics

Microarray analysis was performed with Bioconductor packages within the
R statistical environment [427]. Data were preprocessed using the standard
RMA algorithm. Batch effects observed between the human liver samples
that were processed and hybridized at different times were corrected using
the ComBat algorithm [428]. Probesets with very low expression intensities
(below 80 in the highest-expressing sample) as well as the control probesets
were excluded from the subsequent analyses. The list of significantly regu-
lated probesets was compiled as follows: (a) probesets showing more than
a 2-fold difference in levels between the B1 and B2 samples taken from
the same patient were selected; (b) for every time point, the probesets that
changed in two-thirds of the patients were retained. Probesets fulfilling those
criteria were included in the clustering analysis. The expression data were
normalized so that total expression levels did not affect the grouping of the
probesets. An infinite Gaussian mixture model with a Dirichlet process prior
was used to produce the gene clusters. This nonparametric model suggests
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a growing number of Gaussians to describe the gene expressions. With the
special choice of a Dirichlet process prior, the number of clusters need not
be fixed in advance, but is adaptively chosen based on the observed data. The
results were tested for robustness by moderately changing the hyperparam-
eters that control the Dirichlet process. Enrichment of Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathways and GO biological process terms
were assessed using DAVID software, version 6.7. Additional statistical anal-
yses using a 2-tailed Student’s t test were carried out using GraphPad Prism
software, version 6.0 (GraphPad Software). A P value of less than 0.05 was
considered significant.

5.5.17 Study approval

All patients provided written informed consent to participate in the study,
which was approved by the ethics committee of Basel.
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GLOBAL 3> UTR SHORTENING HAS A LIMITED
EFFECT ON PROTEIN ABUNDANCE IN
PROLIFERATING T CELLS

6.1 ABSTRACT

Alternative polyadenylation is a cellular mechanism that generates messenger
RNA (mRNA) isoforms differing in their 3’ untranslated regions (3’ UTRs).
Changes in polyadenylation site usage have been described upon induction
of proliferation in resting cells, but the underlying mechanism and functional
significance of this phenomenon remain largely unknown. To understand the
functional consequences of shortened 3° UTR isoforms in a physiological
setting, we used 3’ end sequencing and quantitative mass spectrometry to de-
termine polyadenylation site usage, mRNA and protein levels in murine and
human naive and activated T cells. Although 3° UTR shortening in prolifer-
ating cells is conserved between human and mouse, orthologous genes do
not exhibit similar expression of alternative 3> UTR isoforms. We generally
find that 3° UTR shortening is not accompanied by a corresponding change
in mRNA and protein levels. This suggests that although 3° UTR shortening
may lead to changes in the RNA-binding protein interactome, it has limited
effects on protein output.

6.2 INTRODUCTION

Expression of messenger RNA (mRNA) precursors transcribed by RNA poly-
merase II requires recognition and processing of signals in the pre-mRNA
by the cleavage and polyadenylation factors to guide proper formation of
3’ ends. Most mammalian genes have multiple polyadenylation (poly(A))
sites [97, 98], whose regulated selection leads to the production of alterna-
tive mRNA forms that differ in localization, stability and/or protein-coding
potential. A systematic shift towards coding region-proximal 3’ end process-
ing sites, leading to an overall shortening of 3’ untranslated regions (3° UTRs)
was recently observed in activated compared with naive lymphocytes [102] as
well as in cells that proliferate rapidly [100, 101]. The differentiation of em-
bryonic stem cells and, conversely, the induction of pluripotency in somatic
cells, are associated with changes in opposite directions in 3° UTR lengths
[97, 430, 431]. The functional significance of this regulation is not well under-
stood. Initial studies suggested that the lack of microRNA (miRNA)-binding
sites in the shortened 3’ UTRs leads to an increased stability of the mRNAs
and an increased protein output [101, 102]. This conjecture was later refuted
by a transcriptome-wide analysis that was carried out in mouse embryonic
fibroblasts, where small differences in the relative stability of 3 UTR iso-
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forms were found [103]. MiRNAs are only one class of regulators that act
on 3’ UTRs, guiding the RNA-induced silencing complexes to target mRNAs
to increase their decay rate and reduce translation [112, 432]. The 3° UTRs
contain binding sites for many RNA-binding proteins (RBPs) and integrate a
variety of signals for mRNA localization, decay and translation. Of the hun-
dreds of RBPs that bind and potentially regulate various aspects of mRNA
metabolism [433, 434], at least some, such as the human antigen R (HuR)
[435] and the A/U-rich-element-binding factor-1 (also known as the hetero-
geneous nuclear ribonucleoprotein D or hnRNPD) [436], have been reported
to increase mRNA stability. A very recent study that was carried out in yeast
[437] found that the stability of transcripts is not correlated with the length
of their 3° UTRs. However, the protein that appeared to cause the largest
difference in decay rates between 3’ UTR isoforms in this study, Puf3, had
an overall destabilizing effect (presumably on the longer 3> UTR isoforms,
containing additional Puf3-binding sites compared with the shorter 3> UTR
isoforms). Thus, the functional relevance of the observed systematic reduc-
tion in 3 UTR lengths in relation to cell proliferation remains unclear. To
determine the consequences and functional relevance of 3> UTR shortening
during lymphocyte activation, we undertook a systematic investigation of the
changes in the poly(A) site usage and in the protein output of the correspond-
ing genes in mouse and human T cells.

6.3 RESULTS
6.3.1 Activated T cells express mRNAs with shortened 3’ UTRs

We focused our investigation on the T cell activation system, in which the
3" UTR shortening was initially described [102]. We dissected spleen and
lymph nodes from C57BL/6 mice and isolated T cells by MACS purification.
T cells were activated for 72 h with CD3/CD28 Dynabeads and IL-2 (see 6.5)
and libraries of 3’ ends of mature mRNAs were prepared and processed with
the A-seq protocol as described previously [81]. Excluding reads that may
result from internal priming, we identified 269,751 high-confidence poly(A)
sites in the mouse genome, to which a total of 32,388,835 reads mapped
(Supplementary Table D.1). For each library, more than 70% of the reads
mapped to terminal exons of transcripts and only a small fraction (less than
0.5%) to other exons (Fig. 6.1A). Compared with resting T cells, the density
of 3’ end sequencing reads in terminal exons showed a clear and highly
reproducible shift towards the 5’ end of terminal exons in the activated T
cells (Fig. 6.1B).

To further validate the quality and reproducibility of our results, we com-
pared libraries on gene-by-gene basis using the number of reads mapped to
terminal exons of transcripts assigned to a particular gene as a proxy for the
expression level of a gene. Requiring a minimal expression level of five reads
per million in at least one of the four libraries, we identified 9,928 genes as
being expressed in naive and activated murine T cells. Biological replicates
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of both naive and activated T cells showed very high correlation (r>0.94;
Supplementary Fig. D.1). The genes that were upregulated in activated T
cells showed a clear enrichment of cell cycle-associated Gene Ontology
(GO) terms, whereas immune system-related GO terms were most enriched
among downregulated genes (Supplementary Table D.2). These results are
consistent with the physiological state of the cells and further demonstrate

that our 3’ end sequencing data accurately reflect transcript-level changes.

To investigate the dynamics of 3’ end processing, we first clustered the
poly(A) sites that were very closely spaced and probably the result of
imprecise 3’ end cleavage and identified distinct poly(A) sites [81]. The
nucleotide distribution in regions flanking the inferred sites and the presence
of upstream polyadenylation signals indicate that our strategy allowed us
to identify genuine poly(A) sites (Supplementary Fig. D.2A,B). We then
restricted our analysis to tandem poly(A) sites that were located in the same
terminal exon, as was done in a previous study [102]. Overall, we inferred
that 3,116 genes undergo alternative polyadenylation (APA) at tandem
poly(A) sites (Supplementary Table D.3). The number of reads assigned to
poly(A) sites in the 5’ half and the 3’ half of terminal exons showed good
reproducibility between biological replicates indicating that our data can
be used to analyse the relative use of alternative poly(A) sites in different
conditions (Supplementary Fig. D.2C).
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Figure 6.1: 3’ end sequencing reveals increased proximal poly(A) site usage
upon activation of murine T cells. (A) Annotation of reads obtained from mRNA 3’
end sequencing of naive and activated T cells. Two biological replicates were used for
each condition. (B) Coverage of terminal exons by 3’ end sequencing reads as a func-
tion of the distance from the exon start. Activated T cells show increased coverage
of the 5° compared with the 3’ region of terminal exons, resulting from preferential
use of proximal poly(A) sites. (C) Contour plot of the relative use of proximal and
distal poly(A) sites in naive and activated T cells. Only genes with tandem poly(A)
sites are shown. Genes that were identified to undergo significant changes in poly(A)
site use are marked by coloured triangles with blue indicating increased use of the
proximal poly(A) site and red indicating increased use of the distal poly(A) site in
activated T cells. (D) Cumulative distribution function of the change in proximal vs
distal poly(A) sites between pairs of samples (data shown in C). The shift towards
increased usage of proximal poly(A) sites is statistically highly significant (P-values
obtained by Mann—Whitney test on 3,116 genes with tandem poly(A) sites).

As expected from a previous study [102], there was a marked shift towards
increased usage of proximal poly(A) sites in activated compared with naive
T cells (Fig. 6.1C). The shift is not restricted to a small subset of genes, but
affected the entire transcriptome (Fig. 6.1D). That is, more than 70% of genes
showed an increased use of proximal poly(A) sites upon T cell activation. We
used the DEXSeq software to analyse the differential use of poly(A) sites
[438]. A total of 157 genes showed a significant difference (P-value<<0.05)
in the proximal-to-distal poly(A) site use between naive and activated T cells
(Supplementary Table D.4), and 150 of these genes (96%) had an increased
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abundance of proximal transcript isoforms in activated T cells. This set in-
cludes Bcl2, Crebl and Tnfrsf9 (CD137), genes that are known to influence
proliferation [439-441]. Whereas the increased proximal poly(A) site use of
Bcl2 and Tnfrsf9 is associated with increased expression, consistent with the
initial reports of the effect of 3> UTR shortening on gene expression, the ex-
pression of Crebl, is rather reduced, at least at the mRNA level. An example
of a gene with a marked shift towards increased proximal poly(A) site use
upon T cell activation is shown in Supplementary Fig. D.3A, which depicts a
CLIPZ [442] genome browser screenshot of the 3° UTR of Reep5. It is well
known that upon activation, T cells undergo a dramatic remodelling of the
cytoskeleton [443]. Some of the genes that are involved in this process also
show a significantly higher use of proximal poly(A) sites. These are Pak1 and
Prkca (PKCa), which are involved in signalling transduction cascades, as well
as Wasf2 (WAVE2) [444], Marcks [445] or Jmy [446], which interact directly
with actin. Again in contrast to the expectation that the stability of short 3’
UTR isoforms is higher compared with the long 3° UTR isoforms [101], all of
these immune response-related genes are downregulated at the mRNA level,
in spite of their increased use of proximal poly(A) sites. Moreover, when we
analysed separately genes that are significantly downregulated or upregulated
at the mRNA level upon T cell activation, we found that downregulated genes
showed a more pronounced 3’ UTR shortening than upregulated genes (Sup-
plementary Fig. D.3B). This motivated us to investigate the relation between
the change in poly(A) site use and the change in mRNA/protein abundance in
more detail.

6.3.2 Regulatory element content of 3° UTR isoforms

Among the regulatory elements that are lost when proximal poly(A) sites
are used more frequently, are binding sites for miRNAs that in naive T cells
could contribute to the repression of gene expression [102]. To assess the
consequence of 3° UTR shortening on the miRNA-mRNA interactome of
T cells, we retrieved miRNA target predictions from the EIMMo database
[255] and counted the number of target sites for each miRNA seed family
in the common and alternative parts of the 3° UTRs of genes with tandem
poly(A) sites (Supplementary Table D.5). MiRNA target sites that are located
between the most proximal and most distal poly(A) site in the alternative 3’
UTR region constitute a significant fraction of all predicted target sites. This
is a reflection of the large change in 3° UTR length that is associated with
T cell activation. For example, 65% of all the target sites predicted for the
miR-29a seed family are located in the alternatively processed region of the
3> UTRs. To examine which miRNA regulators would be most affected by
3’ UTR shortening, we carried out the following test. Each site predicted by
EIMMo has an associated probability of being under evolutionary selection.
By summing the probabilities of individual binding sites in a 3° UTR, we
obtained an expected number of sites that are under selection. Performing this
computation for individual transcript isoforms with their corresponding ex-
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pression levels estimated based on 3’ end sequencing, we obtained expected
numbers of sites in the isoforms produced in a specific condition (activated
and naive T cells). As expected from a global shortening of 3° UTRs, we
find a net loss of target sites for all miRNAs. However, the loss of target sites
by 3’ UTR shortening does not affect all miRNAs to a similar degree. To
identify which miRNAs would be most affected by the 3° UTR shortening,
we randomized the predicted interactions involving the alternative parts of 3’
UTRs. This amounts to randomizing the “labels” that indicate which miRNA
binds an individual site. Computing the z-score of the observed change in
the number of sites relative to what would be expected from the randomized
data set, we found large differences between miRNAs. In particular, miRNAs
that have been implicated in the regulation of cell proliferation appear at
the extreme of the z-score range, some (miR-17, miR-365 and miR-135a
[447-449]) losing more sites than expected and others (miR-26a, miR-103
[450, 451]) losing less sites than expected (Fig. 6.2A). MiRNAs with a
cell type-specific expression show a less extreme pattern of site loss. These
results indicate that APA at proximal poly(A) sites in proliferating cells
does impact the susceptibility of the corresponding genes to regulation by
miRNAs that themselves are involved in cell proliferation.
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Figure 6.2: Quantification of the loss of regulatory elements upon 3’ UTR short-
ening. Influence of 3’ UTR shortening on miRNA (A) and RBP (B) target sites. The
x axis represents the z-score of the loss of binding sites obtained by comparing the
observed loss of target sites with what would be expected from random permutations
of target sites across the set of alternative 3° UTRs. A negative z-score indicates that
the loss in binding sites is greater than if sites were placed randomly in alternative
regions of 3° UTRs. RBPs with a stabilizing effect on their transcript targets as as-
signed in Ray et al. [452] are marked in blue, whereas RBPs with a destabilizing
effect are marked in red. The inset shows z-scores obtained for representative PWMs

of RBPs with stabilizing and destabilizing effects (P-value obtained from a Wilcoxon
rank sum test).

We similarly evaluated the change in the susceptibility of transcripts to regula-
tion by RBPs. Binding motifs for a relatively large set of RBPs were recently
published in the form of positional weight matrices (PWMs) [452]. Based on
these PWMs and on the alignments of a number of genomes (see Methods),
we predicted evolutionarily conserved RBP-binding sites in the 3’ UTRs of
expressed genes with a method that was introduced previously [290]. Apply-
ing the procedure that we described above for miRNAs starting from the in-
ferred probabilities of RBP-binding sites to be under evolutionary selection,
we determined which RBPs lose the most or least sites upon increased use

of proximal poly(A) sites, compared with what we would expect by chance

(Fig. 6.2B). As for miRNAs our analysis revealed large differences between

individual RBPs. The expected impact of this regulation is, however, more
complex because in contrast to miRNAs, for which the evidence for target
destabilization is overwhelming [432], RBPs have a variety of functions. An
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individual RBP frequently acts at multiple levels of gene regulation, including
APA [453]. Nonetheless, Ray et al. [452] have already associated a few of the
RBPs from their study with changes in mRNA stability. These proteins are
indicated by the red (destabilizers) and blue (stabilizers) colours in Fig. 6.2B.
We do not observe a clear trend of destabilizing RBPs losing more sites and
stabilizing RBPs losing less sites than expected by chance, which would be
consistent with the small bias of shorter 3> UTR isoforms being more stable
than the corresponding long 3 UTR isoforms [103]. Two proteins with the
best established function in mRNA stabilization, ELAVL1 (HuR) and PUM2
(Pumillio 2), appear to be losing less sites than expected. To facilitate further
investigations into the impact of 3 UTR shortening on the fate of individual
mRNAs, we have summarized the transcripts that are predicted to be regu-
lated by those regulators whose impact on the transcriptome is most affected
by the systematic change in poly(A) site use (Supplementary Data D.9).

6.3.3 The impact of 3’ UTR shortening on mRNA abundance

The above analysis suggests that, consistent with the conclusions drawn from
the initial studies of 3> UTR shortening [101, 102], preferential processing
at proximal poly(A) sites in proliferating cells leads to an overall loss of
destabilizing sequence elements. This would be expected to lead to increased
expression of genes with tandem poly(A) sites, yet it is not what we observed
in our initial analysis of genome-wide gene expression changes. We next
focused on genes with a simple pattern of polyadenylation, considering only
genes with tandem poly(A) sites and genes with a single poly(A) site, and
excluding genes with more complex patterns of APA (such as alternative
terminal exons). We further restricted our set to genes for which spurious
A-seq reads in the rest of the gene body including cryptic intronic sites
accounted for at most 10% of the reads that were assigned to main poly(A)
sites. We estimated the overall mRINA expression level of each gene as the
sum of A-seq reads assigned to poly(A) sites located in the terminal exon.
Comparing the change in total mRNA levels between naive and activated
T cells for genes with two, three or four tandem poly(A) sites relative to
genes with a single poly(A) site, we found a slight trend of upregulation of
genes with multiple poly(A) sites in activated cells (Fig. 6.3A). Considering
genes with precisely two poly(A) sites, we asked whether the change in total
mRNA level can be attributed to the change in the relative use of proximal
and distal poly(A) sites. If gene expression was mainly regulated through
APA with the short 3> UTR isoform being significantly more stable than the
long isoform, we would expect a positive correlation between the change in
the total mRINA level and the change in proximal vs distal polyadenylation
site use. As shown in Fig. 6.3B, we did not detect such a relationship.
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Figure 6.3: Evaluation of changes in mRNA levels in naive and activated murine
T cells with respect to changes in poly(A) site usage. (A) Comparison of fold-
changes in mRNA abundance for genes with a single or multiple poly(A) sites
(PAS; P-values obtained from a one-sided t-test). (B) Correlation between changes in
mRNA abundance and changes in poly(A) site usage. The centre of mass of the cloud
of points is at a positive x-value, reflecting the noted increase in proximal poly(A)
site use in dividing cells. (C) Contour plot of the log-likelihood of the data as a func-
tion of the mean and standard deviation of the log ratio of decay rates (z) of the short
and long 3’ UTR isoforms. The colour gradient ranging from red to white describes
the log-likelihood obtained under the model, with white values showing the better fit.
The box marks the 95% posterior probability interval of the parameters (j/z, 03).

The observed abundance of short and long 3’ UTR isoforms in different con-
ditions depends not only on the relative rates of polyadenylation at the two
sites, but also on the overall rates of transcription and the relative rates of
decay of the two transcript forms in the two conditions. To estimate the rela-
tive decay rates of short and long isoforms from the 3’ end sequencing data,
eliminating the effect of confounding factors, we developed a mathematical
model (described in Methods) based on the assumption that the distribution
of changes in the transcription rate of genes between activated and naive T
cells is similar for genes with a single poly(A) site and genes with two tan-
dem poly(A) sites.

The contour plot of the log-likelihood of the data for the 712 genes with two
tandem poly(A) sites under the model, as a function of the mean and stan-
dard deviation of the log-ratio of the decay rates of long and short isoforms
is shown in Fig. 6.3C. We infer that yi,, the average of the log-ratio of de-
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cay rates is located between -0.84 and 0.95. Thus, consistent with a recent
study in which the decay rates of long and short isoforms were estimated in
mouse fibroblasts [103], we found little evidence for short 3> UTR isoforms
being generally more stable compared with long 3’ UTR isoforms. Because 3’
UTR-mediated interactions with RBPs may also affect the translation rates of
mRNAs, we next evaluated the protein output of genes with tandem poly(A)
sites in naive and activated T cells.

6.3.4 The impact of 3° UTR shortening on protein abundance

To quantify dynamic protein changes on a system-wide level, we combined
high mass accuracy mass spectrometry with isobaric tandem mass tagging
(TMT) [454] and extensive off-gel electrophoresis sample fractionation (Fig.
6.4A) [455].
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Figure 6.4: Influence of 3° UTR shortening on protein levels in murine T cells.
(A) Quantitative mass spectrometry (liquid chromatography-mass spectrometry (LC-
MS))-based proteomics workflow. Proteins extracted from naive and activated mouse
and human T cells were digested and subjected to label-free and tandem mass tag
(TMT) quantification, respectively. The TMT-labelled peptides were further fraction-
ated using isoelectric focusing before LC-MS analysis to increase proteome cover-
age. Finally, the ratios obtained by the TMT approach were correlated with the label-
free quantities to correct for possible ratio distortion effects in the final TMT-based
quantitative data sets, which comprised more proteins than the data sets based on
LFQ. (B) Correlation of mRNA and protein abundance changes between activated
and naive T cells. (C) Change in protein abundance between activated and naive T
cells for genes with one to four or more tandem poly(A) sites. (D) Correlation be-
tween the change in proximal poly(A) site use and the change in protein level.

Performing our experiment in biological duplicates we obtained a total of
138,816 peptide-spectral matches, 48,113 unique peptides and overall quan-
tified 6,187 protein clusters/genes at 1% false discovery rate. It has been
reported that ratio compression arising from co-isolated peptides is preva-
lent with TMT-labelled peptides and needs to be controlled to achieve accu-
rate protein quantification [456]. Therefore, we carried out additional unbi-
ased, label-free quantifications (LFQs) of all samples. As reported previously
[457, 458], we observed a good linear correlation of TMT and LFQ protein
ratios (Supplementary Fig. D.5A,B). This suggested that the ratio compres-
sion of TMT can be largely corrected by an average compression factor [457]
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and we therefore recalculated all TMT ratios accordingly (see Supplementary
Methods).

Analysis of protein expression data revealed the expected high correlation be-
tween replicate measurements (Supplementary Fig. D.4A), and quantitative
western blots confirmed the protein-level changes between naive and acti-
vated mouse T cells for ten randomly selected proteins (see Supplementary
Table D.6). Furthermore, direct comparison of mRNA levels to protein levels
(iBAQ derived from LFQ) shows correlations comparable to those recently re-
ported for a variety of tissues (Supplementary Fig. D.5C) [459]. The changes
in total mRNA levels determined as described in the previous section also
correlated well with the changes in the corresponding protein levels between
activated and naive T cells (Fig. 6.4B). We then asked whether genes with
tandem poly(A) sites show a systematic change in protein levels compared
with genes with a single poly(A) site (Fig. 6.4C) and found that for none of
the groups with multiple tandem poly(A) sites could a significant difference
be detected. Moreover, similar to the results obtained from the corresponding
analysis on the mRNA level, we found no correlation between the change
in proximal vs distal poly(A) site use and the change in protein levels (Fig.
6.4D). These data indicate that 3° UTR shortening does not have the same
consequence on the mRNA/protein abundance of all affected genes.

6.3.5 Weak evolutionary conservation of APA

To determine whether the regulation of polyadenylation at tandem poly(A)
sites is evolutionarily conserved, we performed 3’ end sequencing and
quantitative proteomics on naive and activated T cells obtained from a human
blood donor. We found that similar to the mouse T cells, human T cells also
had a pronounced increase in the use of proximal polyadenylation sites upon
activation (Supplementary Fig. D.6A,B). Also similar to the mouse T cells,
the change in polyadenylation site use does not correlate with the change in
gene expression, neither at the mRNA (Fig. 6.5A) nor at the protein level
(Fig. 6.5B).
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Figure 6.5: Evolutionary conservation of alternative polyadenylation at tandem
poly(A) sites. Assessment of the impact of 3’ UTR shortening on mRNA (A) and
protein (B) levels in naive and activated human T cells. (C) Comparison of changes
in mRNA levels upon T cell activation in murine and human T cells. (D) Comparison
of changes in poly(A) site use upon T cell activation in murine and human T cells.
Only orthologous genes that showed the same number of alternative poly(A) sites in
mouse and human were considered.

We then investigated to what extent the changes in gene expression in the T
cell activation system are conserved between mouse and human. We used the
NCBI HomoloGene database [460] to infer mouse—human orthologous genes.
Comparing the changes in expression of orthologous genes, we found a good
correlation at both the mRNA (Fig. 6.5C) and the protein (Supplementary
Fig. D.6C) level. However, the change in the relative use of tandem poly(A)
sites is not conserved. Of the 1,734 genes that show regulation by a tandem
poly(A) site mechanism in both murine and human T cells, 691 genes share
the same number of tandem poly(A) sites in both species. Analysis of this
set of genes (Fig. 6.5D) and the bigger set of genes that generally undergo
APA in both species (Supplementary Fig. D.6D) did not reveal a correlation
between the changes in the relative use of alternative poly(A) sites of orthol-
ogous genes. The set of genes that showed a strong (at least 4-fold, n=64)
shift to proximal poly(A) site use in both human and murine T cells is not
significantly enriched in any particular GO category. However, genes that are
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most enriched in this set are related to “stem cell division” (adj. P=0.26)
and “positive regulation of mitotic cell cycle” (adj. P=0.28). Last, we investi-
gated whether the same RBP and miRNA regulators would be affected by 3’
UTR shortening in human and mouse. We therefore predicted target sites of
RBPs and miRNAs in the alternatively processed human 3° UTRs and com-
pared the z-scores of individual regulators between human and mouse (Sup-
plementary Fig. D.6E,F). Indeed, we observed some degree of conservation
at this level. For example, we inferred that miRNAs of the Mir17 cluster lose
more sites than expected in both systems (mouse: z-score= —2.1, human:
z-score= —1.0), whereas the RBP PUM2, which has a stabilizing effect on
its targets, retains more sites than expected (mouse: z-score= 2.1, human: z-
score=1.3).

Our analysis thus indicates that, although the process of 3° UTR shortening
in dividing cells is conserved between mouse and human, it is not highly
conserved at a quantitative level and on a gene by gene basis. Furthermore,
our results indicate that APA at tandem poly(A) sites contributes little to the
mRNA and protein output of individual genes. Rather, what appears to be con-
served is the restructuring of the RBP and miRNA interactome. That is, even
though the 3’ UTR shortening of orthologous genes is poorly conserved, the
RBPs and miRNAs whose targetome changes most significantly as a result of
APA are the same between human and mouse.

6.4 DISCUSSION

Sequencing of animal genomes revealed surprisingly small differences in
gene numbers. In the years that followed, much emphasis has been placed
on other factors underlying the transcriptome and proteome complexity.
MiRNAs and RBPs form a vast regulatory layer whose dynamics has
recently come into focus. The discovery of the systematic 3’ UTR shortening
in proliferating compared with resting cells raised the question of whether
this mode of RNA processing serves to bypass repression by miRNAs and
generally upregulates the expression of genes with tandem poly(A) sites.
Here we have combined measurements of relative polyadenylation site use
with measurements of protein levels to investigate this hypothesis in the
context of mouse and human T cell activation. Although we were able to
demonstrate the systematic 3’ UTR shortening in both systems, we did not
find a correlation between the extent of proximal polyadenylation site use
and the mRNA or the protein levels. Further inferring the relative rates of
decay of short and long 3° UTR isoforms, we found that short 3> UTR
isoforms have a slightly lower decay rate compared with their long 3> UTR
isoforms. Nonetheless, the difference between isoforms appears to be small,
consistent with what has been observed in mouse embryonic fibroblasts
[103] and it is not systematic.

Analysing the process of 3° UTR shortening upon proliferation of mouse and
human T cells, we found that although the phenomenon is conserved, there
is little conservation in the set of genes that exhibit 3’ UTR shortening and
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in the relative change in proximal/distal processing ratios. In this respect,
APA resembles alternative splicing where individual events are also poorly
conserved between species such as mouse and human [461]. Two questions
remain at this point unanswered. The first concerns the molecular mechanism
that underlies the systematic change in polyadenylation sites upon cell
proliferation. Compelling evidence has been presented that the Ul snRNP
acts as a protective factor that prevents premature polyadenylation and that
transient limitations in Ul snRNP abundance in specific cellular states lead
to polyadenylation at proximal sites [462, 463]. Other proteins such as
the mammalian cleavage and polyadenylation factor I (CFIm) components
CFIm25 and CFIm68 [81, 82] and the poly(A)-binding protein nuclear
1 [453] appear to have similar effects, a reduction in their concentration
leading to polyadenylation at proximal sites. In our data, the CFIm factors
as well as PABPN1 appear to be downregulated at the protein level in both
mouse and human T cells (Supplementary Data D.10 and D.11). However,
whether these or other factors are at work in proliferating cells remains to be
determined.

The second question concerns the ultimate consequence and functional
relevance of the change in polyadenylation sites. Although systematic
differences in the decay rates of short and long isoforms were not identified,
transcript stability may still be regulated via APA, with some short isoforms
having higher and others lower stability relative to their corresponding
long isoforms (see for example, Gupta et al. [437]). However, the fact that
many of the proteins that lose the most or least binding sites upon APA
are splicing and RNA transport factors suggests that regulatory effects may
be expected at other levels. For example, one of the factors that appear to
preferentially lose sites is YB-1, a marker of stress granules and processing
bodies [464]. On the other hand, poly(A)-binding proteins that are involved
in the nuclear export of mRNAs and many other cytoplasmic processes [465],
lose substantially fewer sites than expected.

Finally, one hypothesis to consider is that 3> UTR shortening does not have
specific consequences on gene regulation. Rather, it could be a complex
regulatory system, acting on long 3° UTRs that may no longer be needed
when cells are engaged in a very defined state of active proliferation. In
those circumstances, the 3> UTR shortening may act both to conserve energy,
as well as to prevent the interference of complex, cell type-specific post-
transcriptional regulatory networks, with the cell cycle programme. With the
availability of systems that allow genetic modification of mammalian cells
[466], it may soon become possible to modify the poly(A) signals and to
test the effect of expressing solely the long 3’ UTR isoforms in cells that are
induced to proliferate.
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6.5 METHODS
6.5.1 Isolation and activation of T cells

For mouse T cells, spleen and lymph nodes were dissected from 8- to 10-
week-old female C57BL/6 mice and total, untouched T cells were isolated by
MACS purification (Pan T cell isolation kit from Miltenyi or the mouse T cell
isolation kit from Stem Cell Technologies) according to the manufacturer’s
protocol. T cells were activated for 72 h with mouse T-Activator CD3/CD28
Dynabeads (Gibco/Life Technologies) and 30 U of recombinant IL-2 (Pepro-
tech). Corresponding unstimulated cells were from the same T cell prepara-
tions. Human T cells from single donor human blood samples were isolated
with the Pan T cell isolation kit from Miltenyi and either left untreated or
were stimulated with human T-Activator CD3/CD28 Dynabeads (Life Tech-
nologies) and 30 U of recombinant IL-2 from Peprotech.

6.5.2 3’ End sequencing and inference of poly(A) sites

Murine T cell 3’ end sequencing libraries were prepared according to the orig-
inal A-seq protocol [81]. To circumvent the frequently cumbersome size se-
lection step in this protocol, we developed an improved 3’ end sequencing pro-
tocol (A-seq2) that we used for the preparation of the human 3’ end sequenc-
ing libraries (see Supplementary Methods for details). The Gene Expres-
sion Omnibus (GEO) accession number for the A-seq libraries is GSE54950.
Sequencing reads were preprocessed to remove 3’ adapter sequences and
mapped to the mouse genome (mm9) and human genome (hg19), respectively,
with CLIPZ [442]. To ensure that only genuine 3’ ends are considered, we
only used A-seq reads that contained at least four nucleotides of the adapter
sequence. Based on the precise mapping of the 3’ end of reads that mapped
to a unique position in the genome, we computed putative cleavage sites and
their abundance at nucleotide resolution. Putative cleavage sites that had at
least seven genomically encoded A nucleotides in the eight nucleotide re-
gion immediately downstream were considered likely internal priming events
and were not used in further analyses. Finally, closely spaced 3’ end sites
located in terminal exons of transcripts were grouped into poly(A) site clus-
ters by applying single-linkage clustering with a distance threshold of seven
nucleotides. Only those clusters that showed a minimal abundance of five
A-seq reads per million were further analysed. For the mouse genome, we
thereby inferred a total of 15,068 clusters with an average cluster span of 16
nucleotides. For each cluster, a representative cleavage site was chosen by
ranking individual sites by their expression value in each A-seq library and
then determining the overall top ranked site (majority vote over all A-seq li-
braries) [81]. For 3’ end sequencing of human mRNAs, we used a slightly
modified A-seq procedure (A-seq2, see Supplementary Methods for details).
Sequencing reads were first processed based on their expected structure from
this protocol. First, only A-seq2 reads that contained three T residues at posi-
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tions 5-7 (indicating the beginning of the poly(A) tail) were selected for fur-
ther use. From these, randomized nucleotides at positions 1-4 at the 5° end
of the reads (needed for cluster coordination in Illumina sequencing) were
trimmed together with the three Ts, thus removing seven nucleotides. The
reverse complement of the remaining sequences, presumably representing
mRNA 3’ ends, was then mapped to the genome. The rest of the analysis was
carried out identically to the murine A-seq sequences. A total 18,918 poly(A)
site clusters were inferred for the human T cell samples. Summary statistics
on the number of mapped reads and tandem poly(A) sites are provided in Sup-
plementary Tables D.7 and D.8, respectively. The nucleotide profile flanking
the inferred cleavage sites (Supplementary Fig. D.7A) closely resembles the
profile obtained in murine T cells (Supplementary Fig. D.2A) and previous
studies [81]. Also the distribution of polyadenylation motifs upstream of the
cleavage site corresponds to the pattern observed in murine T cells (Supple-
mentary Fig. D.7B). In order to identify genes that show a marked change in
the use of proximal and distal poly(A) sites, we first divided the region be-
tween the most proximal and most distal poly(A) site into two parts of equal
length and pooled read counts of poly(A) sites in the 5’ half and in the 3’
half. For murine T cell samples, we next employed the statistical framework
DEXseq version 1.8 [438] to identify genes that showed a change in the usage
pattern between the proximal and the distal poly(A) site. A total of 157 genes
were identified to undergo a significant change (adjusted P-value<0.05) in
the use of the proximal poly(A) site.

6.5.3 Differential gene expression and GO analysis

For each gene, A-seq reads mapping to terminal exons of its associated tran-
script isoforms were counted. Differential gene expression analysis was per-
formed with DESeq version 1.10 [373]. Genes that showed a log twofold dif-
ferential regulation and an adjusted P-value<0.01 were considered as chang-
ing significantly. GO analysis of up- and downregulated genes was performed
with Ontologizer version 2.0 [467].

6.5.4 Prediction of miRNA and RBP target sites in murine 3’ UTRs

MiRNA target predictions were obtained from the EIMMo server release 5
(http://www.mirz.unibas.ch). We restricted the set of target sites to conserved
sites by choosing a minimal EIMMo score of 0.5. For ease of use, we mapped
3" UTR sequences to the mouse or human genome using GMAP [468], and
converted predicted transcript coordinates of miRNA target sites to genomic
coordinates. A weighted target site score was then calculated as the sum over
all genes with tandem poly(A) sites, with the probability of each target site
for the miRNA multiplied by the abundance of the gene’s 3° UTR isoform in
which the predicted target site was present. For each miRNA, we recorded the
log> fold-change (x) of the sum of weighted target site scores in alternative
3> UTR regions for activated over naive T cells. To assess the significance
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of the fold-change, we shuffled the labels of the miRNA target sites (corre-
sponding to the cognate miRNAs) that were located in alternative 3 UTR
regions. We performed 500 randomizations and obtained the mean (j¢y) and
standard deviation (0y) of the log> fold changes across randomized data sets.
We estimated the significance of the observed [0g, fold change by the z-score
defined as z = (x — py)/0y.

PWMs of the binding motifs of RBPs were obtained from the CISBP-RNA
database (http://cisbp-rna.ccbr.utoronto.ca) [452]. Only PWMs with category
annotation ’direct evidence’ in mouse or human were considered. MotEvo
was used to scan murine 3° UTRs (using a background prior of 0.99 and an
UFE prior of 200) to predict evolutionarily conserved motif matches [290].
As input we provided multiple sequence alignments of nine mammalian
species generated with the EIMMo pipeline [255]. Computations were per-
formed the same way as done for miRNAs only replacing the EIMMo score
with the score obtained from MotEvo. In case more than one PWM was
present for a given RBP in the database, we evaluated the predicted bind-
ing sites for each of them individually, and used as background for the site
randomization the sites predicted for only one representative PWM for each
RBP. The representative was the PWM with the highest information content.
We only report the results for PWMs that had a minimum of ten predicted
sites in the alternatively processed 3° UTR regions.

6.5.5 Estimation of relative mRNA decay rates of short and long transcript
isoforms

We used the following model to estimate the relative stability of 3” UTR iso-
forms. Let us assume that mRNAs are transcribed from their corresponding
gene at rate ¢, and are processed at either the proximal or the distal poly(A)
site with frequencies f and 1 — f, respectively. Let pig and 1 be the decay
rates of the short and long 3° UTR isoforms, respectively. With the dynamics
of the short (M;g) and long (M} ) isoforms being described by the following
equations dMg /dt = cf — usMg and dM /dt = cf — pu M|, and denoting
by superscripts A and N the variables corresponding to activated and naive T
NfN MN _ N(lffN) MA _ ﬂ

L pro 7S s °
. From our 3’ end sequencing experiments, we obtain ratios

MN
MY

as well as the ratio in the overall mRNA expression between the

cells, we obtain at steady state Mgl =

A A

A _ (=)
Mi = m

of proximal—to—distal site use in the two conditions, that is, RN =

RA =M

and

MA
MY +MY

ME+ME
B = cN/cA, we can express these measured quantities in terms of the vari-

ables of the model defined above as follows RN = N a, R4 = f . o,

1_fN fA
N
,8{[ AZE —fA Note, that we can express the unknown frequencies of 3’
UTR processing at proximal and distal sites in the two conditions in terms of
RN

the measured ratios of proximal-to-distal site use, that is, f N — NIz and

two conditions, Q = With the further notation & = puy/ps and
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A= Rﬁia. Further defining x = log(Q), y = log(B). z = log(«) and the

function g(RV, R4,z) = log(%), we obtain:

x =y+g(RY,R4,z). (6.1)

That is, the observed log fold-change in total mRNA levels (x) is a result of
the log fold-change in transcription rate () and a log fold-change in the decay
rate (g(RN R4, z)). The latter is a function of the observed ratios of short vs
long isoforms in naive and activated T cells, and of the log-ratio z of decay
rates of the short and long isoforms. Note, that whereas x has been measured,
the variables v and z are both unknown. Thus, we cannot uniquely determine
the relative decay rates for a particular gene, without knowing the relative
transcription rates for that gene in the two conditions. Reasoning that genes
that are only regulated at the level of transcription and not through polyadeny-
lation provide an upper bound on transcriptional changes, we estimate the dis-
tribution of transcription log fold-changes y from the set of genes that have
only a single isoform. We found that to a good approximation, the distribu-
tion of y is a Gaussian with mean p, = 0.00154 and standard deviation 0}, =

_ 2
0.92691, that is, P(y|puy, o) = @ﬁ exp ( — (xzéy) ) We further assume

that the log-ratio of decay rates can also be approximated by a Gaussian distri-

bution, that is, P(z|p,,07) = o 12n exp ( — (x;(fZZZ)z). Finally, we estimate
the parameters ji, and 0, by assuming that both i and z were drawn from their
respective distributions and comparing the observed mRNA fold-changes
with those expected using equation 6.1. In particular, the log fold-changes
x were measured in duplicate for each gene and this allows us to estimate
the measurement error of these measurements. Let (xl-l, xlz) denote the pair
of replicate measurements for gene i. Assuming that measurement errors are
Gaussian distributed, we can estimate the variance of the measurement errors
as T2 = 5 (nl—z) Y.i(x! — x?)2. Given particular values of i and z, the probabil-
ity to measure a given log fold-change x is given by P(x|y,z, R, R, T) =

ﬁ exp < — ey _g(;r’fR’RA))Z). By multiplying this conditional probabil-

ity by the prior probabilities P(y|p,,0,) and P(z|p,0;) and integrating
over both y and z we obtain the probability P(x|Rg, Ra, py, piz, 0y, 02, T) =
J dyd.P(x|y,z,Rr,Ra, T)P(y|py, 0y)P(z|piz,02). Note that the integral
over Y can easily be performed analytically to obtain:

P(X|RR, RA/ ‘My, ]’lZ/ Uyl UZ/ T) -

1
dz—
/ 2710,/ T2 +Uy2

RS 6.2)
w1
_ (x — My — g(Z, Rg, RA))Z

2(2 +07) '

This integral, however, cannot be performed analytically and we therefore car-
ried out the integration numerically over the range p, + X0, with MATLAB
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version R2012B. In order to evaluate combinations of y, and o, we calcu-
lated the log likelihood of the data by a grid approach sampling values for i,
and oz with a step size of 0.01 from —10 to 10 and 0.01 to 10, respectively.
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A COMPREHENSIVE ANALYSIS OF 3° END
SEQUENCING DATA SETS REVEALS NOVEL
POLYADENYLATION SIGNALS AND THE REPRESSIVE
ROLE OF HETEROGENEOUS RIBONUCLEOPROTEIN C
ON CLEAVAGE AND POLYADENYLATION

7.1 ABSTRACT

Alternative polyadenylation (APA) is a general mechanism of transcript di-
versification in mammals, which has been recently linked to proliferative
states and cancer. Different 3° untranslated region (3° UTR) isoforms inter-
act with different RNA-binding proteins (RBPs), which modify the stability,
translation, and subcellular localization of the corresponding transcripts. Al-
though the heterogeneity of pre-mRNA 3’ end processing has been estab-
lished with high-throughput approaches, the mechanisms that underlie sys-
tematic changes in 3° UTR lengths remain to be characterized. Through a
uniform analysis of a large number of 3* end sequencing data sets, we have
uncovered 18 signals, six of which are novel, whose positioning with respect
to pre-mRNA cleavage sites indicates a role in pre-mRNA 3’ end processing
in both mouse and human. With 3’ end sequencing we have demonstrated that
the heterogeneous ribonucleoprotein C (HNRNPC), which binds the poly(U)
motif whose frequency also peaks in the vicinity of polyadenylation (poly(A))
sites, has a genome-wide effect on poly(A) site usage. HNRNPC-regulated 3’
UTRs are enriched in ELAV-like RBP 1 (ELAVLI1) binding sites and include
those of the CD47 gene, which participate in the recently discovered mecha-
nism of 3° UTR-dependent protein localization (UDPL). Our study thus estab-
lishes an up-to-date, high-confidence catalog of 3’ end processing sites and
poly(A) signals, and it uncovers an important role of HNRNPC in regulating
3’ end processing. It further suggests that U-rich elements mediate interac-
tions with multiple RBPs that regulate different stages in a transcript’s life
cycle.

7.2 INTRODUCTION

The 3 ends of most RNA polymerase II-generated transcripts are generated
through endonucleolytic cleavage and the addition of a polyadenosine tail of
70-100 nucleotides (nt) median length [470]. Recent studies have revealed
systematic changes in 3> UTR lengths upon changes in cellular states, either
those that are physiological [102, 463] or those during pathologies [471]. 3’
UTR lengths are sensitive to the abundance of specific spliceosomal proteins
[462], core pre-mRNA 3’ end processing factors [81, 82], and polyadenyla-
tion factors [453]. Because 3’ UTRs contain many recognition elements for
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RNA-binding proteins (RBPs) that regulate the subcellular localization, in-
tracellular traffic, decay, and translation rate of the transcripts in different
cellular contexts (see, e.g., [472]), the choice of polyadenylation (poly(A))
sites has important regulatory consequences that reach up to the subcellular
localization of the resulting protein [105]. Studies of presumed regulators of
polyadenylation would greatly benefit from the general availability of com-
prehensive catalogs of poly(A) sites such as PolyA_DB [473, 474], which
was introduced in 2005 and updated 2 years later. Full-length cDNA sequenc-
ing offered a first glimpse on the pervasiveness of transcription across the
genome and on the complexity of gene structures [475]. Next-generation se-
quencing technologies, frequently coupled with the capture of transcript 5° or
3’ ends with specific protocols, enabled the quantification of gene expression
and transcript isoform abundance [476]. By increasing the depth of coverage
of transcription start sites and mRNA 3’ ends, these protocols aimed to im-
prove the quantification accuracy ([371, 477-479]). Sequencing of mRNA 3’
ends takes advantage of the poly(A) tail, which can be captured with an oligo-
dT primer. More than 4.5 billion reads were obtained with several protocols
from human or mouse mRNA 3’ ends in a variety of cell lines [479, 480],
tissues [98, 481], developmental stages [482, 483], and cell differentiation
stages [484], as well as following perturbations of specific RNA processing
factors [81, 82, 453, 485, 486]. Although some steps are shared by many
of the proposed 3’ end sequencing protocols, the studies that employed these
methods have reported widely varying numbers of 3’ end processing sites. For
example, 54,686 [474], 439,390 [98], and 1,287,130 [480] sites have been re-
ported in the human genome. The current knowledge about sequence motifs
that are relevant to cleavage and polyadenylation (for review, see [487]) goes
back to studies conducted before next-generation sequencing technologies be-
came broadly used [90, 488, 489]. These studies revealed that the AAUAAA
hexamer, which recently was found to bind the WDR33 and CPSF4 subunits
of the cleavage and polyadenylation specificity factor (CPSF) [91, 92] and
some close variants, is highly enriched upstream of the pre-mRNA cleavage
site. The A[AUJUAAA cis-regulatory element (also called poly(A) signal)
plays an important role in pre-mRNA cleavage and polyadenylation [490]
and is found at a large proportion of pre-mRNA cleavage sites identified in
different studies [489, 491, 492]. However, some transcripts that do not have
this poly(A) signal are nevertheless processed, indicating that the poly(A)
signal is not absolutely necessary for cleavage and polyadenylation. The con-
straints that functional poly(A) signals have to fulfill are not entirely clear,
and at least 10 other hexamers have been proposed to have this function [90].
Viral RNAs as, for example, from the simian virus 40 have been instrumen-
tal in uncovering RBP regulators of polyadenylation and their corresponding
sequence elements. Previous studies revealed modulation of poly(A) site us-
age by U-rich element binding proteins such as the heterogeneous nuclear
ribonucleoprotein (hnRNP) C1/C2 [493, 494], the polypyrimidine tract bind-
ing protein 1 [494, 495], FIP1L1, and CSTF2 [494], and by proteins that bind
G-rich elements—cleavage stimulation factor CSTF2 [496] and HNRNPs F
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and H1 [497]-or C-rich elements—poly(rC)-binding protein 2 [486]. Some of
these proteins are multifunctional splicing factors that appear to couple vari-
ous steps in pre-mRNA processing, such as splicing, cleavage, and polyadeny-
lation [498]. The sequence elements to which these regulators bind are also
frequently multifunctional, enabling positive or negative regulation by differ-
ent RBPs [496]. A first step toward understanding the regulation of poly(A)
site choice is to construct genome-wide maps of poly(A) sites, which can
be used to investigate differential polyadenylation across tissues and the re-
sponse of poly(A) sites to specific perturbations.

7.3 RESULTS
7.3.1 Preliminary processing of 3’ end sequencing data sets

Protocol-specific biases as well as vastly different computational data pro-
cessing strategies may explain the discrepancy in the reported number of 3’
end processing sites, which ranges from less than 100,000 to over 1 million
[98, 474, 480] for the human genome. By comparing the 3’ end processing
sites from two recent genome-wide studies [98, 481], we found that a sub-
stantial proportion was unique to one or the other of the two studies (Sup-
plemental Table E.1). This motivated us to develop a uniform and flexible
processing pipeline that facilitates the incorporation of all published sequenc-
ing data sets, yielding a comprehensive set of high-confidence 3’ end pro-
cessing sites. From public databases we obtained 78 human and 110 mouse
data sets of 3’ end sequencing reads (Supplemental Tables E.2, E.3), gener-
ated with nine different protocols, for which sufficient information to permit
the appropriate preprocessing steps (trimming of 5’ and 3’ adapter sequences,
reverse-complementing the reads, etc., as appropriate) was available.

We preprocessed each sample as appropriate given the underlying protocol
and then subjected all data sets to a uniform analysis as follows. We mapped
the preprocessed reads to the corresponding genome and transcriptome and
identified unique putative 3’ end processing sites. Because many protocols
employ oligo-dT priming to capture the pre-mRNA 3’ ends, internal priming
is a common source of false-positive sites, which we tried to identify and
filter out as described in the Methods section. From the nearly 200 3’ end se-
quencing libraries, we thus obtained an initial set of 6,983,499 putative 3’ end
processing sites for human and 8,376,450 for mouse. The majority of these
sites (76% for human and 71% for mouse) had support in only one sample,
consistent with our initial observations of limited overlap between the sets
of sites identified in individual studies and mirroring also the results of tran-
scription start site mapping with the CAGE technology [499]. Nevertheless,
we developed an analysis protocol that aimed to identify bona fide, indepen-
dently regulated poly(A) sites, including those that have been captured in a
single sample. To do this, we used not only the sequencing data but also in-
formation about poly(A) signals, which we therefore set to comprehensively
identify in the first step of our analysis.
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7.3.2 Highly specific positioning with respect to the pre-mRNA cleavage
site reveals novel poly(A) signals

To search for signals that may guide polyadenylation, we designed a very
stringent procedure to identify high-confidence 3’ end processing sites.
Pre-mRNA cleavage is not completely deterministic but occurs with higher
frequency at “strong” 3’ end processing sites and with low frequency at
neighboring positions [489]. Therefore, a common step in the analysis of 3’
end sequencing data is to cluster putative sites that are closely spaced and to
report the dominant site from each cluster [81, 489, 500]. To determine an
appropriate distance threshold, we ranked all the putative sites first by the
number of samples in which they were captured and then by the normalized
number of reads in these samples. By traversing the list of sites from
those with the strongest to those with the weakest support, we associated
lower-ranking sites located up to a specific distance from the higher-ranked
site with the corresponding higher-ranking site. We scanned the range of
distances from O to 25 nt upstream of and downstream from the high-ranking
site, and we found that the proportion of putative 3’ end processing sites
that are merged into clusters containing more than one site reached 40%
at ~8 nt and changed little by further increasing the distance (for details,
see 7.10 Methods). For consistency with previous studies [489], we used a
distance of 12 nt. To reduce the frequency of protocol-specific artifacts, we
used only clusters that were supported by reads derived with at least two
protocols, and to allow unambiguous association of signals to clusters, for
the signal inference we only used clusters that did not have another cluster
within 60 nt. This procedure resulted in 221,587 3’ end processing clusters
for human and 209,345 for mouse. By analyzing 55-nt-long regions located
immediately upstream of the center of these 3’ end processing clusters (as
described in the 7.10 Methods section), we found that the canonical poly(A)
signals AAUAAA and AUUAAA were highly enriched and had a strong
positional preference, peaking at 21 nt upstream of cleavage sites (Fig. 7.1A),
as reported previously [90, 489]. We therefore asked whether other hexamers
have a similarly peaked frequency profile, which would be indicative of
their functioning as poly(A) signals. The 12 signals that were identified in
a previous study [90] served as controls for the procedure. In both mouse
and human data, the motif with the highest peak was, as expected, the
canonical poly(A) signal AAUAAA, which occurred in 46.82% and 39.54%
of the human and mouse sequences, respectively. Beyond this canonical
signal, we found 21 additional hexamers, the second most frequent being
the close variant of the canonical signal AUUAAA, which was present in
14.52% and 12.28% of the human and mouse 3’ sequences, respectively.
All 12 known poly(A) signals [90] were recovered by our analysis in both
species, demonstrating the reliability of our approach. Further supporting this
conclusion is the fact that six of the 10 newly identified signals in each of the
two species are shared. All of the conserved signals are very close variants (1
nt difference except for AACAAG) of one of the two main poly(A) signals,
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AAUAAA and AUUAAA. Strikingly, all of these signals peak in frequency
at 20-22 nt upstream of the cleavage site (Fig. 7.1A).
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Figure 7.1: Hexamers with highly specific positioning upstream of human and
mouse pre-mRNA 3’ end cleavage sites. (A) The frequency profiles of the 18 hex-
amers that showed the positional preference expected for poly(A) signals in both
human and mouse. The known poly(A) signal, AAUAAA, had the highest frequency
of occurrence (left). Apart from the 12 signals previously identified (AAUAAA and
motifs with the purple frame) [90], we have identified six additional motifs (orange
frame) whose positional preference with respect to poly(A) sites suggests that they
function as poly(A) signals and are conserved between human and mouse. (B) Se-
quence logos based on all occurrences of the entire set of poly(A) signals from the
human (left) and mouse (right) atlas. (C) The (U)g motif, which is also enriched
upstream of pre-mRNA cleavage sites, has a broader frequency profile and peaks up-
stream of the poly(A) signals, which are precisely positioned 20-22 nt upstream of
the pre-mRNA cleavage sites (indicated by the dashed, vertical line).

Experimental evidence for single-nucleotide variants of the AAUAAA signal
(including the AACAAA, AAUAAU, and AAUAAG motifs identified here)
functioning in polyadenylation was already provided by Sheets et al. [SO1].
The four signals identified in only one of each species also had a clear peak
at the expected position with respect to the poly(A) site, but they had a
larger variance (Supplemental Fig. E.1). Altogether, these results indicate a
genuine role of the newly identified signals in the process of cleavage and
polyadenylation.

Of the 221,587 high-confidence 3’ end processing clusters in human and
209,345 in mouse, 87% and 79%, respectively, had at least one of the 22
signals identified above in their upstream region. Even when considering
only the 18 signals that are conserved between human and mouse, 86% of
the human clusters and 75% of the mouse clusters had a poly(A) signal.
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Thus, our analysis almost doubles the set of poly(A) signals and suggests
that the vast majority of poly(A) sites does indeed have a poly(A) signal
that is positioned very precisely with respect to the pre-mRNA cleavage site.
The dominance of the canonical poly(A) signal is reflected in the sequence
logos constructed based on all annotated hexamers in the human and mouse
poly(A) site atlases, generated as described in the following section and in
the 7.10 Methods section (Fig. 7.1B).

7.4 A COMPREHENSIVE CATALOG OF HIGH-CONFIDENCE 3’
END PROCESSING SITES

Based on all of the 3’ end sequencing data sets available (for more details
about the protocols that were used to generate these data sets, see Supplemen-
tal Material) and the conserved poly(A) signals that we inferred as described
above, we constructed a comprehensive catalog of strongly supported 3’ end
processing sites in both the mouse and human genomes. We started from the
6,983,499 putative cleavage sites for human and 8,376,450 for mouse. Al-
though in many data sets a large proportion of putative sites was supported by
single reads and did not have any of the expected poly(A) signals in the up-
stream region, the incidence of upstream poly(A) signals increased with the
number of reads supporting a putative site (Supplemental Fig. E.2). Thus, we
used the frequency of occurrence of poly(A) signals to define sample-specific
cutoffs for the number of reads required to support a putative cleavage site.
We then clustered all putative sites with sufficient read support, associating
lower-ranked sites with higher-ranking sites that were located within at most
12 nt upstream or downstream, as described above. Because in this set of
clusters we found cases where the pre-mRNA cleavage site appeared located
in an A-rich region upstream of another putative cleavage site, we specifi-
cally reviewed clusters in which a putative cleavage site was very close to a
poly(A) signal, as these likely reflect internal priming events [98, 429, 479].
These clusters were either associated with a downstream cluster, retained as
independent clusters, or discarded, according to the procedure outlined in the
Methods section. By reasoning that distinct 3’ end processing sites should
have independent signals to guide their processing, we merged clusters that
shared all poly(A) signals within 60 nt upstream of their representative sites,
clusters whose combined span was <25 nt, and clusters without annotated
poly(A) signals that were closer than 12 nt to each other and had a com-
bined span of at most 50 nt. Clusters >50 nt and without poly(A) signals were
excluded from the atlas. This procedure (for details, see the 7.10 Methods
section) resulted in 392,912 human and 183,225 mouse 3’ end processing
clusters. Of note, even though 3’ end processing sites that were within 25 nt
of each other were merged into single clusters, the median cluster span was
very small, 7 and 3 nt for mouse and human, respectively (Supplemental Fig.
E.3). Supplemental Figures E.4A and E.5A show the frequency of occurrence
of the four nucleotides as a function of the distance to the cleavage sites for
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sites that were supported by a decreasing number of protocols. These profiles
exhibited the expected pattern [81, 489, 502], indicating that our approach
identified bona fide 3’ end processing sites, even when they had limited ex-
perimental support. The proportion of clusters located in the terminal exon
increased with an increasing number of supporting protocols (Supplemental
Fig. E.4B, E.5B), probably indicating that the canonical poly(A) sites of con-
stitutively expressed transcripts are identified by the majority of protocols,
whereas poly(A) sites that are only used in specific conditions were captured
only in a subset of experiments. Although in constructing our catalog we used
most of the reads generated in two recent studies (>95% of the reads that sup-
ported human 3’ end processing sites in these two data sets mapped within
the poly(A) site clusters of our human catalog) [98, 481], only 61.82% [481]
and 41.38% [98] of the unique processing sites inferred in these studies were
located within poly(A) clusters from our human catalog. This indicated that a
large fraction of the sites that were cataloged in previous studies is supported
by a very small number of reads and lacks canonically positioned poly(A) sig-
nals. We applied very stringent rules to construct an atlas of high-confidence
poly(A) sites, and the entire set of putative cleavage sites that resulted from
mapping all of the reads obtained in these 3’ end sequencing studies is avail-
able as Supplemental Data E.9 (human) and E.10 (mouse), as well as online at
http://www.polyasite.unibas.ch, where users can filter sites of interest based
on the number of supporting protocols, the identified poly(A) signals, and/or
the genomic context of the clusters.

7.4.1 3’ end processing regions are enriched in poly(U)

Of the human and mouse 3’ end processing sites from our poly(A) atlases,
76% and 75%, respectively, possessed a conserved poly(A) signal in their
60 nt upstream region. That ~25% did not may support the hypothesis that
pre-mRNA cleavage and polyadenylation do not absolutely require a poly(A)
signal [503]. Nevertheless, we asked whether these sites possess other signals,
with a different positional preference, which may contribute to their process-
ing. To answer this question, we searched for hexamers that were significantly
enriched in the 60 nt upstream of cleavage sites without an annotated poly(A)
signal. The two most enriched hexamers were poly(A) (P-value of binomial
test <1.0 x 10719) which showed a broad peak in the region of -20 to -
10 upstream of cleavage sites, and poly(U) (P-value <1.0 x 1071%0), which
also has a broad peak around -25 nt upstream of cleavage sites, particularly
pronounced in the human data set (Fig. 7.1C). The poly(U) hexamer is very
significantly enriched (P-value of binomial test <1.0 x 1071%) in the 60 nt
upstream regions of all poly(A) sites, not only in those that do not have a
common poly(A) signal (11th most enriched hexamer in the human atlas and
60th most enriched hexamer in the mouse atlas) (Supplemental Tables E.4,
E.5). Although the A- and U-richness of pre-mRNA 3’ end processing regions
have been observed before [490], their relevance for polyadenylation and the
regulators that bind these motifs have been characterized only partially. For
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example, the core 3’ end processing factor FIP1L1 can bind poly(U) [87, 93],
and its knock-down causes a systematic increase in 3° UTR lengths [93, 504].

7.5 HNRNPC KNOCK-DOWN CAUSES GLOBAL CHANGES IN AL-
TERNATIVE CLEAVAGE AND POLYADENYLATION

Several proteins (ELAVLI1, TIA1, TIAL1, U2AF2, CPEB2 and CPEB4, HN-
RNPC) that regulate pre-mRNA splicing and polyadenylation, as well as
mRNA stability and metabolism, have also been reported to bind U-rich ele-
ments [452]. Of these, HNRNPC has been recently studied with crosslinking
and immunoprecipitation (CLIP) and found to bind the majority of protein-
coding genes [505], with high specificity for poly(U) tracts [452, 505-508].
HNRNPC appears to nucleate the formation of ribonucleoprotein particles
on nascent transcripts and to regulate pre-mRNA splicing [505, 506] and
polyadenylation at Alu repeats [5S09]. We therefore hypothesized that HN-
RNPC binds to the U-rich regions in the vicinity of poly(A) sites and glob-
ally regulates not only splicing but also pre-mRNA cleavage and polyadeny-
lation. To test this hypothesis, we generated two sets of pre-mRNA 3’ end
sequencing libraries from HEK 293 cells that were transfected either with a
control siRNA or with an siRNA directed against HNRNPC. The siRNA was
very efficient, strongly reducing the HNRNPC protein expression, as shown
in Supplemental Figure E.6. To evaluate the effect of HNRNPC knock-down
on polyadenylation, we focused on exons with multiple poly(A) sites. We
identified 12,136 such sites in 4405 exons with a total of 22,698,094 mapped
reads (Supplemental Table E.6). We calculated the relative usage of a poly(A)
site in a given sample as the proportion of reads that mapped to that site
among the reads mapping to any 3’ end processing site in the correspond-
ing exon. We then computed the change in relative use of each poly(A) site
in si-HNRNPC-treated cells compared with control siRNA—treated cells. We
found that HNRNPC knock-down affects a large proportion of transcripts
with multiple poly(A) sites, reminiscent of what we previously reported for
the 25- and 68-kDa subunits of the cleavage factor I (CFIm) [81, 82]. Out
of the 5152 poly(A) sites that showed consistent behavior across replicates,
we found 1402 poly(A) sites (27.2%) to increase in usage, 1378 poly(A) sites
(26.7%) to decrease in usage, and 2372 poly(A) sites (46.0%) to undergo only
a minor change in usage upon knock-down of HNRNPC. To find out whether
HNRNPC systematically increases or decreases 3° UTR lengths, we exam-
ined the relative position of poly(A) sites whose usage increases or decreases
most strongly in response to HNRNPC knock-down, within 3> UTRs. The re-
sults indicated that poly(A) sites whose usage increased and decreased upon
HNRNPC knock-down tended to be located distally and proximally, respec-
tively, within exons (Fig. 7.2A).
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Figure 7.2: siRNA-mediated knock-down of HNRNPC leads to increased use of
distal poly(A) sites. (A) Relative location of sites whose usage decreased (brown),
did not change (blue) or increased (red) in response to HNRNPC knock-down within
3’ UTRs. We identified the 1000 poly(A) sites whose usage increased most, the
1000 whose usage decreased most, and the 1000 whose usage changed least upon
HNRNPC knock-down; divided the associated terminal exons into five bins, each
covering 20% of the exon’s length; and computed the fraction of poly(A) sites that
corresponded to each of the three categories within each position bin independently.
Values represent means and SDs from the two replicate HNRNPC knock-down ex-
periments. (B) Smoothened (+5 nt) density of nonoverlapping (U)s tracts in the
vicinity of sites with a consistent behavior (increased, unchanged, decreased use) in
the two HNRNPC knock-down experiments. (C) Cumulative density function of the
percentage change in usage of the 250 poly(A) sites with the highest number of (U)s
motifs within +50 nt around their cleavage site (red) and of poly(A) sites that do not
contain any (U)s tract within 4200 nt (blue), upon HNRNPC knock-down.

We confirmed the overall increase in 3° UTR lengths upon HNRNPC knock-
down by comparing the proximal-to-distal poly(A) site usage ratios of ex-
ons that had exactly two polyadenylation sites (replicate 1 P-value: 1.1 X
10~1%; replicate 2 P-value: 3.1 x 107°'; one-sided Wilcoxon signed-rank
test) (Supplemental Figs. E.7, E.8). It was noted before that distal poly(A)
sites are predominantly used in HEK 293 cells [81]. Indeed, the proportion of
dominant (>50% relative usage) distal sites was 61.75% and 62.58%, respec-
tively, in the two control siRNA-treated samples. However, this proportion
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increased further in the si-HNRNPC-treated samples to 64.16% and 65.67%,
respectively, consistent with HNRNPC decreasing, on average, the lengths
of 3° UTRs. Nevertheless, many 3’ UTRs became shorter upon this treat-
ment as will be discussed in more detail in the analysis of terminal exons
with exactly two poly(A) sites (tandem poly(A) sites) below. As HNRNPC
binds RNAs in a sequence-specific manner, one expects an enrichment of
HNRNPC binding sites in the vicinity of poly(A) sites whose usage is af-
fected by the HNRNPC knock-down. Indeed, this is what we observed. The
density of (U)s tracts, previously reported to be the binding sites for HN-
RNPC [452, 505, 508], was markedly higher around poly(A) sites whose
usage increased upon HNRNPC knock-down compared with sites whose rel-
ative usage did not change or decreased upon HNRNPC knock-down (Fig.
7.2B). No such enrichment emerged from a similar analysis of untransfected
versus si-Control transfected cells (Supplemental Fig. E.9)). To exclude the
possibility that this profile is due to a small number of regions that are very
U-rich, we also determined the fraction of poly(A) sites that contained (U)s
tracts among the poly(A) sites whose usage increased, decreased, or did not
change upon HNRNPC knock-down (Supplemental Fig. E.10). We found,
consistent with the results shown in Figure 7.2B, a higher proportion of (U)s
tract-containing poly(A) sites among those whose usage increased upon HN-
RNPC knock-down compared with those whose usage decreased or was not
changed. To further validate HNRNPC binding at the derepressed poly(A)
sites, we carried out HNRNPC CLIP and found, indeed, that derepressed sites
have a higher density of HNRNPC CLIP reads compared with other poly(A)
sites (Supplemental Fig. E.11). Finally, we found that poly(A) sites with the
highest density of (U)s tracts in the 100-nt region centered on the cleavage
site were reproducibly used with increased frequency upon HNRNPC knock-
down relative to poly(A) sites that did not contain any binding sites within
200 nt upstream or downstream (replicate 1 P-value: 2.4 x 1073°; replicate
2 P-value: 1.9 x 107#2; one-sided Mann-Whitney U test) (Fig. 7.2C). We
therefore concluded that HNRNPC’s binding in close proximity of 3’ end
processing sites likely masks them from cleavage and polyadenylation.

7.6 BOTH THE NUMBER AND THE LENGTH OF THE URI-
DINE TRACTS CONTRIBUTE TO THE HNRNPC-DEPENDENT
POLY(A) SITE USAGE

If the above conclusions were correct, the effect of HNRNPC knock-down
should decrease with the distance between the poly(A) site and the HNRNPC
binding sites. Thus we determined the mean change in usage of sites with high
densities of poly(U) tracts at different distances with respect to the cleavage
site, upon HNRNPC knock-down. As shown in Figure 7.3A, we found that
the largest change in poly(A) site use is observed for poly(A) sites that have a
high density of poly(U) tracts in the 100-nt window centered on the cleavage
site.
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