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Abstract

N-glycosylation of proteins is an essential process, and N-glucans serve as important beacons in protein folding and ER
associated degradation. More importantly, N-glycosylation increases the structural repertoire of proteins because the
addition of the N-glucan on proteins will serve as a base for further sugar additions in the Golgi apparatus, and hence
complex three-dimensional structures can be build. N-glycosylation is mediated by the ER-resident OST complex, which is
essential throughout eukaryotes. Partial knockdown of conserved OST complex members, such as C. elegans RIBO-1, led to
an embryonic lethal phenotype. Although the ER morphology was not grossly altered in ribo-1(RNAi) oocytes and embryos,
secretion of yolk and of the yolk receptor RME-2 was perturbed in those worms. Perhaps as a consequence of reduced
arrival of N-glycosylated proteins at the plasma membrane, cytokinesis occurred less efficiently leading to multinuclear cells.
Unexpectedly, we detected a chromosome segregation defect in ribo-1(RNAi) embryos suggesting an essential role of at
least one N-glycosylated protein in metaphase-anaphase transition.

Citation: Stevens J, Spang A (2013) N-Glycosylation Is Required for Secretion and Mitosis in C. elegans. PLoS ONE 8(5): e63687. doi:10.1371/journal.pone.0063687

Editor: Bob Goldstein, University of North Carolina at Chapel Hill, United States of America

Received December 21, 2012; Accepted April 4, 2013; Published May 14, 2013

Copyright: � 2013 Stevens, Spang. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: Funding provided by the Max Planck Society, University of Basel, The Swiss National Science Foundation. The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: anne.spang@unibas.ch

Introduction

N-glycosylation is the most abundant post-translational modi-

fication of proteins that enter the secretory pathway at the

endoplasmic reticulum (ER). Proteins of the secretory pathway are

synthesized on ribosomes associated with the ER-resident Sec61

translocon, through which the nascent polypeptide chain passes in

an unfolded state. In the ER lumen an N-glucan, consisting of 2 N-

acetylglucosamine, 9 mannose, and 3 glucose residues, is

transferred onto an asparagine residue of the polypeptide chain,

which fits the sequence signature N-X-S/T (X can be any residue

except proline). The sugars are covalently linked to the asparagine

through an amide bond by the evolutionary conserved oligosac-

charyl transferase (OST) complex [1].

The folding process of a nascent polypeptide chain starts with its

arrival in the ER lumen and is usually assisted by chaperones; the

added N-glucan will impact the 3D structure of the folded protein.

In addition, the state of the N-glucan helps the cell to determine

whether a protein is correctly folded and can move on to the Golgi

apparatus or whether a protein should be retrotranslocated into

the cytoplasm and be degraded by the proteasome [2]. In case the

polypeptide chain has adopted a correct fold, it may exit the ER

through COPII-coated vesicles and reach the Golgi apparatus, in

which the N-glycan is modified extensively and rather complex

sugar trees can be build. These sugar trees are important for

proper protein function and provide in addition specific protein-

protein interaction sites.

In yeast, nine components of the OST complex have been

identified (Table 1). However, they are probably organized in at

least two distinct complexes [3–5]. The human OST complex

appears to comprise seven subunits, all of which are conserved in

yeast; but here again more than one OST complex exist, which

may differ in client specificity. Five members of the yeast OST

complex (Ost1p, Swp1p, Stt3p, Ost2p and Wbp1p) are essential

for viability and can be considered as core of the OST complex.

Ribophorin I (RPNI)/Ost1p recognizes the N-glycosylation signal

on the nascent polypeptide chain, while STT3 represents the

catalytic subunit of the complex. OST48 appears to link RPN2

and DAD1 to RPNI [6].

Despite the knowledge of the OST complex in yeast and

mammals, very little is known about the role of N-glycosylation in

the development of a multicellular organism. Here, we show that

the OST complex is essential for secretion and endocytosis

because of impaired trafficking of the yolk receptor RME-2 in

oocytes and of yolk secretion defects from the gut. In addition the

fertilized embryos were osmo-sensitive probably due to a reduction

of the secretion of egg-shell material. Finally, reducing N-

glycosylation of proteins caused a defect in cytokinesis. Most

surprisingly however, we found that knockdown of ribo-1 caused

failure to properly attach and/or segregate chromosomes during

mitosis, thus describing a novel role for N-glycosylation in mitosis.

This report provides an unexpected link between N-glycosylation

activity and chromosome segregation and thus to cancer

development.

Materials and Methods

General Methods and Strains
C. elegans was cultured and maintained as described previously

[7] at 20uC. The Bristol N2 strain was used for embryonic lethality

experiments, embryo lysate and WGA-Qdot-staining. Strains

AZ212 (unc-119(ed3) ruIs32 III [pie-1::GFP::H2B+unc-119(+)])
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[8], WH204 (unc-119(ed3) III; ojIs1[pie-1::GFP::tbb-2+ unc-119(+)])
[9] and DH1033 (sqt-1(sc103) II; bIs1 [vit-2::GFP+rol-6(su1006)]
X) [10] were obtained from the Caenorhabditis Genetics Center

(CGC). Strain WH327 (unc-119(ed3) III; ojIs23 [pie-1::GFP::SP12

unc119(+)]) [11] was created by Jayne Squirrell. Barth Grant

provided strain RT408 (unc-119(ed3) III; pwIs116 [rme-

2::GFP+unc-119(+)] [12]), and strain XA3507 (unc-119(ed3)

qaIs3507 III [pie-1::GFP::lem-2+ unc-119(+)]) [13] was contributed
by Ian Mattaj.

RNAi Experiments
For construction of the feeding vectors, the sequences of the

OST genes were obtained by PCR from cosmids, genomic or

cDNA with the following primers:

ribo-1 fwd 59-gcgattgctatttgccatcgctccctggg-39.

ribo-1 rev 59-ACATGTTCTGGAAGAAGAACTTTAGTG-

39.

ostd-1 fwd 59-AAGCTACTTCTTGTGCTCCTGA-39.

ostd-1 rev 59-CTACTCTGATTTTTTTGCTTTCG-39.

dad-1 fwd 59-GGCGGCTCAAGTATTCCAGTTCTCTCG,

dad-1 rev 59-TCCCAAGAAGTTGACGACGACAA-39.

stt-3 fwd 59-GACATCAACAACGGCGGCTCGAAC-39.

stt-3 rev 59-AGCTTTAGAAGCGGTTGGAGCTGGTCG-39.

The PCR products were sub-cloned using the TOPOH TA

CloningH Kit according to manufacturer’s protocol (Life Tech-

nologies), cloned into plasmid L4440 and transformed into e. coli

HT115 [14]. RNAi was performed as described [15]. L4-staged

larvae were cultured on the plates for 24–36 hours at 23uC prior to

analysis of their oocytes and embryos. For RNAi by injection, the

L4440-constructs were used to PCR-amplify the insert together

with the adjacent T7-sites using a standard T7-primer. The gel-

purified PCR products were used as templates for in vitro

transcription using T7 polymerase (Promega). dsRNA was

produced according to the manufacturer’s protocol (Promega),

purified by phenol/chloroform extraction and resuspended in

20 ml RNase-free water. dsRNA was injected into the gonad or

body cavity of young adult worms, which were subsequently

incubated at 20uC. The progeny of the injected animals was

analyzed. For the determination of embryonic lethality, 5 to 15 L4

larvae or injected young adults were singled out on RNAi plates or

NGM plates containing e. coli strain OP50 as food source, and

transferred every 24 hours to fresh plates until they stopped egg

laying, usually 2–4 days at 20uC. For each plate, the amount of

larvae and non-hatched eggs was determined 24 hours after

removal of the adult.

Lysate Preparation and Immunoblot Analysis
For preparation of embryo lysates, synchronized L4 larvae were

plated on 15 mock or RNAi plates (6 cm) and grown for 24 to 36

hours at 23uC. The next day, adult worms were washed off the

plates with egg buffer, allowed to settle by gravity flow and washed

3 times with egg buffer. Since the protein content of the permeable

RNAied embryos would have been destroyed by bleaching, the

concentrated worms were transferred to a 1 ml tissue grinder

(Wheaton) and dounced with a tight pistil for about 10 to 15

strokes. Unbroken worms and carcasses were allowed to settle for

1 min, and the supernatant containing the released embryos was

collected. After repeating this for 5 to 10 times, the combined

supernatants were filtered through a 10-mm nylon net filter

(Millipore) inserted into a 40 mm cell strainer (BD) placed on top of

a Steriflip 50 ml filtration unit (Millipore) attached to a vacuum

pump. This way we removed small debris from the carcasses and

bacteria that were washed out of the intestines. The embryos were

rinsed with 10 ml egg buffer before being washed off the nylon net

in 1 ml egg buffer and pelleted by centrifugation. The proteins

were extracted using Trizol (Life Technologies) according to the

manufacturer’s protocol. Standard methods were applied for SDS-

PAGE and Coomassie staining, and ProQHEmerald 300 staining

was performed according to the manufacturer’s protocol. For

gonad lysate, 5 RNAi- or mock-treated adults were cut behind the

pharynx in a deep-well slide containing 10 ml egg buffer completed

with 0.01% TX100, 1 mM PMSF, 16 complete, EDTA-free

protease inhibitor cocktail (Roche), 1 mM EDTA and 2 mM

levamisole. The extruded gonad arms were cut off at the

spermatheca, the carcasses quickly removed using an eyelash,

and the isolated gonads were then mouth-pipetted into tubes on

ice. Five ml Laemmli-buffer were added to the gonads, and the

samples were incubated at 65uC for 10 min. For total worm lysate,

15 adult worms were collected in 10 ml completed egg buffer as

described above, 5 ml of Laemmli-buffer were added and the

samples incubated at 65uC for 10 min. Lysates were run on 7.5%

SDS gels and transferred onto nitrocellulose. GFP-tagged proteins

were detected by incubating the membranes in anti-GFP-antibody

(Torrey Pines Biolabs) in a 1:5000 dilution in 3% BSA in TBS

overnight at 4uC or for 2 hrs at RT. As secondary antibody, the

HRP-coupled goat-anti rabbit serum from Thermo Scientific was

applied in 1 1:15000 dilution in TBST for 1 hr. Signals were

detected using ECL western blotting solution and ECL Hyperfilm

(GE Healthcare).

Fixation, Immunocytochemistry and QdotH-staining
Immunofluorescence was done as described previously [16],

with the following modifications: worms were rehydrated in PBS,

0.05% Tween-20 after methanol treatment and blocked for

30 min at RT in PBS, 2% BSA, 0.5% Tween-20 before

incubation with the primary antibody. The SP-12::GFP worms

were mounted in 5 ml of Citifluor AF1 (Citifluor Ltd.) directly after
this treatment, since the GFP fluorescence was still well preserved.

The tbb-2::GFP embryos were stained for 10 min with 1 mg/ml

DAPI in PBS before being mounted. For the MAN-1::GFP

embryos, an enhancement of the very weak GFP signal was

achieved by incubating the slides for 2 hours at RT with mouse

anti-GFP antibody (Roche Applied Science) 1:100 in PBS,

washing the slides 2 times for 5 min in PBS and subsequently

incubating them with 1:1000 AlexaFluorH488-coupled chicken

anti-mouse secondary antibody (Life Technologies) for 45 min at

RT in the dark. DAPI was added in this step at 1 mg/ml. After a

Table 1. Homologs of OST complex members in different
species.

C. elegans S. cerevisiae H. sapiens

ribo-1 OST1 RPN I

ostd-1 SWP1 RPN II

stt-3 STT3 STT3-A/STT3-B

dad-1 OST2 DAD1

ostb-1 WBP1 OST48

ZK686.3 OST3 N33/TUSC3, IAP, DC2

? OST4 OST4

? OST5 ?

? OST6 DC2

? ? KCP2

doi:10.1371/journal.pone.0063687.t001
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final wash of 10 min in PBS, worms were mounted as described

above and the slides sealed with nail polish. For the wheat germ

agglutinin-QdotH-labeling, the same fixation and blocking meth-

ods were used. QdotsH were applied at 5 nM concentration in

PBS, 2% BSA over night at 4uC. The slides were washed for

20 min in PBS and mounted as described above.

Live Sample Preparation and Staining
For pressure-free live embryo imaging, gravid 1-day adults were

cut in a drop of egg buffer on a cover slip rimmed with vaseline,

which was then placed upside-down on a 12-well diagnostic slide

(‘hanging drop’ method) [17]. For whole-mount analysis, adult

worms were placed on a 2% agar pad in a drop of 1 mM

levamisole and covered with a cover slip. For the FM4-64 stained

embryos, the (ribo-1)RNAi worms were cut as described above in

2 mg/ml FM4-64 in egg buffer, which was staining the permeable

embryos instantly. The mock RNAi treated embryos were

permeabilized by mounting the gravid adults on a dry 0.5% agar

pad under light halocarbon oil, letting them dry for about 1 min

and poking the embryos in the uterus gently with an injection

needle. A 50-ml drop of FM4-64 was added, the worms were

transferred to a 12-well slide using a mouth pipette and cut open to

release the embryos. If successfully permeabilized, but not

damaged, FM4-64 spread throughout the embryo in less than

1 min. For the developmental timing in Shelton’s Growth

Medium, the medium was prepared as described by L.G. Edgar

[18], using Cholesterol-3-Sulfate (Sigma) and 35% FCS.

Imaging and Image Analysis
Epifluorescence images were acquired with a Zeiss Axioplan 2

microscope equipped with a Zeiss Axio Cam MRm camera (Carl

Zeiss, Aalen Oberkochen, Germany) and a Plan Apochromat

63x/NA1.40 objective. Zeiss Axiovision 3.1 to 4.8 software was

used to control hardware and process images. Confocal images

were acquired on an Andor Revolution spinning disc confocal

system (Andor, Belfast, UK) employing a Yokogawa CSU10

Scanner Unit and Andor iXon 885 CCD camera using an

Olympus IX2-UCB inverted microscope with a 636 objective.

Andor IQ2 software was used to control hardware and to acquire

images. Post-processing and analysis was performed with ImageJ

version 1.43u or Fiji version 1.47b. The Photomerge-function in

Adobe Photoshop CS5 was used to assemble multi-image pictures

of whole-mount worms.

RNA Isolation, RT and Semi-quantitative PCR
Thirty adult worms fed for 48 hours on either mock or RNAi

feeding plates were collected in a tube and washed two times with

1 ml egg buffer. The supernatant was aspirated, 1 ml Trizol

(Invitrogen) was added and total RNA was isolated according to

the manufacturer’s protocol. One vol. of 100% EtOH was added

to the supernatant from the chloroform-extraction step. The

mixture was loaded onto an RNeasy MinElute Cleanup column

(Qiagen). The cleaning and elution was performed as described in

the kit manual. 1 mg total RNA was treated with RQ1 RNAse-free

DNAse (Promega) prior to cDNA first-strand synthesis employing

oligo(dT)15-primer (Promega) and SuperScript II Reverse Tran-

scriptase (Invitrogen) according to the manufacturer’s protocol.

For the semi-quantitative PCR, the following intron-spanning

primers were used:

59-CACGATTCCCACTCTTTG-39.

59-TGGAGTGGCCACCTTTA-39.

59-TTCTCATTCTTGTCGTATTG-39.

59-GGAACCGATGGTATTGAAAG-39.

59-ATGCTCACCCTCACTCCAGC-39.

59-TCCGGACTCATCTCCATCG-39.

59-GCCAACACTGTTCTTTCCGG-39.

59-TCCAGACGGAGTACTTGCGC-39.

PCR reactions were set up in a 25 ml volume containing 1 U

Taq Polymerase (Roche), 0.25 mM of each primer and 0.12 mM
dNTPs, using an equivalent of 50 ng total RNA for the OST-

specific primers, respectively 5 ng for the actin-control. The

reactions were run for 26 cycles in an MJ Mini Thermal Cycler

(Biorad) with 55uC annealing temperature. Half of each reaction

was loaded on a 3% agarose gel containing 1:50,000 RedSafe

nucleic acid stain (iNtRON Biotechnology). The DNA was

visualized on a ChemiGenius2 gel imaging system (SynGene)

operated by GeneSnap V6.07.

Results

The OST Complex is Essential for Development in C.
elegans
To understand the function of the OST complex in a

developing multicellular organism, we knocked down the well-

conserved components of the OST complex: ribophorin-1 (C.

elegans ribo-1) and -2 (ostd-1), the catalytic subunit Stt3 (stt-3) and

dad1 (dad-1) (Fig. 1A, Table 1). Similar to what has been reported

previously [19,20] in high throughput screens, knockdown of any

of the four genes resulted in high embryonic lethality (Fig. 1B).

The level of knockdown of different OST complex components is

shown in Fig. S1. The embryos arrested in neither of the RNAi

experiments at a particular time in development but continued cell

division and differentiation until they appeared to ran out of

critical factors that were needed for development (Fig. 1C). Still,

the knockdown embryos developed slower than the mock control

(Fig. 1D). Knockdown of OST complex components caused the

embryos to be osmo-sensitive, and hence the cells rounded up in

the egg-shell. To ensure that the developmental delay was not

caused be the rounding up of the cells, we also employed

blastomere medium, which should stabilize the cells. However, this

medium also caused a similar developmental delay (Fig. S2A and

B). Escapers were slow growing, clear, long, thin and uncoordi-

nated. In agreement with this notion, increasing the knockdown

efficiency, i.e. by starting feeding just after hatching (in the L1

stage of development), led to larval arrest at L3/L4. A minor

fraction of the larvae reached adulthood but was sterile (data not

shown). Since the phenotypes caused by knock-down of different

subunits of the OST complex were virtually identical, we used for

the analysis consistently ribo-1(RNAi).

Knockdown of members of the OST complex should lead to a

reduction of N-glycosylated proteins. To check this hypothesis, we

isolated eggs from adult hermaphrodites that were fed with ribo-1

dsRNA and analyzed the egg lysate for total and glycosylated

protein content (Fig. 2A). Surprisingly, we could not detect any

drastic reduction in the glycosylation pattern in ribo-1(RNAi) egg

lysates. One possibility for this finding could be that the maternally

contributed proteins were fully glycosylated, and they represent

the major protein population in the total egg lysate. To investigate

this possibility, we turned to an alternative approach and used the

lectin wheat germ agglutinin (WGA) coupled to Q-dots as a

fluorescent marker for N-glycosylated proteins. Again, the over all

N-glycosylation levels appeared to be similar in early embryos.

However, we noted that Q-dot staining was markedly reduced at

the plasma membrane in ribo-1(RNAi) embryos (Fig. 2B, arrows).

This result indicates that the knockdown might have worked at

least partially in oocytes. Thus, we analyzed next the N-

glycosylation levels in isolated gonads (Fig. 2C and D). Although

the WGA Q-dots stained the sheath cells surrounding the gonad,

Role of N-Glycosylation in Secretion and Mitosis
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the signal was strongly reduced in developing oocytes in ribo-

1(RNAi) and stt-3(RNAi) compared to wild type, demonstrating

that the knockdown was effective in oocytes. The biggest

difference between an oocyte and an egg is that the sperm has

fused with the oocyte to form a zygote. It has been shown

previously that C. elegans sperm is resistant towards RNAi [17,21].

Therefore, we propose that the sperm contains ER with functional

OST complexes and that the paternally delivered OST complex

partially rescues the early embryo and provides enough N-

glycosylated proteins to drive cell proliferation at least for some

time during development. This scenario would also provide an

explanation why we did not observe a very strong arrest phenotype

early on.

The Knockdown of ribo-1 Causes only Mild Effects on ER
Morphology
Most of the secretory proteins are N-glycosylated, and N-

glycosylation serves as a beacon for protein folding and

proteostasis [22]. Therefore, the accumulation of un- or under-

glycosylated proteins could potentially result in morphological

changes of the ER. To this end, we visualized the ER by

expressing signal peptidase fused to GFP (SP12::GFP) [11]. The

ER morphology in mock(RNAi) and ribo-1(RNAi) was comparable,

with the only marked difference that we detected consistently more

ER at the cortex of oocytes and early embryos upon ribo-

1(RNAi)(Fig. 3). The ER cycles between a reticulate (interphase)

and a sheet (meta- and anaphase) state in early C. elegans embryos

[11]. These morphological changes were unaffected by ribo-

1(RNAi). Therefore, we conclude that reduced N-glycosylation

only mildly affects ER morphology in C. elegans oocytes and early

embryos.

ribo-1(RNAi) Causes a Defect in Secretion
Given the mild the phenotype of ribo-1(RNAi) on ER

morphology, we wanted to test next, whether the reduction in

N-glycosylation would impair secretion. The first hint that this

might indeed be the case, came form the observation that the

embryos were osmo-sensitive (Fig. 1C) causing rounding up of the

cells in the egg-shell. In oocytes, the yolk receptor RME-2 is

exported to the plasma membrane, endocytosed upon binding of

yolk protein, and recycled back to the surface through recycling

endosomes [10]. Yolk is produced in the gut epithelium and

secreted into the pseudocoelomic space. To monitor yolk secretion

from the gut epithelium and uptake into oocytes, we use the yolk

protein VIT-2 fused to GFP as a marker [10]. At steady state

RME-2::GFP is concentrated at the plasma membrane of oocytes,

with a large intracellular pool [10,23] (Fig. 4). This plasma

membrane localized pool of RME-2::GFP was reduced upon ribo-

1(RNAi), consistent with a defect in secretion (Fig. 4A and B).

Consequently, VIT-2::GFP uptake was impaired as it accumulated

in the body cavity (Fig. 4C). Moreover, a VIT-2::GFP secretion

defect was also observed in the intestine, leading to the

accumulation of yolk protein in epithelial cells (Fig. 4C). The yolk

receptor RME-2 is glycosylated. We therefore tested, whether we

could detect reduced glycosylation of RME-2 in ribo-1(RNAi)

gonads. The electrophoretic mobility of RME-2::GFP was probed

in lysates of gonads or entire worms either mock or ribo-1(RNAi)

treated by immunoblot (Fig. 4D). RME-2::GFP migrated faster in

the SDS PAGE in lysates from ribo-1(RNAi) treated animals,

consistent with a lower molecular weight and the lack of N-

glycosylation. In contrast the plasma membrane localization of the

non N-glycosylated protein caveolin CAV-1 was unaffected by

knockdown of RIBO-1 (Fig. 4E). Taken together, these data

support the notion that proper N-glycosylation is required for

secretion in different tissues in C. elegans.

RIBO-1 Knockdown Causes Severe Cytokinesis Defects
Cytokinesis requires the deposition of new plasma membrane as

the cleavage furrow ingresses during cell divisions. Given that we

observed a secretion defect in ribo-1(RNAi) oocytes we asked next,

whether reduction of properly N-glycosylated proteins at the

plasma membrane (Fig. 2B) would affect cytokinesis in early

embryos. Interestingly, most ribo-1(RNAi) one-cell stage embryos

were able to divide into two cells. However, subsequent cytokinesis

events failed more often. About 50% of the embryos showed at

least one if not multiple cytokinesis failures as indicated by staining

the plasma membrane with the lipophilic dye FM4-64 and the

DNA with GFP::H2B (Fig. 5A). Similar results were obtained

using the plasma membrane marker PH(PLC)::GFP and DAPI

staining (data not shown). As a result, those embryos contained

multinucleated cells, and the centrosomes in those cells formed

extensive interconnecting microtubule networks (Fig. 5C) in 26.9%

65.41% of embryos.

RIBO-1 and OSTD-1 Knockdowns Cause Chromosome
Missegration and DNA Trailing
We noticed that in some of the cells in ribo-1(RNAi) embryos

pieces of DNA appeared to be retarded in the segregation during

anaphase (Fig. 5A). We first checked in two-cell stage ribo-1(RNAi)

embryos, whether we could observe defects in DNA condensation

and/or chromosome segregation by staining DNA with DAPI

(Fig. 5D). During anaphase of the AB cell, we observed DNA

fragments that were trailing behind after the meta-anaphase

transition. As a consequence, pieces of DNA were observed in

embryos that were not aligned on the mitotic spindle in ribo-1

(Fig. 5B and E, arrows) and were left outside of the newly forming

nucleus in telophase (Fig. 5F). A similar effect was observed when

we knocked down OSTD-1 (Fig. S2B). Our data indicate a novel

and unexpected role for N-glycosylation in chromosome segrega-

tion, independent of its function in cytokinesis.

Figure 1. Knockdown of different OST complex members shows similar phenotypes. (A) Schematic representation of the membrane
orientation of the C. elegans OST proteins in the ER membrane as calculated by toppred 0.01. (B) Embryonic lethality in OST complex member
knockdown is similar in all four genes tested. Feeding was started at the L4 stage and carried on until worms stopped egg laying. dad-1(RNAi) was
applied by dsRNA injection in young adult worms; as indicated by the asterisk. The ratio between total brood size and hatched larvae was
determined. Error bars represent the standard deviation of at least 3 independent experiments. (C) Embryonic death did not occur at a specific stage
in development upon knockdown of different OST complex subunits, but could happen any time before hatching. Early-arrested eggs showed
characteristic rounded up cells as a consequence of the permeable eggshell and the slightly hyper-osmotic egg buffer. Late-arrested embryos could
often twitch and showed distinct signs of morphogenesis like a pharynx, tail or gut, but also large vacuoles in the body as a sign of beginning
necrosis. These phenotypes have been observed in more than 50% of the RNAied embryos in at least 3 independent experiments. (D) OSTD-1
knockdown embryos developed slower than WT embryos as shown by 4-cell stage embryos that were left to develop on a slide in egg buffer at RT.
Every 30 min a Z-stack image was taken. If the embryo did not arrest before, usually after 1.5 hours it showed approx. 30% less nuclei than the WT.
Representative data from 4 independent experiments are shown. Scale bars represent 10 mm.
doi:10.1371/journal.pone.0063687.g001
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Discussion

We have analyzed the effects of reduced N-glycosylation on

early development of C. elegans and found that like in yeast, N-

glycosylation is an essential process. N-glycosylation was already

required for proper oogenesis, however employing a less stringent

RNAi protocol allowed us to follow the effect of reduced N-

glycosylation on development. Under these conditions, the

embryos did not arrest at a particular time point i.e. at the one-

or two-cell stage, but rather continued throughout development

until they ran out of crucial factors. This pleiotropic arrest can be

expected considering the large variety of different protein clients

for the OST complex. The relatively late state of arrest also implies

that the OST complex per se is probably relatively stable and that

the paternally delivered OST complex is sufficient to N-glycosylate

proteins for a relatively long time in development. This finding

would also suggest that for at least some proteins, it would suffice

to perform their cellular function if only a sub-fraction was

properly N-glycosylated. However, it should be noted, that despite

the relatively late arrest of the OST(RNAi) embryos, multiple

problems were already detected before the arrest, most notably

defects in cytokinesis, preventing the accurate development of the

embryo.

The cytokinesis defect is most likely a consequence of the

reduction in intracellular traffic and secretion. Secretion is

generally affected because 1. the yolk receptor RME-2 did not

reach efficiently the oocyte plasma membrane, 2. the egg shell was

not correctly formed after fertilization yielding osmo-sensitive

embryos due to a reduction in secretion of egg shell material. 3.

yolk protein, which is synthesized in the intestine was only partially

secreted as some of it was retained in the gut epithelial cells.

We also observed significant yolk protein accumulating in the

pseudocoelomic space, which could not be taken up by RME-2 in

the oocytes. There are two explanations for the phenotype. Either

very little RME-2 reached the plasma membrane and also its

internal cycling might have been slowed down, or the lack of N-

glycosylation prevented the efficient interaction with yolk. We

cannot distinguish between these two possibilities. The matter is

even more complicated by the fact that yolk protein itself is a

glycoprotein [24].

The reduction of N-glycosylation should induce ERAD and

un- or misfolded proteins would accumulate in the ER. This

scenario might lead to a change in ER morphology, similarly to

a block of secretion. However, we only detected a minor defect

in ribo-1(RNAi) embryos and oocytes, and the cycling between

the sheet and the reticulate state of the ER during the cell cycle

was normal. It is conceivable that we cannot detect gross defects

because there is no massive accumulation of un- or misfolded

proteins. In developing oocytes, the secretory pathway is

Figure 2. The amount of glycosylated proteins is reduced in
oocytes but not embryos in ribo-1(RNAi). (A) Downregulation of
glycosylation cannot be detected in embryo lysates of ribo-1(RNAi)-

treated worms. Both panels show the same gel loaded with 60 mg egg
extract of either mock or ribo-1(RNAi)-treated embryos. Staining with
ProQ Emerald 300 (Invitrogen) showed neither a reduction in staining
nor an alteration of the band pattern in ribo-1(RNAi), while subsequent
Coomassie staining confirmed that equal amounts of protein were
loaded. Asterisks indicate the glycosylated bands in the CandyCane
marker. n = 3 independent experiments. (B) Epifluorescence images of
fixed embryos stained with QdotH-wheat germ agglutinin (Invitrogen)
show a similar amount of cytoplasmic granules in mock vs. ribo-1(RNAi),
but the plasma membrane staining (arrows) is absent in ribo-1(RNAi)
embryos. n = 3 independent experiments (C) Identically fixed and
stained WT oocytes contain brightly fluorescent granules in the
cytoplasm which are fewer or absent in most of the ribo-1(RNAi)
oocytes. (D) Quantification was performed by categorizing images
according to the examples shown below. Scale bars represent 10 mm.
doi:10.1371/journal.pone.0063687.g002

Role of N-Glycosylation in Secretion and Mitosis

PLOS ONE | www.plosone.org 6 May 2013 | Volume 8 | Issue 5 | e63687



Figure 3. ER morphology is largely unaffected by N-glycosylation knockdown. (A) Spinning disc confocal microscopy of fixed whole mount
GFP::SP12 worms showed that except for a slightly stronger accumulation at the cell-cell boundaries (arrows), the structure of the endoplasmic
reticulum was not much altered in (ribo-1)RNAi oocytes, neither in the periphery (upper panels) nor in the center of the cells (lower panels). Images
show the first four oocytes adjacent to the spermatheca, which would be to the left in all images. (B) Fixed GFP::SP12 embryos have been imaged
spinning disc confocal microscopy. The only marked difference between mock and (ribo-1)RNAi was the stronger cortical accumulation (arrows), while
the overall structure as well as the cycling of the ER between dispersed and sheet state was not affected. Scale bars represent 10 mm. n=$4
independent experiments.
doi:10.1371/journal.pone.0063687.g003
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Figure 4. Secretion is impaired in (ribo-1)RNAi. (A) Epifluorescence images of live whole mount RME-2::GFP worms showed that the yolk
receptor was no longer strongly accumulated at the plasma membrane of the oocytes in (ribo-1)RNAi. Depicted are the -2 and -3 oocytes adjacent to
the spermatheca, which would be to the left in all images. (B) Quantification of the RME-2::GFP signal by ImageJ. A 50-pixel wide band was drawn
over the center of the cells where the nuclei are located, and the mean gray value of every 50 pixel-column was plotted over the length of two cells.
These line plots clearly illustrate the reduced plasma membrane accumulation of the yolk receptor in ribo-1(RNAi) oocytes. (C) VIT-2::GFP accumulated
in the body cavity of (ribo-1)RNAi worms (open arrow heads and middle panels) while the oocytes were practically devoid of VIT-2::GFP staining
(dashed lines and middle panels). Moreover, the lowest panels show that yolk protein was not even efficiently secreted from the gut cells, as they
appeared much brighter in the (ribo-1)RNAi worms, pointing towards a general defect in secretion. These phenotypes have been observed in more
than 80% of the RNAied worms, in 3 independent experiments. The two very bright gut cells right next to the pharynx (filled arrow heads in upper
panel) can be found in many GFP worm lines. (D) Immunoblots of worm lysates developed with an anti-GFP antibody detect an increased
electrophoretic mobility of RME-2::GFP protein upon ribo-1(RNAi). This phenotype was present in lysates from isolated gonads as well as in total worm
lysate from RME-2::GFP-tagged worms, while the absence of a similar band in the N2-lysate demonstrates its specificity. Also, RME-2::GFP has a
calculated mass of approximately 130 kDa, while the bands we detected run at around 160 kDa, indicating that RME::2 is probably modified. Upon
OST knockdown, these modifications are altered, leading to a different electrophoretic mobility. (E) CAV-1::GFP secretion is not impaired in ribo-
1(RNAi) worms. Live imaging CAV-1::GFP tagged worms demonstrate that there is not a general block in secretion upon knockdown of the OST
complex. The CAV-1::GFP staining in mock treated and ribo-1(RNAi) oocytes is comparable. Scale bars in all panels represent 10 mm, if not annotated
differently.
doi:10.1371/journal.pone.0063687.g004
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probably not very active and hence ERAD might be easily able

to deal with the protein load in the ER, and in the early

embryos, we may not observe much due to the paternal

contribution of the OST complex. In addition some cargo may

leave the ER despite the lack of N-glycosylation. The ER

cannot control for functionality. Therefore, a subset of proteins

may leave the ER because they adopted a fold, which buried

most of the hydrophobic residues, and hence may appear to be

correctly folded.

Most surprisingly, chromosome segregation was disturbed in a

large number of embryos as we detected small DNA masses

outside nuclei. This observation could be due either to failure to

attach all chromosomes onto microtubules in metaphase or to a

segregation defect at the metaphase-anaphase transition. The

latter possibility appears to take place because we can detect

trailing chromosomes. We cannot exclude a defect in chromo-

some attachment. However, the kinetochores in C. elegans are

holocentric [25,26] and hence multiple microtubule attachment

Figure 5. N-Glycosylation knockdown causes severe defects in chromosome segregation and cytokinesis. (A) Live permeabilized
H2B::GFP embryos stained with FM4-64 showed an increased number of nuclei accumulating in cells of the (ribo-1)RNAi embryos. (B) Quantification of
the phenotypes shown in A, C, D and E. n =.3 independent experiments with .30 embryos/experiment were counted. Only embryos earlier than
16-cell stage were analyzed for the cytokinesis defect. For the analysis of trailing DNA pieces only cells in ana- or telophase of embryos in the 1–8 cell
stage were taken into account (n =.3 independent experiments), and a DNA filament had to be visible between the two DNA masses to be classified
positive in the sense of the phenotype. As DNA fragments we classified small DAPI- or GFP-stained spots in the cytoplasm at a marked distance away
from the nuclei, as shown in (E) and (F) (arrows). As multiple nuclei we counted cells that showed accumulations of two or more DNA masses of
similar size next to each other. (C) Fixed tbb-2::GFP embryos stained with DAPI. The accumulated nuclei in the anterior cell of the (ribo-1)RNAi embryo
divided simultaneously, the spindle microtubules interconnecting several centrosomes to form an extended spindle network throughout the cell. (D)
Fixed 2-cell stage embryos stained with DAPI, showing the AB cell in anaphase. In the (ribo-1)RNAi embryo, the clearly visible DNA thread connecting
the two DNA masses indicated that a chromosome had been attached to microtubules from both spindle poles during Metaphase and now has been
pulled apart. (E) Fixed tbb-1::GFP embryos stained with DAPI. Arrows point to two DNA fragments next to a metaphase nucleus, which seem not to
be arranged on the metaphase plate. These might be the remnants of a previous mis-segregation event. (F) MAN-1::GFP embryos stained with anti-
GFP and DAPI. Arrows point to a small piece of DNA that attracted nuclear envelope components and thus formed a micronucleus. The content of
the dashed-line box was magnified. Scale bars, if not differently annotated, represent 10 mm.
doi:10.1371/journal.pone.0063687.g005
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sites are present on an individual chromatid. Why would a

reduction in N-glycosylation result in a chromosome segregation

defect? Golgi, endosomes and lysosomes are gathered around

centrosomes at the spindle poles because of their interaction

with (-) directed motor proteins. However, it seems unlikely that

they would interfere with chromosome segregation. In contrast,

ER membranes cover the mitotic spindle, which is most

prominent in anaphase [11]. The function of this attachment

is unclear, but it can be speculated that these ER membranes

also contain nuclear pore complex components. At least the

MAN-1, a nuclear envelope marker [13] is localized at this

stage in a manner indistinguishable from the ER markers

HDEL-GFP or SP-12::GFP [11,27] (Fig. 5). These membranes

wrap around chromosomes already during the movement

towards the poles [11]. In Drosophila syncytial embryos, ER

can also be found on spindles and in this case generate Ca2+

microdomains; these Ca2+ transients appear to be necessary for

nuclear division [28]. Therefore, one explanation could be that

upon ribo-1(RNAi) we would interfere with Ca2+ signaling at the

ER. But there are many other possibilities as the effect that we

observe could also be very indirect. For example, in cancer cells

it has been shown that unliganded progesterone receptors,

which are predicted to be N-glycosylated, were still signaling

competent and could modulate the spindle assembly checkpoint

through changes in gene expression [29]. It will be important in

the future to determine how chromosome segregation is

dependent on N-glycosylation.

Supporting Information

Figure S1 OST complex members can be knocked down
efficiently by feeding RNAi. Semi-quantitative PCRs using

intron-spanning primers were performed on cDNA derived from

30 adult worms that were either RNAi or mock treated by feeding

for 48 hours. Equal volumes of each PCR were run on a 3%

agarose gel, showing clearly an almost complete knockout of ribo-1

and stt-3, as well as an approximately 50% knockdown of ostd-1.

(TIF)

Figure S2 ostd-1(RNAi) causes developmental delay in
early embryos. (A) OSTD-1 knockdown embryos developed

slower than mock-treated embryos as shown by 4-cell stage

embryos tagged with H2B::GFP that were left to develop on a slide

in Shelton’s Growth Medium (SGM) at RT. Every 30 min a Z-

stack image was taken and the nuclei were counted. We assembled

the values of each 7 different embryos over four time points,

demonstrating that despite the isosmotic buffer conditions, the

RNAi-treated embryos still developed slower than their mock-

treated counterparts. Error bars depict the standard deviation, and

the large deviation in the case of the ostd-1(RNAi) comes from the

fact that about half of the embryos were arrested after 60 minutes.

(B) SGM did neither rescue the chromosome segregation defects

nor the cytokinesis failures, as shown by examples from an ostd-

1(RNAi) time course, where at the 60 minutes – time point we

observed an anaphase with trailing DNA pieces (arrow), which

later in the 90 minute – time point resulted in a cell containing two

nuclei and two micronuclei (arrowheads). The scale bar represents

10 mm.

(TIF)
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