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1 Introduction

Fish schools, wolf packs, bird flocks, and insect colonies exemplify the inherent tendency

of animals to aggregate and live in groups (Krause and Ruxton, 2002; Sumpter, 2010).

Within these groups, animals engage in a vast array of collective actions such as foraging

(Giraldeau and Caraco, 2000), hunting (Packer and Ruttan, 1988), vigilance (Ward

et al., 2011), defense (Hartbauer, 2010), and navigation (Simons, 2004). These social

interactions are not without conflict, as individual and collective interests can oppose

each other to the point of discouraging joint action and the pursuit of common goals.

Here we follow the game-theoretic approach of modelling such social dilemmas in-

volved in collective action as multiplayer matrix games in which payoffs for individuals

are determined by their own action, namely whether to cooperate or not, and the num-

ber of other individuals within their group who choose to cooperate (Broom et al., 1997;

Peña et al., 2014). As shown in the vast literature on nonlinear public goods games

(e.g., Dugatkin, 1990; Motro, 1991; Bach et al., 2006; Hauert et al., 2006; Cuesta et al.,

2008; Pacheco et al., 2009; Archetti and Scheuring, 2011) cooperative behavior may

arise in the evolutionary solution of such games even when other mechanisms poten-

tially promoting cooperation such as relatedness (Eshel and Motro, 1988; Archetti,

2009; Peña et al., 2015) and reciprocity in repeated interactions (Boyd and Richerson,

1988; Hilbe et al., 2014) are absent.

Evolutionary models of collective action, including the ones cited above, typically

assume that social interactions occur in groups of identical size. In contrast, empirical

studies of animal group sizes show large variation in group size (Bonabeau et al., 1999;

Gerard et al., 2002; Jovani and Tella, 2007; Griesser et al., 2011; Hayakawa and Fu-

ruhashi, 2012). This paper studies how this intrinsic variability in group size affects the

evolution of cooperative behavior. We do so by modeling the evolutionary dynamics

with the replicator dynamics (Taylor and Jonker, 1978; Hofbauer and Sigmund, 1998)

and under the assumptions that the group-size distribution is exogenous, the popula-
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tion is well-mixed, and individuals express one of the two possible pure strategies. This

is the same setting as the one used in Peña (2012) to investigate the effects of group-size

diversity in public goods, that is, without any frequency-dependent or assortment bias

in group composition. Although real group formation processes will certainly lead to

such biases, we stick to this setting as it allows us to infer the consequences of relax-

ing the assumption of fixed group sizes without introducing the confounding effect of

strategy assortment.

We identify general conditions, both on the class of group-size distributions and

on the payoff structure of the collective action problem, which allow us to conclude

whether more or less variation in group size promotes or inhibits cooperation. We thus

go beyond Peña (2012) in not limiting us to the comparison of a deterministic group

size with a variable group size (resp. the comparison of three particular group-size

distributions) and by going beyond particular examples for collective action problems

such as the volunteer’s dilemma (Diekmann, 1985) and public goods game with synergy

or discounting (Hauert et al., 2006).

To obtain our results, we combine three different kinds of insights. First, we build

on results obtained in Motro (1991) and Peña et al. (2014) to identify conditions on the

payoff structure of the game which are sufficient to infer those shape properties of the

gain function that are required to identify the variability effects we are interested in

(Lemmas 1 and 2). These results dispense with the need to explicitly calculate the gain

function (i.e., the difference in expected payoff between the two strategies) whenever

the payoff structure of the game satisfies the relevant conditions.

Second, we use the theory of stochastic orders (Shaked and Shanthikumar, 2007)

to give precise meaning to the notion that one distribution is more ore less variable

than another. This allows us to extend the comparison between a deterministic group

size and a variable group size considered in Peña (2012) to the comparison of different

group-size distributions. In particular, the very same condition on the shape of the gain
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function (when viewed as a function of group size) which Peña (2012) identified as being

sufficient for group-size variability to promote cooperation relative to the benchmark of

a deterministic group size yields the same conclusion for any two group-size distributions

that can be compared in the convex order (Shaked and Shanthikumar, 2007). Many

commonly considered group-size distributions with the same expected value can be

compared in this way and often this is easy to check graphically.

Third, we demonstrate that focusing on the variability of the group-size distribution

per se confounds two effects that are better understood when viewed separately. The

issue is that the proportion of groups with a given size s is not identical to the proportion

of individuals in groups with size s because a randomly chosen individual is more likely

to find itself in a large rather than a small group. Whereas the former proportions are

described by the group-size distribution, the latter are described by the so-called size-

biased sampling distribution (Patil and Rao, 1978) that, for convenience, we refer to as

the experienced group-size distribution. The empirical importance of distinguishing the

group-size distribution and the experienced group-size distribution is well-understood

in the statistical literature; a recent discussion in a biological context can be found

in Jovani and Mavor (2011). The theoretical importance of distinguishing between

the two distributions in our setting arises because an increase in the variability of

the experienced group-size distribution may have different evolutionary consequences

than an increase in the variability of the group-size distribution. This is because more

variability in group size does not simply induces more variability in experienced group

size but also increases average experienced group size.

Our main results are summarized in Propositions 1 and 2. These propositions are

stated in terms of the gain sequence of the game, which collects the gains from switching

(Peña et al., 2014), i.e., the difference in payoff a focal player obtains from switching its

strategy as a function of the number of other cooperating players in the focal player’s

group. Proposition 1 shows that more variation in experienced group size promotes the
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evolution of cooperative behavior whenever the payoff structure of the game is such that

the gain sequence is convex, whereas with concave gains from switching more variation

in experienced group size inhibits the evolution of cooperative behavior. 1 Because

more variation in group size not only implies more variation in experienced group size

but also an upward shift in the experienced group-size distribution, these conditions do

not suffice to imply that more variation in group size (rather than in experienced group-

size) promotes or inhibits cooperative behavior. Proposition 2 takes this confounding

effect into account and shows that more variation in group size promotes cooperative

behavior whenever the gain sequence is convex and increasing, whereas cooperative

behavior is inhibited when the gain sequence is concave and decreasing.

The difference between the sufficient conditions in Propositions 1 and 2 is significant

as there are interesting collective action problems for which the gains from switching are

convex or concave but fail the additional monotonicity properties required to determine

whether more variation in group size promotes or inhibits cooperation. We illustrate

this and other features of our analysis by using the volunteer’s dilemma (Diekmann,

1985) and the public goods game with synergy or discounting (Hauert et al., 2006,

Section 2.3.2) as examples. Further examples will be provided in Section 4, where we

also discuss classes of collective action problems for which our approach is not applicable

because the gain sequences are neither convex nor concave. Finally, we investigate the

consequences of our main results for the number and location of stable rest points of

the replicator dynamics, demonstrating that an increase or decrease in experienced

group-size variability can induce transcritical and saddle-node bifurcations by which

rest points can be created, destroyed, and their stability changed.

1Here and throughout our formal analysis we focus on the effects of an increase in (experienced)
variability as the corresponding results for the effects of a decrease in (experienced) variability are easily
inferred as they are simply opposite in sign. For instance, Proposition 1 can be read as the statement
that less variation in experienced group size inhibits cooperation when the gain sequence is convex and
promotes cooperation when the gain sequence is concave.
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2 Methods

2.1 Group size and experienced group size

We consider an infinitely large and well-mixed population subdivided into groups con-

sisting of a finite number of individuals. We assume that group size is given by a

random variable S with support in the non-negative integers, probability distribution

p = (p0, p1, . . .), and finite expected value Ep[S] =
∑

s ps ·s. We refer to p as the group-

size distribution and assume throughout that p0 + p1 < 1 holds, so that the fraction of

groups with at least two individuals is not zero. 2

Given a group-size distribution p, the fraction p̂s of individuals who find themselves

in a group of size s ≥ 1 is

p̂s =
ps · s
Ep[S]

. (1)

We refer to the probability distribution p̂ = (p̂1, p̂2, . . .) defined by (1) as the experienced

group-size distribution and to its associated random variable Ŝ as the experienced group

size. In the statistical literature the experienced group-size distribution is known as

the size-biased sampling distribution (Patil and Rao, 1978).

Unless group size is deterministic, the experienced group-size distribution differs

from the group-size distribution because a randomly sampled individual is more likely

to be a member of a large group than of a small group. Table 1 shows the relationship

between group size and experienced group size for some distributions that are commonly

used to model variation in group size, including the classical models of Poisson and

negative binomial distributions (Okubo, 1986) and the logarithmic distribution featured

in recent theoretical and empirical work on animal group-size distributions (Niwa, 2003;

Ma et al., 2011; Griesser et al., 2011). We will employ the distributions from Table 1

to illustrate our subsequent analysis.

2We refrain from making stronger assumptions on the support of the group-size distribution —such
as imposing a lower and/or upper bound— to accommodate commonly considered models for group-size
distributions that we use for illustrative purposes.
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2.2 Social interactions and gain sequence

Social interactions take place within groups: individuals within each group of size s ≥ 1

participate in a symmetric s-player game. In this game individuals either cooperate

(play action A, contribute to the provision of a collective good) or defect (action B,

do not contribute to the provision of a collective good). The payoff for an individual

is determined by its own action and the number of other individuals in the group who

play action A. Let ak denote the payoff to an A-player and bk denote the payoff to a

B-player when k = 0, 1, . . . , s−1 co-players play A (and hence s−1−k co-players play

B). We alternatively refer to A-players as “cooperators” and B-players as “defectors”.

Let dk = ak − bk denote the k-th gain from switching, i.e., the gain in payoff an

individual makes from cooperating rather than defecting when k co-players cooperate,

and let d = (d0, d1, . . .) denote the corresponding gain sequence. The gain sequence d

is increasing (decreasing, convex, concave) if ∆dk ≥ 0 (∆dk ≤ 0, ∆2dk ≥ 0, ∆2dk ≤ 0)

holds for all k ≥ 0, where ∆dk = dk+1−dk and ∆2dk = ∆dk+1−∆dk. Examples 1 and 2

below, based on Diekmann (1985) and Hauert et al. (2006, Section 2.3.2), illustrate how

these properties of gain sequences arise in two familiar collective action games. Peña

et al. (2014) provide further examples and general discussion of gain sequences, their

properties, and their importance for the evolutionary analysis of multiplayer games.

Example 1 (Volunteer’s dilemma). In the volunteer’s dilemma each cooperator pays

a cost c > 0, whereas defectors incur no cost. If there is at least one cooperator

(“volunteer”) in the group, a public good is produced that provides a benefit u > c to

each member of the group. If there are no cooperators in the group, payoffs are zero for

all individuals in the group. The payoffs in this game are given by ak = (u−c, u−c, u−

c, . . .) and bk = (0, u, u, . . .). The gain sequence is thus dk = (u − c,−c,−c, . . .). Here

∆dk = (−u, 0, 0, . . .) and ∆2dk = (u, 0, 0, . . .), so that the gain sequence is decreasing

and convex.
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Example 2 (Public goods game with synergy or discounting). As in the volunteer’s

dilemma each cooperator incurs a cost c > 0 for a public good to be produced. In

contrast to the volunteer’s dilemma, the benefit each group member obtains from the

public good depends on the number of cooperators in the group and may also differ

between cooperators and defectors. Specifically, if there are j ≥ 1 cooperators in the

group, the value of the public good is u ·∑j−1
i=0 v

i for defectors and u ·∑j−1
i=0 w

i for

cooperators, where u > 0, v > 0, and w > 0 are parameters. The gain sequence for

this social interaction is 3

dk = u ·
[

k∑
i=0

wi −
k−1∑
i=0

vi

]
− c, (2)

so that we have

∆dk = u ·
[
wk+1 − vk

]
and

∆2dk = u ·
[
wk+1(w − 1)− vk(v − 1)

]
.

If w = v holds (that is, cooperators and defectors obtain the same benefit), the gain

sequence is increasing and convex for w = v > 1 and is decreasing and convex for

w = v < 1. More generally, the gain sequence is increasing and convex if w ≥ 1 and

w ≥ v holds and is decreasing and convex if 1 ≥ v ≥ w and w(1 − w) ≤ 1 − v holds.

For other parameter values the gain sequence may have different shapes. In particular,

if either v ≥ 1 ≥ w holds or the conditions 1 ≥ w ≥ v and w(1 − w) ≥ 1 − v are both

satisfied, the gain sequence is decreasing and concave. If v ≥ w ≥ 1 and w(w−1) ≤ v−1

holds, the gain sequence is concave and unimodal (that is, increasing up to some critical

value of k and decreasing thereafter).

Before proceeding, we note that the game introduced in Example 2 differs from

3The gain sequence for the volunteer’s dilemma is the limit case of the gain sequence in (2) for
v = w → 0.
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the one introduced in Hauert et al. (2006) —and studied in Peña (2012) for the case

v = w— in that the benefits obtained from the public good are not scaled by the inverse

of the group size. We return to this point in Section 4.

2.3 Gain function and expected gain function

If the proportion of A-players in the population is x, the average payoffs obtained by

an A-player and a B-player who find themselves in a group of size s are respectively

given by

fA(x, s) =

s−1∑
k=0

(
s− 1

k

)
xk(1− x)s−1−kak

and

fB(x, s) =
s−1∑
k=0

(
s− 1

k

)
xk(1− x)s−1−kbk.

The difference between the average payoff of A-players and B-players in groups of size

s is then

f(x, s) = fA(x, s)− fB(x, s) =
s−1∑
k=0

(
s− 1

k

)
xk(1− x)s−1−kdk. (3)

The difference between the average payoff of an A-player and a B-player in the popu-

lation is the expectation of f(x, Ŝ) and thus given by

g(x, p̂) = Ep̂[f(x, Ŝ)] =
∑
s≥1

p̂sf(x, s), (4)

where we use the subscript p̂ on the expectation operator to emphasize its dependance

on the experienced-group size distribution. Throughout the following we refer to f(x, s)

as the gain function and to g(x, p̂) as the expected gain function.

Defining

h(x, s) = sf(x, s) (5)
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and using (1) the expected gain can be rewritten in terms of the underlying group-size

distribution as

g(x, p̂) =
1

Ep[S]

∑
s≥1

psh(x, s), (6)

which is the expression used by Peña (2012, Eq. 3).

2.4 Evolutionary dynamics

We assume that the change in frequency of A-players in the population is described by

the replicator dynamics (Taylor and Jonker, 1978; Hofbauer and Sigmund, 1998)

ẋ = x(1− x)g(x, p̂), (7)

while noting that any other dynamics in which the direction of selection (i.e., the sign

of ẋ) is determined by the sign of the expected gain function in the same way as for

the replicator dynamics will lead to identical results.

The replicator dynamics has two rest points at x = 0 (where the whole population

consists of defectors) and at x = 1 (where the whole population consists of cooperators).

Interior rest points are given by the values x∗ ∈ (0, 1) satisfying g(x∗, p̂) = 0. An interior

rest point x∗ is stable if the expected gain function changes its sign from positive to

negative at x∗, for which dg(x∗, p̂)/dx < 0 is a sufficient condition. Regarding the

endpoints, x = 1 is stable if the expected gain is positive for sufficiently large x, for

which g(1, p̂) > 0 is a sufficient condition. Similarly, x = 0 is stable if the expected

gain is negative for sufficiently small x, for which g(0, p̂) < 0 is a sufficient condition.

Because f(0, s) = d0 holds for all s we have

g(0, p̂) = d0, for all p̂ (8)

so that the stability of the rest point x = 0 does not depend on the group-size distri-
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bution. To simplify the exposition, we assume d0 6= 0 throughout the following.

When group-size is deterministic and given by s, (7) reduces to

ẋ = x(1− x)f(x, s).

This is the version of the replicator dynamics considered in Peña et al. (2014), who

show how shape properties of the gain sequence d can be used to infer shape properties

of the gain function f and, thus, information about the number and stability of the

rest points of the replicator dynamics for a given deterministic group size.

To illustrate the relationship between the gain sequence, the (expected) gain func-

tion, and the rest points of the replicator dynamics, let us consider the volunteer’s

dilemma from Example 1. Substituting the gain sequence d = (u − c,−c,−c, . . .) into

(3) yields the gain function f(x, s) = u(1 − x)s−1 − c. The gain function is strictly

decreasing in x and satisfies f(0, s) > 0 as well as f(1, s) < 0, so that there is exactly

one interior rest point x∗, which is also the unique stable rest point of the replicator

dynamics when all groups have identical size s. The expected gain function, given by

g(x, p̂) = u
[∑

s≥1 p̂s(1− x)s−1
]
−c, is also strictly decreasing in x. Further, g(0, p̂) > 0

holds and, provided that p̂1 < c/u holds (meaning that an individual is not too likely to

find itself in the position of being the sole member of a group), we also have g(1, p̂) < 0.

Hence, when the experienced group-size distribution is p̂, the replicator dynamics will

again have one interior rest point x∗, which is also the unique stable rest point of the

dynamics. While for deterministic group sizes this stable rest point is easily calculated

as x∗ = 1− (c/u)1/(s−1) (Diekmann, 1985), even for a game as simple as the volunteer’s

dilemma no analytical solution for the stable rest point can be determined for general

group-size distributions. Nevertheless, once the right tools are brought to bear on the

issue, a great deal can be said not only about the impact of variability in experienced

group size on the evolutionary dynamics for the volunteer’s dilemma but also for more

complicated games such as the one considered in Example 2.
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2.5 Variability order

As our interest is in isolating the effect of variation in group size on the evolutionary

dynamics, we have to take a stance on how to compare the variability of two distribu-

tions. We follow the standard approach from the literature on stochastic orders (Shaked

and Shanthikumar, 2007) and consider one (experienced) group-size distribution to be

more variable than another if it is more “spread out” in the sense of the so-called con-

vex order. Throughout the following we write q ≥v p if group-size distribution q is

more variable than p in this sense and similarly write q̂ ≥v p̂ if the experienced group-

size distribution q̂ associated with q is more variable than the experienced group-size

distribution p̂ associated with p.

By definition (Shaked and Shanthikumar, 2007, Chapter 3), q ≥v p means that for

all convex functions φ : R→ R the inequality Eq[φ(Y )] ≥ Ep[φ(X)] holds. As φ(x) = x

and φ(x) = −x are both convex functions, q ≥v p implies Eq[Y ] = Ep[X]. As φ(x) = x2

is a convex function, q ≥v p implies Varq[Y ] ≥ Varp[X]. Consequently, a necessary

condition for a distribution q to be more variable than a distribution p is that q and

p have the same expected value and that the variance of q is at least as high as the

variance of p. Of course (here and in the following discussion of sufficient conditions)

the same statements are applicable for experienced group-size distributions.

The conditions Eq[Y ] = Ep[X] and Varq[Y ] ≥ Varp[X] are not sufficient to imply

that q is more variable in the convex order than p. Rather, provided that the expected

values are the same, a sufficient condition for q ≥v p is that q assigns higher probability

to more extreme realizations of group size in the sense that the sequences (p0, p1, . . .)

and (q0, q1, . . .) cross exactly twice with qs > ps holding for s sufficiently small and

s sufficiently large, whereas ps > qs holds for intermediate values of s (Shaked and

Shanthikumar, 2007, p. 133). This sufficient condition is trivially satisfied when p de-

scribes a deterministic group size: any group-size distribution q with expected value

s is more variable than the deterministic group-size distribution p assigning probabil-
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ity 1 to s. Less trivially, all the (experienced) group-size distributions appearing in

Table 1 are ordered by variability when their expected values coincide: As we show

in Appendix A.1, negative binomial distributions with the same expected value are

ordered by variability according to the value of the parameter η, with the geometric

distribution (corresponding to the case η = 1) being most variable and the Poisson dis-

tribution (corresponding to the limit case η →∞) being least variable. See Fig. 1 for

an illustration. The logarithmic distribution is even more variable than the geometric

distribution. The truncated Poisson, geometric, and Waring distributions considered

in Peña (2012, Fig. 1) provide further examples of distributions satisfying the sufficient

condition stated above. It follows that all the comparisons considered in Peña (2012)

are ones in which the group-size distributions are ordered by variability.

One might think of pursuing the simpler approach of considering one of two distri-

butions with the same expected value to be “more variable” than the other if it has the

higher variance. Alas, such an approach would be of very limited applicability in our

context: unless the expected gain function is determined by the first two moments of

the experienced group-size distribution, knowledge of the expected value and variance

of the experienced group-size distribution (or the actual group-size distribution for that

matter) does not provide enough information to determine the expected gain function.

4 This precludes the possibility of obtaining any general results linking the variance of

the experienced group size to the evolutionary dynamics. Fig. 2 illustrates this for the

volunteer’s dilemma.

4It is not difficult, but tedious, to show that the expected gain function is determined by the first
two moments of the experienced group-size distribution if and only if the gain sequence takes the form
dk = α+βk+γk2 for some parameters α, β, and γ. In the context of a public goods game with constant
cost c > 0 of contributing to the public good, the gain sequence will take this form if and only if the
benefit of the public good is a polynomial of degree no larger than 3 in the number of contributors. For
the expected gain function to be determined by the first two moments of the group-size distribution
the additional restriction γ = 0 is required.

13

.CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/021485doi: bioRxiv preprint first posted online Jun. 25, 2015; 

http://dx.doi.org/10.1101/021485
http://creativecommons.org/licenses/by-nc-nd/4.0/


2.6 Variability effects and experienced variability effects

A final complication we must face before proceeding to our results is that the distinction

between a more variable group size and a more variable experienced group size is

nontrivial. The reason is that the two conditions Ep[S] = Eq[S] and Ep̂[Ŝ] = Eq̂[Ŝ] are

not equivalent. Indeed, a simple calculation shows that for any group-size distribution

p we have

Ep̂[Ŝ] = Ep[S] +
Varp(S)

Ep[S]
, (9)

where Varp(S) denotes the variance of the group-size distribution. Hence, whenever

two group-size distributions p and q satisfy q ≥v p and q has a strictly higher variance

than p, the experienced group-size distribution q̂ has a strictly higher expected value

than the experienced group-size distribution p̂. Consequently, q ≥v p does not imply

q̂ ≥v p̂, as the two experienced group-size distributions will not have the same expected

value.

Fig. 3 illustrates the importance of this point for the case of the volunteer’s dilemma

and negative-binomially distributed group-sizes. The left panel of the figure shows that

the frequency of cooperators at the stable rest point is a decreasing function of group-

size variability, whereas the right panel shows that the frequency of cooperators at

the stable rest point is an increasing function of experienced group-size variability. As

will become clear later, these strikingly different effects of a change in variability are

entirely driven by the higher average experienced group sizes associated with more

variable group sizes.

We respond by distinguishing between variability and experienced-variability effects

on the frequency of A-players in the population. In particular, we say that there is a

positive experienced-variability effect if q̂ ≥v p̂ implies

g(x, q̂) ≥ g(x, p̂) for all x ∈ [0, 1] (10)
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and a negative experienced-variability effect if q̂ ≥v p̂ implies

g(x, q̂) ≤ g(x, p̂) for all x ∈ [0, 1]. (11)

Hence, in the case of a positive (resp. negative) experienced-variability effect, more

variability in experienced group size unambiguously increases (resp. decreases) the dif-

ference between the average fitness of cooperators and defectors. Similarly, we say that

the variability effect is positive if q ≥v p implies (10) and that it is negative if q ≥v p

implies (11). In either case, the interpretation is that (10) means that variability pro-

motes the evolution of cooperation, whereas (11) means that variability inhibits the

evolution of cooperation.

3 Results

Our analysis proceeds in four steps. First, we establish two preliminary results that

relate shape properties of the gain sequence d to corresponding properties of the gain

function f(x, s). Second, we identify conditions on the gain sequence d which allow us

to sign the experienced-variability effect. Third, we turn to the more challenging task of

signing the variability effect. Fourth, we draw out the implications of the inequalities in

(10) and (11) for the number and location of the rest points of the replicator dynamics

under the conditions which allow us to sign the experienced-variability effect.

3.1 Preliminaries

As noted and discussed in Peña et al. (2014), the gain function f(x, s) is a polynomial

in Bernstein form. The following two preliminary results summarize the properties of

the gain function and the expected gain function that are implied by the theory of

polynomials in Bernstein form (Farouki, 2012) and are of relevance for our analysis.

We begin by relating the monotonicity and convexity properties of the gain sequence
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d to corresponding properties of the gain function f(x, s) when considered as a function

of group size s. Formally, we say that f(x, s) is increasing (resp. decreasing) in s if

∆sf(x, s) = f(x, s+ 1)− f(x, s) ≥ 0 (resp. ∆sf(x, s) ≤ 0) holds for all s ≥ 1 and x ∈

[0, 1]; f(x, s) is convex (resp. concave) in s if ∆2
sf(x, s) = ∆sf(x, s+ 1)−∆sf(x, s) ≥ 0

(resp. ∆2
sf(x, s) ≤ 0) holds for all s ≥ 1 and x ∈ [0, 1]. With this terminology in place,

we can state the following lemma. The proof, which uses an observation due to Motro

(1991), is in Appendix A.2.

Lemma 1. If the gain sequence d is increasing (decreasing, convex, concave), then the

gain function f(x, s) is increasing (decreasing, convex, concave) in group size s.

As noted in Peña et al. (2014, Remark 3), the gain function f(x, s) inherits the

monotonicity and convexity properties of the gain sequence d when considered as a

function of x. In particular, when the gain sequence d is increasing (decreasing), then

the gain function f(x, s) is increasing (decreasing) in x. Similarly, when the gain se-

quence d is convex (concave), then f(x, s) is convex (concave) in x. As monotonicity

and convexity properties are preserved by taking weighted averages, it is immediate

from (4) that the expected gain function g(x, p̂) inherits these monotonicity and con-

vexity properties in x no matter what the experienced group-size distribution p̂ is. The

following result thus requires no further proof.

Lemma 2. If the gain sequence d is increasing (decreasing, convex, concave), then

the expected gain function g(x, p̂) is increasing (decreasing, convex, concave) in the

proportion x of A-players for all experienced group-size distributions p̂.

3.2 Signing the experienced-variability effect

Suppose that the gain sequence d is convex. Then, as established in Lemma 1, the

function f(x, s) is convex in group size s no matter what the fraction x of A-players in

the population is. By the very definition of the relationship q̂ ≥v p̂, convexity of f(x, s)
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in group-size s is in turn sufficient to imply the inequality Eq̂[f(x, Ŝ)] ≥ Ep̂[f(x, Ŝ)]

or, recalling the definition of the expected gain function in (4), the inequality in (10).

It thus follows that the experienced-variability effect is positive whenever the gain

sequence d is convex. An analogous argument shows that concavity of d is sufficient to

imply inequality (11). Consequently, we obtain the following simple sufficient conditions

on the payoff structure of the game under which the experienced-variability effect can

be signed. The formal proof is in Appendix A.2.

Proposition 1.

[1.1] If the gain sequence d is convex, then the experienced-variability effect is pos-

itive.

[1.2] If the gain sequence d is concave, then the experienced-variability effect is

negative.

As we have noted before, the gain sequence for the volunteer’s dilemma in Example 1

is convex. Hence, it is an immediate implication of Proposition 1.1 that the experienced-

variability effect is positive for the volunteer’s dilemma. The results for the public

goods game with synergy or discounting in Example 2 are more nuanced: here the gain

sequence is convex for some parameter values (including the case v = w considered in

Peña (2012)) and concave for others. From Proposition 1 an increase in experienced

variability promotes cooperation in the former case but inhibits it in the latter.

3.3 Signing the variability effect

Heuristically, we may think of an increase in variability in group-size as giving rise

to two effects, namely (i) an increase in the variability of the experienced group-size

distribution and (ii) an upward shift in that distribution. As we have discussed in

Section 2.6, the source of the second effect is that an increase in the variability of

the group-size distribution increases the expected value of the experienced group size:

q ≥v p implies Eq̂[S] ≥ Ep̂[S].
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Provided that the gain sequence is convex or concave, the first of these effects —the

experienced variability effect— can be signed (Proposition 1). It is intuitive that the

sign of the second effect, namely the size effect resulting from an increase in the ex-

pected experienced group size, is determined by the monotonicity properties of the gain

sequence: for a given proportion x of A-players in the population a higher experienced

group size increases the average number of A-players in a group a focal player will expe-

rience, which in turn increases (resp. decreases) the difference in average payoff between

A-players and B-players when the gain sequence is increasing (resp. decreasing). This

suggests that the variability effect can be signed if the gain sequence is either increasing

and convex or decreasing and concave because in these cases the experienced-variability

effect and the size effect both point in the same direction.

The proof of the following proposition in Appendix A.2 confirms this intuition.

In this proof the function h(x, s) = sf(x, s), that we have introduced in (5), plays a

central role. Writing the expected gain function as in (6) it is immediate from the

definition of the convex order that convexity (resp. concavity) of the function h(x, s)

is sufficient to imply a positive (resp. negative) variability effect. This first step of the

proof generalizes the observation from Peña (2012) that convexity of h(x, s) implies that

group-size variability promotes cooperation relative to the benchmark of a deterministic

group size. We complete the proof by showing that the function h(x, s) is convex

(resp. concave) in group size s for all x when the gain sequence is increasing and

convex (resp. decreasing and concave).

Proposition 2.

[2.1] If the gain sequence d is increasing and convex, then the variability effect is

positive.

[2.2] If the gain sequence d is decreasing and concave, then the variability effect is

negative.

While there are collective action problems for which the gain sequence satisfies the
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conditions appearing in Proposition 2 —for instance, Example 2 provides conditions on

the parameter values of the public goods game with synergy or discounting for which

this is the case— these conditions are much more stringent that the ones in Proposition

1. In the cases not covered by Proposition 2, e.g., when the gain sequence is decreasing

and convex (as in the volunteer’s dilemma from Example 1) or is concave and unimodal

(as it is the case in the model of Bach et al. (2006) or for a broad range of parameter

values in the game considered in Example 2), no clear-cut prediction for the variability

effect is possible. The reason is that in such games the experienced-variability effect

and the size effect may not only point in opposite directions but their relative strength

depends on the frequency x of cooperators in the population and, further, on the

particular group-size distributions under consideration. As a consequence, even in the

simplest case in which the replicator dynamics has a unique stable rest point, no general

conclusions about the effect of an increase in group-size variability on the the location

of this rest point are possible. For instance, while Fig. 3 documents a case in which the

stable rest point in the volunteer’s dilemma is decreasing in group-size variability, it is

apparent from Peña (2012, Fig. 5) that for other parameter values increasing group-

size variability can either increase or decrease the stable frequency of cooperators in

the volunteer’s dilemma.

3.4 Experienced variability and the rest points of the replicator dy-

namics

The upshot of the preceding discussion in Section 3.3 is that beyond the circumstances

delineated in Proposition 2 there is little hope of gaining robust insights into the effect

of a change in group-size variability on the evolution of cooperation. In this section

we thus focus on the impact of an increase in experienced variability for the number

and location of the (stable) rest points of the replicator dynamics. We do so for games

with gain sequences d that are either convex or concave, so that the experienced-
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variability effect can be signed by Proposition 1. Several case distinctions arise because

convex or concave gain sequences are general enough to allow for qualitatively different

dynamic regimes with zero, one, or two interior rest points. Thus, two kinds of effects

may arise due to an increase or decrease in experienced variability, which we explore

by considering the differences between the evolutionary dynamics for two experienced

group-size distributions satisfying q̂ ≥v p̂. First, the number of stable rest points may

stay unchanged while the location of these rests points changes. Second, the number

of stable rest points might change, either via (i) a transcritical bifurcation by which

an interior point collides with or emerges from the fixed point at x = 1, or (ii) a

saddle-node bifurcation by which two interior fixed points (one stable, one unstable)

are created or destroyed.

3.4.1 Convex gain sequences

From Proposition 1.1 we know that condition (10) holds for convex gain sequences,

so that the gain function for the more variable experienced group-size distribution q̂

lies above the gain function for the experienced group-size distribution p̂. Further, by

Lemma 2 the gain functions g(x, p̂) and g(x, q̂) are both convex in the proportion x

of cooperators. As a nontrivial convex function can have at most two zeros, it follows

that the replicator dynamics for the two experienced group-size distributions under

consideration has at most two interior rest points. Further, if the gain sequence is not

only convex, but also monotonic (that is, either increasing or decreasing), so will be

the expected gain function (Lemma 2), implying that in these cases there is at most

one interior rest point.

If the replicator dynamics for p̂ and q̂ have the same number of interior rest points,

then an increase in experienced variability has no effect on the stability of the rest

points. For instance, if d0 < 0 holds and for both experienced group-size distributions

there is a unique interior rest point, then (8) and the fact that stable and unstable
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rest points must alternate imply that for both p̂ and q̂ the rest point x = 0 is stable,

the interior rest point is unstable, and the rest point at x = 1 is stable. Further, (10)

implies that an increase in experienced variability causes the proportion of cooperators

in an unstable interior rest to decrease, whereas the proportion of cooperators in a

stable interior rest point increases. The left panel of Fig. 4 illustrates these assertions

for the case of an increasing and convex gain sequence arising from the collective action

problem in Example 2.

Depending on the sign of d0, a more variable experienced group-size distribution

may either increase or decrease the number of interior rest points of the replicator

dynamics for a convex gain sequence. Suppose d0 < 0 holds. We can then distinguish

two cases. In the first case g(1, p̂) > 0 holds and the replicator dynamics for p̂ has a

unique interior rest point (which is unstable). Hence (10) implies that the replicator

dynamics for q̂ also has a unique interior rest point, so that the number of interior rest

points is unchanged and the analysis from the preceding paragraph is applicable. In

the second case g(1, p̂) < 0 holds and there is no interior rest point. If the experienced-

variability effect is sufficiently strong as to induce g(1, q̂) > 0, then the replicator

dynamics for q̂ has one interior rest point and the rest point at x = 1 is stable, whereas

the replicator dynamics for p̂ has no interior rest point and x = 1 is unstable. In this

scenario, illustrated in the right panel of Fig. 4, the positive experienced-variability

effect thus manifests itself in stabilizing a fully cooperative population via a transcritical

bifurcation. In contrast, if d0 > 0 holds, then the replicator dynamics for q̂ cannot have

more, but might have less, rest points than the replicator dynamics for p̂. For instance,

when the gain sequence d is convex and decreasing (as in the volunteer’s dilemma)

and the inequality g(1, p̂) < 0 < g(1, q̂) holds, then d0 > 0 implies that the replicator

dynamics for p̂ has one interior rest point, which is also the unique stable rest point,

whereas the replicator dynamics for q̂ has no interior rest point and x = 1 is the unique

stable rest point.
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3.4.2 Concave gain sequences

For a concave gain sequence d the experienced-variability effect is negative (Proposition

1.2), that is, q̂ ≥v p̂ implies (11). Further, Lemma 2 shows that both g(x, p̂) and g(x, q̂)

are concave in x and thus have at most two interior rest points.

As in the case of convex gain sequences, two scenarios are possible. First, the

replicator dynamics for p̂ and q̂ may have the same number of rest points in which

case (8) implies that the stability pattern of the rest points for the two dynamics is

identical and, further, (11) implies that the fraction of cooperators in an interior stable

rest point is higher for the experienced group-size distribution q̂, whereas the fraction

of cooperators in an interior unstable rest point is higher for the experienced group-size

distribution p̂. The left panel of Fig. 5 illustrates this scenario for an unimodal and

concave gain function arising from the gain sequence of the collective action problem

introduced in Example 2.

Second, the replicator dynamics for the more variable q̂ may have less (when d0 < 0)

or more (when d0 > 0) interior rest points than the replicator dynamics for p̂. For

instance, when d0 < 0 and g(1, p̂) < 0 holds, then the replicator dynamics for p̂ may

have two interior rest points (with the first of these being unstable and the second

stable), whereas with a sufficiently strong experienced-variability effect a saddle-node

bifurcation occurs and the replicator dynamics for q̂ has no interior rest point. This

possibility is illustrated in the right panel of Fig. 5. We note that the situation

illustrated in this figure is analogous to the one considered in Bach et al. (2006), who

also show that a downward shift in a unimodal concave gain function may cause the

number of interior rest points of the replicator dynamics to drop from two to zero via

a saddle-node bifurcation. The key difference between the scenario considered in Bach

et al. (2006) and the one we consider here is that in their model the disappearance of

the interior rest points is caused by a downward shift in the gain sequence d, whereas

in our model the gain sequence is given and it is a shift in the experienced group-size
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distribution which induces the bifurcation causing the disappearance of the interior rest

points.

4 Discussion

We have studied the effect of variation in group size on the evolution of cooperative

behavior. Provided that variation in group size is measured according to its induced

effect on the variability of the experienced group-size distribution, the model offers

clear predictions: more experienced variability promotes cooperation when the payoff

structure of the collective action problem implies a convex gain sequence and inhibits

cooperation when the gain sequence is concave. We further showed that these vari-

ability effects can have important dynamic consequences. These include the shifting,

creation, and destruction of internal equilibria and the stabilization of the full coop-

erative equilibrium (cf. Fig. 4 and 5). Altogether, our results add to previous work

demonstrating the importance of accounting for group-size distributions in models of

the evolution of social behaviors (Brännström et al., 2011; Peña, 2012).

Our analysis raises the question of which collective action problems besides the

ones we have considered in Examples 1 and 2 give rise to convex or concave gain

sequences. This is so for the class of club good games with accelerating or decelerating

production functions considered in Peña et al. (2015). In these games defectors are

excluded from the consumption of the collective good and obtain a payoff of zero.

The payoff to a cooperator is uk+1 − c, where the benefit uj from obtaining the club

good is increasing in the number of cooperators j and c > 0 is the cost of providing

the good. Here the gain sequence is simply dk = uk+1 − c, which is convex when uj is

convex (accelerating production function) and concave when uj is concave (decelerating

production function). For many commonly studied collective action problems, however,

the gain sequences are neither convex nor concave. Examples are (i) public goods games

involving nontrivial thresholds, such that the cooperation of more than one but less than
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the total number of players is required to produce a collective good (Bach et al., 2006;

Pacheco et al., 2009; Archetti and Scheuring, 2011), (ii) games of multiplayer reciprocity

(Boyd and Richerson, 1988), and (iii) variants of the volunteer’s dilemma where the

cost of providing the good is shared among cooperators (Weesie and Franzen, 1998),

sometimes referred to as multiplayer snowdrift game (Zheng et al., 2007; Souza et al.,

2009). No unambiguous, general conclusions concerning the effect of variable group

sizes can be obtained in these cases. Instead, the gain function has to be explicitly

calculated under different group size (or experienced group size) distributions in order

to correctly sign the experienced-variability and the variability effects.

Throughout our analysis we have assumed that payoffs for individuals are deter-

mined by their own action (whether to cooperate or defect) and the number of coop-

erators in the group. All of our analysis carries over without substantial changes to

the case in which the payoff consequences of own actions depend on the number of

defectors (rather than the number of cooperators) in the group. Consider, for instance,

the weakest-link stag hunt game (Hirshleifer, 1983). This game is like the volunteer’s

dilemma, except that the cooperation of all individuals in a group is required for the

benefit to be produced. To analyse this game we may consider the gains from switching

as a function of the number of other individuals in the group that play defect (rather

than cooperate). The resulting gain sequence is identical to the one for the volun-

teer’s dilemma. Consequently, Proposition 1.1 continues to apply and we may conclude

that an increase (resp. decrease) in experienced variability promotes (resp. inhibits)

cooperative behavior in the weakest-link stag hunt game.

As we have already noted at the end of Section 2.2, Hauert et al. (2006) assume that

the benefits in their public goods game with synergy or discounting are scaled by the

inverse of group-size. This implies that the gains from switching are no longer solely

determined by the number of cooperators in the group but depend directly on group

size. Consequently, our analysis is not directly applicable. It can be shown, however,
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that with such scaled benefits the very same conditions which ensure the convexity

(resp. concavity) of the gain function f(x, s) in group size in our version of the public

goods game (see Example 2) now ensure that the function h(x, s) = sf(x, s) is convex

(resp. concave) in group-size. As convexity (resp. concavity) of h(x, s) in group size

is sufficient to sign the variability effect (cf. the discussion preceding the statement

of Proposition 2), we obtain the following, somewhat surprising result: with scaled

benefits the variability effect can be signed under exactly the same conditions that

allowed us to sign the experienced-variability effect. In particular, the results shown

in Peña (2012, Fig. 2) for the scaled version of the public goods game with synergy or

discounting are not limited to the particular group-size distributions considered there,

but hold for arbitrary group-size distributions that are ordered by variability.

This paper has followed Peña (2012) in investigating the evolutionary consequences

of variation in group size using the replicator dynamics of two-strategy multiplayer

games. While this is a common approach is the literature on collective action prob-

lems (Motro, 1991; Bach et al., 2006; Peña et al., 2014), alternative approaches are

possible. In particular, the very same question we are interested in has been explored

by Brännström et al. (2011) in the framework of continuous strategies and adaptive

dynamics (Metz et al., 1996). In contrast to us, Brännström et al. (2011) focus on a

class of games in which the selection gradient (the counterpart to our gain function)

is determined by the average contribution in the group, so that variability in group

size has no effect on the location of the singular rest points (corresponding to the rest

points of our dynamics). Rather, the effect of variation in group size in their setting

reflects itself in whether evolutionary branching can occur near a singular strategy and

this is the question they study. Despite such fundamental differences, the analysis in

Brännström et al. (2011) shares a common feature with ours, namely that the variance

of the group-size distribution is not a suitable measure of variability. The measure of

variability used by Brännström et al. (2011), the average inverse group size, is consistent
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with our approach in the sense that more variable group-size distributions according

to our definition have higher average inverse group size.

We conclude by noting that we have taken the group-size distribution to be ex-

ogenous and assumed that the experienced group-size distribution is independent of

the behavior of the individuals under consideration. It would be a logical next step to

extend out analysis to models in which these assumptions are relaxed. For instance, in

addition to their different cooperative tendencies, individuals might vary with respect

to the size of the group they would prefer to join (Powers et al., 2011) or their intrinsic

ability to form groups (Garcia and De Monte, 2013). In these cases, group sizes are

expected to vary endogenously in nontrivial ways. If the underlying collective action

problem involves nonlinearities, the variability effects described in this paper will also

arise and feed back into the evolutionary dynamics. Future work should investigate how

variation in group size might affect the coevolution of group formation and cooperation

in collective action dilemmas.
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Appendix

A.1 Ordering of some common (experienced) group-size distributions

by their variability

Suppose the distribution p of X is negative binomial with parameters ηx and πx, and

the distribution q of Y is negative binomial with parameters ηy and πy. Assume further

that πxηx/(1−πx) = πyηy/(1−πy) holds, so that both random variables have the same

expected value (cf. Table 1). Whitt (1985) demonstrates that the relationship q ≥v p
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is then implied if the inequality

rq(s) ≥ rp(s) (12)

holds for all s ≥ 1, where rp(s) and rq(s) denote the indices of relative log-concavity of

the two distributions, which can be calculated as (see Whitt, 1985, Example 6)

rp(s) =
(s+ 1)(ηx + s− 1)

s(ηx + s)
,

rq(s) =
(s+ 1)(ηy + s− 1)

s(ηy + s)
.

A straightforward calculation shows that condition (12) is satisfied for all s ≥ 1 when

ηx ≥ ηy holds. Consequently, we have q ≥v p if ηx ≥ ηy is satisfied. Further, as the

Poisson distribution can be obtained as the limit of the negative binomial distribution

for η →∞ and the geometric distribution corresponds to the negative binomial with η =

1, it follows that (provided the expected values are identical) a geometric distribution

is more variable than any negative binomial distribution with η > 1 and every negative

binomial distribution is more variable than a Poisson distribution. In particular, any

two of the experienced group-size distributions appearing in Table 1 are ordered by

variability when they have the same expected value.

These kinds of comparisons can be extended to many other familiar distributions.

For instance, the Waring distribution considered in Peña (2012) as a group-size distri-

bution is a mixture of geometric distributions (Johnson et al., 2005, p. 290) and is thus

(Whitt, 1985, Example 6) more variable than the geometric distribution with the same

expected value as the Waring distribution under consideration. Similarly, it is imme-

diate from Johnson et al. (2005, Eq. 7.21, p. 307) that the logarithmic distribution

featured in Table 1 is more variable than the geometric distribution.
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A.2 Proofs

Proof of Lemma 1: The polynomial in Bernstein form of degree n of the sequence

d = (d0, d1, d2, . . .) is

Bn (x; d) =
n∑
k=0

(
n

k

)
xk(1− x)n−kdk, (13)

so that from (3) we have

f(x, s) = Bs−1 (x; d) . (14)

By (14) we have

∆sf(x, s) = Bs(x, d)− Bs−1(x, d) (15)

and

∆2
sf(x, s) = [Bs+1(x, d)− Bs(x, d)]− [Bs(x, d)− Bs−1(x, d)] . (16)

Motro (1991) shows (cf. the proof of part (ii) of the proposition in his appendix)

that

Bs(x, d)− Bs−1(x, d) = xBs−1(x,∆d) (17)

holds for x ∈ [0, 1], s ≥ 1 and all sequences d. Observing that the polynomial in

Bernstein form appearing on the right side of (17) is positive (negative) when all its

coefficients are positive (negative) it follows from (15) that for increasing (decreasing) d

we have that ∆sf(x, s) is positive (negative) for all x ∈ [0, 1] and s ≥ 1. This establishes

that f(x, s) is increasing (decreasing) in s when d is increasing (decreasing).

Applying (17) to both terms in square brackets in (16) and simplifying we obtain

∆2
sf(x, s) = x [Bs(x,∆d)− Bs−1(x,∆d)] .

As (17) holds for all sequences d, we can apply it with ∆d in place of d, to obtain

Bs(x,∆d)− Bs−1(x,∆d) = xBs−1(x,∆2d).
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Combining the previous two equalities yields

∆2
sf(x, s) = x2Bs−1(x; ∆2d). (18)

As the right side of (18) is positive (negative) if d is convex (concave), this establishes

that f(x, s) is convex (concave) in s if d is convex (concave).

Proof of Proposition 1: Let ĝ ≥v p̂ and let d be convex. From Lemma 1, convexity

of d implies that f(x, s) is convex in s. Because q̂ ≥v p̂ implies that the inequality

Eq̂[φ(Ŝ)] ≥ Ep̂[φ(Ŝ)] holds for all convex functions φ, it follows that Eq̂[f(x, Ŝ)] ≥

Ep̂[f(x, Ŝ)] holds for all x ∈ [0, 1]. Substituting the definition of the gain function (4)

into this inequality, we obtain (10). Consequently, the experienced variability effect is

positive when d is convex.

When d is concave, Lemma 1 implies that f(x, s) is concave in s, so that −f(x, s) is

convex in s. Hence q̂ ≥v p̂ yields that the inequality −Eq̂[f(x, Ŝ)] ≥ −Ep̂[f(x, Ŝ)] holds

for all x ∈ [0, 1]. Multiplying both sides of the inequality by −1 and using the definition

of the gain function (4), we obtain (11). Consequently, the experienced variability effect

is negative when d is concave.

Proof of Proposition 2: We show that for increasing and convex d, q ≥v p implies

(10), thus establishing the first part of the proposition. (As in the proof of Proposition

1, the result for the case in which d is decreasing and concave follows by an analogous

argument.)

Using (6), we may write

g(x, p̂) =
1

Ep[S]

∑
s

psh(x, s),

g(x, q̂) =
1

Eq[S]

∑
s

qsh(x, s).
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As q ≥v p implies Ep[S] = Eq[S], it follows that the variability effect is positive if

∑
s

qsh(x, s) ≥
∑
s

psh(x, s) (19)

holds for all x. By definition of the convex order, (19) is satisfied whenever h(x, s) is

convex in s, so that it suffices to establish this property.

If d is increasing and convex, then f(x, s) is increasing and convex in group-size s

(Lemma 1). Using the definition h(x, s) = sf(x, s), a straightforward calculation shows

that

∆sh(x, s) = (s+ 1)∆sf(x, s) + f(x, s), (20)

∆2
sh(x, s) = (s+ 2)∆2

sf(x, s) + 2∆sf(x, s). (21)

Because f(x, s) is increasing and convex in group size, it satisfies ∆sf(x, s) ≥ 0 and

∆2
sf(x, s) ≥ 0, so that (21) implies ∆2

sh(x, s) ≥ 0. Hence, h(x, s) is convex.
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Figure 1: Three group-size distributions ordered by variability. p1 is the geometric
distribution NB(1, 5/6), p2 the negative-binomial distribution NB(5, 1/2), and p3 is the
Poisson distribution Po(5). All three distributions have an expected value of 5 and are
thus, as shown in Appendix A.1, ordered by variability with the geometric distribution
p1 being most variable and the Poisson distribution p3 being least variable. As explained
in the text this can be seen graphically by observing that each pair of probability mass
functions crosses exactly twice, with the geometric distribution assigning most weight
and the Poisson distribution assigning least weight to extreme realizations.
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Figure 2: Different experienced group-size distributions with the same mean and vari-
ance can lead to different evolutionary dynamics. Here we illustrate the evolutionary
dynamics as given by (7) for the volunteer’s dilemma with c = 1, u = 6 (cf. Example
1) and two experienced group-size distributions. The first distribution, p̂ (blue), has
support {2, 4, 6} with (p̂2, p̂4, p̂6) = (0.3, 0.4, 0.3); the second distribution, q̂ (red), has
support {3, 4, 7} with (q̂3, q̂4, q̂7) = (0.6, 0.2, 0.2). With these values, Ep̂(Ŝ) = Eq̂(Ŝ) = 4

and Varp̂(Ŝ) = Varq̂(Ŝ) = 2.4. The replicator dynamics for these two cases are however
different, with the distribution p̂ leading to the stable rest point x∗p̂ ≈ 0.57 (blue circle),
and the distribution p̂ leading to the stable rest point x∗q̂ ≈ 0.51 (red circle).
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Figure 3: Stable frequency of cooperators x∗ as a function of group-size variability (left)
and experienced group-size variability (right) in the volunteer’s dilemma (c = 2.5, u =
12). In both panels variability increases when going from left to right with the inverse
of the parameter η of a negative-binomial group-size distribution on the horizontal
axis (cf. Table 1). Left: group size is distributed according to the negative binomial
NB(η, π) with parameter π adjusted such that the expected group size is 5 for all η.
The stable fraction of cooperators is a decreasing function of group-size variability as
measured by 1/η. Right: group size is distributed according to the negative binomial
NB(η, π) with parameter π adjusted such that the expected experienced group size is
5 for all η. The stable fraction of cooperators is an increasing function of experienced
group-size variability as measured by 1/η.
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Figure 4: Positive experienced-variability effect for a game with increasing and convex
gain sequence. The game is the public goods game with synergy or discounting of
Example 2 with u = 1, v = 1.2, w = 1.3. The group-size distributions p and q
are respectively given by a Poisson distribution Po(λ) with λ = 4 and a negative
binomial distribution NB(η, π) with η = 1 and π = 2/3. With these parameters,
Ep̂[Ŝ] = Eq̂[Ŝ] = 5 (cf. Table 1). Moreover, q̂ is more variable than p̂ (cf. Appendix
A.1). Left. c = 4. Increasing experienced variability from p̂ to q̂ causes the unstable
interior rest point (open circle) to decrease, hence increasing the basin of attraction of
the fully cooperative, stable rest point x = 1. Right. c = 6. Increasing experienced
variability from p̂ to q̂ stabilizes the otherwise unstable fully cooperative rest point
x = 1 via a transcritical bifurcation.
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Figure 5: Negative experienced-variability effect for a game with unimodal and concave
gain sequence. The game is the public goods game with synergy or discounting of
Example 2 with u = 1, v = 1.3, w = 1.2, c = 1.175. The group-size distribution
p is given by a Poisson distribution Po(λ) with λ = 4. The group-size distributions
q1 and q2 are respectively given by negative binomial distributions NB(η1, π1) and
NB(η2, π2) with η1 = 9, η2 = 1, π1 = 2/7, π2 = 2/3. With these parameters, Ep̂[Ŝ] =

Eq̂1 [Ŝ] = Eq̂2 [Ŝ] = 5 for the associated experienced group-size distributions (cf. Table
1). Moreover, q̂2 is more variable than q̂1 and q̂1 is more variable than p̂ (cf. Appendix
A.1). Left. Increasing experienced variability from p̂ to q̂1 causes the unstable interior
rest point (open circle) to increase and the stable interior rest point (filled circle) to
decrease. The fraction of cooperators at the interior stable rest point thus decreases
and its basin of attraction shrinks. Right. Increasing experienced variability from p̂
to q̂2 makes the gain function strictly negative. Consequently, the interior rest point
disappears (through a saddle-node bifurcation) and the fully defective rest point x = 0
remains as the only stable rest point.
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S ps Ŝ p̂s for s ≥ 1

Po(λ) λs

s! exp(−λ) 1 + Po(λ) λs−1

(s−1)! exp(−λ)

NB(η, π)
(
η+s−1
s

)
πs(1− π)η 1 + NB(η + 1, π)

(
η+s−1
s−1

)
πs−1(1− π)η+1

L(δ) −1
ln(1−δ)

δs

s 1 + NB(1, δ) δs−1(1− δ)

Table 1: Experienced group-size distributions (Ŝ) for some common group-size distri-
butions (S). Po(λ) refers to a Poisson distribution with parameter λ > 0, which has
support on the nonnegative integers and expected value λ. NB(η, π) refers to a nega-
tive binomial distribution with parameters η > 0 and 0 < π < 1, which has support on
the nonnegative integers and expected value ηπ/(1 − π). L(δ) refers to a logarithmic
distribution with parameter 0 < δ < 1, which has support on the natural numbers and
expected value δ/ [(δ − 1) ln(1− δ)]. Note that NB(1, π) corresponds to a geometric
distribution. See Table 1 in Patil and Rao (1978) for these and further examples.
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