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We study markets in which agents first make investments and are then matched
into potentially productive partnerships. Equilibrium investments and the equilib-
rium matching will be efficient if agents can simultaneously negotiate investments and
matches, but we focus on markets in which agents must first sink their investments
before matching. Additional equilibria may arise in this sunk-investment setting, even
though our matching market is competitive. These equilibria exhibit inefficiencies that
we can interpret as coordination failures. All allocations satisfying a constrained effi-
ciency property are equilibria, and the converse holds if preferences satisfy a separa-
bility condition. We identify sufficient conditions (most notably, quasiconcave utilities)
for the investments of matched agents to satisfy an exchange efficiency property as
well as sufficient conditions (most notably, a single crossing property) for agents to be
matched positive assortatively, with these conditions then forming the core of sufficient
conditions for the efficiency of equilibrium allocations.

KEYWORDS: Matching, competitive matching, investment, positive assortment.

1. INTRODUCTION

THERE ARE MANY MARKETS whose participants make investments before en-
tering. Employers create firms before hiring employees, scientists develop in-
ventions before taking them to market, developers construct commercial build-
ings and homes before finding buyers, people acquire human capital before
embarking on careers, and so on. The agents in these markets are typically
heterogeneous, in both their underlying characteristics and their investments,
and hence the market must solve a matching problem rather than simply set-
ting a market-clearing price. Perhaps the most obvious example is the market
for skilled labor, requiring years of investment on the part of workers and the
marshalling of significant physical and institutional capital on the part of firms,
all before it is known who will match with whom.

The outcomes agents receive in the matching market will depend on their
investments and hence will affect their investment incentives. A large lit-
erature has considered the question of how imperfections in the matching
market will interact with the noncooperative nature of investment choices to
yield inefficient investments. For example, Acemoglu and Shimer (1999), Cole,
Mailath, and Postlewaite (2001a), de Meza and Lockwood (2010), and Felli
and Roberts (2012), studied the hold-up problems (Grossman and Hart (1986)
and Williamson (1985)) that can arise as a consequence of bargaining power
at the matching stage. Bidner (2010), Cole, Mailath, and Postlewaite (1995),
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Hopkins (2012), Hoppe, Moldovanu, and Sela (2009), and Rege (2008) stud-
ied the consequences of imperfect information at the matching stage. Burdett
and Coles (2001) and Mailath, Samuelson, and Shaked (2000) studied models
in which it is costly to search for a partner after one has invested.

While it is obviously important to understand how imperfections in the
matching market affect incentives for investment, we examine a more basic
question—even in the absence of such imperfections, can we expect invest-
ments to be efficient? We accordingly work throughout this paper with an
economy whose matching market is competitive, in the sense that agents treat
as fixed the utilities that must be provided to potential matching partners. In
particular, we study equilibria in economies in which agents first make invest-
ments and then enter the matching market, where they form pairs whose pro-
ductivity depends on their underlying characteristics as well as the investments
they bring to the market. The structure of the underlying production process
for a matched pair may give rise to imperfectly transferable utilities (as argued
by Legros and Newman (2007b) and as in Iyigun and Walsh (2007)), and so we
allow utility to be imperfectly transferable within a pair. Perfectly transferable
utility is a special case. We identify when such economies will yield efficient
outcomes and characterize the nature and causes of inefficiencies.

We first formulate a benchmark “ex ante” equilibrium concept in which
agents can simultaneously choose investments and matching partners. Markets
are complete in this economy, and forces analogous to those lying behind the
familiar welfare theorems lead to the expected result that an allocation is an ex
ante equilibrium if and only if it satisfies an appropriate (pairwise) efficiency
condition. We then formulate an “ex post” equilibrium concept to capture the
case in which investments must be sunk before matches are formed. We show
that ex ante equilibria are also ex post equilibria, implying that efficient ex
post equilibria exist whenever efficient allocations exist. The reasoning here
is straightforward—the ex post setting affords agents fewer opportunities to
deviate from a putative equilibrium allocation. Agents have no profitable de-
viations from an ex ante equilibrium allocation, and so must continue to have
no profitable deviations from such an allocation in the ex post setting. Hence,
sunk investments per se do not preclude efficiency in competitive markets.

Alas, not all ex post equilibria are efficient. The difficulty is that markets are
incomplete—agents cannot simultaneously determine both investments and
matches. There is no necessary link between competition and efficiency in the
absence of complete markets. Which markets are available at the matching
stage is determined endogenously by the agents’ investment decisions. This
gives rise to a coordination problem, with coordination failures leading to in-
efficient ex post equilibria. We formulate a “constrained efficiency” notion re-
flecting the more limited opportunities available to agents in the ex post set-
ting, and show that all constrained efficient allocations are ex post equilibria,
and that if the agents’ preferences satisfy a separability condition, then all ex
post equilibria are constrained efficient.
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Ex post equilibria can be inefficient for any of three reasons. Matched agents
may fail to coordinate on efficient investments, agents may have inadequate in-
centives to participate in the market, and agents may match with the “wrong”
partners. We identify (independent) assumptions on the economy that suffice
to eliminate each of these problems. First, we show that a quasiconcavity as-
sumption on agents’ utility functions suffices to ensure that the investments of
matched agents are efficient. Second, an assumption that the optimal invest-
ments of unmatched agents allow them to be matched productively suffices
to rule out inefficiencies stemming from too little participation in the market.
Third, we examine mismatch in a model featuring unidimensional types and in-
vestments and satisfying our separability assumption. The first step is to show
that if the utility frontiers satisfy a single crossing condition, then agents in an
ex ante equilibrium must be positive assortatively matched. We then use sep-
arability and the constrained efficiency of ex post equilibria to show that the
latter can be viewed as ex ante equilibria in an economy with restricted sets of
possible investments, and hence must also be positive assortatively matched.
We thus have conditions under which there can be no mismatch: every ex post
equilibrium matches the agents just as does a pairwise efficient allocation. Fi-
nally, combining the assumptions that rule out each of the three sources of
inefficiency gives us sufficient conditions for the Pareto efficiency of ex post
equilibria.

The existing literature has considered the issues analyzed in this paper in
a number of specific contexts. Cole, Mailath, and Postlewaite (2001b) were
among the first to study the investment incentives generated by a competitive
matching market, using an equilibrium concept akin to our ex post equilibrium.
They considered a model with perfectly transferable utility, satisfying our sin-
gle crossing and separability conditions, obtaining a counterpart of our con-
strained efficiency result. They identified cases in which constrained efficiency
in itself eliminates the possibility that agents coordinate on inefficient invest-
ments (which is the only source of inefficiency that may arise in their setting).
Dizdar (2012) noted that the efficiency result of Cole, Mailath, and Postle-
waite (2001b) can fail in the absence of a counterpart to our quasiconcavity
condition, and also presented examples showing that mismatch may arise in
the absence of a single crossing property. Iyigun and Walsh (2007) considered
a model in which consumption sharing within a match may give rise to imper-
fectly transferable utility, and argued that (their counterpart to) ex post equi-
libria are efficient. We explain in Section 2.1.3 how these and other examples
fit into our framework. Our analysis unifies and extends these existing stud-
ies of investment in competitive matching markets, characterizing the nature
and causes of inefficiency and identifying conditions under which equilibrium
outcomes will be efficient.

Peters and Siow (2002) assumed that it is impossible to transfer utility ex
post. In Noldeke and Samuelson (2014), we explained how our analysis can be
extended to the nontransferable case. Most of our results carry over, with one
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notable exception. In the absence of transfers, there is no counterpart to our
result that agent with quasiconcave utility functions will necessarily coordinate
on efficient investments. Perfect transferability is thus not critical to the pri-
mary results in the literature, but it is important that the agents have at least
some ability to make ex post utility transfers.

2. THE MODEL
2.1. The Economy
2.1.1. Agents and Preferences

There are two distinct sets of agents that may be interpreted as buyers and
sellers, firms and workers, men and women, and so on. We find it convenient to
work with a consistent set of terms throughout and refer to the agents as buyers
and sellers. Buyers (he) are indexed by their names i and sellers (she) by their
names j. Names for both sets of agents are identically distributed on a compact
set N of a Euclidean space.? The set N may be finite, giving us a model with
finite, identical numbers of buyers and sellers that we refer to as the finite case,
or may be infinite, in which case we assume names are distributed according to
Lebesgue measure. The functions : N — B and o-: N — & map each buyer
i into his type B(i) € B and each seller j into her type o (j) € &, where B
and G are compact subsets of a Euclidean space. The case in which names and
types are unidimensional, that is, N, 8, and & are subsets of R, is an important
special case.

Each buyer chooses an investment b € B and each seller chooses an invest-
ment s € S, with B and S again being (not necessarily unidimensional) com-
pact subsets of a Euclidean space. Agents’ types together with their invest-
ments determine their utility possibilities both when they stay unmatched and
when they are part of a match, where a match pairs a single buyer with a sin-
gle seller. A buyer of type 8 who chooses investment b € B and remains un-
matched receives utility U(b, B). A seller of type o who chooses investment
s € § and remains unmatched receives utility V' (s, o). When a buyer of type
who chooses investment b matches with a seller of type o who chooses invest-
ment s and the two agents agree on a transfer ¢ € R, the resulting utility for
the buyer is denoted by U (b, s, B, o, t) and the resulting utility for the seller
by V (s, b, o, B, t).? It is natural to interpret the transfer 7 as a payment (either
monetary or in terms of some consumption good) from the buyer to the seller,

The assumption that the sets of names for buyers and sellers are identical and have the same
measure is a convenient simplification, maintained in most of the related literature. Remark 4
in Section 2.2.3 comments on the most important implication of allowing unequal measures of
buyers and sellers.

3These utility functions incorporate a practice that we follow whenever possible, of reversing
the order of arguments in pairs of functions that have comparable roles, one from the perspective
of the buyer and one from the perspective of the seller.
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but we might also think of ¢ as describing the allocation of effort in a joint pro-
duction process, the allocation of consumption in a marriage, or the division of
joint output.

The following assumption on the agents’ utility functions is maintained
throughout the paper.

ASSUMPTION 1:
(1) The functions U:BxSxBXxGEGXR—->R,V:SxBxExBxR—>R,
U:BxB —>R,andV:S5 x & — R are continuous.
(ii) The function U is strictly decreasing in t and for each (b, s, B, o) has R as
its image.
(iii) The function V is strictly increasing in t and for each (s, b, o, B) has R as
its image.

In conjunction with our compactness assumptions, Assumption 1(i) ensures
that solutions exist to the maximization problems (appearing in Sections 2.2.1
and 2.2.2) defining the utility possibilities available to pairs of matched agents.
The requirement that U and V' have R as their range in Assumptions 1(ii)—
(iii) eliminates some special cases that we would otherwise have to explicitly
address. The strict monotonicity properties in Assumptions 1(ii)—(iii) are con-
sistent with the interpretation of the transfer ¢ as a payment from the buyer to
the seller.

Assumption 1, in particular the requirement that U and V' are continuous
and strictly monotonic in ¢, implies the following: for any (i) pair of types
(B, o), (ii) investments and transfer (b, s, t), and (iii) utility levels (u, v) satis-
fying
(D Uo,s,B,o,t)>u, V(sb,o,B,t)>v,
with at least one strict inequality, there exists #' such that
(2) U(b,s,B,o,t)>u, V(s,b,0oB,t)>v.

We refer to this property as the strict Pareto property.

The key role of transfers in our arguments is to ensure the strict Pareto prop-
erty. As long as this property holds, we could just as well have allowed trans-
fers to be multidimensional, accommodating interpretations that involve the
allocation of effort in a joint production process or the allocation of multiple
consumption goods.

2.1.2. Allocations

An allocation specifies for each buyer i a triple (J(i), b(7), u(i)) identifying
the seller J (i) (if any) with whom buyer i is matched and otherwise specifying
that buyer i is unmatched (J (i) = @), the investment b(i) chosen by buyer i,
and the level of utility u(i) received by buyer i. An allocation also specifies an
analogous triple (1(j), s(j), v(j)) for each seller j.
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DEFINITION 1: An allocation is a sextuple (J, I, b, s, u, v) of functions

J:N—> NUGJ,
I:N—> NUf,
b:N — B,
s:N— S,
u:N—->R,
v:N —R.

An allocation (J, I, b, s, u, v) is feasible if
(3) I(J())=i VieN st J(i)#0,
J(I())=j VjeN st I(j)+#0,
4) I and J are measure-preserving on {i € N : J (i) # ¥}
and {j e N : 1(j) # 0},

and, for all (i, j) with J(i) = j € N (or, equivalently given (3), I(j) =i € N),
there exists ¢ € R such that

Q) u(i) = U(b(i), s(j), B(i), o()), 1),
(6) v() =V (s()),b(i), a(j), B(i), 1),
and, for all i € N with J(i) = and for all j € N with I(j) =0,

(7) u(i) = U (b(), B(i)),
®) v() =V (s(), o())),

and there exist measure-preserving bijections J:N — N and [:N — N that
are inverses and for which J (i) = J (i) whenever J (i) # @ and I (j) = I (j) when-
ever I(j) # 0.

Conditions (3)—(4) are the market balance conditions that matches are recip-
rocal and that any measurable set of buyers is matched with an equal-measure
set of sellers. Conditions (5)—(6) ensure that the utility levels of matched agents
are feasible given the investments and utility functions. Conditions (7)—(8) en-
sure that the utilities of unmatched agents are feasible. The final requirement,
that there exist measure-preserving bijections J and [ coinciding with J and
I for matched agents, is a technical condition excluding counterintuitive con-
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structions that arise out of the quirks of the continuum.* Intuitively, this final
condition requires that a buyer can be unmatched only if some seller is also
unmatched. We could interpret this by thinking of a first stage described by

J and I in which the buyers and sellers are completely sorted into potential
pairs, with some such pairs then electing to remain unmatched while the re-
maining matches are described by J and /. In the finite case, this requirement
and condition (4) are satisfied by any pair of functions J and I satisfying (3).

REMARK 1: We have formulated our feasibility condition as a collection of
pointwise requirements—feasibility places restrictions on the match of every
agent and on the utility of every agent—rather than defining feasibility in terms
of conditions that are required to hold only for almost all agents. These two
approaches to feasibility coincide in the finite case, and we view it appropriate
to use whichever most conveniently addresses the questions of interest. Our
formulation allows us to avoid measure-theoretic technicalities. In particular,

having excluded some perverse cases (cf. footnote 4) by building J and I into
the definition of a feasible allocation, we find that our formulation simplifies
many of the arguments.

REMARK 2: An alternative approach to defining a feasible allocation is to
dispense with the functions I and J, specifying who is matched with whom,
and instead to characterize the matching in terms of a measure on the product
space of buyers and sellers. Dizdar (2012) followed this approach and Cole,
Mailath, and Postlewaite (2001b, Appendix B) also considered this possibility.
When utility is perfectly transferable, this approach makes powerful techniques
from the optimal transport literature (cf. Villani (2009)) available, but it is less
obviously useful when utility is imperfectly transferable.

Given a feasible allocation (J, I, b, s,u,v), we let M C N x N identify the
collection of matched pairs, so that (i, j) € M whenever j = J(i) or (equiva-
lently) i = I(j) holds. For every matched pair (i, j), we can identify from (5)-
(6) the transfer ¢+ made by this pair. We refer to the corresponding (b, s, t) as
the exchange made by the pair (i, j). An alternative formulation would be to
express an allocation in terms of the matching and exchanges, which would in
turn imply utilities.

Let u(i) = max,.p U(b, B(i)) and v(j) = max,sV (s, o(j)) denote the out-
side options of buyers i and sellers j. Assumption 1(i) ensures that outside op-
tions are well defined. We refer to any b € B satisfying u(i) = U (b, B(i)) as an

“For example, the requirement that J and [ are bijections excludes the possibility
that N = [0, 1] and the matching is described by the identity function except for agents
{1,1/2,1/3,1/4, ...}, with buyer 1 being matched with seller 1/2, buyer 1/2 with seller 1/3, and
so on. This arrangement leaves every agent matched except seller 1. We use the existence of I
and J in establishing Proposition 8.
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autarchy investment of buyer i and to any s € S satisfying v(j) = V (s, o7(j)) as
an autarchy investment of seller ;.

A feasible allocation (J, I, b, s, u, v) is individually rational if it satisfies the
individual rationality conditions

9) u(i)>u(i) forallie N and v(j)>uv(j) foralljeN.

Throughout the following, we will focus on individually rational allocations,
reflecting the idea that all agents are free to remain unmatched and choose
an autarchy investment. The feasible allocation that results if all agents choose
to exercise this option and then receive their outside options is the autarchy
allocation.

A feasible allocation is fully matched if there are no unmatched agents, that
is, J (and hence also ) maps onto N. In this case, J and J coincide, as do
[ and I. Feasible allocations (J,1,b,s,u,v) and (J',I',b',s’,w, V') are payoff
equivalent if w' (i) = u(i) and v'(j) = v(j) hold for all i, j € N. When names
are unidimensional, an allocation is positive assortative (or satisfies positive as-
sortative matching) if J (or, equivalently I) is the identity map, that is, higher
buyers are matched with higher sellers. Positive assortative allocations are fully
matched.

2.1.3. Special Cases

Utility is perfectly transferable if there exist functions U:B x S x B x 6 — R
and V:8 x B x & x B — R such that, for all (b, s, B, o, t), we have

U(ba S, B7 g, t) = U(b’ S, Ba 0-) - ta
V(s,b,0, B, 1) =V (s,b,0,B) +1.

The requirement in Assumptions 1(ii)—(iii) that U and V" have all of R as their
range is automatic when utility is perfectly transferable.

When utility is perfectly transferable, then there exists a transfer such that
(5)-(6) hold if and only if u(i) + v(j) = Z(b, s, B(i), o(j)), where the value
function Z:B x § x 6 x 6 — R is defined by

Z(b,s, B, o) =U(b,s, B,a)+V(s,b, a, B).

Consequently, the utility possibilities available to a pair of matched agents are
completely described by the value function.
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Preferences are additively separable’ if there are continuous functions f , &,
f, &, f, and g such that

A

(10) U,s, B, o,t)=f(b,s,t) — (b, ),
(1)  V(s,b,0,B,0)=§(s,b, 1) — g(s, 0),

(13)  V(s,0)=g(s) — g(s, o).

We can interpret f, g, f, and g as return functions and f and g as cost-of-
investment functions, so that the payoffs of agents are additively separable
in returns and costs, with the former not depending on agents’ types. When
considering additively separable preferences, we typically assume that the un-
matched return functions f(b) and g(s) appearing in (12)—(13) are identically

equal to zero.®
When utility is perfectly transferable and preferences are additively separa-

ble, there exist functions f and g such that (10)—(11) can be written as

(14) U(b,S,B, g, t):f(bﬂg)_f(b’B)_t,
(15) V(S,b; g, :8; t):g(s7 b)_g(sa 0-)+t

We can then define the surplus function z(b, s) = f (b, s) + g(b, s) and write
the value function as

(16) Z(b9SaB’ O')ZZ(b,S)_f(b,B)_g(S,O').

Referring to z as the surplus function is particularly apt when we invoke the
normalization f(b) = g(s) =0 for all b and s. Then z(b, s) identifies the sur-
plus created by entering a match with investments (b, s), relative to choosing
the same investments but remaining unmatched. With slight abuse of termi-
nology, we refer to any model with perfectly transferable utility which satisfies
(12)—(13) and (16) as having additively separable preferences.’

Much of the matching literature has followed the lead of Becker (1973) in
focusing on conditions under which equilibrium matchings will be positive as-
sortative. Building on insights from Legros and Newman (2007b), Section 4.3

3Section 3.4.2 offers a more general definition of separability, which does not impose the ad-
ditive structure appearing in (10)—(13).

®Doing so is without loss of generality as we may redefine the cost functions f(b, 8) and g(s, o)
to coincide with U (b, s) and V (s, o) and then redefine the return functions for matched agents
by deducting f(b) from f(b, s, t) and g(s) from g(b, s, t) to obtain an equivalent model.

7As the value function Z contains all relevant information about the utility possibilities of
matched agents, any model satisfying the stated conditions is equivalent to one in which (14)-
(15) also hold. To obtain such a model, it suffices to set f(b, s)=g(s,b)=2z(b,s)/2.
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identifies an appropriate single crossing property that ensures positive assor-
tative matching in ex post equilibria. When utility is perfectly transferable, the
assumption that the value function Z(b, s, B8, o) is supermodular plays an im-
portant role in ensuring this single crossing property. If we also have additive
separability, then (because the sum of supermodular functions is supermodu-
lar) the value function Z will be supermodular if the functions z, —f, and —g
appearing in (16) are supermodular.

We can now indicate how several existing models, all of which focus on fully
matched allocations, fit into our framework:

1. Cole, Mailath, and Postlewaite (2001b) worked with unidimensional types
and investments, perfectly transferable utility, additively separable prefer-
ences, and a supermodular value function. Very similar assumptions on prefer-
ences are maintained in Cole, Mailath, and Postlewaite (2001a) and Felli and
Roberts (2012), who studied the finite case (without assuming matching to be
competitive).

Cole, Mailath, and Postlewaite (2001b) introduced the concepts of ex ante
contracting and ex post contracting equilibria, differing in technical details but
analogous to our ex ante and ex post equilibria (Sections 2.2.1 and 2.2.2 be-
low). They showed that in their setting, ex ante contracting equilibria exist,
that ex ante contracting equilibria are efficient and are also ex post contract-
ing equilibria, and that inefficient “coordination failure” ex post contracting
equilibria also exist. They obtained a counterpart to our constrained efficiency
result and identified cases in which constrained efficiency in itself eliminates
the possibility that agents coordinate on inefficient investments.

2. Dizdar (2012) worked with multidimensional types and investments,
while otherwise maintaining the framework from Cole, Mailath, and Postle-
waite (2001b). Dizdar (2012) noted that the efficiency result of Cole, Mailath,
and Postlewaite (2001b) can fail in the absence of a counterpart to our qua-
siconcavity condition and offered a sufficient condition for matched agents to
avoid coordination failures in investments, which we discuss in Section 4.1. He
showed that when investments and types are multidimensional, there exist ex
post equilibria featuring a different matching than the one obtained in ex ante
equilibrium, an impossibility in Cole, Mailath, and Postlewaite (2001b).

3. Acemoglu (1996) worked with unidimensional types and investments,
perfectly transferable utility, additively separable preferences, and a super-
modular value function. Buyers, corresponding to firms in his model, are ex
ante identical, which in our setting corresponds to the assumption that the
function B is constant. Acemoglu (1996) defined the concept of a Walrasian
equilibrium and showed that there is a unique Walrasian equilibrium in his
model. His Walrasian equilibrium is the counterpart of a collection of prices
supporting a fully matched ex ante equilibrium (cf. Section 3.3 below), and is
efficient. Acemoglu (1996, footnote 7) mentioned the issue which is at the cen-
ter of our paper, namely the incompleteness of markets when investments are
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chosen before markets operate, but his analysis concentrates on the implica-
tions of search and bargaining frictions that do not arise in our analysis (or the
other papers cited here).

4. lyigun and Walsh (2007) worked with unidimensional types and invest-
ments. Utility functions in their model can be written as

Ub,s, B,o,t)=ui(B—0b)+u(f(b,s)+k—1),
V(s,b, 0, B, 1) =vi(c — )+ v:(g(s,b) + k + 1),
U(b, B) =ui(B —b) +ux(f(b,0)),
V(s,0)=v:(0 —5) +v2(g(s,0)),

where k > 0 is a constant. The interpretation is that agents’ types correspond
to their initial wealth, which they split between consumption in the first period
and an investment into a technology. This technology produces second period
consumption f(b,0) for an unmatched buyer and g(s,0) for an unmatched
seller (with our buyers and sellers corresponding to men and women in lyigun
and Walsh (2007)). If a buyer and a seller match, the technology yields the
amount f (b, s) + g(s, b) + 2k of the second period consumption good, which
the matched agents can share in any way they want.®

Preferences in this model are additively separable with §(b, B8) = —u, (B —b),
f(b, s, 1) =u(f(b,s)+ k —t),and f(b) = u,(f(b,0)) for the buyers and an
analogous specification for the sellers. If the functions u, and v, were linear,
this would be a model with perfectly transferable utility, but instead the func-
tions u;, u,, vy, v, are all assumed to be strictly concave, resulting in a model
with imperfectly transferable utility. Section 4 discusses conditions under which
equilibria in such a model feature positive assortative matching and are effi-
cient, extending corresponding results in Iyigun and Walsh (2007).

2.2. Equilibrium

In this section, we define two equilibrium notions, ex ante equilibrium and
ex post equilibrium. The technology is the same in either case, requiring that
investments be chosen before matches become productive. The ex ante equi-
librium concept is appropriate for situations in which bilateral contracts, spec-
ifying matching partners and utilities, can be determined before investment
decisions are made, while the ex post equilibrium concept is appropriate when

8The model in Iyigun and Walsh (2007) does not satisfy our Assumption 1 because they as-
sumed that first and second period consumption must be positive for all agents, implying that
investments are restricted to b € [0, B] and s € [0, o] and, similarly, that transfers are restricted
to the interval [—g(s, b), f(b, s)]. We could write a more general (though more tedious) version
of Assumption 1 that would accommodate this setting.
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investments must be made before matches are determined. We are primar-
ily interested in the latter, with the simpler concept of an ex ante equilibrium
serving as a useful benchmark.

We view both equilibria as being the functional equivalent of a competi-
tive equilibrium, with complete markets in the case of ex ante equilibria and
incomplete markets in the case of ex post equilibria. The standard notion of
a competitive equilibrium combines three features: (i) prices, identifying the
terms under which agents can trade the goods in the economy, with each agent
viewing these prices as exogenously fixed, (ii) optimization, in the form of a re-
quirement that each agent maximize utility, given the constraints imposed by
the prices, and (iii) market-clearing, requiring that the excess demands emerg-
ing from the various agents’ optimization problems balance, thus ensuring fea-
sibility.

The counterpart of prices in the equilibrium definitions we give below is
a pair of utility schedules u and v, with u(i) identifying the “utility price” at
which a seller can match with buyer type i and v(j) identifying the utility price
at which a buyer can match with seller type j. The optimization requirement is
that each buyer chooses a utility maximizing exchange and partner, given the
utility possibilities presented by the schedule v (with sellers behaving similarly).
Market-clearing is captured by the requirement that agents’ choices yield a
feasible allocation.

The key difference between ex ante equilibrium and ex post equilibrium is
that in ex post equilibrium agents take not only the utility, but also the invest-
ments, of their potential partners as given when choosing a utility maximizing
exchange and partner. The latter constraint is not present in ex ante equilib-
rium.

2.2.1. Ex ante Equilibrium

To define ex ante equilibrium, we find it convenient to formalize the maxi-
mization problem faced by the agents in two stages. We describe agents as first
determining their optimal exchange conditional on matching with a particu-
lar partner and providing that partner with a particular utility level, and then,
given the schedule of induced utilities from matching with various partners,
deciding on the optimal partner (or choosing to stay unmatched).

To make this precise, let

(A7) ¢Gjvy= max U(bs.B0). o)1)

,8,1)EBXSxR
st. V(s,b,0()),B(i), 1) >,
(18) Y(j,i,u)= max V(s,b,o()),B),1)

(s,b,1)eSxBxR

st. U(b,s, B(),o()),t) > u.
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Hence, ¢ : N x N x R — R identifies the maximum utility a buyer of type i can
achieve when matched with a seller of type j to whom he must provide utility v.
The function ¢y: N x N x R — R has an analogous interpretation. Assump-
tion 1 ensures that these functions are well defined and have the properties
asserted in the following lemma. The straightforward proof is in Appendix A.

LEMMA 1: Let Assumption 1 hold. Then for every (i, j) € N?,
(i) ¢ is strictly decreasing in v and ) is strictly decreasing in u,
(ii) ¢ and  are inverse: u = ¢ (i, j, Y(j,i,u)) for all u e R and v =
U (j, i, o, j,v)) forall ve R, and
(ili) ¢ is continuous in v and Y is continuous in u.

The interpretation of Lemma 1(ii) is that, for a given pair of types (i, j),
the functions ¢ and ¢ provide two equivalent ways of describing the Pareto
frontier of the set of utilities available to this pair when forming a match.
The Pareto frontier is strictly decreasing (Lemma 1(i)) and continuous
(Lemma 1(iii)).

To conserve on notation, if the allocation (J,I,b,s,u,v) is such that
supjeNqb(i, 7, v(j)) < u(i), we say that ¥ maximizes ¢ (i, j, v(j)) over the set
N U {¢} and that max;cyum ¢ (7, j, v(i)) = u(i). We adopt a similar convention
for . This gives us a convenient way of describing the maximization problem
in which buyer i maximizes his utility by either choosing a seller with whom to
match or choosing to remain unmatched.

DEFINITION 2: An ex ante equilibrium is a feasible allocation (J, I, b, s, u, v)
satisfying, foralli e N and j € N,

(19) J(i) eargmax ¢ (i, j,v(j)) and u(i) =j€mN%}d)(i, 5v()),

jeNU{}

(20)  1(j) eargmaxy(j,iu(d) and v(j)= max ¢(j,i u(D).

ieNU{#}

Notice that one of the requirements for equilibrium is that the maxima in
(19)-(20) exist.

The (utility)-price-taking feature of competitive equilibrium appears in the
incentive constraints (19)-(20), where each buyer i (for example) views the
function v as a constraint requiring that the match (i, j) can form only if seller
j receives at least utility v(j) from the match.’

The incentive conditions (19)-(20) incorporate the individual rationality
conditions (9). A fully matched allocation is an ex ante equilibrium if and only

Analogous competition assumptions are maintained in Cole, Mailath, and Postlewaite
(2001b), Dizdar (2012), Mailath, Postlewaite, and Samuelson (2013a, 2013b), and Peters and
Siow (2002). See Section 6.2 for further discussion.



848 G. NOLDEKE AND L. SAMUELSON
if the individual rationality conditions hold and, for alli e N and j € N,
(21) J(i) e argmax ¢ (i, j,v(j)) and w(i) =m§VX¢(i, 5v())s
jeN Je
(22) I(j) € argmax (j, ,u(i)) and v()) :m?vxd/(j, i,u(i)).
ieN i€

Conditions (19)—(20) imply that an ex ante equilibrium (J, I, b, s, u, v) satis-
fies

(23) u(i)=¢(i,j,v(j)) and v(j)=4¢(j,Lu@) V(i j)eM,

so that for every matched pair (i, j), there exists a transfer ¢ such that the
equilibrium utilities u(i) = U (b(i), s(j), B(i), (), t) and v(j) = V' (s(j), b(i),
o(j), B(i),t) lie on the utility frontier defined in (17)—(18). We say that an
allocation satisfying (23) is exchange efficient and note that exchange efficiency
is a necessary condition for a feasible allocation to be an ex ante equilibrium.
More generally, we find it useful to say that (b, s, t) is exchange efficient for
the pair (i, j) if the exchange (b, s, t) solves both of the maximization problems
appearing in (17)-(18) given the utility levels induced by (b, s, t), that is,

(24) U(b’ s’ B(l)5 o-(j)a t) = ¢(la ,]’ V(Sv b’ O-(J)a ﬁ(l)a t))7
(25)  V(s,b,0(), BG), 1) =y (j,i, U(b, s, B(i), a(j), t)).

By Lemma 1(ii), an exchange (b, s, t) is efficient for the pair (i, j) if and only if
one of the two conditions appearing in (24)—(25) holds. Consequently, one of
these two conditions is redundant. A corresponding observation applies to the
two conditions for the exchange efficiency of an allocation given in (23), and
also applies to the incentive constraints (21)—(22) for a fully matched equilib-
rium.

When utility is perfectly transferable, the two conditions (24)—(25) for an
exchange (b, s, t) to be exchange efficient for a pair (i, j) reduces to the re-
quirement that the pair of investments (b, s) maximize the value available to
these two agents, or

(26)  (b,s) cargmaxZ(b', s, B(i), o ())).

b'eB,s'eS

2.2.2. Ex post Equilibrium

When markets open after investments have been chosen—so that the ex post
equilibrium notion is applicable—buyer i (for example) faces sellers who are
characterized not only by a schedule v of utility levels, but also by a schedule s
of investments. The equilibrium incentive constraint for buyer i is that i’s equi-
librium payoff be at least the payoff i could obtain by matching with any seller j,
given any exchange (b, s(j), ¢) that gives seller j at least her equilibrium util-
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ity. Unlike the case with an ex ante equilibrium, it is irrelevant whether player i
could better his equilibrium payoff by matching with seller j with an exchange
(b, s, t) that preserves player j’s equilibrium payoff but for which s # s(j). As
a first step to define ex post equilibrium, we let

¢( j,s,v) = max U(b,s, B(i), o(j), 1)

st. V(s,b,a(j), B, t) > v,
$(j,i,b,u)= max V(s,b,a(j),B0),1)

(s,1)eSxR
st. U(b,s, B(), a(j), 1) = u.

Let (J,1,b,s,u,v) be a feasible allocation. Analogously to our convention
for ex ante equilibrium, if Sup;.y (Z)(i, 7, 8(J), v(j)) < u(i), we say that ¢ maxi-
mizes cf)(i, J,s(j), v(j)) and that the maximum in that case is u(i), with a similar
convention for sellers.

DEFINITION 3: An ex post equilibrium is a feasible allocation (J, I, b, s, u, v)
satistying, foralli e N and j € N,

(27)  J(i) eargmax (i, j,s(j),v(j)) and

jeNU{}
u(i) = max b (i, j, s()),v())),

(28)  1(j) eargmaxy(j, i, b(i),u(i)) and

ieNU{(/}
v(j) = max ¥ (j, £, b(i), u(d)).

Again, one of the requirements for equilibrium is that the maxima in (27)-
(28) exist.

The incentive conditions (27)—(28) imply the individual rationality condi-
tions, which are again given by (9). As we have noted, every ex ante equi-
librium satisfies the exchange efficiency condition (23). Conditions (27)—(28)
imply less, namely that every matched pair (i, j) € M satisfies

(29)  u(i)=¢(i, j,s(j),v())) and v(j) = §(j, i, b(),u)).

We refer to a feasible allocation (J, I, b, s, u, v) satisfying (29) for all matched
pairs as being conditionally exchange efficient. An exchange (b, s, t) is condi-
tionally exchange efficient for a pair of agents (i, j) € M if it satisfies

(30) U(b’ Sa ﬂ(l)7 0'(]), t) - J)(la J’ S, V(S, b7 0'(]), B(l)’ t)),
(Bl V(s,b,a(),BG),t)=¢(j,i,b,U(b,s, BG), (), 1)).
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Condition (30) indicates that, conditional on a match between i and j, there
is no possibility of increasing the buyer’s utility without either changing the
seller’s investment or reducing her utility level. The interpretation of (31) is
analogous.

In contrast to the equalities defining (unconditional) exchange efficiency, it
is not the case that one of the conditions appearing in (29) is redundant. The
utility possibilities created by buyer i contemplating a match with seller j are
different from those created by seller j contemplating a match with buyer i,
as it is j’s investment s(j) that is held constant in the former instance and i’s
investment b(i) that is held constant in the latter. For similar reasons, it is
not the case that one of the conditions (30)—(31) is redundant. This is most
evident when utility is perfectly transferable, in which case the conditional ex-
change efficiency conditions (30)-(31) reduce to the requirement that both
agents choose their own investment to maximize the value function Z while
taking the investment of the other agent as given, that is, (b, s) satisfies

(32) b e argmax Z(b, s, B(i), o())),
(33) s € argmax Z (b, s, B(i), o())),

while ¢ is arbitrary. Dizdar (2012) has noted that these conditions can be inter-
preted as the requirement that (b, s) is a Nash equilibrium in the full appropri-
ation game in which both i and j have the value function as the payoff function.
When utility is imperfectly transferable, there is no analogous simplification.
In particular, we can no longer evaluate conditional exchange efficiency of in-
vestments (b, s) independently of the transfer ¢.

REMARK 3: Problems in which agents must invest before trading are no-
torious for giving rise to hold-up problems (Grossman and Hart (1986),
Williamson (1985)). Felli and Roberts (2012) have studied the hold-up prob-
lem in a matching model in which agents first invest and thereafter engage in a
bargaining process that prevents agents from capturing the full incremental re-
turn from a change in their investment. In contrast, the maximization problems
appearing in (30) and (31) indicate that both agents in a partnership capture
the incremental return from a change in their own investment. This precludes
the existence of a hold-up problem in ex post equilibrium.

2.2.3. Example
The following example, adapted from Cole, Mailath, and Postlewaite (2001b,
p- 338), illustrates the ex ante and ex post equilibrium concepts.

EXAMPLE 1: Names, types, and investments are unidimensional, with N =
[0,1]; with 8 =& = [y, v + a], where v > 0 and « > 0; and with B x § =
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[0, b] x [0, 5], where b and 5 are assumed sufficiently large as not to pose con-
straints for the solutions of the maximization problems we consider below.
Types are specified by B(i) =y + «i and o (j) =y + qj.

Ultility is perfectly transferable and preferences are additively separable with
the cost functions appearing in (10)—(13) given by

b s
(34) f(b, B) = 58 and g(s,0) = 5o
The return functions for unmatched agents satisty i (b) = g(s) = 0 for all b
and s, indicating that investments have no value outside a match. Autarchy
investments are then zero for all agents, with resulting outside options u(i) =
v(j) =0, for all i, j € N. The return functions for matched agents are given
by f(b,s,t) =bs —t and g(s,b,t) =t — k, where k > 0. The corresponding
surplus and value functions are

(35)  z(b,s)=bs—k and Z(b,s,B,0)=bs— — — — — k.

As the surplus function z is supermodular and the cost functions f and g are
submodular, the value function Z is supermodular.

We might interpret bs as the value of a product that is purchased by the
buyer, with the buyer and seller each bearing the costs of their value-enhancing
investment, given by f(b, B) and g(s, o). The buyer purchases the product by
making a transfer ¢ to the seller, who bears the additional cost £ whenever
trade occurs. With k = 0, this model is a special case of the model examined by
Cole, Mailath, and Postlewaite (2001b, p. 338), featuring functional forms that
serve as a key example in their paper.

The assumption k > 0 implies that the autarchy allocation is an ex post equi-
librium: From (35), the highest payoff an agent can obtain from matching with
an agent on the other side of the market who refrains from investing and must
be provided with his or her outside option is —k, so that choosing autarchy is
optimal. On the other hand, even though the investments (b, s) = (0, 0) satisfy
the conditional exchange efficiency conditions (32)—(33) for every pair (i, j),
there can be no ex post equilibrium in which the agents in a matched pair
choose these investments, because any such allocation violates the individual
rationality constraints. The only other solution of (32)—(33) for the pair (i, j)
coincides with the solution to the exchange efficiency condition (26) and is
given by

4/15

(36)  b=(B®))"(a())"" and s=(B1)""(a())"".

If the pair of agents (i, j) is matched in an (ex ante or ex post) equilibrium,
it must choose these investments. In particular, every ex post equilibrium is
exchange efficient.
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Let us consider fully matched allocations. The submodularity of the cost
functions § and g implies that higher types of agents will choose larger equilib-
rium investments, while the supermodularity of the surplus function z ensures
that higher investments will be matched with higher investments. This allows
us to conclude that any fully matched (ex ante or ex post) equilibrium will be
positive assortative, that is, each buyer i is matched with seller j = i. (Proposi-
tion 7 in Section 4.3.1 offers a general version of this result.) From (36), we thus
obtain that investments in any fully matched (ex ante or ex post) equilibrium
are given by

(37)  b)=(BD))" and s()= (o))"

Let (J,1,b,s,u,v) be a positive assortative and exchange efficient alloca-
tion. Such an allocation will be an ex ante equilibrium if and only if it satisfies
the individual rationality conditions (9), which here reduce to u(i) > 0 and
v(j) > 0, and the incentive conditions (21)—(22). As the two incentive condi-
tions are equivalent, we can focus on (21). Because J (i) = i, this can be rewrit-
ten as

(8) ()= (i.i,v() = max (i, . v())-

Using (36), we can determine

b (i, j,v) = 2(B)) " (0() " =k —v

| W

and then use familiar incentive compatibility arguments to solve (38) for

2/3

3
(39 ul)=15(B0)" —k/2-0,

3
40y  v(j)= E(a’(j))w —k/2+ 0,

where 6 is a constant. Because these utility schedules are strictly increasing
in names, the individual rationality condition is satisfied if and only if u(0) > 0
and v(0) > 0 holds. Recalling that we have defined 8(0) = o (0) = v, individual
rationality thus requires

(41) %«ﬂ* +20>k and %«ym —20>k.
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In particular, a fully matched ex ante equilibrium exists if and only if %yz/ P>k
holds. If this inequality holds strictly, all ex ante equilibria are fully matched."

When is the allocation (J, I, b, s, u,v) with J(i) = i and investments given
by (37) an ex post equilibrium? Given that the allocation is positive assortative
(and thus fully matched), we can rewrite the incentive conditions for ex post
equilibrium in a manner analogous to (21)—(22) to obtain

(42) () =d(i,i50),v()) = max (i, j, s(), (1),
@3) V()= d(j, 1, b(), u() = max i (j, i, b(D), ().

Solving the maximization problem embedded in the definition of the functions
¢ and ¢ for the investments given by (37), delivers

. 4 1
& (i, j, (), v(j)) = g(ﬂ(i))1/4(0(j))5/12 - g(«r(j))” —k —v(j),

. 4 1
3 (j, i, b(i), u(i)) = 5(30))”“(0(1))1” - g(ﬁm)” — k —u()).

Using these expressions to solve (42)—(43) shows that these conditions are sat-
isfied if and only if (39)-(40) hold. We can thus conclude that the set of fully
matched ex post equilibria coincides with the set of fully matched ex ante equi-
libria. As we have noted above, there exists an additional, Pareto inefficient, ex
post equilibrium, namely the autarchy allocation.

EXAMPLE 2: Consider the model of Example 1, but with k£ = 0, as in Cole,
Mailath, and Postlewaite (2001b, p. 338). Then there exists a collection of ex-
change inefficient ex post equilibria that are payoff equivalent to the autarchic
allocation, in which some agents match but choose zero investments. Ex post
equilibria that are not exchange efficient are not pathological. Another in-
stance appears in Example 3. Noldeke and Samuelson (2014) provided further
examples.

REMARK 4: When condition (41) holds as a strict inequality, a continuum of
fully matched equilibria arises out of the ability to split the value 2y** — k > 0
between the two bottom types in any way that respects their individual ratio-
nality conditions. This multiplicity arises from our assumption that there are
equal masses of buyers and sellers. If we generalized the model to allow there
to be more sellers than buyers (for example), then the shortage of buyers would

"%In the case 2y*? = k, the fully matched ex ante equilibrium is unique, but there exists one

additional ex ante equilibrium. This differs from the fully matched one only in that agents i = j =
0 choose to stay unmatched.
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push surplus toward buyers, and there would be a unique ex ante equilibrium
in which 6 is determined by the condition v(0) = 0. We are thus dealing with a
nongeneric case, but nothing in our analysis exploits this nongenericity.

3. EFFICIENCY PROPERTIES OF EQUILIBRIA

Section 3.1 shows that a feasible allocation is an ex ante equilibrium if and
only if it satisfies pairwise efficiency, a refinement of Pareto efficiency that we
define in Section 3.1. This gives us the counterparts of the standard welfare
theorems for ex ante equilibrium, as one would expect of a competitive econ-
omy with complete markets. Section 3.2 shows that a feasible allocation is an
ex post equilibrium if and only if it satisfies pairwise conditional efficiency. As
the name suggests, pairwise conditional efficiency is weaker than pairwise effi-
ciency, with the difference between the two concepts reflecting the possibility
of coordination failures in the choice of investments. Section 3.3 shows that
the failure of pairwise efficiency in ex post equilibria can alternatively be inter-
preted as reflecting the existence of too few prices.

Section 3.4 introduces a pairwise constrained efficiency notion, stronger than
pairwise conditional efficiency but weaker than pairwise efficiency,'’ and a
property of the agents’ preferences that we refer to as separability. Sec-
tion 3.4.3 presents one of our main results: if preferences are separable, then
every ex post equilibrium is pairwise constrained efficient. This generalizes a
corresponding result of Cole, Mailath, and Postlewaite (2001b, Lemma 2). As
we discuss in Section 3.4.4, constrained efficiency links the inefficiencies that
can arise in ex post equilibrium to the (lack of) heterogeneity of equilibrium
investment choices.

Figure 1 presents a summary of these results that may be helpful as the anal-
ysis proceeds.

3.1. Ex ante Equilibrium and Pairwise Efficiency

Our point of departure is a notion of Pareto efficiency, requiring that it is
not possible to construct a Pareto improvement by changing the allocation for
a finite set of agents.'?

" QOur terminology here follows Cole, Mailath, and Postlewaite (2001b, p. 356), who described
a corresponding property as “efficient in a constrained sense.” In contrast, Felli and Roberts
(2012) said that an investment is “constrained efficient” if it maximizes the value available in a
match, conditional on holding fixed the identities of the agents in the match and the investment
of the other agent. The counterpart of this notion in our terminology is conditional exchange
efficiency.

2Qur formulation is similar in spirit to notions examined by Kaneko and Wooders, who ex-
plored core concepts for economics with an infinite number of agents based on finite blocking
coalitions (e.g., Kaneko and Wooders (1996)). An alternative approach to Pareto efficiency with
infinite sets of agents is to follow Aumann (1964) in requiring a Pareto superior allocation to
make a positive measure of agents better off.
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Ex ante equilibrium <<= Pairwise efficiency
= Pairwise constrained efficiency
— Pairwise conditional efficiency

<= Expost equilibrium.

FIGURE 1.—Summary of Propositions 1-2 and Corollaries 1 and 3. Proposition 4 shows that if
we also impose separability, then ex post equilibria are pairwise constrained efficient.

DEFINITION 4: A feasible allocation (J', I', b, s',w, V') is a finite Pareto im-
provement on the feasible allocation (J, I, b, s, u, v) if both allocations agree
except for a finite set of agents and

u(i)>u(i) VieN,
V(i) >v(j) VjeN,

with a strict inequality for at least one i or j. A feasible allocation (J, I, b, s, u, v)
is Pareto efficient if it allows no finite Pareto improvements.

It is immediate from this definition that Pareto efficient allocations are ex-
change efficient.

If the sets of buyers and sellers are finite, the restriction to allocations that
differ only for finitely many agents has no effect and Pareto efficiency as de-
fined here is the standard definition. One might consider simply applying the
standard definition of Pareto efficiency—without the finiteness restriction—
to cases with infinitely many buyers and sellers, but one can then exploit the
continuum to obtain counterintuitive results.'

There may exist Pareto efficient, individually rational allocations in which
the matching differs from the matching of any ex ante equilibrium. For exam-
ple, suppose that half of the buyers have high types and half have low types,
with a similar division for sellers. There are no investments, utility is perfectly
transferable, and outside options are zero. A match between two low agents
produces a zero value, a match between a low and a high agent produces

B3For example, consider the fully matched ex ante equilibrium of Example 1. Consider the set

1 7 1 3 1 1 1 1 11 3 1 7 T .
{.,3—1%>3—% 3333 T3 315 3t} Inthe equilibrium, each buyer with a name

from this set is matched with a seller whose name is identical. Now suppose that we leave the
equilibrium matching unchanged, except that each buyer from this set is matched with a seller
whose name is the next higher name from this set. Transfers can then be arranged so that every
agent in this set is better off (and no other agent worse off), ensuring that the equilibrium fails
the standard test of Pareto efficiency. However, this is not a finite Pareto improvement, and the
equilibrium satisfies our definition of Pareto efficiency.
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value 1, and a match between two high agents produces value 4. Then the allo-
cation in which low buyers are matched with high sellers and high buyers with
low sellers, with the value shared equally within each partnership, is Pareto ef-
ficient."* However, ex ante equilibrium requires that high buyers match with
high sellers.

We examine the following refinement of Pareto efficiency:

DEFINITION 5: A feasible allocation (J, I, b, s, u, v) is pairwise efficient if it
is individually rational and

(44) u(i) > ¢ (i, j,v(j)) VG, j)eN?,
(45) v =y @) Y j)eN.

Pairwise efficiency again obviously implies exchange efficiency, and we can
view pairwise efficiency as augmenting the conditions for exchange efficiency
(placing restrictions on the payoffs of matched pairs of agents) with a stabil-
ity requirement (imposing restrictions on the payoffs attainable from match-
ing with some other agent) that is familiar from the literature on matching
problems without investments (Gale and Shapley (1962), Roth and Sotomayor
(1990)).

REMARK 5: To see that pairwise efficiency is a refinement of Pareto effi-
ciency, suppose that the individually rational feasible allocation (/, I, b, s, u, v)
is not Pareto efficient. Then there exists an alternative feasible allocation
J,r,p,s',w,v) with w'(i) > u(i) and v'(j) > v(j) for all i and j and
(we can assume, with the case of a seller being analogous) a buyer 7 such
that u'(i") > u(7'). Because (J, 1, b, s,u,v) is individually rational, buyer i’ is
matched in allocation (J/, I’, b, s’,u’, v'). Let j/ = J'(i"). Then we have

¢, /() z (.15 v () zw (7) > u(@),

where the first inequality follows from Lemma 1 and v'(j’) > v(y’), and the
second inequality holds because (J',I’,b’, s’,w’, V') is feasible. We thus have
¢, j,v(j)) > u(i"), ensuring that (J, I, b, s, u, v) fails (44) and hence is not
pairwise efficient.

The following is straightforward:

PROPOSITION 1: Let Assumption 1 hold. Then a feasible allocation is pairwise
efficient if and only if it is an ex ante equilibrium.

4The Pareto efficiency of this allocation hinges on our assumptions that only transfers within
a match are feasible. If unrestricted transfers were possible, then every Pareto efficient allocation
features the same matching as the ex ante equilibrium.
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PROOF: First, let (J,1,b,s,u,v) be an ex ante equilibrium. Then the sec-
ond component of (19) implies (44) and the second component of (20) implies
(45). As ex ante equilibria are feasible and individually rational, it follows that
(J,1,b, s, u,v) is pairwise efficient.

Conversely, let the feasible allocation (J, I, b, s, u,v) be pairwise efficient.
Then individual rationality holds by definition, while conditions (44)—(45) give

u(i) = sup ¢ (i, j, v(j)),

JeN

v(j) Z sup ¥ (j, i, u(j)).

ieN

Conditions (5)—(8) in the definition of feasibility ensure that, for each of these
inequalities, either (i) the supremum is attained and the condition holds with
equality, or (ii) the supremum is not attained and the agent in question is
unmatched. This implies the incentive constraints (19)—(20), ensuring that
(J,1,b, s, u,v) is an ex ante equilibrium. Q.E.D.

3.2. Ex post Equilibrium and Pairwise Conditional Efficiency

We will link ex post equilibria to the following efficiency notion.

DEFINITION 6: A feasible allocation (J, I, b, s, u, v) is pairwise conditionally
efficient if it is individually rational and

46)  u()=¢(i j,s(),v(j)) ¥, j)eN?,
(47) V() = ¢ (j, i, b(), i) V(i j) e N

The modifier “conditional” captures the idea that each agent’s payoff satisfies
an efficiency criterion given the investments of the agents on the other side of
the market. We can view pairwise conditional efficiency as the coupling of con-
ditional exchange efficiency with a stability requirement. The (omitted) proof
of the following is analogous to the proof of Proposition 1.

PROPOSITION 2: Let Assumption 1 hold. Then a feasible allocation is pairwise
conditionally efficient if and only if it is an ex post equilibrium.

Upon observing that conditions (44)—(45) in the definition of pairwise effi-
ciency can be rewritten as

48)  u()> (i, j,5,v()) VseS, )N,
(49)  v(j) = ¥(j, i b,u(j)) VbeB,(i,j)eN?,

it is immediate that pairwise efficiency implies pairwise conditional efficiency.
Combining this observation with Propositions 1 and 2, we obtain the following:
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COROLLARY 1: Let Assumption 1 hold. Then:
(i) Every pairwise efficient allocation is also pairwise conditionally efficient.
(ii) Every ex ante equilibrium (J, I, b, s, u, v) is also an ex post equilibrium.

Corollary 1 gives us the counterpart of one of the welfare theorems for
the relationship between pairwise efficient allocations and ex post equilibria,
namely that pairwise efficient allocations are ex post equilibria. This ensures
that whenever a pairwise efficient allocation exists, then a pairwise efficient ex
post equilibrium also exists. Combining Corollary 1 with Remark 5, we see that
incomplete markets, arising here out of the fact that investments must be cho-
sen before matches are formed, do not preclude pairwise or Pareto efficiency.

Pairwise inefficient ex post equilibria may also exist. We may view such equi-
libria as arising from coordination failures in the choice of investments: If pair-
wise efficiency fails, there is a pair (i, j), perhaps matched to each other or
perhaps not, and an exchange (b, s, ¢) that would make both i and j better off.
However, realizing the increased payoffs promised by the exchange (b, s, t)
requires that both agents choose different investments.

The interpretation of pairwise inefficiencies as coordination failures can be
vividly illustrated by considering the case of one-sided investment. Suppose
that § is a singleton and hence only buyers make investments (the argument
similarly applies to the case in which B is a singleton). Then ¢ and $ are iden-
tical, in the sense that for all (i, j, v), we have ¢ (i, j, v) = (13(1', J, s, v), where s
is the sole element of S. Consequently, (44) and (46) are equivalent. As (44)
is in turn equivalent to (45), it follows that every ex post equilibrium is an ex
ante equilibrium. There is no coordination to be done in this case, and hence
no coordination failures. We thus have the following:

COROLLARY 2: Let Assumption 1 hold. If either B or S is a singleton, then
every ex post equilibrium is pairwise efficient.

3.3. Missing Prices

This section provides an alternative interpretation of our equilibrium no-
tions along the lines suggested by the literature on hedonic pricing.”> Agents
face prices, specifying transfers, and an equilibrium price function causes the
quantity demanded for each possible match to equal the quantity supplied.
This allows us to provide an alternative interpretation of the coordination fail-
ures that lie behind ex post equilibria that are not pairwise efficient, this time as

5The literature on hedonic pricing, with early contributions by Becker (1965), Houthakker
(1952), Lancaster (1966), and Muth (1966) and a classic exposition by Rosen (1974), is centered
around the idea that goods can be defined as bundles of attributes. Hedonic equilibria in compet-
itive matching models with multidimensional types and perfectly transferable utility have been
studied by Ekeland (2010a).
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a reflection of incomplete markets. For convenience, we focus on fully matched
allocations.

Prices are given by a function #(b, B, s, o), with the interpretation that buyer
i with investment b and type B(i) can buy any match (b, B(i), s, o) by paying
t(b, B(i), s, o), with a similar provision for sellers. We make no assumptions
about the sign of ¢(b, B, s, o).

We say that a feasible allocation (J, I, b, s, u, v) can be supported by prices
t(b, B, s, o) if an auctioneer or market maker could post such prices, offering
to buy or sell a match to any agent at the posted price, and have the result-
ing optimizations on the part of the agents yield the allocation (J, I, b, s, u, v).
A hedonic equilibrium is a feasible allocation that can be supported by prices,
together with its supporting prices.

We must pay some attention to the domain of the price function ¢(b, s, B, o).
Following Mailath, Postlewaite, and Samuelson (2013b, p. 547), we say that
prices are complete if t is defined on the domain B x B x § x &. For a given
allocation (J, I, b, s, u, v), we say that a function ¢(b, B, s, o) is a specification
of ex post prices if the domain of this function is (B x B x S)U (B x S x 6),
where

S={(s,0) €S x & :5=5(j), 0 = o(j) forsome j € N},
B={(b,B)€BxB:b=b(i), =B forsomeie N}

DEFINITION 7: A fully matched feasible allocation (J, I, b, s, u,v) is sup-
ported by complete prices : B x B x S x 6 — R if, for all buyers i e N,

(50) (b(D),s(J (D), c(J(i))) € argmax U(b,s, B(i), o, (b, B(i), s, 7)),

(b,s,0)eEBxSxS

(51)  u(@)= 4y ax U(b,s, B(i), o, t(b, B(i),s, o)) = u(i),
with an analogous condition holding for all sellers j € N.

A fully matched feasible allocation (J, I, b, s, u, v) is supported by ex post
prices t: (B x 9B xS)U (B x § x &) — Rif, for all buyers i € N,

(b(D), s(J (1)), o(J (1)) € argmax U (b, s, B(i), o, t(b, B(i), 5, 7)),

(b,s,0)eBxXS

u(i)=_max U(b,s, B(i), o, t(b, B(i),s, o)) > u(i),

(b,s,a)eBxS

with an analogous condition holding for all sellers j € N.

Complete prices attach a price to every possible combination (b, B, s, o)
of investments and types. A price function defined on the restricted domain
(BxBxS)U(B xS x 6) gives us just enough prices to evaluate the max-
imization problems that appear in the definition of ex post equilibrium. For
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example, given a candidate equilibrium (J, I, b, s, u, v), a buyer of type 8 can
consider any investment b € B, but can consider matches only with seller in-
vestments s and types o satisfying (s, o) € S. In order to attach prices to such
choices, we need prices defined on (B x 8 x S)U (B x § x &).

PROPOSITION 3: Let Assumption 1 hold.

(1) A fully matched feasible allocation can be supported by complete prices if
and only if it is a fully matched ex ante equilibrium.

(ii) A fully matched feasible allocation can be supported by ex post prices if and
only if it is a fully matched ex post equilibrium.

PROOF: (i) Let (J,1,b, s, u,v) be a fully matched ex ante equilibrium. We
can in general expect an allocation supported by prices to be supported by
a variety of price functions, with the individual rationality constraints identi-
fying the bounds placed on such functions by the option of not participating
in the market. We construct one such price function. For every (b, B, s, o)
with the property that there exists a buyer i’ with B(i") = 3, we let the price
t(b, B,s, o) =t(b, B(i"), s, o) satisty (the existence of a solution to the follow-
ing equation is implied by Assumption 1):

U(b, s, B(i), o, t(b, B(7), 5, 7)) =u(i).

This price is well defined: if there are buyers i and i’ with 8 = B(i) = B(7'), then
the incentive constraints imply that, in equilibrium, we must have u(i) =u(?’).
For those (b, B, s, o) for which there exists no i with B(i) = B, let ¢(b, B, s, o)
satisfy

V(s,b, o, B,t(b, B,s,a)) <V(s, o).

The existence of such a price is again ensured by Assumption 1.

This formulation of prices ensures that every buyer i receives payoff u(i) no
matter what (b, s, o) he chooses, which in turn ensures that (50)-(51) hold.
Next, every seller can choose any (s, b, 8) with the property that 8 = (i) for
some i’ at a price that gives buyer i’ a utility of u(i"), whereas choosing any other
(s, b, B) results in less than the seller’s outside option. Hence, the optimization
problem faced by seller j is equivalent to

gy¢@tmm,

which duplicates the incentive constraint (22), ensuring that the optimal choice
of seller j is (s(j), b(I()), BU())).

Conversely, let the fully matched feasible allocation (J, I, b, s, u, v) be sup-
ported by complete prices. Then (50)—(51) and the corresponding seller con-
ditions immediately give the individual rationality constraint (9). Suppose that
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one of the incentive constraints (19)—(20) fails, say (19), so that there exist i’
and j’ with

u(i') < (7, j,v(j"))-

This implies that there exist (&', s', ¢') for which

u(i)<U(®,s,B(), o), 1),
Vi) <V (s (7). B(E). ).

This in turn ensures that there is no ¢(b’, B(i'), ', o(j")) at which both (51) and
the corresponding seller condition can be satisfied, contradicting the assump-
tion that (J, I, b, s, u, v) is supported by complete prices.

(ii) The proof for ex post equilibria is identical, except that ¢ (i, j, v(j)) is

replaced by ¢ (i, j, s(j), v(j)) and ¢ (j, i, u(i)) is replaced by §(j, i, b(i), u(i)).
Q.E.D.

The inability to support an ex post equilibrium which is not pairwise effi-
cient with complete prices arises out of the fact that if a pair of agents with
types (B, o) strictly prefers an exchange (¥, s, t') to what they obtain at equi-
librium, then there is no price one could post that would discourage both sides
of the market from trying to demand (resp. supply) (&', s', B, ’). A seller of
type o’ will be willing to choose investment s’ and sell to buyer type B’ with
investment b’ at a high price, while a buyer of type 8’ would like to choose &’
and buy from seller o’ with investment s’ at a low price. We can thus interpret a
failure of pairwise efficiency in an ex post equilibrium as a problem of missing
markets. Markets are “complete enough” only to ensure pairwise conditional
efficiency.

Why might we have ex post rather than complete prices? Prices from the
set (Bx B xS)U (B xS x &) allow a market maker to answer any inquiry
from a buyer (with sellers being analogous) of the form “what if I bring b to
the market, am of type 3, and attempt to buy (b, B, s, o) for some (s, o) in the
market?” A good outside the set (B x 8 x S) U (B x S x &) requires a doubly
counterfactual inquiry, and hence might be viewed as sufficiently unlikely as to
not warrant a price. Alternatively, in a decentralized market, trades involving a
departure from equilibrium behavior on the part of only a single player may be
salient enough or happen often enough in the process leading to equilibrium
as to generate common price expectations, but the same may not be true for
doubly counterfactual goods.

The coordination-failure and missing-prices interpretations of inefficient ex
post equilibria are related. For an allocation (J, I, b, s, u, v) to fail pairwise ef-
ficiency, there must be a pair (i, j) and an exchange (b, s, ¢) that makes both
better off than under the allocation (J, I, b, s, u, v). The coordination difficulty
is that buyer i can entertain exchange (b, s(j), t) and seller j can entertain
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(b(i), s, t), but there is no way (under the ex post equilibrium concept) for
them to coordinate on the exchange (b, s, t). The allocation (J, I, b, s, u, v) can
then be an ex post equilibrium but fail pairwise efficiency if neither of the ex-
changes (b, s(j), t) or (b(i), s, t) can make buyer i and seller j both better off,
even though (b, s, t) does so.

If both agents in the pair (i, j) would be better off making the exchange
(b, s, t) than they are under the allocation (J, I, b, s, u,v), then the alloca-
tion (J,1,b,s,u,v) cannot be supported by complete prices. In effect, the
existence of the price (b, B(i), s, o(j)) solves the coordination problem for
agents i and j by allowing either one of them to demand the coordinated
deviation to the exchange (b, s, (b, B(i), s, o(j))). However, (J,1,b, s, u,v)
might be supported by ex post prices, because such prices specify a price
t(b, B(i),s(j), o(j)) and specity a price t(b(i), B(i), s, o(j)), but do not spec-
ify a price ¢(b, B(i), s, o(j)). Because the latter price is missing from the mar-
ket, the “coordinated” exchange (b, s, t) is out of the agents’ reach.

3.4. Pairwise Constrained Efficiency and Separability
3.4.1. Pairwise Constrained Efficiency

Pairwise efficiency and pairwise conditional efficiency both require that
there be no pair of agents who could match and improve their payoffs. The
notions differ in terms of the sets of investments for the agents on the other
side of the market that an agent can contemplate when calculating the pay-
offs from a match. As indicated by condition (48), pairwise efficiency allows
buyer i to consider any seller investment s € § when assessing the payoff from
a match with seller j, whereas condition (46) indicates that, under pairwise
conditional efficiency, buyer i can only consider investment s(j). Our next effi-
ciency concept lies between those two notions. Condition (52) in the following
definition requires that buyer i cannot gain by matching with seller j, given
that the seller’s investment must be drawn from the set of investments S that
are chosen by some seller and hence are “in the market.” Cole, Mailath, and
Postlewaite (2001b, p. 356) referred to equilibria with this property as “efficient
in a constrained sense,” and so we refer to this notion as pairwise constrained
efficiency.

DEFINITION 8: A feasible allocation (/J, I, b, s, u, v) is pairwise constrained
efficient if it is individually rational and

(52) u(i) > ¢ (i, j,s,v(j)) VseS,(i,j)eN?,
(53) v(j) = ¢ (j, i, b,u(j)) VbeB,(i,j)eN?,
where B is the image of N under b and S is the image of N under s.

The following is immediate from the definitions:
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COROLLARY 3:

(i) Pairwise efficient allocations are pairwise constrained efficient.

(ii) Pairwise constrained efficient allocations are pairwise conditionally effi-
cient.

We have summarized Propositions 1-2 and Corollaries 1 and 3 in Figure 1.

Ex post equilibria can be pairwise constrained efficient without being pair-
wise efficient. The pairwise inefficient autarchy equilibrium in Example 1 pro-
vides an illustration. It is constrained pairwise efficient because all buyers and
all sellers make identical investments, in which case pairwise conditional effi-
ciency implies pairwise constrained efficiency. It is straightforward to construct
examples of ex post equilibria that are not pairwise constrained efficient (cf.
Noldeke and Samuelson (2014)). Hence, pairwise constrained efficiency lies
strictly between pairwise conditional efficiency and pairwise efficiency—both
converses that are not asserted by Figure 1 fail.

3.4.2. Separability

As we have indicated in Section 2.1.3, the literature on investment-and-
matching problems (Cole, Mailath, and Postlewaite (2001a, 2001b), Dizdar
(2012), Acemoglu (1996), Iyigun and Walsh (2007)) has focused on models
with additively separable preferences.'® The following definition of separabil-
ity does not impose the additive structure appearing in (10)—(13). Intuitively,
preferences are separable if agents’ utilities depend on the investments their
partners have chosen, but not on the types of the partners choosing those in-
vestments. A marriage market may be separable because a man (for example)
may care about the wealth with which his spouse has been endowed by her
parents, but not the cost at which her parents amassed such wealth. A labor
market may be nonseparable because firms are willing to hire software engi-
neers who have invested relatively little in learning the relevant programming
languages, but who nonetheless have great natural talent for programming.

DEFINITION 9: Preferences are separable if there exist continuous functions
fiBxSXxR—>R,8:SxBxR—>R,f:B—>R,g:S—>R,U:RxBxB— R,
and V:R x § x & such that
(54) U(basa B7 ag, t):U(f(b,S, t)?b7 ﬁ),

(55) V(S7b’ U?B’ I)ZV(g(S,b, t)7s’ (T)a

16Preferences are also additively separable in the models with perfectly transferable utility

considered in Mailath, Postlewaite, and Samuelson (2013a, 2013b). Separability is less evident in

Felli and Roberts (2012), but holds in an (equivalent) version of their model in which what they
call the “quality” of an agent is interpreted as the agent’s investment choice.
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(56) U, B)=U(f(b),b,B),
(7)) Vis,o)=V(g(s),s, ),

where U and V' are strictly increasing in their first arguments.

The buyer condition (54) (for example) indicates that (i) the buyer’s util-
ity does not depend on the seller’s type o, and (ii) if we can find one buyer
who prefers matching with a seller on terms (b, s', ¢) to matching on terms
(b, s, t), then every buyer has this preference; that is, writing buyer 8’s prefer-
ences as /g, we have that, for all 8, B’ € B8,

(58) (b,s, 1) mp (b,s',1) < (b,s,1) = (b,s,7).

Notice that the buyer’s investment is the same across these two pairs, so the
important content of (58) is that the buyer’s trade-off between s and ¢ does not
depend on the buyer’s type.

It is trivial to verify that additively separable preferences are indeed separa-
ble. Further, when utility is perfectly transferable, separability implies additive
separability: the representation given by (12)—(15) is not only sufficient but also
necessary for separability.'®

3.4.3. Separability and Pairwise Constrained Efficiency

Separability of preferences implies the pairwise constrained efficiency of
ex post equilibria. The proof of the following result also shows that for fully
matched ex post equilibria, we need only the first part of the definition of sep-
arability, namely (54)—(55), to obtain this conclusion.

7Condition (54) obviously implies (58). To see the converse, suppose (58) holds. Then we
can omit o as an argument of U, and can choose an arbitrary * € 6 and define f(b, s, 1) =
U(b,s, B*, t). Now, for any triple (b,s’,t), let y' = f(b,s’, t') and then define U(y’,b, B) =
U(b,s,B,t). To confirm that this construction is well defined, we note that if f (b,s',t') =
f(b, s”,t"), then by definition (b, s', t') ~g- (b, s”,t"), with (58) then ensuring that (b, s', ') ~g
(b, s",t") for any B € B, and hence U (b, s, B,t') =U(b,s", B, t").

3To see this, consider the buyers. Suppose that (54) holds and that utility is perfectly trans-
ferable. We can then omit o as an argument of UJ. Choose some s* € § and let U (b, s*, B) =:
—f(b, B). Then choose some B* € B and define f(b, s) = f](b, s, B*) — U(b, s*, B*). Using sep-
arability for the second of the following equalities, we then have

uW,s,B)=0,s,8)-UW, s, B)+UD,s",B)
=0(,s,B)-U(b,s" B)—i,B)
fb,) =it B),

yielding (14). Defining i(b) =U(b, B*) — U(b, s*, B*) and using an analogous argument gives
(12).
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PROPOSITION 4: Let Assumption 1 hold and let preferences be separable. Then
ex post equilibria are pairwise constrained efficient.

PROOF: Let (J,1,b,s,u,v) be an ex post equilibrium, and suppose that it
is not pairwise constrained efficient. Then there exists a pair of agents (i, j)
for whom (52)—(53) fail. Suppose it is (52) that fails (with the case in which
(53) fails being analogous). Then there exists a pair of investments (b, s) with
s =s(j') for some j' and a transfer ¢ such that

(59 U(f(b,s,0),b, B()) >u(i),
60)  V(8(s,b,0),5,0())) = V().

Suppose first that seller j’ is matched, and let i’ be the buyer matched with
seller j/ and let their exchange be (¥, s, ¢'). One of the possibilities buyer i can
contemplate is to match with seller j/, with exchange (b, s, ¢). Condition (59)
ensures that the exchange (b, s, t) with seller j provides buyer i with more than
his equilibrium utility, and so separability ensures that such a match with seller
j' does likewise. The incentive constraints (27)—(28) for ex post equilibrium
ensure that the exchange (b, s, t) decreases j”’s utility, or

61)  V(&s,b,0),s,0() <v(i) =V (&(s, b, 1), s, a(f)).

Next, by separability, the fact that buyer /' is willing to consummate an equi-
librium match featuring exchange (', s, ¢') with seller j* ensures that buyer 7'
would also be willing to make this exchange with seller j. The incentive con-
straints (27)—(28) for ex post equilibrium ensure that this does not increase j’s
utility, or

62)  V(&(s, b, 1), s,0())) <v()).
From (60) and (62), we have

V(8(s,b, ), s,0()) =V (&(s, 0, 1), s, a())),

whereas (61) together with separability implies the reverse strict inequality.
Hence, we have obtained a contradiction to the assumption that (59)-(60)
hold.

Now suppose that seller j’ is not matched. Then

(63) V(s,o(j) =v(j') > V(&(s, b, 1), s, o(j))

holds, where the equality is from feasibility and the strict inequality follows
from separability: if it failed, buyer i and seller j* could match with exchange
(b, s, t) with seller j' receiving at least her equilibrium utility v(j') and buyer
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i receiving more than his equilibrium utility (from (59)), contradicting the in-
centive constraints for ex post equilibrium. By (57), the outer inequality in (63)
implies

V(s,a()) >V (&, b,t),s 0())),

whereas (60) in conjunction with the incentive constraint v(j) > V (s, o(j))
implies the reverse weak inequality. This contradiction finishes the proof.
Q.E.D.

3.4.4. Separability, Coordination Failures, and Heterogeneity

The link between separability and pairwise constrained efficiency is impor-
tant for two reasons. We postpone one of these to Section 4, where separability
and pairwise constrained efficiency play a central role in establishing condi-
tions for positive assortative matching. This section highlights the second rea-
son, the role of separability in limiting the scope of coordination failures.

Section 3.2 observed that failures of pairwise efficiency of ex post equilibria
can be interpreted as coordination failures in investment choices—an ex post
equilibrium can only fail pairwise efficiency if (44)—(45) are violated, which
means that there exist agents i and j and investments b 7 b(i) and s # s(j)
that (when accompanied by an appropriate transfer ¢#) would make both agents
strictly better off when matching with each other. When preferences are sep-
arable, the pairwise constrained efficiency conditions (52)—(53) imply that the
only coordination failures that can arise are those in which both agents in a pair
(i, j) could be made better off by choosing a pair of investments (b, s") (and an
appropriate transfer ¢') with the property that neither b’ nor s’ is in the market.
Formally, Proposition 4 leads immediately to the following result, generalizing
a corresponding result for perfectly transferable utility in Cole, Mailath, and
Postlewaite (2001b, Proposition 4).

COROLLARY 4: Let Assumption 1 hold and let preferences be separable. Sup-
pose (J,1,b,s,u,v) is an ex post equilibrium and there exist agents i and j and
an exchange (b, s', t") such that

u,s,Ba, o), ) =u(),
V(s b, o)), B(), 1) =v()),
with at least one equality strict. Then there exists no i’ for which b(i") = b’ and no

J withs(j') =5

The scope for coordination failures in ex post equilibrium is thus limited
by the heterogeneity of investments that are actually chosen in equilibrium.
The richer the sets B and S of equilibrium investments, the fewer exchanges
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(b, s', t') there are with b’ ¢ B and s' ¢ S, and hence the fewer opportunities for
a failure of pairwise efficiency. In particular, if the sets B and S include every
investment that is chosen by some agent in a pairwise efficient allocation, the ex
post equilibrium in question must be pairwise efficient. In essence, it is enough
to ensure the right investments are in the market, at which point the market
will ensure that they are chosen by the right agents.

For example, it is immediate from Corollary 4 that with separable prefer-
ences, any ex post equilibrium satisfying B = B (or S = §, with the follow-
ing discussion focusing on the first of these cases) is pairwise efficient. When
might this condition be satisfied? Suppose that utility is perfectly transferable.
Then fully matched ex post equilibria will satisfy B = B if, for every b’ € B,
there exists a buyer i for whom choosing that investment is a dominant strat-
egy in the full appropriation game, that is, for all s € S the investment &' is the
unique investment satisfying (32). If &’ is also the unique autarchy investment
of buyer i or all ex post equilibria are fully matched (conditions ensuring this
are discussed in Section 4.2), the pairwise efficiency of ex post equilibria fol-
lows. This dominant strategy condition is stringent, but is satisfied, for example,
in Chiappori, Iyigun, and Weiss (2009).

Whether the dominant strategy condition of the previous paragraph holds
can depend upon whether the agents in the economy are sufficiently heteroge-
neous. The following example illustrates.

EXAMPLE 3: Let N =[a, 1] with0 <a <1/6 and B = & = [a, 3]. Utility is
perfectly transferable and preferences are separable. Let there be two possible
investments on each side of the market, so that B={L,H} and S = {L, H}.

The return functions f(b, s) and g(s, b) in (14)~(15) are given by

L H
L|1]2],
H|2]|5

while investment costs are 0 for an L investment and % or i in the case of an H
investment. The return functions for unmatched agents satisfy f(b) = g(s) =0,
so that, for all types, outside options are zero and L is the autarchy investment.

Suppose first that B and o are the identity functions, so that the sets of
buyer and seller types in the economy are both [a, 1]. Pairwise efficiency for this
economy calls for all agents with types less than 1/2 to choose L investments,
and all agents with types greater than 1/2 to choose H investments. Agents
who choose L match with one another, as do agents who choose H, with the
matching being arbitrary within these constraints. However, there is also an
ex post equilibrium in which every agent chooses L. Agents with names (and
hence types) greater than 1/2 are not choosing exchange efficient investments,
but the equilibrium is pairwise constrained efficient. Pairwise constrained ef-
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ficiency does not imply exchange efficiency in this case because the sets of in-
vestments in the market, B =S = {L}, are too sparse.

Suppose now that B(i) = 2i and o (j) = 2j, and so the sets of buyer and seller
types in the economy are both [2a, 2]. As before, pairwise efficiency for this
economy calls for all agents with types less than 1/2 to choose L investments,
and all agents with types greater than 1/2 to choose H investments. Every ex
post equilibrium must be fully matched (as the existence of an unmatched pair
of agents leads to an immediate contradiction of the pairwise conditional effi-
ciency of ex post equilibria). For buyers and sellers with names above 1/2 (and
thus types above 1), the ex post exchange efficiency conditions (32)—(33) now
imply b(i) = s(j) = H, irrespective of the partner they are matched with and
the investment chosen by that partner. Similarly, for matched buyers and sell-
ers with names below 1/6 (and thus types below 1/3), every ex post equilibrium
satisfies b(i) = s(j) = L. Consequently, in every ex post equilibrium all invest-
ments are in the market, that is, B= B and S = S, ensuring that every pairwise
constrained efficient allocation is pairwise efficient. Hence, Proposition 4 im-
plies that every ex post equilibrium is pairwise efficient.

REMARK 6: Section 3.3 showed that we can alternatively formulate the no-
tions of ex ante and ex post equilibria in terms of prices attached to quadru-
ples (b, B, s, o) of investments and types. If preferences are separable, then
we can write prices simply as a function #(b, s), as do Mailath, Postlewaite, and
Samuelson (2013b). To see this, suppose there exist values (b, B8, s) and dis-
tinct values o and o’ such that the prices supporting an ex post equilibrium
feature ¢(b, B, s, o) > t(b, B, s, o). Then the good (b, B, s, o) does not trade
in equilibrium, because buyer preferences are independent of ¢ and hence
no buyer will buy the more expensive good (b, B, s, o). We can thus reduce
the price of (b, B, s, o) to t(b, B, s, ¢’) without disrupting the equilibrium, and
hence can assume that prices take the form ¢(b, B, s). An analogous argument
now ensures that prices also need not depend on 8. Mailath, Postlewaite, and
Samuelson (2013a, 2013b), continuing with separable preferences, explored
the circumstances under which prices in the ex post market can be written as a
function of the seller’s investment s only. This is not an implication of separa-
bility, and requires additional conditions.

4. CHARACTERIZATION OF EX POST EQUILIBRIA

This section develops conditions under which we can refine the characteriza-
tion of ex post equilibria we have obtained in Propositions 2 and 4. Our goal is
to establish conditions under which ex post equilibria will be Pareto efficient, a
task we complete in Section 5, and so we organize our discussion around three
obvious sources of inefficiency.

First, exchange efficiency is a necessary condition for both pairwise efficiency
and Pareto efficiency. Every ex ante equilibrium is thus exchange efficient. In
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contrast, Examples 2 and 3 each exhibit ex post equilibria in which some (and
in Example 2, all) pairs of agents choose investments that are exchange inef-
ficient, that is, that place them strictly inside their utility frontiers. Section 4.1
establishes conditions under which an ex post equilibrium will be exchange ef-
ficient.

Second, as in the ex post equilibrium of Example 1 in which all agents
choose their autarchy investments and remain unmatched, there may be too
few agents participating in the market. Section 4.2 identifies conditions ensur-
ing that every ex post equilibrium (and hence every ex ante equilibrium) is
fully matched. These conditions are stronger than the ones required to ensure
that ex ante equilibria are fully matched, but they are quite straightforward.
For fully matched equilibria, assuming continuity of the maps from names into
types has important implications that we also record here.

Third, agents may be matched with the “wrong” partners." Section 4.3 iden-
tifies conditions under which all ex post equilibria, and hence also all ex ante
equilibria, feature (essentially) identical matchings. In doing so, we focus on
the case which has been most prominent in the literature, in which all ex ante
equilibria are positive assortative (e.g., Cole, Mailath, and Postlewaite (2001b),
Iyigun and Walsh (2007), and Peters and Siow (2002)).? This requires strong
but familiar assumptions.

4.1. Exchange Efficiency of ex post Equilibria

In models with perfect transferability and separable preferences, two ap-
proaches to establishing exchange efficiency have been considered. The first,
suggested by Dizdar (2012), is to seek conditions on preferences under which,
for any pair of types (i, j), conditional efficiency of an exchange for that
pair implies (unconditional) exchange efficiency for that pair. The second ap-
proach, pioneered by Cole, Mailath, and Postlewaite (2001b, Section 6), uses
assumptions about the distribution of types in the economy and about the re-
lationship between the preferences of various types. This approach seeks to
“leverage” the pairwise conditional efficiency conditions (46)—(47) to infer ex-
change efficiency of ex post equilibria, even when conditional exchange effi-
ciency for a given pair of types does not imply exchange efficiency for that pair.
In Example 3, for instance, we showed that if the set of types is sufficiently
rich, then all investments are chosen by some agents, at which point pairwise
conditional efficiency implies exchange efficiency.

YDizdar (2012, Section 5.2) and Noldeke and Samuelson (2014, Sections 3.3.3 and G.3) pro-
vide examples.

DPositive assortment rather than negative assortment is not critical to our argument. Replac-
ing Definition 10 appearing in Section 4.3 by the corresponding generalized condition for negative
assortative matching from Legros and Newman (2007b) will give results for negative assortative
matching equivalent to the ones we obtain here.
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This section pursues the approach of Dizdar (2012), assuming neither per-
fect transferability nor separability. We do so with the help of convexity as-
sumptions on the preferences over exchanges between given pairs of types, but
require no assumptions about the distribution of types in the economy or about
how the preferences of various types are related to one another.*

Suppose we are given a pair of types (8, o) and an exchange (b, s, t) solving

(64) (b,t) € argmax U (b, s, B, o, 1)

(b',t")eBxR
st. V(s,b,0,B,1)=V(s,b,0,B,1),
(65) (s, 1) € argmax V' (s, b, o, B, ')

(s', 1) eSxR

st. U(b,s,B,0,t)=U(b,s,B,o,1).
Does it follow that (b, s, t) also solves

(66) (b,s,t)e argmax U(b,s,B,0,1)

(b',s",t')eBxSxR

st. V(s,b,0,B,t)=V(s,b,0,B,1)?

If the answer is positive for all (8, o) € B x G, it follows from the defini-
tions of the utility frontier functions ¢, s, and ¢ that (30)—~(31) imply (24) for
all (i, j) € N*. Because (24) and (25) are equivalent, it follows that the condi-
tional exchange efficiency of an allocation implies its (unconditional) exchange
efficiency, ensuring the exchange efficiency of every ex post equilibrium.

The natural approach to establishing a connection between (64)-(65) and
(66) is to consider the Kuhn-Tucker conditions for the solutions to these prob-
lems. This requires differentiability assumptions which strengthen the continu-
ity and monotonicity requirements from Assumption 1. Convexity of the set of
feasible investments in conjunction with quasiconcavity of the utility functions
then implies that the Kuhn-Tucker conditions developed in Arrow and En-
thoven (1961) are applicable and hence that conditional exchange efficiency
implies exchange efficiency.?

PROPOSITION 5: Let Assumption 1 hold. Let B and S be convex and let U and
V' be quasiconcave and differentiable in (b, s, t) for all (B, o) € B x &, with the

2INbSldeke and Samuelson (2014, Section 4.1.2 and Appendix E) discussed the leveraging ap-
proach of Cole, Mailath, and Postlewaite (2001b) in more detail, noting (as one would expect
from Corollary 4) that it is more powerful when preferences are separable, and presenting an
example adapted from Dizdar (2012) illustrating its potential limitations.

22Quasiconcavity does not depend upon the sign convention we adopt for transfers, so the
assumptions that U and V' are quasiconcave are symmetric, despite the fact that transfers enter
these functions with different signs.
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partial derivatives with respect to t satisfying U, < 0 and V; > 0. Then every ex post
equilibrium is exchange efficient.

PROOF: As explained above, it suffices to show that (64)—(65) imply (66).

Using the strict Pareto property, we can exchange the role of the objective
function and the constraint in (65) to obtain that an exchange (b, s, t) satisfies
(65) if and only if (s, ¢) solves

(67) max U(b,s,B,0,t) st. V(s,b,0,B,1)=V(s,b,0,B,1).

(s',f)eSxR

Using U,, U, V};, and V; to denote the vectors of partial derivatives of the
utility functions with respect to the corresponding variables, the Kuhn-Tucker—
Lagrange conditions for (64) are (Arrow and Enthoven (1961, p. 790)) that
there exists A > 0 satisfying, for all (b',¢') € B x R,

(68) (Ub(b7 S, B: g, t)-‘r)\%,(S,b, g, B: t)) (b/_b)
+ (Ut(b’ s, Ba g, t) + )\I/[(S, ba g, ﬁa t))(t, - t) = 0.

Similarly, the Kuhn-Tucker-Lagrange conditions for (67) are that there exists
w > 0 satisfying, for all (s',¢) € S x R,

(69) (Uv(b7S7 B: g, t)+/-LI/Y(S7 b7 g, Ba t)) (S,_S)
+ (Ut(b; S, ,87 ag, t) + Ml/t(sy ba g, ﬁa t))(t/ - t) =< 0.

Because (i) both U and V' are quasiconcave in (b, s, t), (ii) ¢ is unconstrained,
and (iii) V; > 0 holds, these Kuhn-Tucker-Lagrange conditions are necessary
for (64) and (67) (Arrow and Enthoven (1961, p. 791)). Further, setting b’ = b
in (68) and s’ = s in (69), we obtain

Ut(b, S, Ba g, t) + )\I/[(S, ba g, Ba t) = 03

Ut(ba S, ﬁ’ g, t) + /“LI/I(S, b5 g, By t) = O

Because U, < 0 and V; > 0 hold, these equalities imply u = A > 0, so that (68)
and (69) imply the existence of A > 0 such that

(Ub(b> S, B’ g, t) + /\I/b(sa b> g, B: t)) : (b/ - b)
+ (Us(ba S, ,B, g, t) + /\I/s(sy b’ g, B’ t)) : (S/ - S)
+ (Ut(b7 s, 187 g, t) + )\I/t(s7 b7 g, Ba t))(t, - t) = 0

holds for all (&', s', ¢') € B x § x R. These are the Kuhn-Tucker-Lagrange con-
ditions for (66). Because ¢ is unconstrained and U, < 0 holds, condition (a) in
Theorem 3 from Arrow and Enthoven (1961) is satisfied and these conditions
are then sufficient for (66). Hence, (b, s, t) solves (66). O.E.D.
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As indicated by (30)—(31), conditional exchange efficiency for a pair may be
understood as the requirement that the “conditional utility frontiers” é and
i both pass through the point (u, v) in utility space induced by the exchange
(b, s, t). The first part of the proof of Proposition 5 establishes that the two
conditional utility frontiers are tangent to one another at (u, v). The second
part then shows that this equal slope condition is sufficient to imply that (u, v)
lies on the unconditional utility frontier. The convexity and differentiability
assumptions imposed in Proposition 5 play an essential role in this argument,
by ensuring that local considerations suffice to evaluate whether there is any
scope to increase both agents’ utilities by adjusting their exchange.

When utility is perfectly transferable, the question we address in this sec-
tion reduces to the question of whether conditions (32)—(33) imply condition
(26). Recall that (32)—(33) are the conditions for a pair of investments (b, s) to
be a Nash equilibrium in the full appropriation game in which buyer i chooses
b € B, seller j chooses s € S, and both agents have the value Z(b, s, B(i), o(j))
as a payoff function, whereas (26) states that (b, s) maximizes this value.
Hence, in the perfectly transferable case, we are asking for conditions un-
der which all Nash equilibria of the full appropriation game solve the value
maximization problem. As Dizdar (2012) has noted, any solution to the value
maximization problem is a Nash equilibrium in the full appropriation game, so
assuming the existence of a unique equilibrium in the full appropriation game
is clearly sufficient for such a result. Proposition 5 provides a complementary
result, showing that all Nash equilibria in the full appropriation game solve the
value maximization problem whenever the value function is differentiable and
concave in (b, s) on the convex domain B x S.* While our approach gener-
alizes to the case of imperfectly transferable utility, Dizdar’s observation has
no natural counterpart with imperfectly transferable utility as, in general, dif-
ferent solutions to the exchange efficiency problems (24)—(25) feature distinct
investments.

A value function Z can be both supermodular in (b,s) and concave in
(b, s), so that the conditions appearing in Proposition 5 are applicable in
the case of a supermodular value function. When investments are unidi-
mensional and Z twice differentiable, we simply need the supermodular-
ity requirement Z,.(b, s, B, o) > 0, along with standard concavity conditions
be(b, S, ,8, 0') <0 and st(b, S, ,8, 0')2 < be(b, S, ,8, O')Zﬂ(b, S, B, 0'), with
the last condition ensuring that the complementarities giving rise to Z,, > 0
are not so strong as to overwhelm the “partial concavity” of the value function
in each of b and s (as they do in Example 1).

BConcavity and differentiability of Z implies that both U (b, s, B8, o, t) = Z(b, s, B, o) — t and
V(s,b, o, B,t) =t are quasiconcave and differentiable. Proposition 5 then implies that Nash
equilibria of the full appropriation game solve the value maximization problem. The same re-
sult could be obtained by noting that the full appropriation game is a potential game with the
potential Z(b, s, B, o) and applying the observation from footnote 4 in Monderer and Shapley
(1996).
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EXAMPLE 4: Consider Example 2. The value function Z(b, s, B, o) = bs —
b°/5B — s° /50 is supermodular but is not concave (it is convex in a neighbor-
hood of the origin). Proposition 5 thus does not apply. Indeed, as we have
noted in Example 2, there exists a fully matched zero-investment ex post equi-
librium that is not exchange efficient. We could replace f and g with functions
that are increasing in b and s (with positive derivatives at zero) for which the
value function Z would be concave. However, the zero-investment equilibrium
would remain, and so Proposition 5 would then imply that zero investments are
exchange efficient.

4.2. Full Matching
4.2.1. Sufficient Conditions for Full Matching

A simple sufficient condition to ensure that all pairwise efficient allocations
and, hence, all ex ante equilibria, are fully matched is to assume that for every
(i, j) € N?, there exists some exchange (b, s, t) with

(70) U(b,s, B(D),a(j),1) > u(@) and V(s,b,a()), B),1)>v()).

Any feasible allocation in which there exists a pair of unmatched agents (i, j)
is then Pareto dominated by an otherwise unchanged allocation in which these
two agents match with an exchange (b, s, t) satisfying (70).** This condition
can be interpreted as the requirement that all possible matches are productive,
allowing the matching partners to achieve utilities strictly higher than their
outside options.

Assuming all matches to be productive, however, does not suffice to ensure
that all ex post equilibria are fully matched. This is evident from Example 1,
in which unmatched agents choose their autarchy investments of zero and no
match involving an agent who has chosen an investment of zero can generate
any strictly positive surplus. A condition sufficient to ensure that all ex post
equilibria are fully matched is that matches are productive even when one of
the agents in the match has chosen an autarchy investment. The following is
immediate from the pairwise conditional efficiency of ex post equilibria:

PROPOSITION 6: Let Assumption 1 hold. Suppose that for all (i, j) € N2,
either (i) for all autarchy investments b of buyer i, there exists (s,t) with
Ub,s,B),o(),t) > u(i) and V(s,b, o(j), B(i), ) > v(j), or (ii) an anal-
ogous condition holds for the autarchy investments of seller j. Then every ex post
equilibrium (J, 1, b, s, u, V) is fully matched.

%In the extension of our model to the case in which the masses of buyers and sellers may differ,
(70) suffices to ensure that the short side of the market is fully matched.
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Suppose that preferences are separable. Then the conditions appearing in
Proposition 6 will hold if we have

A

(71)  f(b,5,0)=f(b) and §&(s,b,0) > g(s),

with at least one inequality strict, whenever b is an autarchy investment for
some type of buyer and s an autarchy investment for some type of seller. These
conditions will, in turn, be satisfied if all autarchy investments are strictly pos-
itive, the functions f and g are strictly increasing in the partner’s investment,
and being unmatched is equivalent to being matched to a partner with a zero
investment. The conditions appearing in (71) are also satisfied in Iyigun and
Walsh (2007).

4.2.2. Full Matching, Continuity, and Separability

So far we made no assumptions on the functions 8 and o. To make further
progress, we require some regularity of the map from names into types to en-
sure that we can link assumptions on the agents’ utility functions (which are
expressed in terms of types) to properties of the utility frontiers (which are
expressed in terms of names).

ASSUMPTION 2: The functions 8 and o are continuous.

Assumptions 1 and 2 imply continuity of the utility frontiers and, as a conse-
quence, the continuity of equilibrium utility schedules for fully matched equi-
libria. Appendix B proves the following:

LEMMA 2: Let Assumptions 1 and 2 hold. Then

(i) The functions ¢, ¥, é, and i are continuous.

(ii) In any fully matched ex ante or ex post equilibrium (J, 1, b, s, u,v), the
functions u and v are continuous.

The intuition for the second part of this result is standard: if the utility sched-
ule u (for example) took a jump at i*, then some buyer with a name very close
to i* and with a utility on the lower side of the jump could increase his util-
ity by matching with seller J (i) currently matched with another buyer i who is
also close to i* but on the upper side of the jump. Of course, Lemma 2 trivially
holds in the finite case.

Our next result exploits separability to show that fully matched ex post equi-
libria are ex ante equilibria in an economy in which the investment opportu-
nities are restricted in a particular way. In light of the constrained efficiency
result from Proposition 4, this is not surprising. To state the result, we intro-
duce some notation and terminology that we also require in Section 4.3.



INVESTMENT AND COMPETITIVE MATCHING 875

For any pair of nonempty closed sets B C B and S c 8, define ¢ 35N XN x
R — R as follows:

¢l~3,§(i’ j? U)— max U(b, s, ,By g, t) s.t. V(Sa b’ g, B) Lt) > .

beB,seS, teR

Define 5 3 analogously. We assume that B and S are nonempty and closed
to ensure that the utility frontiers ¢35 and 5 3 are well defined and Lem-
mas 1 and 2 are applicable. Given such sets B and S, consider an alloca-
tion (J, I, b, s, u, v) satisfying b(i) € B and s(j) € S. We say that this alloca-
tion is individually rational on (B,S’) if uw(i) > max,_z U (b, B(i)) and v(j) >
max,; V' (s, o(j)) hold for all i and j. If, in addition, the pairwise efficiency con-
ditions (44)—(45) from Definition 5 hold for ¢ 5 and ¢ 3, then (J, 1, b, s, u,v)
is pairwise efficient on (f?, S’). Ifwelet B=Band S = S, we have ¢p 5= ¢ and
s, = ¢ and recover the standard definition of pairwise efficiency. Note that
we may apply Proposition 1 to conclude that an allocation that is pairwise effi-

cient on some sets B and § is an ex ante equilibrium in an economy in which B
and § are the sets of available investments.

LEMMA 3: Let Assumptions 1 and 2 hold, let preferences be separable, let
(J,1,b,s,u,v) be a fully matched ex post equilibrium, and let B and S be the
closures of the sets B and S of investments chosen by buyers and sellers. Then
(J,1,b, s, u, V) is pairwise efficient on (B, S).

PROOF: Individual rationality of (J, I, b, s, u, V) on (B, S) is immediate. Ap-
plying the definition of pairwise efficiency on (B, S), it thus suffices to show
that, for all i and j,

u(i) > sup ¢ (i, j, s, v(j)) = m%xdé(i, J» 5, ¥()))

seS
= ¢B,§(i’ ja V(])) = ¢§,§(i7 ja V(])) s
v(j) = sup (j, i, b, u(i)) = max i (j, i, b, u(i))
beB beB

= lpE,S(L I ll(l)) = ¢§,E(j, I ll(l))

The first inequality in each case follows from Proposition 4 and the definition
of pairwise constrained efficiency (cf. (52)-(53)), the subsequent equality is
implied by continuity of ¢ and ¢ (and the continuity of u and v) established
in Lemma 2, the second equality follows from the relationship between $ and
¢ and between ¢ and ¢ (cf. (48)—(49)), and the final inequality follows from
the observation that restricting agents to a smaller set of investments cannot
increase the utility possibilities open to them. Q.E.D.
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4.3. Positive Assortative Matching

Throughout this section, we consider fully matched allocations. We seek con-
ditions under which all fully matched ex post equilibria are payoff equivalent to
positive assortative allocations. Assuming unidimensional names is a prerequi-
site for such an investigation. The following assumption directs our attention
to the two most commonly studied cases.

ASSUMPTION 3: The set N C R is either finite or an interval.

Section 4.3.1 shows that familiar single crossing conditions on the restricted
utility frontiers ¢ ; and 5 3 introduced in Section 4.2.2 ensure payoff equiva-
lence to positive assortative equilibria. Section 4.3.2 considers assumptions on
the underlying utility functions U and V' (and set of types and investments)
that, when coupled with the natural monotonicity requirements on the maps
from names to types, imply the requisite single crossing properties of the util-
ity frontiers.

4.3.1. A Single Crossing Condition for Positive Assortative Matching

In their study of matching models with imperfectly transferable utility,
Legros and Newman (2007b) have introduced the concept of generalized in-
creasing differences. For an economy with a finite number of agents, they
showed that generalized increasing differences ensures payoff equivalence of
equilibrium matchings to positive assortative matching, and that a strict ver-
sion of this property yields positive assortative equilibrium matchings. Gener-
alized increasing differences is a property on the functions describing the util-
ity frontiers. As noted by Legros and Newman (2007b), the property of (strict)
generalized increasing differences is equivalent to the (strict) single crossing
condition that appears in the following definition. The interpretation is that
higher buyers have a comparative advantage in matching with higher sellers,
and vice versa.

DEFINITION 10: Let B € B and S C S be closed sets. Then ¢ 55 and Y5 5
satisfy single crossing if, for all i > i and j > Js
(72) ¢B,§(£a 79 U]) = ¢B,S‘(£’ l, Uz) - (bB,S‘(;’ 77 U]) = (bé,g(;a l? Uz),
(73) Us.p(s b ) = Y55, bwn) = Y5051 un) = U5 0, L o).

If the inequalities in the consequents of (72)—(73) are strict, then single cross-
ing is said to be strict.

By Lemma 1(ii), the functions ¢ 3 and ;5 3 appearing in Definition 10 are
inverse. This implies that conditions (72)—(73) are not independent, but equiv-
alent to each other.
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The following key lemma asserts the payoff equivalence of fully matched ex
ante equilibria to positive assortative ex ante equilibria when the utility fron-
tiers ¢ and ¢ satisfy single crossing. Further, with strict single crossing the
equivalence is exact. For the finite case, this result is the counterpart to Propo-
sition 1 in Legros and Newman (2007b). Extending the result to infinite sets of
agents is straightforward when the single crossing is strict, but raises a number
of technical issues otherwise. We resolve these with the help of the continuity
result in Lemma 2. The proof is in Appendix C.

LEMMA 4: Let Assumptions 1-3 hold and assume that ¢ and  satisfy single
crossing. Then every fully matched ex ante equilibrium is payoff equivalent to a
positive assortative ex ante equilibrium. If ¢ and  satisfy strict single crossing,
then every fully matched ex ante equilibrium is positive assortative.

In general, the result in Lemma 4 has no obvious counterpart for ex post
equilibria, as there is no natural generalization of the single crossing condi-
tions to the conditional utility frontiers ¢ and . However, when preferences
are separable, we can use Lemma 3 to infer that a fully matched ex post equi-
librium is an ex ante equilibrium in an economy in which buyers are restricted
to choose investments in B and sellers are restricted to choose investments
in S. Provided that the functions ¢35 and 55 satisfy single crossing, we can
then apply Lemma 4 to obtain a positive assortment result. However, it is an
immediate consequence of the separability of preferences that ¢ 5 and 5 3

must fail the strict single crossing condition when B or S is a singleton, or
more generally, whenever two types of agent choose the same investment—if
s(j) =s(j’), then one buyer will be indifferent between sellers j and j’ only if
all buyers are indifferent. Consequently, the following result does not contain
a counterpart of the strict single crossing result from Lemma 4.

PROPOSITION 7: Let Assumptions 1-3 hold, let preferences be separable, and
assume that ¢ 5 and Y5 5 satisfy single crossing for all nonempty closed B C B

and S C S. Then every fully matched ex post equilibrium is payoff equivalent to a
positive assortative ex post equilibrium.

PROOF: Let (J,1,b,s,u,v) be a fully matched ex post equilibrium. By
Lemma 3, the allocation (J, I, b, s, u,v) is pairwise efficient on B and S and
thus a fully matched ex ante equilibrium in the corresponding economy in
which the sets of feasible investments are given by B and S. Because these sets
are compact, Assumptions 1-3 hold in the restricted economy. We can then ap-
ply Lemma 4 to infer the existence of a payoff equivalent, positive assortative
ex ante equilibrium (J', I’, b, §’, u, v) in the restricted economy.

It remains to show that (J', I’, b’, s’, u, v) is an ex post equilibrium in the orig-
inal economy. First, (J', I',b’, s’,u,v) is clearly feasible in the original econ-
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omy. Second, the allocations (J, I, b, s,u,v) and (J', I',b’, s’, u, v) have identi-
cal payoffs and the only new investments we have possibly added when moving
from b and s to b’ and s’ are contained in the closures of the sets B and S. Not-
ing that (J, I, b, s, u,v) is individually rational and satisfies the pairwise con-
strained efficiency conditions (52)—(53) in the original economy, we can then
conclude that (J', I’, b/, s’,u,v) also has these properties. From Corollary 3
and Proposition 2, this implies that (J', I’, b, s’, u, v) is an ex post equilibrium
in the original economy, giving the result. Q.E.D.

4.3.2. Sufficient Conditions for Single Crossing

The single crossing properties in Definition 10 are not written in terms of
the primitives of the problem. We have formulated Proposition 7 in terms of
this single crossing property for two reasons. First, Definition 10 succinctly and
intuitively identifies what is needed to ensure positive assortative matching,
namely a single crossing condition on utility frontiers. Second, as Legros and
Newman (2007b) discussed, it is difficult to find general sufficient conditions,
ensuring that single crossing is satisfied. In this section, we exploit separability
to identify conditions on utility functions guaranteeing single crossing of ¢ z;
and ¢ 55 for all closed subsets of B and S, ensuring the applicability of Propo-
sition 7. As is common in the literature (cf. Section 2.1.3), we restrict attention
to the case of unidimensional types and investments. In addition, we assume
that agents with higher names have higher types.

ASSUMPTION 4:
(i) The sets B, &, B, and S are subsets of R.
(ii) The functions B and o are increasing.

Recall that with separable preferences we have (cf. (54)—(55))

U(b,s, B, o, t)=U(f(b,s,1),b, B),
V(S, ba o, B7 t) = I}(g(sa b7 t)7 S, U)

We say that separable preferences satisfy outer single crossing if

(74)  Ux,b,8)2U(x2,b,8) = U(x),b,B)2U(xs,b,B),

(75)  VOn,50)2Viy,s0) = V(O,50) >V (s, 0)

hold whenever b > b, B > 8,5 > 5, and & > ¢. The interpretation of the outer
single crossing properties is obvious: given the returns associated with the dif-
ferent investments, higher types are (weakly) more inclined to choose higher
investments.
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Now define

p(b,s.y) =maxf(b,s,1) st g(s.b,0)zy,

A

o(s,b,x) = m%xg(s, b,t) st f(b,s, t)>x,
te

for all b, s, y, and x. The functions p and o are the utility frontiers for an
economy in which pairs of agents are described by their investments (b, s) and
the utility functions for a match between such agents with a transfer ¢ are given

by the return functions f and g.
We say that separable preferences satisfy inner single crossing if

(76)  p(b,5,y) > pb,s,y) = p(b,5, )= p(b,s,n),
(77)  o(s,b,x1) > 0(s,b,x3) = 0(5,b,x;)>0(5,b,x,)

hold whenever b > b and 5 > s. The interpretation of inner single crossing is
again obvious: agents which have chosen higher investments are more eager to
match with agents who have chosen high investments. Outer single crossing en-
sures that, in equilibrium, agents with higher types choose higher investments,
whereas inner single crossing implies positive assortment of investments. Be-
cause we have assumed that types are increasing in names, this suffices to imply
positive assortment in ex post equilibrium. Appendix D proves the following:

COROLLARY 5: Let Assumptions 1-4 hold. Suppose preferences are separa-
ble and satisfy outer and inner single crossing. Then every fully matched ex post
equilibrium is payoff equivalent to a fully matched allocation satisfying positive
assortative matching.

The proof proceeds by showing that outer and inner single crossing of pref-
erences imply the single crossing conditions appearing in Proposition 7, and
then applying this proposition.

Corollary 5 still leaves us with the task of determining when the outer and in-
ner single crossing conditions (74)—(77) hold. We focus on additively separable
preferences. In this case, outer single crossing is equivalent to the submodular-
ity of the cost functions f and g. It remains to identify conditions on the return
functions f and g ensuring the inner single crossing conditions (76)—(77) for
the case of imperfectly transferable utility. (With transferable utility, super-
modularity of the surplus function z is necessary and sufficient.) The following
result, proven in Appendix D, does so.

COROLLARY 6: Let Assumptions 1-4 hold, and let preferences be additively
separable with submodular cost functions § and g. Suppose further that there exist
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continuous functions F:R >R, G:R—> R, f:BxS—> R, g:5 x B— R, and
h:R — R such that

(78) f(b7s7 t)ZF(f(b7S)_t)7
(79)  &(s,b,1)=G(g(s,b) + h(1)),

where F and G are strictly increasing, f and g are supermodular and increasing in
their second argument, and h is increasing and concave. Then every fully matched
ex post equilibrium is payoff equivalent to a positive assortative ex post equilibrium.

The proof shows that under the stated assumptions, (78)—(79) imply inner
single crossing, at which point the result follows from Corollary 5.

The assumptions on the return functions in the statement of Corollary 6 are
patterned after the ones in the example studied by Iyigun and Walsh (2007) that
we have discussed in Section 2.1.3. We can think of investments as determining
an amount of a second period consumption good, given by f(b, s) + g(s, b),
and a baseline division of this consumption good across the two agents, given
by (f(b,s), g(s,b)). When A(¢) = ¢ is the identity function (as in Iyigun and
Walsh (2007)), the division of the consumption good can be changed without
cost; the case of concave £ allows for the possibility that there are increasing
costs in transferring the consumption good from one agent to the other.

5. EFFICIENT EX POST EQUILIBRIA

Sections 4.2.1 and 4.3.1 have identified conditions, namely condition (70)
and the conditions appearing in Lemma 4, under which all ex ante equilibria
are positive assortative. It is clear that under these conditions, being positive
assortative and exchange efficient is necessary for the Pareto (and pairwise)
efficiency of ex post equilibria. The following result shows that having the cor-
rect, positive assortative matching and being exchange efficient are then also
sufficient for Pareto efficiency of ex post equilibria.

PROPOSITION 8: Let Assumptions 1 and 3 hold, let condition (70) hold, and
assume ¢ and s satisfy single crossing. Then every positive assortative ex post
equilibrium that is exchange efficient is also Pareto efficient.

PROOF: Let (J,1,b,s,u,v) be positive assortative and exchange efficient.
We show that there exists no (J/,I’,b/,s’,u’,v') which is a finite Pareto im-
provement on (J, I, b, s, u, v).

Suppose, contrariwise, that (J', I', b’, s’, w/, V') is a finite Pareto improvement
on the allocation (J, I, b, s,u,v). As (J, I, b, s, u,v) is fully matched, the allo-
cation (J',I',b,s’,u/,v') has at most a finite number of unmatched agents,
with identical numbers of unmatched buyers and sellers. From condition (70),
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these agents can be matched with each other in a way that is still a finite im-
provement on (J, I, b, s, u, v). Hence, we may assume without loss of general-
ity that (J/, I', b/, s',w/, V') is fully matched. Let n be the cardinality of the set
(i1 J @) AJDY={j11'(j) =1(j)} (Where the equality of these sets is from the
fact that J (i) # i is equivalent to I (i) # i). Because (J, I, b, s, u, v) is exchange
efficient, we must have n > 0, ensuring that there is a lowest type (cf. Assump-
tion 3), i, such that J'(i) # i holds. Let j=JG) >iandi=1I()>i (where
the strict inequalities hold because i is also the lowest type for whom I'(j) # j
holds).

Because both allocations are fully matched, if one buyer has a different part-
ner, then there must be at least one other buyer with a different partner, and

hence we cannot have 7 = 1. Next, consider the case n = 2. Then we have j = i.
From exchange efficiency of (J, I, b, s, u, v), we have

u(i) = ¢(i, i, v(D),
u(i) = qb(f, i, V(f)).
From feasibility of (J', I’,b’, s’,uw’, V'), we have
u'(i) < o(i, 1, V(D)
w' (i) < (0,1, V(D).
Because v'(i) > v(i) and v'(i) > v(i) hold, the latter two inequalities imply
u'(i) < d(i, i, v(D)),
w (D) < (0,5, v(D)).

Because u/(i) > u(i) and w'(i) > u(i) hold, the exchange efficiency equalities
then yield

o(i, i, v(D)) < d(i, 1, v(D),
$(i, 1, v(D)) < (i, i, v(D).

These inequalities contradict the single crossing property unless they both
hold with equality. But equality in both of these inequalities can only hold if
w' (i) = u(i) and v'(i) = v(i) hold for i = i, i, contradicting the assumption that
(J', I',b',s',u', V) is a finite Pareto improvement on (J, I, b, s, u, v).

Now consider the case n > 2. We argue that if there exists such a finite Pareto
improvement, then there also exists a finite Pareto improvement with n’ < n.
Repeating this argument a finite number of times then yields the existence of
a finite Pareto improvement with n = 2, which we have already shown to be
impossible. We consider two cases, namely j =i and j # i.
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In the first case, we can apply the argument from the case n = 2 to con-
clude that w'(i) = u(i) and v'(i) = v(i) hold for i = i, i. Consequently, if
', I',b,s',w, V) is a finite Pareto improvement on (J, I, b, s, u, v), so will be
the allocation which coincides with (J', I’,b’, s’,w’, v') except that the buyers
and sellers with types i and i are assigned their original partners and exchanges
from the allocation (J, I, b, s, u, v). This new finite Pareto improvement has
cardinality ' =n — 2.

Suppose now that we have j # i. As in the case n = 2, exchange efficiency
gives us

u(i) = ¢ (i, i, v(1)),
u(i) = ¢ (i, i,v(0).
Feasibility gives us
v (i) < (i, V()
u'(i) < ¢(i, 1,V (D).
Using v'(j) > v(j) and v'(i) > v(i), this yields
u'(i) < ¢, j,v()),
u'(i) < (i, 1, (D).

Combining the first of these with the exchange efficiency condition and w'(i) >
u(i) yields

o (i, 1,v(D) < (i, J, V().
Because i > i and j > i, the single crossing property implies
o (i,,v(D) < b (7, j, V().
From previous inequalities, we have
¢ (i,,v(D) = $(i, i, v(D)),
so that we can infer
u(@d) < $(i, j, v())-

If this last inequality is strict, we can change (J', I', b, s', w/, V') by (i) “rematch-
ing” buyer and seller / with each other and having them make the exchange
from the original allocation and (ii) matching buyer i and seller j with each
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other and fixing an exchange for them such that both of them strictly improve
on their utility in the original allocation. Hence, we have found a finite Pareto
improvement with cardinality ' = n — 1. If, on the other hand, we have

u() = (i, j,v())),

then it must have been the case that w'(i) = u(i) and v'(j) = v(j) must have
held for i = i,i and j =i, j, so that performing the same rematching as de-
scribed above again generates a finite Pareto improvement with cardinality
n=n-1. O.E.D.

We can combine Proposition 8 with previous results to obtain conditions
under which all ex post equilibria are Pareto efficient. In particular, Proposi-
tion 5 provides sufficient conditions for ex post equilibria to be exchange ef-
ficient, Proposition 6 offers sufficient conditions for ex post equilibria to be
fully matched, and Proposition 7 gives sufficient conditions for positive assort-
ment of fully matched ex post equilibria. Together, the conditions appearing in
Propositions 5-7, which imply the conditions from Proposition 8, thus preclude
coordination failures in ex post equilibrium:

COROLLARY 7: Let the conditions from Propositions 5-7 hold. Then every ex
post equilibrium is Pareto efficient.

Noldeke and Samuelson (2014, Section 4.4) showed that the conditions in
Proposition 8 do not imply pairwise efficiency of positive assortative ex post
equilibria. Ex ante and ex post equilibria give rise to fundamentally differ-
ent incentive constraints. Buyer and seller investments are both up for grabs
when agents consider the alternative matchings that give rise to the pairwise
efficiency conditions, and this imposes tighter incentive constraints on equi-
librium payoffs than do the corresponding pairwise conditional efficiency con-
siderations. We thus cannot in general expect ex post equilibria to be pairwise
efficient, even if they are exchange efficient and the matching is unambiguously
“correct.”

6. DISCUSSION
6.1. Existence of Equilibrium

The existence of ex post equilibria is implied by the existence of ex ante
equilibria (Corollary 1), but we have not addressed the question of when the
latter exist. As we have noted, the pairwise efficiency conditions characterizing
ex ante equilibria are equivalent to the stability conditions from the literature
on matching and assignment models, which contains a number of existence
results. As long as the functions ¢ and ¢y emerging from our investment-choice
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problem satisfy the conditions from these results, we can apply them to infer
existence of ex ante equilibria in our model.

In the finite case, our Assumption 1 ensures that the continuity and mono-
tonicity assumptions of Alkan and Gale (1990, Theorem 1) are met (cf. our
Lemma 1). As long as the agents’ outside options are feasible within each
match (i.e., the full matching condition (70) holds), this suffices for the exis-
tence of an ex ante equilibrium in our model.

With an infinite number of agents, the case most commonly considered in
the literature is that in which types are continuously distributed and utility
is perfectly transferable. Conditions ensuring the existence of pairwise effi-
cient allocations are provided by Chiappori, McCann, and Nesheim (2010)
and Ekeland (2010b). These results allow for multidimensional types, but re-
quire restrictions on utility functions reminiscent of the supermodularity con-
ditions in Cole, Mailath, and Postlewaite (2001b), who proved existence for
their unidimensional model. Legros and Newman (2007a) studied matching
models with imperfectly transferable utility and a continuum of types under
assumptions akin to the ones we impose in Section 4.3. They identified con-
ditions (including the continuous differentiability of ¢ and ¢, which we could
obtain from an appropriate strengthening of Assumption 2) under which the
existence of equilibrium follows from the existence of the solution to a differ-
ential equation.

The literature has obtained more general existence results for models with
an infinite number of agents than the ones cited above, but these results use a
notion of feasibility different from the one we employ. Kaneko and Wooders
(1996) presented a general existence result for stable allocations in a model
with either perfectly or imperfectly transferable utility, but their notion of an
f-core considers any allocation to be feasible which lies in the closure of our
set of feasible allocations. To make their result applicable to our setting would
then require the identification of additional conditions ensuring feasibility of
a stable outcome. That this is a nontrivial task becomes clear when consider-
ing the case of perfectly transferable utility in which stable allocations coincide
with the solutions of an optimal transport problem (e.g., Gretsky, Ostroy, and
Zame (1992), Ekeland (2010b)). In particular, our existence problem is analo-
gous to the existence of solutions to the so-called Monge problem, which is a
notoriously difficult problem, whereas general existence results have been ob-
tained for the so-called Kantorovich problem which considers an enlarged set
of feasible allocations (Villani (2009)).%

BThe problem of finding a solution to the pairwise efficiency conditions in our model is a
Monge problem because we specify a matching as a map from names on one side of the market
into names on the other side. In the Kantorovich problem, the set of feasible matchings is identi-
fied with a joint probability measure over N x N, with the constraint that the induced marginal
distributions, over the sets of buyers and sellers, match the distributions of buyer and seller names.
The interpretation is that the probability attached to any subset of N x N is the probability that
agents from this subset are drawn to match. Again, see Villani (2009).
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6.2. Foundations for Competitive Matching

We have focused on investment decisions in competitive matching environ-
ments by building the assumption that agents behave competitively into our
equilibrium notions. In particular, all agents solve a maximization problem that
takes prices (whether in monetary or utility terms) as fixed at the candidate
equilibrium level. Cole, Mailath, and Postlewaite (2001b), Dizdar (2012), and
Peters and Siow (2002) adopted a similar approach.

Makowski (2004, pp. 19-20), building on work by Gretsky, Ostroy, and
Zame (1992, 1999), argued that one should be leery of simply assuming the
matching market to be competitive, even when dealing with a continuum of
agents, because by “accepting this point of view, one runs the danger of mak-
ing continuum analysis totally unconnected with the analysis of large but finite
economies....” Cole, Mailath, and Postlewaite (2001a) showed that alloca-
tions in a finite model satisfying a “double overlap” condition will satisfy a
constrained efficiency condition analogous to the constrained efficiency con-
dition that characterizes ex post equilibria (when preferences are separable)
in our model. It would be important to investigate similar conditions in our
setting. Bhaskar and Hopkins (2011, Appendix B) showed that their competi-
tive matching market, with a continuum of agents, is the limit of a sequence of
models with finite numbers of agents. Hadfield (1999) also offered such a lim-
iting analysis. However, Peters (2007, 2011) examined models whose equilibria
do not exhibit convergence to competitive equilibrium as the number of agents
grows arbitrarily large. Investigating the conditions under which matching mar-
kets with a large numbers of agents will be competitive remains an important
area for further work.

APPENDIX A: PROOF OF LEMMA 1 (SECTION 2.2.1)

We first confirm that ¢ (and similarly ) is well defined on N x N x R. Fix a
pair (i, j) € N x N. Then for any v € R, we can fix a pair (b, s) and then use As-
sumption 1(iii) to infer that there is some ¢ for which V' (s, b, o (j), B(i), t) > v.
This ensures that the maximization problem in (17) is feasible, and the exis-
tence of the maximum then follows from the continuity assumed in Assump-
tion 1(i), the fact that B and § are compact, and the fact that U and IV move in
opposite dictions in ¢ (Assumptions 1(ii)—(iii)).

(i) We provide the proof for the function ¢, with the case of ¢ being sim-
ilar. It is immediate from (17) that ¢ is weakly decreasing in v. To see that
it is strictly decreasing, fix (i, j) and let v > v. Then there exists an exchange

2Makowski (2004) defined the post-investment matching market as being perfectly competi-
tive if the equilibrium price vector is a continuous function of the measures describing the invest-
ments present in the ex post market, so that an investment deviation by a small group of agents
can have only a small effect on equilibrium prices. An individual member of the continuum is then
“viewed as the limit of a small group of individuals,” and may or may not have market power.
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(b,5,7) with ¢ (i, j,v) = U(b,5, B(i), o(j),?) and V (5, b, o()), B(i), ) > v.
By Assumption 1(i) and Assumption 1(iii), there exists ¢ > 0 such that
Vs, b, o(j), B(i), t— &) > v. Using Assumption 1(ii), we then have ¢ (i, j, v) >
Ub,s,B(i),a()),t—e)>U(b,s, B, o)), t)=¢(, ], v), giving the result.

(ii) We establish that u = ¢ (i, j, ¥ (j, i, u)). Fix (i, j) € N x N and u € R.
Then ¢(j, i, u) exists (as established in our opening remarks) and we can let
v:= (J, i, u). The definition of ¢ (cf. (18)) ensures that there exist b, s and ¢
such that

U(b’ s, B(l)’ 0'(]), t) > u,
V (s, b, o(j), B(i), 1) =v.

This implies that ¢ (i, j, v) > u. To complete the argument by showing that this
is in fact an equality, suppose ¢ (i, j, v) > u. Then there exist b, s and ¢ with

U(b,s, B(), o(j), t) > u,
V(s,b,o(j), B(i), ) > v.

From the strict Pareto property (cf. (1)—(2)), this in turn ensures that there
exists ¢ for which

U(b,s, B(i),o()j),t) > u,
V(S) b7 0-(.])7 ﬂ(l)a t/) >,

contradicting the definition v := ¢ (j, i, u).

(iif) As an implication of Lemma 1(ii), ¢ has full range as a function of v
and, from Lemma 1(i), is strictly decreasing in v. Hence, ¢ is continuous in v.
The same argument gives continuity of ¢ in u. Q.E.D.

APPENDIX B: PROOF OF LEMMA 2 (SECTION 4.2.2)

(i) We show that ¢ is continuous. Because S is compact, this implies the
continuity of ¢ (i, j, v) = maxg J)(l’, J, S, v). The argument for the continuity
of § and ¢ is analogous.

Define the function 7: 5§ x B x & x U x R — R by

V(S) b7 g, Ba T(SJ ba g, Ba v)) =v.
To confirm that the function 7 is well defined, we note that for each (s, b, o, B),

the function V" has R as its range (Assumption 1(iii)), ensuring that there exists
a value ¢ satisfying V' (s, b, o, B, t) = v, and the fact that V' is strictly increasing
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in ¢ ensures that this value is unique. Moreover, because V' is continuous and
strictly increasing in its last argument, 7 is continuous. Now define

(i, J, s, v) = max (s, b, o(i), B()), V),

(i, j,s,v) =min(s, b, o(i), B(j), ).

Berge’s maximum theorem (Ok (2007, p. 306)) ensures that 7 and 7 are con-
tinuous. Then we have

b .7 .7 b = ma U b’ b ] b i 7t
¢ J,5,v) (5B xlz(b ), 7o) (.5, B, (), 1)
st. V(s,b,o()), B(i),t) > v.
This maximization problem again satisfies the conditions of Berge’s maximum
theorem, giving the result.

(ii) Suppose (J, I, b, s, u,v) is a fully matched ex post equilibrium and u is
not continuous (the case of v is similar). Then there exist a value 6 > 0 and
sequences {i,}>°, and {i,}>, such that

u(i,) = &> u(,),
lin =0, < —.
n
The conditional exchange efficiency condition (29) for i, gives us

v -

u(i,) = ¢ (in J(in), s(J(0n)), V(I (Qn)))-

The fact that ¢ (i, j, s, v) is continuous in i on the compact set N (and hence
uniformly continuous) then enures that, for sufficiently large ,

u(i,) <u(i,) — 8= (Z)(;ny J(in), s(J (), v(J (i) — 8
b H 3 < 1)
< |:¢(£n, J(i,), S(J(l,,)),v(](ln))) + §i| -8,
with the outside two terms then giving
b 7 = = o
u(i,) < b(iy, (), 8 G)), VI @) = 5

contradicting the incentive constraint (27) for i,,. Q.E.D.
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APPENDIX C: APPENDIX FOR SECTION 4.3.1

Section C.1 provides simple necessary and sufficient conditions for (strict)
single crossing of ¢ 5 and 5 3, stated as Lemma 5. A similar result appears
in Legros and Newman (2007b). Building on Lemma 5, Section C.2 gives the
proof of Lemma 4.

C.1. Cross Matched Agents

Let Assumption 1 hold. The functions ¢z ; and 5 3 then satisfy the prop-
erties noted in Lemma 1 for any choice of nonempty closed sets B ¢ B and
S C S. As the following argument only uses these properties, we may then sim-
plify notation by considering the case ¢ = ¢p s and y = 5 .

Leti<ieN and j < je N. If there exist utility levels u, %, v, v € R such
that

(80)  u=¢WU,j,v)= bW j,v),
Bl  u=¢0,j,v) =0, J),0),

then we say that the pairs (i, j) and (i, j) are a cross match. We may apply the

inverse and monotonicity relationships in Lemma 1 to obtain that (i, j) and
(i, j) are a cross match if and only if there exist utility levels u, u, u, u € R such
that

(82)  v=4(, LW =Y, LW,
83)  v=y(,iw =¥, i 0.

To motivate the terminology of a cross match, observe, first, that the equali-
ties in the above conditions indicate that the utility levels are chosen in such a
way that they are consistent with the agents in the pairs (i, j) and (i, j) match-
ing with each other and choosing exchange efficient exchanges. Second, the
inequalities indicate that if the agents under consideration were matched in
this way, then no agent has an incentive to switch partners.

We say that a cross match can be uncrossed if the inequalities in (80)—(81)
(or, equivalently, the inequalities in (82)—(83)) can only hold as equalities, in-
dicating that the agents in the cross match can be reassigned to form matches
(i, j) and (i, j) without changing their payoffs. If a cross match cannot be un-
crossed, then the strict Pareto property (or, more formally, Lemma 1) implies
that the pairs (i, 7) and (i, J) are a strict cross match, meaning that uy, u,, vy, v,
can be chosen such that the inequalities in (80)—(83) hold strictly.
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LEMMA 5: Let Assumption 1 hold. Then the functions ¢ and s satisfy strict
single crossing if and only if there exist no cross matches. They satisfy single cross-
ing if and only if every cross match can be uncrossed.

PROOF: The result for strict single crossing is immediate from the defini-
tions.

Suppose there exists a cross match that cannot be uncrossed. Then, as noted
above, there exists a strict cross match (i, j) and (i, j) with

b, J,) > P, j,v),

d(i, j,v) > ¢, J, V),
contradicting the single crossing condition (72). Hence, if single crossing holds,
then every cross match can be uncrossed. To prove the reverse implication,

suppose the single crossing condition (72) fails. Then there exist i <i, j <
and v, v such that

b (i, ,0) = (U, j,v),
b (i, j, ) < ¢ (i, j,v).

Upon setting u = ¢ (i, 7, v)andu= ¢ (i, 1 , V), we then have a cross match that
cannot be uncrossed. Q.E.D.

C.2. Proof of Lemma 4

Let (J,1,b,s,u,v) be a fully matched ex ante equilibrium. Suppose J is
strictly increasing. Because J is a measure-preserving bijection, this implies
that J is the identity function, ensuring that (J, I, b, s, u, v) is positive assorta-
tive.

We may thus suppose that J is not strictly increasing or, equivalently, that
there exist i < i and Jj< j such that (i, j) e M and (i, J) € M hold. Using the
incentive constraints (21), every such pair of matches satisfies

(84)  u(i)=(i,/,v()) = b (i, j, v())),
(85)  w()=o(i,j,v())) = (i, j,v()),

so that (7, j) and (i, j) are a cross match. We refer to a cross match in which
(84)—(85) hold as an equilibrium cross match.

From Lemma 5, the existence of an equilibrium cross match contradicts strict
single crossing. Hence, if strict single crossing holds, (J, I, b, s, u, v) is positive
assortative and the proof of the strict single crossing result in Lemma 4 is fin-
ished.
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Suppose N is finite. Then the conclusion of Lemma 4 is immediate from the
ability to uncross any given cross match asserted in Lemma 5: We can start with
the lowest buyer—seller pair and proceed upward until we find a pair that is not
matched to each other. This pair must then be part of an equilibrium cross
match, which we can uncross. We can repeat this exercise, doing so at most
finitely many times, until arriving at a payoff-equivalent ex ante equilibrium
featuring the identity matching.

To finish the proof, it remains to consider the case in which N is an interval
and show that (J, I, b, s, u, v) is payoff equivalent to a positive assortative allo-
cation when single crossing holds. Without loss of generality we let N = [0, 1].
The incentive constraints (21)—(22) imply

u(i) > ¢ (i, i,v(1)),
v(j) = ¥ (j, j, u(i),

for all i and j. If all these inequalities hold as equalities, then it is clear that the
equilibrium is payoff equivalent to an equilibrium satisfying positive assortative
matching. We accordingly suppose there exists i € [0, 1] such that buyer i and
seller i cannot achieve their equilibrium payoffs when matched to each other,
that is,

86) (i) > ¢ (i, i, v(i)).

We show that this leads to a contradiction.

The inequality in (86) implies J (i) # i and I (i) # i. If i were part of an equi-
librium cross match, then Lemma 5 implies that this cross match could be un-
crossed, contradicting (86). Hence, we must either have J(i) < i < I(i) or the
reverse chain of inequalities. We focus on the first of these cases throughout
the following (with the case I(i) < i < J(i) following from an analogous argu-
ment, swapping the roles of buyers and sellers throughout the following). This
gives us the configuration illustrated in Figure 2.

If J(i") > i holds for some i’ < i, then, because i > J(i) holds, we have an
equilibrium cross match with pairs (i, j) = (7', J(i')) and (i, j) = (i, J(i)). We
can uncross to match i with J(i’) while preserving payoffs. This gives us an
equilibrium cross match with pairs (i, j) = (i, J(i')) and (i, j) = (I (i), i) which
we can uncross to obtain a contradiction to (86). Hence, we have that i’ < i
implies J(i") < i.

As the equilibrium matching is measure preserving, J(i') < i for all i’ < i
implies that 7(j) < i holds for almost all sellers j < i. We can thus choose a
sequence {j,}>2, of sellers with j, > J(i) and j, /i and i, = I(j,) < i for all n.
As (i, j,) are matched, the equilibrium feasibility conditions (23) and the in-
centive constraints (21)—(22) imply

u(in) = ¢ (ins ju, v(jn)) = ¢ (in, J (D), v(J ())).
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FIGURE 2.—Illustration for the proof of Lemma 4 when N = [0, 1]. We hypothesize the exis-
tence of a buyer i matched with seller J (i) < 7, and suppose that buyer i and seller i cannot achieve
their equilibrium payoffs when matched with one another. We first invoke the cross match argu-
ment of Section C.1 to conclude that every buyer i < i is matched with a seller J (i) < i, and
hence feasibility requires that (almost) all sellers j < i must be matched with buyers less than i.
This allows us to consider a sequence {j,} of sellers whose types converge to i. Each such seller
must be matched with a buyer less than i. We use these converging sequences of matched pairs
and the continuity of ¢ to derive a contradiction.

Because i > i,, and j, > J(i) holds, the single crossing property (72) im-
plies that the above weak inequality also holds for i. We can then use u(i) =
& (i, J(i),v(J(i))) toobtain u(i) < ¢ (i, j,, v(j,)), and the equilibrium incentive
constraints then imply

u(i) = ¢ (i, ju, v(jn))

for all n. The continuity of ¢ and v, established in Lemma 2, along with j, 7 i,
then ensures

1im (i, s Vi) = b (is i v(D)) = ().
The second of these equalities contradicts (86), finishing the proof. ~ Q.E.D.

APPENDIX D: APPENDIX FOR SECTION 4.3.2

Let Assumption 1 hold and let preferences be separable. Then the functions
p and o appearing in (76)—(77) satisfy the counterparts to the properties es-
tablished for ¢ and ¢ in Lemma 1.

We define a cross match in investments in analogy to the cross matches intro-

duced in éppendix C.1, namely as a pair of irlvestment choices (b, 5) and (b, s)
with b < b and s <5 such that there exist f, f, g, g € R satisfying

@87  f=pb,5,8) =pb,s,8),
(88)  f=p(b,s,8) > p(b,5,3).

As in Appendix C.1, we say that a cross match in investments can be uncrossed
if the inequalities in (87)—(88) can only hold as equalities and observe that
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a cross match in investments cannot be uncrossed if and only if it is strict,
that is, there exist f, f, g, and f such that both inequalities in (87)—(88) hold

strictly. As the proof of Lemma 5 relied solely on Lemma 1, the following is
then immediate:

LEMMA 6: Let Assumption 1 hold and let preferences be separable. Then pref-
erences satisfy inner single crossing if and only if every cross match in investments
can be uncrossed.

D.1. Proof of Corollary 5

We fix a pair of nonempty closed sets B C B and S C § and, to simplify no-
tation, let ¢ = ¢ 5 and ¢ = 3 ;. From Lemma 5 in Appendix C.1, it suffices
to show that, for these utility frontiers, every cross match can be uncrossed or,
equivalently, that the existence of a strict cross match leads to a contradiction.

Suppose that the pairs (i, j) and (i, /) with i < i and j < j are a strict cross
match. That is, there exist u, u, v, v € R such that

(89) ﬂ=¢(17?:5)>¢(£,l,2),
(90)  w=¢W,j,v) > ¢, ), ).

Let B = B(i), B =B(i), ¢ = o(j), and T = o'(j). From Assumption 4(ii), we

have B< B and o < . Consider any pair of exchanges (b, 5, t;) and (b, s, 1)
such that

ZZU(f(QyE’ tl)ab’ﬁ)a ﬁ:U(f(Baga tZ)agaE)a
:ﬁ(g(gagy t2)’§>£), ﬁzﬁ(g(gaé, tl)’§7ﬁ)

hold (the existence of such exchanges is assured by the definition of ¢). Let
f=Fb,5,6), F=f(b,5 1), g = §(s, b, 1), and g = §(, b, 1). By definition
of p, we have

f=p,53 and f=p(b,s,g).
Using separability of the sellers’ preferences, we have the inequalities
O ¢, j,v)= U(p(g,g,g),g, ),
92) ¢, ),0) =
(93) ¢@Lmzﬁp
©4) G ,0=U

=5 2
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Combining the strict inequalities in (89)—(90) with (91)—(92), we obtain

U(f,b,B) > U(f,b, B),
U(f,b,B) > U(f,b, B),

so that the outer single crossing property (74) implies b < b. Because U is
strictly increasing in its first argument, b = b is inconsistent with the above two

inequalities holding simultaneously. We thus have b < b. We can repeat this

argument using the equivalent restatement of (89)-(90) for ¢ and the outer

single crossing condition (75) for the seller to obtain the inequality s < 5.
Combining the strict inequalities in (89)—(90) with (93)-(94), we obtain

U(p(b,5.8).b,B) > U(p(b. s, 8), b, B),
U(p(b,s,8),b, B) > U(p(b,5,2), b, B).

Because U is strictly increasing in its first argument, this implies
p(b,s,8) > p(b,s,8),
p(b,s,8) > p(b,5,3).

Hence, (s, b) and (b, s) are a strict cross match in investments. From Lemma 6,
this contradicts the inner single crossing condition (76). Q.E.D.

D.2. Proof of Corollary 6

It suffices to show that the inner single crossing condition (77) holds. As
single crossing is an ordinal property and F and G are strictly increasing, we
may assume that F and G are the identity functions. We then have

o(s,b,x)=g(s,b)+ h(f(b,s) — x).
Lets <5 b<b,and x;,x, €R satisfy
(95)  g(s,b) + h(f(b,s) — x1) = g(s,b) + h(f (b, 5) — x2).
We show that this implies

(96) 8(5,b) + h(f(b,5) — x1) = (5, b) + h(f (b, 5) — x2),

which (because of continuity and monotonicity in x) suffices for o as given
above to satisfy the inner single crossing condition (77).



894 G. NOLDEKE AND L. SAMUELSON

From (95), we have

where the inequality holds because g is increasing in b. As £ is increasing, this
implies

f(b,s)—x,> f(b,s) — xi.

Because f is supermodular, we have

[£(b,5) —x2] = [f(D,s) —x:] = [f(B,5) — x2] = [f(B,5) — x1],

and because f is increasing in s, we have

f(b,5) —x1 > f(b,s) — xi,
f(é?g)_XZZf(b,g)_x%

From the concavity of 4, these inequalities imply

h(f(b,s) — x5) — h(f(D,s) — x1)
> h(f(b,5) — x2) — h(f(b,5) — x1).

Using supermodularity of g and (97), this suffices to give (96), finishing the
proof. Q.E.D.
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