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Abstract. We present an informal review of some concepts and results from

the theory of ordinary differential equations in the non-smooth context, fol-

lowing the approach based on quantitative a priori estimates introduced in [9]
and [7].

1. Introduction. In this note we give an informal overview on some results from [9]
(collaboration with Camillo De Lellis) and [7] (collaboration with François Bouchut)
regarding an approach to non-smooth ordinary differential equations based on quan-
titative a priori estimates.

Given the velocity field

b : [0, T ]× R
d → R

d (1)

we consider the ordinary differential equation{
Ẋ(t, x) = b(t,X(t, x))

X(0, x) = x ,
(2)

where we denote with the “dot” the differentiation with respect to the time variable
t. The solution X : [0, T ] × R

d → R
d is called the flow of the velocity field b. We

are thus looking for characteristic (or integral) curves of the given velocity field b,
i.e., curves with the property that at each point the tangent vector coincides with
the value of the given vector field at such point.

The classical Cauchy-Lipschitz theory deals with the case in which the velocity
field b is regular enough (Lipschitz with respect to the space variable uniformly
with respect to time, see (3)). After a brief review of this smooth theory, in this
note we motivate the extension to non-smooth contexts, and we consider first of all
the case of W 1,p (with p > 1) velocity fields, then the case of W 1,1 velocity fields,
and and finally the case of velocity fields whose derivative can be represented as a
singular integral operator of an L1 function. This stratified presentation has the
advantage to present the main conceptual and technical differences between these
different cases.

The presentation will be very informal and only the key points of the proofs will
be indicated, with the aim to catch the interest of the reader for the general context
and to motivate him or her to further readings on this topic. Emphasis will be put
on the ideas, rather than on the details.
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For this reason, the only references given will be those strictly related to our line
of presentation. For a wider presentation of the subject and a detailed bibliography
the reader is referred for instance to [5] or [2]. Moreover, the “partial differential
equations side” of this problem (well posedness of the transport and the continuity
equations in the non-smooth context) will not be addressed here. The interested
reader is referred to the two most important papers in this area, namely [10] for the
Sobolev case and [1] for the bounded variation case, and again to the bibliographical
references in [5] or [2].

2. The Lipschitz case. As a warm up, let us start by considering the case of a
vector field which is Lipschitz with respect to the space variable uniformly with
respect to the time. This means that we assume the existence of a constant L such
that

|b(t, x)− b(t, y)| ≤ L|x− y| (3)

for every x, y ∈ R
d and every t ∈ [0, T ]. Under this assumption, it is known from

the classical Cauchy-Lipschitz theorem that a unique solution to (2) exists for every
initial point x ∈ R

d, and moreover the flow X(t, x) inherits the Lipschitz regularity
with respect to x.

Uniqueness can be easily proven with the following argument. Consider two
(possibly distinct) flows X1 and X2. Then for every given x ∈ R

d one may compute

d

dt
|X1(t, x)−X2(t, x)| ≤|b(t,X1(t, x))− b(t,X2(t, x))|

≤L|X1(t, x)−X2(t, x)| ,
where in the last inequality we have used (3). Using Gronwall Lemma (and recalling
that X1(0, x) = X2(0, x)) we deduce immediately that X1(t, x) = X2(t, x) for every
t ∈ [0, T ], i.e., the desired uniqueness.

The proof of the Lipschitz regularity of the flow X(t, x) with respect to x goes
along the same line. Fix two points x, y ∈ R

d and compute

d

dt
|X(t, x)−X(t, y)| ≤|b(t,X(t, x))− b(t,X(t, y))|

≤L|X(t, x)−X(t, y)| .
Applying again Gronwall Lemma and observing that |X(0, x) −X(0, y)| = |x − y|
we obtain

|X(t, x)−X(t, y)| ≤ eLt|x− y| , (4)

i.e., X(t, x) is Lipschitz with respect to x, and the Lipschitz constant depends
exponentially on the Lipschitz constant of the given velocity field b.

3. Towards non-Lipschitz velocity fields: The regular Lagrangian flow.
After some reflections on the very simple theory presented in the previous section,
a natural question arises: how much of such a theory survives when the velocity
field b is less regular than Lipschitz?

We immediately realize that, if we stick to “classical” statements (for instance,
if we look for uniqueness of the flow for every initial point), then the answer is
negative. A possible example is very well known: consider in R the (Hölder but not

Lipschitz) vector field b(x) =
√|x|. Then it is readily checked that X1(t, 0) ≡ 0 and

X2(t, 0) =
1
4 t

2 are two distinct solutions of (2), with the same value (x = 0) at the
initial time. Indeed, it is easy to construct an infinite family of distinct solutions.
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One may be discouraged by having a “counterexample” in a still fairly simple
situation (an Hölder time-independent vector field in one dimension!). However,
non-regular transport phenomena do appear in an ubiquitous fashion in physical
models: fluid dynamics, conservation laws, kinetic equations. . . The reader is re-
ferred again to [5] and to [2] for a list of references.

The hope is to find some “milder” issues (some “weakened” version of the point-
wise uniqueness for (2), i.e., uniqueness of the flow for every point x ∈ R

d, or of
the regularity of the flow with respect to the initial position), together with some
“reasonable” context in which such new question may allow a positive answer. The
two elements of the new theory will be the following:

(1) The velocity field b may be non-Lipschitz, but it must have “a first-order

derivative” in some suitable weak sense. The “bad” velocity field b(x) =
√|x|

is merely 1/2-Hölder, hence it possesses only “half a derivative” at the origin.
(2) We content ourselves with showing uniqueness of (almost) measure preserving

flow solutions of (2). That is, we drop the pointwise framework, and we just
consider as “admissible” solutions to (2) those flowsX(t, x) for which, at every
time t ∈ [0, T ], the map X(t, ·) : Rd → R

d does not squeeze or expand sets

in a crazy fashion. The non-unique trajectories produced by b(x) =
√|x|

do indeed “compress” long segments into one point, the origin of R. (The
non-uniqueness is dynamically due to the stopping of the trajectories at the
origin). The reader will notice that the origin is precisely the point at which
the regularity of b is degenerating.

We now specify what we mean with “measure preserving flow solution”:

Definition 3.1 (Regular Lagrangian flow). We say that a map X : [0, T ]×R
d → R

d

is a regular Lagrangian flow associated to the vector field b if

(i) For Ld-a.e. x ∈ R
d the map t �→ X(t, x) is a distributional solution to the

ordinary differential equation γ̇(t) = b(t, γ(t)), with γ(0) = x;
(ii) There exists some constant M > 0 such that the compressibility condition

X(t, ·)#Ld ≤MLd for every t ∈ [0, T ] (5)

holds.

The condition in (5) involves the push-forward of the d-dimensional Lebesgue
measure Ld and can be equivalently reformulated as follows: there exists some
constant M > 0 such that for every t ∈ [0, T ] and every ϕ ∈ Cc(R

d) with ϕ ≥ 0
there holds ∫

Rd

ϕ(X(t, x)) dx ≤M

∫
Rd

ϕ(x) dx .

This means that we require a priori, i.e., as a sort of “selection condition” for
our notion of solution, a quantitative control on how much the flow compresses
d-dimensional sets. For simplicity, in the following presentation, we shall restrict
our attention to those regular Lagrangian flow which exactly preserve the Lebesgue
measure (in the smooth context, this corresponds to the condition of b having
zero divergence, thanks to Liouville’s Theorem). We can formulate it by saying
that “changes of variable along the flow are performed for free”, that is, for every
ϕ ∈ Cc(R

d) we can compute∫
Rd

ϕ(X(t, x)) dx =

∫
Rd

ϕ(x) dx . (6)
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4. A stable formal estimate, and a new integral quantity. In order to make
our computations typographically more clear, in the rest of this note we shall only
consider time-independent vector fields. The passage to the time-dependent case
does not give rise to any complication in the argument.

The natural attempt is to rephrase the strategy of §2 in a way that will be
robust when lowering the regularity of the velocity field from Lipschitz to “weakly
differentiable”. Denoting by ∇ the gradient with respect to the x variable, we can
formally compute as follows:

d

dt
log |∇X| ≤ 1

|∇X|
∣∣∣∣ ddt∇X

∣∣∣∣
=

1

|∇X|
∣∣∇(

b(X)
)∣∣ = |∇b|(X) .

(7)

Notice that this computation is effective in the case of a smooth velocity field
b possessing a smooth flow X. Anyhow, in the Lipschitz context, it allows us
to recover the estimate for the regularity of the flow with respect to the initial
position already established in (4). Indeed, if b satisfies (3), then |∇b| ≤ L, and so
by integrating (7) we deduce

log |∇X| ≤ Lt+ log |∇Id| = Lt ,

from which (4).
We apply a similar strategy in order to show uniqueness. For this we fix a small

parameter δ > 0. If X1 and X2 are flows of b, then we compute

d

dt
log

(
1 +

|X1 −X2|
δ

)
≤ δ

δ + |X1 −X2|
|b(X1)− b(X2)|

δ
≤ L ,

where L is the Lipschitz constant of b. Hence

log

(
1 +

|X1 −X2|
δ

)
≤ Lt+ log

(
1 +

|X1(0, ·)−X2(0, ·)|
δ

)
= Lt ,

and finally
|X1 −X2|

δ
≤ eLt .

Since δ > 0 can be chosen arbitrarily small, we deduce that X1 = X2.
The remarkable advantage of this argument is that it allows an integral version,

which can be used for non-Lipschitz vector fields. In the rest of this note, we focus
on the uniqueness issue for the regular Lagrangian flow associated to a given velocity
field, as defined in Definition 3.1. Given a velocity field b, two (possibly distinct)
associated regular Lagrangian flows X1 and X2, and a small parameter δ > 0 we
consider

Φδ(t) =

∫
log

(
1 +

|X1(t, x)−X2(t, x)|
δ

)
dx . (8)

Notice that suitable truncations are necessary in order to make this integral con-
vergent, but for the sake of clarity in this exposition we will ignore this technical
issue.

This integral functional has been first considered in a joint paper with De Lellis
[9], where we were inspired by some similar computations due to Ambrosio, Lecum-
berry and Maniglia [3]. Although we are now focussing our presentation on the
uniqueness issue, we remark that similar integral quantities are useful to prove reg-
ularity, compactness and quantitative stability rates for regular Lagrangian flows.
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5. A condition for uniqueness. In the unlucky situation of non-uniqueness of
the regular Lagrangian flow, that is, when there are two distinct regular Lagrangian
flows X1 and X2, we easily discover that there is a set A ⊂ R

d of measure at least
α > 0 such that |X1(t, x)−X2(t, x)| ≥ γ > 0 for some t ∈ [0, T ] and for all x ∈ A.
Hence we can estimate the integral functional Φδ(t) from below as follows:

Φδ(t) ≥
∫
A

log
(
1 +

γ

δ

)
dx ≥ α log

(
1 +

γ

δ

)
.

We then discover that a condition guaranteeing uniqueness is:

Φδ

log
(
1
δ

) → 0 as δ ↓ 0 . (9)

This means that a good strategy to prove uniqueness is to derive upper bounds
for the integral functional Φδ(t). The natural computation starts with a time dif-
ferentiation, aimed at making the difference quotients of the velocity field b appear.
We calculate

Φ′
δ(t) ≤

∫
∂t|X1 −X2|
δ + |X1 −X2| dx ≤

∫ |b(X1)− b(X2)|
δ + |X1 −X2| dx

≤
∫

min

{
2‖b‖L∞

δ
;
|b(X1)− b(X2)|
|X1 −X2|

}
dx .

(10)

For a Lipschitz velocity field, it is sufficient to estimate

|b(X1)− b(X2)|
|X1 −X2| ≤ L

in (10) to obtain that Φ′
δ(t) (and thus Φδ(t)) is bounded by a constant. We recover

again uniqueness in the Lipschitz case.
But a milder condition to obtain boundedness of Φδ(t) would be the difference-

quotients estimate
|b(x)− b(y)|
|x− y| ≤ ψ(x) + ψ(y) (11)

for some function ψ ∈ L1
loc. Indeed, getting back to (10), we estimate

Φ′
δ(t) ≤

∫
(ψ(X1) + ψ(X2)) dx = 2

∫
ψ(x) dx ,

where in the last equality we change variables as in (6), and we conclude again
that Φδ(t) is bounded by a constant. Notice that the first term in the minimum in
(10) has been simply neglected. A smarter computation allowing for its use will be
explained in §7.

6. Maximal functions, strong and weak estimates, and uniqueness for
W 1,p velocity fields with p > 1. In the paper [9] with De Lellis we realized that
condition (11) is satisfied (and so uniqueness holds) in the case of velocity fields
with Sobolev W 1,p regularity, for any p > 1.

Indeed, in such case, the estimate for the difference quotients

|b(x)− b(y)|
|x− y| ≤ Cp,d

(
MDb(x) +MDb(y)

)
(12)

holds, where the maximal function of a locally summable function f is defined by

Mf(x) = sup
r>0

1

Ld(B(x, r))

∫
B(x,r)

|f(y)| dy . (13)
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It is classical (see for instance [11]) that the maximal function enjoys the strong
estimate

‖Mf‖Lp ≤ Cd,p‖f‖Lp (14)

for any 1 < p ≤ ∞, but unfortunately this fails for p = 1. In that case, only the
weak estimate

Ld
({
x : |Mf(x)| > λ

})
≤ Cd,1

‖f‖L1

λ
for any λ > 0 (15)

is available.
We see from (12) that (11) holds if we take

ψ =MDb , (16)

and using the strong estimate (14) we deduce from the assumption Db ∈ Lp that
ψ ∈ Lp, and uniqueness follows. The failure of the strong estimate (14) for p = 1
is precisely the reason why the uniqueness theorem in [9] was limited to the case
p > 1. The cases of W 1,1 or even of BV velocity fields were missing.

7. Uniqueness for W 1,1 velocity fields. Together with Bouchut, we discovered
in [7] how to extend this argument to the case of W 1,1 velocity fields. The proof
uses some more elaborate tools from harmonic analysis (as a general reference the
interested reader can consult [11]).

Introducing the quantity

|||f |||M1 = sup
{
λLd

({|f | > λ
})

: λ > 0
}
, (17)

we see that (15) can be rewritten as

|||Mf |||M1 ≤ Cd,1‖f‖L1 . (18)

The space M1 consisting of all functions for which the quantity in (17) is finite is
called weak Lebesgue space (or alternatively Lorentz space or Marcinkiewicz space).
It is endowed with the natural pseudo-norm |||f |||M1 , which is however not a norm,
lacking the subadditivity property. Notice that M1 is strictly bigger than L1.

Going back to (16), and observing that we are now concerned with the case
when Db ∈ L1, we discover that condition (11) now is satisfied for some ψ ∈ M1.
In general ψ does not belong to L1

loc: we need some additional considerations in
order to conclude uniqueness.

Let us go back to (10). Using (11) and changing variable using (6) we obtain

Φ′
δ(t) ≤

∫
Rd

min

{
2‖b‖L∞

δ
; 2ψ

}
dx . (19)

None of the two terms inside the minimum suffices by itself to deduce (9). The
first term is L∞, but with a norm which blows up as δ ↓ 0, while the second term
is merely M1. However, an interpolation inequality between M1 and L∞ is at our
disposal (see [7] for a proof):

‖f‖L1 ≤ |||f |||M1

[
1 + log

(
C
‖f‖L∞

|||f |||M1

)]
.

We apply this interpolation inequality to

f = min

{
2‖b‖L∞

δ
; 2ψ

}
,
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and we observe that

‖f‖L∞ =
2‖b‖L∞

δ
≤ C

δ
and |||f |||M1 = 2|||ψ|||M1 = 2|||MDb|||M1 ≤ C‖Db‖L1 ,

by (18). We go back to (19) and employing these estimates we deduce

Φ′
δ(t) ≤ C‖Db‖L1

[
1 + log

(
C

δ‖Db‖L1

)]
. (20)

Remember our criterion for uniqueness (9): the bound (20) is exactly the critical
growth of the functional Φδ(t) which is relevant for the uniqueness! In fact, the
ratio that criterion (9) requires to be infinitesimal for δ ↓ 0, is now merely bounded.
Still, we cannot conclude uniqueness with this information only.

It is at this point that we exploit the information that Db is an L1 function, and
not just a Radon measure. (Notice that all arguments carried out until now would
work verbatim if we substitute ‖ · ‖L1 with the total variation norm ‖ · ‖M, i.e.,
for b being a BV velocity field). Up to a remainder in L2, we can assume that Db
not only belongs to L1, but also that it is small in L1. (The existence of such a
decomposition is due to the equi-integrability of L1 functions). This smallness allows
to fullfill the criterion (9), while the residual part of the functional originated by
the L2 remainder can be treated with the arguments of §6. This allows to conclude
uniqueness for W 1,1 velocity fields, but it is still far from giving any result for BV
velocity fields: a measure does not allow a decomposition in a small L1 part plus
an L2 remainder!

8. Vector fields whose derivative is a singular integral of an L1 function.
The strategy described in the previous section extends in a (technical but) natural
way to the case in which the derivatives of the velocity field b can be expressed as

∂jb
i =

∑
k

Sijkgijk ,

where gijk ∈ L1(Rd) and every Sijk is a singular integral operator. In more details,
we assume that any of these operators can be expressed as a convolution

Sijkgijk = Kijk ∗ gijk ,
where the singular kernel Kijk is smooth away of the origin of Rd, is homogeneous
of degree −d and satisfies the usual cancellation property.

Observe that this class of vector fields includes W 1,1. However, it does neither
include BV , nor it is included in BV . The relevance of this class of vector fields is
due to their appearance in some physical problems: for instance, in two dimensional
incompressible fluid dynamics, this is the regularity enjoyed by fluid velocities with
L1 vorticity.

It is well known (see again [11]) that singular integrals enjoy the same estimates
as maximal functions: namely, strong estimates for 1 < p <∞

‖Sf‖Lp ≤ Cd,p‖f‖Lp

(the case p =∞ has now to be excluded), and the weak estimates for the case p = 1

|||Sf |||M1 ≤ Cd,1‖f‖L1 .

Also in this case, no strong estimate for p = 1 is available.
One basic consequence of the cancellation property assumed for the singular

kernels under consideration is the weak estimate for the composition of two singular
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integral operators. Namely, if we consider a composition S = S2 ◦S1, the associated
singular kernel is given by the convolution K = K2 ∗K1, and it is again a singular
kernel. Thus we still have

|||Sf |||M1 = |||S2 ◦ S1f |||M1 ≤ C‖f‖L1 . (21)

Note carefully that estimate (21) cannot be obtained by composing the two analogue
estimates (from L1 to M1) which hold for the two singular integral operators S1

and S2 separately. At a formal level, (21) requires cancellations in the convolutions.

9. Back to the proof of the uniqueness. We describe now how to modify the
strategy described in §7 in order to prove uniqueness of the regular Lagrangian
flow associated to vector fields with the regularity described in §8. This result is
contained in [7].

Going back to (16), we realise that in the present context we have

ψ =MSg ,

for g ∈ L1. We thus need a bound of the type

|||ψ|||M1 ≤ C‖g‖L1 , (22)

in order to conclude the proof along the lines of §7. In general, however, estimate
(22) does not hold if the classical maximal function (13) is considered. Inspired by
the cancellation phenomenon which allows (21), we can prove that (22) holds if we
consider instead a smooth version of the maximal function, defined as

Mρf(x) = sup
r>0

∣∣∣∣
∫
Rd

ρr(x− y)f(y) dy
∣∣∣∣ ,

where ρ is a given smooth convolution kernel. This smooth version of the maximal
function is well known in the context of Hardy spaces, under the name of grand
maximal function. It is possible to prove that

|||ψ|||M1 = |||MρSg|||M1 ≤ C‖g‖L1 ,

and this estimate is sufficient to conclude using the strategy in §7, yielding unique-
ness of the regular Lagrangian flow for the class of vector fields considered in §8.
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