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ABSTRACT

Small interfering RNA (siRNA)-mediated knock-down
is a widely used experimental approach to character-
izing gene function. Although siRNAs are designed
to guide the cleavage of perfectly complementary
mRNA targets, acting similarly to microRNAs (miR-
NAs), siRNAs down-regulate the expression of hun-
dreds of genes to which they have only partial com-
plementarity. Prediction of these siRNA ‘off-targets’
remains difficult, due to the incomplete understand-
ing of siRNA/miRNA–target interactions. Combining
a biophysical model of miRNA–target interaction with
structure and sequence features of putative target
sites we developed a suite of algorithms, MIRZA-
G, for the prediction of miRNA targets and siRNA
off-targets on a genome-wide scale. The MIRZA-G
variant that uses evolutionary conservation performs
better than currently available methods in predict-
ing canonical miRNA target sites and in addition,
it predicts non-canonical miRNA target sites with
similarly high accuracy. Furthermore, MIRZA-G vari-
ants predict siRNA off-target sites with an accuracy
unmatched by currently available programs. Thus,
MIRZA-G may prove instrumental in the analysis of
data resulting from large-scale siRNA screens.

INTRODUCTION

MicroRNAs (miRNAs) are ∼22 nucleotides long non-
coding RNAs that guide Argonaute proteins to RNA tar-
gets. By silencing target expression (1), miRNAs take part
in the regulation of many processes including cell differen-
tiation and development (2). Aberrant miRNA expression
has been implicated in many diseases, notably in carcino-
genesis (3). The miRNA’s 5′ end, particularly nucleotides
2–7 which are known as the ‘seed’ region (4,5), is thought
to nucleate the miRNA–target interaction. Much experi-

mental and computational work has established that per-
fect complementarity between the miRNA seed and the tar-
get site is important for the interaction (see (6) for a recent
review). Target sites that satisfy this constraint are known
as ‘canonical’ while those that do not as ‘non-canonical’.
High-throughput experimental studies point to a relatively
high preponderance of non-canonical sites (7–10).

Exploiting the miRNA-dependent gene silencing path-
way, exogenous small interfering RNAs (siRNAs) have been
used as a tool to rapidly silence gene expression (11). Al-
though an siRNA is designed to be perfectly complemen-
tary to its mRNA target, it rapidly became apparent that the
transfection of the siRNA affects the expression of many
other RNAs that are complementary to the siRNA seed re-
gion (12,13). These siRNA seed-dependent, ‘off-target’ in-
teractions are frequently responsible for the observed phe-
notypes, and hamper the use of siRNAs for gene targeting.
Nonetheless, large siRNA screens continue to be used to
elucidate gene function, and therefore accurate prediction
of siRNA off-targets has great practical importance.

One step in this direction has been made by approaches
that uncover siRNA ‘off-target’ signatures from mRNA ex-
pression data (14,15). Prediction of siRNA off-targets has
also been attempted (16) although stand-alone programs
are not generally available. However, because siRNA off-
target effects occur through the miRNA pathway, tools for
miRNA target site prediction (17,18) can also be used to
predict siRNA off-targets. An important limitation for this
approach is that the strongest indicator of functionality of
a putative miRNA target site, namely its evolutionary con-
servation (5), is unlikely to be relevant for the off-target sites
of exogenous siRNAs. Yet it is precisely this feature that is
exploited by the most accurate miRNA target prediction
methods (19–21). Thus, the accuracy of siRNA off-target
prediction is probably lower than the accuracy of miRNA
target prediction, although such comparisons have not been
carried out systematically. Interestingly, a tendency of active
siRNA off-target sites to reside in transcript regions that are
evolutionarily conserved has been noted (22).
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The goal of our work was to develop a method that can
predict canonical and non-canonical miRNA targets and
siRNA off-targets with comparable accuracy. An impor-
tant ingredient of our model is the miRNA–target inter-
action energy predicted by the MIRZA biophysical model
that we previously inferred from Argonaute 2 crosslink-
ing and immunoprecipitation (Ago2-CLIP) data (8). In ad-
dition to the MIRZA-predicted energy of interaction, the
model includes features that we and others have shown to be
predictive for functional miRNA target interactions, such
as the nucleotide (nt) composition around putative target
sites, their structural accessibility and location within 3′ un-
translated regions (3′ UTRs) (21,23–25). We called the re-
sulting miRNA target prediction method MIRZA-G (from
MIRZA-Genome-wide). We illustrate the performance of
the model on several large-scale data sets and demonstrate
that MIRZA-G can help in the interpretation of large-scale
siRNA screens.

MATERIALS AND METHODS

miRNA and siRNA transfection data

To train the model and evaluate its performance we made
use of an extensive set of 26 experiments, carried out by
seven different groups, in which the gene expression changes
that were induced by the transfection of individual miR-
NAs were measured (26–32). A summary of the experimen-
tal data sets is given in Table 1. Data were processed as de-
scribed previously (8) to obtain the log2 fold changes in gene
expression levels upon transfection of individual miRNAs.
The log2 fold changes for all used experiments can be found
in Supplementary Table S1.

The gene expression changes induced by 12 different
siRNA transfected individually were measured by Birming-
ham et al. (12) and processed by van Dongen et al. (14) to in-
fer siRNA off-target signatures. We obtained the processed
data from the supplementary material of this latter study.

Microarray-based measurements of gene expression
changes that were induced by the transfection of in-
dividual siRNA were also carried out in the study of
Jackson et al. (13). From the Gene Expression Om-
nibus database (http://www.ncbi.nlm.nih.gov/geo/), we
obtained the gene expression data as SOFT-formatted
files (accession GSE5814). The data correspond to
transfections of 10 distinct siRNAs (PIK3CB-6338,
PIK3CB-6340, MAPK14–193, MAPK14-pos2-mismatch,
MAPK14-pos3-mismatch, MAPK14-pos4-mismatch,
MAPK14-pos5-mismatch, MAPK14-pos6-mismatch,
MAPK14-pos7-mismatch and MAPK14-pos8-mismatch),
with samples prepared 24 h after transfection. From this
study, we also obtained the RefSeq annotations of the
probes that were present on the microarray. Each probe
was mapped to a RefSeq identifier and subsequently to
Entrez Gene (http://www.ncbi.nlm.nih.gov/gene) identifier.
If there were multiple probes per gene, the expression was
averaged. For each gene, fold-changes were averaged over
replicate experiments.

A more recent siRNA screen aiming to identify regula-
tors of the TGF-� pathway (22) used a library of ∼21000
siRNAs that were designed to target approximately 6000

human genes that have been previously connected to can-
cers, including all known phosphatases, kinases and more
generally, components of signal transduction pathways. The
sequences of these siRNAs were obtained from the sup-
plementary material of the paper. We scanned the set of
3′ UTRs (obtained as described in the section ‘3′ UTR
Sequences’) for matches to the seed regions of all siR-
NAs included in this screen, obtaining ∼50 million distinct
matches. For each of these putative target sites, we calcu-
lated the associated features, as described below. Finally, we
determined per-gene scores for all siRNAs as described in
the section ‘Computing Transcript/Gene Scores’.

miRNA and siRNA sequences

miRNA sequences were downloaded from miRBase (33)
version 20. The sequences of siRNAs that were used in the
experiments described above were obtained directly from
the supplementary material of the studies that described
the data (13–14,22). Some siRNA sequences were shorter
than 21 nucleotides (nts). Because the MIRZA model as-
sumes a small RNA sequence of 21 nts, we extended the
sequences of these siRNAs to 21 nts with adenines which
have been shown to be favorable for the functionality of
the siRNA (34). For the miRNAs whose sequence in miR-
Base was shorter than 21 nts (a relatively uncommon situ-
ation), we extended to 21 nts based on the genomic locus
of the miRNA. The correspondence between the names of
the miRNAs that were used in the transfection experiments
that we analyzed and those in the current version of miR-
Base is provided in Supplementary Table S2, together with
the miRNA sequences.

3′ UTR sequences

A common stumbling block in comparing the accu-
racy of miRNA target prediction methods is that stand-
alone versions of the software are not always avail-
able. Directly comparing the sets of predictions made
by different methods is problematic because the set of
transcripts/3′ UTRs that served as input for target pre-
diction differed from study to study. Because TargetScan
was the baseline algorithm with which we compared our
results, we used human 3′ UTR sequences downloaded
from TargetScan v6.2 (5) http://www.targetscan.org/cgi-
bin/targetscan/data download.cgi?db=vert 61 for our pre-
dictions.

Comparisons with other miRNA target prediction methods

MiRNA target predictions were obtained from the
websites corresponding to each of the tools as follows:
TargetScan: http://www.targetscan.org/cgi-bin/targetscan/
data download.cgi?db=vert 61, DIANA-microT: http:
//www.microrna.gr/webServer, MiRanda mirSVR: http:
//www.microrna.org/microrna/getDownloads.do. Version
v3.0 of DIANA-microT (http://www.microrna.gr/microT)
allows prediction of targets of individual small RNAs
(miRNAs and siRNAs). Therefore, we used version v3.0 of
the software to predict siRNA off-targets. We downloaded
the predictions generated with DIANA-microT v5.0 (CDS)
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Table 1. Summary of the experimental data sets that were used to train the model and evaluate its performance

Reference
Data source (Gene Expression
Omnibus (GEO) accession / URL) miRNAs in the data set

Dahiya et al. (28) GSE10150 miR-200c, miR-98
Frankel et al. (29) GSE31397 miR-101
Gennarino et al. (30) GSE12100 miR-26b, miR-98
Hudson et al. (26) GSE34893 miR-106b
Leivonen et al. (31) GSE14847 miR-206, miR-18a, mir-193b, miR-302c
Linsley et al. (32) GSE683 miR-103, miR-215, miR-17, miR-192, let-7c, miR-106b,

miR-16, miR-20, miR-15a, miR-141, miR-200a
Selbach et al. (27) http://psilac.mdc-berlin.de/download/ miR-155, let-7b, miR-30a, miR-1, miR-16

for the comparative analysis of mRNA and protein-level
prediction of miRNA targets. To obtain a gene-level target
score for methods that only score individual target sites
(TargetScan and mirSVR), we summed up the scores of the
target sites predicted in each individual gene.

Prediction of siRNA off-targets with DIANA-microT and
TargetScan Context+

Of the miRNA target prediction tools that have been re-
ported to have high accuracy, DIANA-microT and Tar-
getScan Context+ are accessible and allow prediction of
targets not only for miRNAs but also for siRNAs. There-
fore, for TargetScan Context+ we downloaded scripts pro-
vided on the website (http://www.targetscan.org/cgi-bin/
targetscan/data download.cgi?db=vert 61) and predicted
target sites for all siRNAs from the Birmingham et al. (12)
and Jackson et al. (13) studies. As for miRNAs, we ob-
tained gene-level target scores by summing up the scores of
individual sites within each gene. For DIANA-microT we
used the available web server (http://diana.cslab.ece.ntua.gr/
microT/) to obtain directly gene-level predictions of siRNA
targets. Because some siRNAs yielded no predictions with
DIANA-microT (one of the siRNA from Birmingham et al.
(12) and five siRNAs from Jackson et al. (13)), in our com-
parisons of the performance of the methods we used only
siRNAs for which all methods tested yielded predictions.

Putative binding sites

We focused our analysis and prediction on the following
types of binding sites. First, we considered canonical sites
in the sense used by TargetScan (5). Thus, we scanned
the 3′ UTRs for miRNA seed matches (defined as exact
match to the nucleotides 2–8 of mature miRNA or match
to nucleotides 2–7 and followed by an adenine). Second, we
sought to identify non-canonical sites that would interact
strongly with miRNAs. We scanned the entire 3′ UTRs with
MIRZA (current version at http://www.clipz.unibas.ch/
index.php?r=tools/mirza/Submission/index) using a win-
dow of 50 nts, sliding by 30 nts at a time. Validated miRNA
target sites in the literature do not surpass a length of 50 nu-
cleotides and at the same time, it is relatively unlikely that
such regions contain multiple sites because sites that are too
close to each other presumably ‘interfere’ with each other
(35). We then identified windows with a MIRZA target
quality score of at least 50, a score threshold that we chose
based on the distribution of MIRZA scores among Ago2-
CLIP sites (see section ‘MIRZA Target Quality Score’ be-

low). Then, we calculated the best miRNA-mRNA hybrid
structure and inferred the region in the mRNA that would
hybridize with the miRNA seed. We used this anchor region
in the mRNA to define the full miRNA target site, compris-
ing the miRNA seed match and the upstream 21 nts. For
each of these sites, we computed the set of features described
below. We applied the same procedure to the prediction of
siRNA off-target sites.

Feature definition and computation

MIRZA target quality score. Computing the MIRZA tar-
get quality score, defined as in (8), was the first step in
our transcriptome-wide prediction of miRNA/siRNA tar-
get sites. Because the target quality score depends on the
length of the putative target site, we used windows of fixed
length, 50 nts, in 3′ UTRs. To define a minimum target qual-
ity score, we reanalyzed the 2998 sites that were previously
used by Khorshid et al. (8) to train the MIRZA model. For
each site, we identified the miRNA that had the highest tar-
get quality score and then computed the highest-scoring hy-
brid structure between this miRNA and the CLIPed site.
After classifying the sites into canonical/non-canonical, we
determined the distributions of target quality score for these
two categories of sites. We found as before, that the target
quality scores were, on average, higher for canonical com-
pared to non-canonical sites (316 compared to 15). The cu-
mulative density function of the scores for the two types of
sites showed that a score of 50 allows us to retain most (92%)
of the canonical sites and a substantial proportion (18%) of
the non-canonical sites, and we therefore chose 50 as a min-
imum target site quality score (Supplementary Figure S1).

Position of the target site in 3′ UTRs. We determined
the distance to the closest 3′ UTR boundary as the mini-
mum between the distance from the beginning of the seed-
complementary region to the stop codon and to the poly-A
tail.

Nucleotide content. The ‘Flanks G content’ and ‘Flanks U
content’ features were defined as the proportion of G and
U nts, respectively, within 50 nt upstream and 50 nt down-
stream of the miRNA seed-matching region.

Accessibility. The structural accessibility of the target site
was defined as the probability that the 21 nucleotide long
region (anchored on the right-hand side by the nucleotide
matching the 5′-most nucleotide of the miRNA seed) is
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in single-stranded conformation, across all possible sec-
ondary structures. This probability was computed with
CONTRAfold, a method for RNA secondary structure
prediction that is based on conditional log-linear models
(CLLMs) (36). CONTRAfold was applied to the region
covering the miRNA seed match, and the 50 nucleotides up-
stream and 50 nucleotides downstream of the seed match.
Computing the partition function over structures in which
the target region was either constrained to be in single-
stranded conformation or not (running CONTRAfold with
–partition and –constraints flags, all other parameters left
to default values) we could obtain the log-probability that
the target site is in single-stranded conformation. We also
carried out the entire model training and target predic-
tion procedure using the energy necessary to open the sec-
ondary structure of the target region (computed with the
RNAup program from the Vienna package (37), as de-
scribed before in (23)) as a measure of target site accessi-
bility. The results are comparable (Supplementary Figure
S2, see section Evaluation of Model Performance for more
details), although the top CONTRAfold-based predictions
are slightly more down-regulated than the RNAup-based
predictions. Thus, we used the CONTRAfold-based mea-
sure in the final model.

Branch length score. We quantified the selection pres-
sure on putative target sites in terms of a ‘branch length
score’ (38), defined as described below. The 3′ UTR se-
quences were aligned to the human genome (hg19) with
GMAP (39). The pairwise alignments of the human genome
(hg19) to the genomes of 41 other species were obtained
from UCSC (http://hgdownload.cse.ucsc.edu/downloads.
html#human), and then anchored alignments (with the ge-
nomic region of the human 3′ UTRs serving as anchor) were
constructed as described before (21). These alignments were
used to assess the degree of evolutionary conservation of
putative target sites.

The phylogenetic tree of 46 species (including Homo
sapiens) was downloaded from the UCSC database (http://
hgdownload.cse.ucsc.edu/goldenPath/hg19/multiz46way/)
and the species for which pairwise alignments to human
were not available were pruned. For each putative target
site in human we carried out the following computation.
Based on the alignment of the human 3′ UTRs with all the
other species, we extracted the region that corresponded
to the putative target site in the human 3′ UTR in all
other species. Because the MIRZA target quality score
depends on the length of the site, we either padded or
trimmed the putative target sites in all of these species to
precisely 50 nts. We then computed the target quality score
of the putative target sites with the human miRNA, and
we considered the target site to be conserved in a species
when the target quality score was at least 50. Then, based
on the evolutionary distances along the tree provided by
UCSC, we computed the fraction of the total evolutionary
distance in the phylogenetic tree along which the site was
conserved. We called this measure branch length score.
All manipulations of the phylogenetic tree were performed
with DendroPy package (40). To assess the accuracy of
this measure, we compared the estimates of selection
pressure obtained in the manner described above with the

Figure 1. Value of t-statistic in comparing the mean values of features used
in the model (rows) among functional and non-functional miRNA seed-
complementary sites across 26 experiments (columns). The data from the
experiments labeled in blue were used to train the model and those from
experiments labeled in red were used in testing the model.

posterior probabilities that individual putative target site
are under evolutionary selective pressure, calculated with
the ElMMo method (21). Because ElMMo only handles
canonical sites, we did this comparison for seed-matching
miRNA-complementary sites only. The two methods had
comparable ability to distinguish between functional and
non-functional sites (not shown).

Training of the generalized linear model

To train the model, we used only putative canonical sites of
miRNAs in the test set (see below). Furthermore, to ensure
that the impact of the miRNA can be attributed to specific
sites, we analyzed only transcripts that contained a single
putative canonical site for the transfected miRNA. For each
experiment we extracted the 100 most downregulated and
the 100 least-changing (whose log fold-change was closest to
0) transcripts with a single putative miRNA binding site in
the 3′ UTR. These transcripts provided the 100 positive and
the 100 negative target sites in the respective experiment.

For each site we then calculated the features described
above: MIRZA target quality score, distance to the 3′ UTR
boundary, G/U composition of flanking regions, structural
accessibility, and branch length score. To assess the predic-
tion power of these features, we carried out two-sample t-
tests for the difference of the mean values of a given feature
between the positive and negative target sites in each exper-
iment.

Although the experiments show consistent differences be-
tween the positive and negative sites for all features that we
used in our model, the significance of the difference differs
to some extent between experiments (Figure 1). We used the
subset of experiments in which the differences between the
positive and the negative subsets of sites were most signifi-
cant (labeled with blue in Figure 1) to train the model. The
other subset of experiments (labeled with red) was used for
testing the performance of the model.
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We trained two generalized linear models (GLMs) with
the logit link function (logistic regression) to classify the
training data using the Statsmodels python library (41). The
first model included the branch length score as a feature, the
second model did not. The fitted parameters for both mod-
els can be found in Supplementary Table S3.

When predicting miRNA-binding sites transcriptome-
wide we expect that the non-functional miRNA-
complementary sites vastly outnumber those that are
functional in gene repression, in contrast to our model
training set-up, where we used an equal number of positive
and negative sites. Thus, the value of the feature-dependent
score at which a site has a 0.5 probability to be functional
will likely be higher than the value inferred based on the
training set. Formally, this would be equivalent to shifting
the scores that we obtain from the linear predictor by
a constant value ΔS, such that the probability of a site
being bound changes from p = eS

eS+1 to p′ = eS+�S

eS+�S+1 . This
leads to the transformation p′ = Kp

Kp+1−p where K = e�S.
To determine an appropriate value for the constant K,
we computed an overall measure of down-regulation of
the predicted miRNA targets upon transfection. That is,
for a given K, we computed the score T of an individual
target M for a given miRNA as the expected number of
bound sites in this target T(M) = ∑

s∈sites(M) p′(s), sorted
the predicted targets of the miRNA from highest-to-lowest
scoring, calculated the sum of fold-changes of top n targets
for all values of n, and finally averaged these values over
all miRNAs in the training set. To allow for the possibility
that a minimum binding probability τ needs to be reached
for a site to have a functional impact, we carried out the
above calculations also allowing for different probability
thresholds (Supplementary Figure S3). The optimized
parameter values are K = 0.24 and τ = 0.12. The resulting
model was used to predict miRNA target sites and siRNA
off-target sites across the entire set of 3′ UTRs.

Evaluation of model performance

Median fold changes. We compared the performance of
various miRNA/siRNA target prediction methods as fol-
lows. For each miRNA, and for each method, we sorted
all predicted target genes by their score, from highest to
lowest. We determined the fold-change for each gene in
each experiment and, when more than one experiment was
available for a particular miRNA/siRNA, we computed
the average fold-change in these experiments. Genes for
which no expression estimates were available were filtered
out. We then evaluated the median log fold-change of the
targets predicted by a method lm(n) as a function of the
number n of top predicted targets. Lower median log fold-
changes indicate a stronger down-regulation of the targets
predicted by a given method upon miRNA/siRNA trans-
fection. Finally, we calculated average median log fold-
changes < lm(n) > for all the miRNAs/siRNAs under con-
sideration by averaging the functions lm(n) over the consid-
ered miRNA/siRNA.

Estimating the number of functional targets. The number
of functional targets predicted by each method for each

miRNA was estimated as follows. For each miRNA trans-
fection data set, we calculated the fraction ftot of down-
regulated transcripts among all transcripts. This value is
usually around 0.5. Then, considering the top n targets
predicted by a given method for the transfected miRNA,
we determined the fraction f(n) of these predicted targets
that are downregulated upon transfection. An f(n) signifi-
cantly larger than ftot, indicates the presence of ‘true’ tar-
gets among the n predicted targets, as all of the true targets
are expected to be downregulated. The total fraction f(n)
can be written as f(n) = ρ(n) + ftot (1 − ρ(n)), where ρ(n)
is the fraction of n predicted targets that are true targets.
From this we can estimate the number of true, functional
targets among to top n predicted by the method as nfunc(n)
= n ×ρ(n) = n (f(n) − ftot)/(1 − ftot). To summarize the data
from all transfection experiments, we then determined the
average number of functional targets over all considered ex-
periments <nfunc(n)>. A similar approach was used previ-
ously in Khorshid et al. (8).

Analysis of the siRNA screen

siRNA-specific targeting score per gene. The score of a
given siRNA for a given target gene was calculated as the
sum of the scores of all unique target sites identified in the
3′ UTRs associated with the gene.

KEGG pathway analysis. For the 100 siRNAs with the
strongest effect in the screen (22), we obtained seed-
MIRZA-G (see Table 2) off-target predictions. Then, for
each gene that was predicted to be targeted by at least one of
the 100 siRNAs, we calculated the average prediction score
over all of these 100 siRNAs. Additionally, we determined
the number of siRNAs (from the 100 with the highest score
in the screen) that were predicted to target each individ-
ual gene. We sorted genes based on the number of target-
ing siRNAs and extracted the top 1000 for further analy-
sis. We performed the same analysis considering all siRNAs
in the libraries, not only the 100 that were found active in
the screen. KEGG pathways analysis was performed using
DAVID (42,43). As background we used the human genes
whose 3′ UTRs we used for target site prediction.

Estimating the impact of an siRNA on individual pathways.
For a given siRNA, we averaged the seed-MIRZA-G scores
over all genes in a pathway of interest. siRNAs that did not
target any gene in the pathway of interest were not consid-
ered in this analysis. We then examined the relationship be-
tween the z-score of an siRNA in the screen and the average
seed-MIRZA-G scores over genes in the pathway of inter-
est.

RESULTS

Features of miRNA binding sites that are active in mRNA
degradation

In line with previous studies (19,23,25), we sought to com-
bine in our model a small number of sequence and struc-
ture features that are known to affect the efficacy of miRNA
binding sites in mRNA degradation. These features were as
follows
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Table 2. Four alternative MIRZA-G models (see Materials and Methods for additional details)

Model name Features Target site type

seed-MIRZA-G MIRZA target quality score, structure accessibility, nucleotide
composition of flanks, distance to boundary

canonical

seed-MIRZA-G-C MIRZA target quality score, structure accessibility, nucleotide
composition of flanks, distance to boundary, evolutionary
conservation

canonical

MIRZA-G MIRZA target quality score, structure accessibility, nucleotide
composition of flanks, distance to boundary

canonical and non-canonical

MIRZA-G-C MIRZA target quality score, structure accessibility, nucleotide
composition of flanks, distance to boundary, evolutionary
conservation

canonical and non-canonical

� MIRZA quality score of the target site––reflects the free
energy of binding between a miRNA and a target site and
has been shown to enable identification of non-canonical
binding sites that are effective in mRNA degradation (8).

� Accessibility of the target site––defined as the probabil-
ity that the target site (defined as 7 nucleotide seed match
plus 14 nucleotides upstream) is in single-stranded con-
formation within the mRNA (23,44).

� Nucleotide composition of regions flanking the miRNA
binding site––effective miRNA binding sites have been
shown to reside in G-poor and U-rich sequence environ-
ments (23).

� Evolutionary conservation––this feature has been re-
peatedly shown to be highly informative for functional
miRNA binding sites (5,21), capturing probably a vari-
ety of distinct factors that have not been characterized
yet.

� Distance to the boundary––functional miRNA binding
sites tend to be located at the beginning and at the end
of 3′ UTRs (21,24–25) and this seems to be the case for
siRNA target sites as well (data not shown).

The computation of these features is described in the
Methods. To demonstrate that these features are informa-
tive for the prediction of functional miRNA target sites we
used a set of 26 experimental data sets consisting of mRNA
expression measurements before and after the transfection
of individual miRNAs, that were obtained by seven differ-
ent laboratories. From each experiment, we determined the
100 most downregulated (positive, effective sites) and the
100 least-changing (negative, ineffective sites) transcripts
that had in the 3′ UTR a single canonical match to the trans-
fected miRNA. We then computed the features of the cor-
responding sites as described in the Methods section, and
we evaluated the significance of the difference between the
means of each feature’s values in the positive and negative
sets with the t-test. The results, shown in Figure 1, indicate
that the features that we selected indeed distinguish the pos-
itive from the negative sites consistently, across the entire set
of experiments.

In particular, the feature with the most consistent pre-
dictive power is the branch length score, that reflects the
evolutionary conservation of miRNA–target interaction.
We used this measure of selection pressure rather than the
ElMMo score that we developed previously developed (21)
because although the two measures have comparable pre-
dictive power (not shown), the branch length score can
be more readily be computed for non-canonical sites com-

pared to the ElMMo score, that was designed specifically
for miRNA seed matches.

Also consistent with previous results (23), the sequence
composition of the flanking regions is highly predictive for
their responding in miRNA transfection experiments, to an
extent comparable with the branch length score. Among
the features that describe structural accessibility (accessibil-
ity of the seed-complementary region, target site, extended
target site), the accessibility of the target site (probability
that a 21 nucleotides long target site anchored on the right-
hand side by the match to the miRNA seed region is in sin-
gle stranded conformation) has the most consistent perfor-
mance across data sets (not shown). The accessibility of an
RNA fragment for interaction with cognate factors can be
defined in various ways. For example, the RNAup program
from the Vienna package (45) calculates the energy that is
necessary to generate a single-stranded conformation for
the RNA sequence of interest, whereas the CONTRAfold
program (36) computes the probability that the RNA se-
quence is in single-stranded conformation in the ensemble
of all possible structures that it can assume. Because the
CONTRAfold-based model appears to have slightly better
performance than the RNAup-based model in predicting
transcript down-regulation (Supplementary Figure S2), we
used the CONTRAfold-based accessibility in our general-
ized linear model.

As shown in Figure 1, the experimental data sets appear
to separate into two clusters that differ in the t-values of the
differences between the feature values of positive and neg-
ative sites. To train our model we decided to use the set of
experiments that gave the most significant t-values in the t-
tests comparing feature values among the positive and neg-
ative sites (labeled in blue in Figure 1). The remaining set of
experiments (labeled in red in Figure 1) were used for test-
ing.

Performance of the model in predicting the response of mR-
NAs to miRNA transfection

We used the features defined above and the ‘training set’ of
miRNA transfection experiments to construct a generalized
linear model to predict positive sites––that confer downreg-
ulation to the host mRNA upon transfection of the cognate
miRNA––and negative sites––that do not confer increased
decay rate to the host mRNA––as described in the section
‘Training of the Generalized Linear Model’.

We used the ‘test set’ of miRNA transfection experiments
(Figure 1) and a procedure that we described before (8) to
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evaluate the performance of our model. Briefly, we sorted
the putative targets of a miRNA in the order of the scores
assigned to them by a given prediction method and then we
traversed the list of targets from top to bottom, computing,
at each target rank x, the median fold change of all top x
targets in response to miRNA transfection. Although many
miRNA target prediction methods have been proposed, the
benchmarking studies that are available (8,46) consistently
identify a few methods that yield consistently good results.
We included these methods here and further refer the reader
to the above-mentioned benchmarking studies for addi-
tional comparisons. One of the most widely used miRNA
target prediction methods is TargetScan which consistently
shows close-to-best performance (8,46). We therefore used
TargetScan as the base-line for our assessment of algo-
rithms’ performance. TargetScan has two variants, one that
relies on the evolutionary conservation of the putative tar-
get sites (TargetScan PCT) (20) and one that uses informa-
tion about the context in which the target site resides (Tar-
getScan Context+) (17,25). We used both of these variants
in the initial testing of our model’s performance. We fur-
ther included DIANA-microT (18), which has also been re-
ported to have high accuracy (46) and miRanda-mirSVR
(19), which has been proposed for the prediction of both
canonical and non-canonical sites.

We constructed and compared the accuracy of two types
of MIRZA-based models: one that uses the branch length
scores of sites in training and prediction and one that does
not. Furthermore, we considered predicting only canoni-
cal targets or targets that possibly contained non-canonical
sites. In the first case, we scanned the 3′ UTRs for canonical
miRNA seed matches, while in the latter case we scanned
the 3′ UTRs for 50 nts-long putative binding regions whose
target quality score for a given miRNA was at least 50 (as
described in the Materials and Methods). These models are
summarized in Table 2, and the performance evaluations in
Figure 2A.

We found that models that take into account evolutionary
conservation perform distinctly better than those that do
not (Figure 2A). When considering evolutionary conserva-
tion, the targets predicted by the model that only considers
canonical sites (seed-MIRZA-G-C) undergo the strongest
down-regulation in response to miRNA transfection, fol-
lowed by targets predicted by DIANA-microT, TargetScan
PCT, our model that also considers non-canonical sites
(MIRZA-G-C) and finally those predicted by miRanda-
mirSVR. Among models that do not consider evolution-
ary conservation, our model that only takes into account
canonical sites (seed-MIRZA-G) has by far the best perfor-
mance followed by our model that includes non-canonical
sites (MIRZA-G), and TargetScan Context+. The top tar-
gets of MIRZA-G respond stronger to miRNA transfec-
tion compared to those of TargetScan Context+, but for
targets with mid-range scores, the relative magnitude of the
response is reversed. The results are comparable when we
assess the performance of the models in predicting protein-
level changes (measured in (27)) in response to miRNA per-
turbations (Supplementary Figure S4).

For each method, we also estimated the number of func-
tional targets, comparing the proportion of predicted tar-
gets that are downregulated with the proportion of all genes

that are downregulated in the transfection experiment. The
relative performance of the methods, shown in Figure 2B,
shows a pattern similar to that shown in Figure 2A.

Prediction of siRNA off-target effects

Small interfering RNAs (siRNAs) have become a very im-
portant tool for studying gene function. Many studies have
employed siRNAs or short hairpin RNAs (shRNAs) to
screen for genes that are relevant to specific phenotypes
(47–49). It is not trivial to interpret the outcomes of these
screens, due to a large extent to the so-called ‘off-target’
effects that the siRNAs have because they act through
the miRNA effector pathway. SiRNAs being exogenous
molecules, the feature that is most informative in the predic-
tion of functional miRNA target sites, namely their strong
evolutionary conservation, is unlikely to be informative.
Thus, accurate prediction of siRNA off-target effects has
remained challenging. As a the main aim of our study was
to improve the prediction of siRNA off-target effects, we
next tested our models on siRNA transfection data sets.

The first siRNA transfection data set that we used cov-
ered 12 distinct siRNAs (12) and previously used in the de-
velopment of the Sylamer tool for the detection (though
not prediction) of siRNA off-target effects (14). Figure 3A
shows that our models clearly outperform TargetScan Con-
text+ and DIANA-microT in the prediction of off-target
effects of these siRNAs, whether we consider only canoni-
cal or both canonical and non-canonical sites. Interestingly,
when we take into account the evolutionary conservation
of the siRNA-complementary sites, we observe a somewhat
stronger downregulation of the predicted mRNA targets,
consistent with prior observations (22). This does not ap-
pear to be the result of siRNAs acting on the target sites of
miRNAs with the same seed sequence, because we obtain
similar results when we use only siRNAs that do not share
six or more contiguous seed nucleotides with any of the
known miRNAs (Supplementary Figure S5A and B). The
results obtained for each individual siRNA in this set are
given in Supplementary Figure S6A–I. In Figure 3C and D
we show two examples, one corresponding to an siRNA that
was inferred (14) to have strong off-target effects (siRNA-
C52), and the other to an siRNA with small off-target sig-
nature (siRNA-C3). In contrast to the targets predicted by
TargetScan Context+ and DIANA-microT, the top targets
that are predicted by our models consistently show stronger
down-regulation compared to targets with lower prediction
scores.

We further analyzed the data set obtained in one of the
first studies that showed that the siRNA off-target effects
are mediated by the siRNA seed, similarly to miRNAs (13).
This study measured the transcriptome-wide response in-
duced by mutants of an siRNA that was designed to target
the MAP kinase. As shown in Supplementary Figure S7A–
G and summarized in Figure 3B, in 6 of the 7 siRNA trans-
fections the highest-scoring predictions of our models show
a stronger down-regulation compared to TargetScan Con-
text+ or DIANA-microT-predicted targets.
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Figure 2. Comparative evaluation of various models. (A) Models’ performance in predicting mRNA down-regulation following miRNA transfection. The
expectation is that a model performs well when its top predicted targets undergo the strongest downregulation after miRNA transfection. (B) Estimated
number of functional targets for different methods as the function of the number of top predictions. Variants of the MIRZA-G model are described in Table
2. The other tested models are TargetScan Context+, TargetScan PCT, DIANA-microT-CDS and miRanda-mirSVR (the most conservative predictions).
See text for additional details on these methods.

Analysis of siRNA screening results with MIRZA-G

SiRNAs have been used in many high-throughput screens
to identify key regulators or components of various bio-
logical processes. Most of these studies do not specifically
investigate the off-target effects. However, a recent study
found that of the ∼20 000 siRNAs that were designed, in an
‘unbiased’ manner, to target the coding sequence (CDS) of
6000 distinct genes (phosphatases, kinases, signal transduc-
ers and cell-surface receptors) previously implicated in can-
cer, a large proportion had off-target effects on the TGF-�
pathway (22). We sought to determine whether the results
of the screen could be interpreted in light of MIRZA-G’s
prediction of off-target effects.

From the screening results we identified the 100 siRNAs
with the strongest phenotypic readout of TGF-� pathway
inhibition, which was the translocation of a GFP-SMAD2
reporter to the nucleus. For each gene in our 3′ UTR set we
calculated the average MIRZA-G targeting score over all
of these siRNAs as described in Methods. We repeated this
procedure using predictions from all MIRZA-G variants,
as well as from TargetScan and DIANA-microT. We found
that TGFBR2 is the gene with the highest seed-MIRZA-G-
C and MIRZA-G-C average score for the siRNAs that were
most active in the screen (Supplementary Tables S4 and S5),
consistent with previous results (22). It is also a top tar-
get (3rd and 2nd, respectively) in the MIRZA-G and seed-
MIRZA-G predictions. In contrast, the rank of TGFBR2
based on the TargetScan and DIANA-microT predictions
is 13 and 43, respectively (Supplementary Table S5). We fur-
ther used the 1000 genes with the highest average score to
determine whether specific KEGG pathways (Kyoto Ency-
clopedia of Genes and Genomes) (50) are targeted by the
active siRNAs. In this test again, the TGF-� pathway is
most enriched among the prediction of the MIRZA-G vari-

ants compared to the other methods (Supplementary Table
S6). These are in fact the pathways that should be targeted
through on-target effects, guided by the perfect complemen-
tarity between the siRNAs and the coding regions of the
mRNAs. Interestingly, these pathways are also predicted to
be targeted through off-target effects, the reason being that
all of these pathways contain TGF-�. These results are con-
sistent with the phenotypic readout of the screen as well as
with our predictions (Supplementary Table S7). Figure 4A
shows a sketch of the TGF-� pathway with the genes pre-
dicted to be targeted by the active siRNAs labeled with a
red.

We further found a significant anti-correlation between
the z-score, that quantifies the magnitude of the cellular re-
sponse to an siRNA in the screen, and the score that our
model gives to the interaction of the siRNA with TGFBR2
(Figure 4B). This anti-correlation is weaker to absent when
we include more genes of the TGF-� pathway (TGFBR1,
SMAD2 and SMAD4, Supplementary Figure S8) to com-
pute an average score of interaction of the siRNA with
TGF-� pathway components.

These results suggest that the gene that most responsible
for the observed phenotype is TGFBR2. Although TGF-�
has two main receptors, TGFBR1 and TGFBR2, it has been
remarked that these two receptors do not appear to be sim-
ilarly targeted (22). Indeed, we found that more of the top
100 most active siRNAs are predicted to target TGFBR2
(Figure 4C) and with higher MIRZA-G off-target scores
compared to TGFBR1.

In the above analysis, we started from siRNAs that were
identified in the screen to be effective in modulating the re-
sponse to TGF-�. However, a question of high relevance
in an experimental setting is whether relevant off-targets
could be predicted a priori. To address this question, we
computed, for each human gene, an average seed-MIRZA-

Downloaded from https://academic.oup.com/nar/article-abstract/43/3/1380/2411948/Accurate-transcriptome-wide-prediction-of-microRNA
by WWZ Bibliothek (Oeffentliche Bibliothek der UniversitÃ¤t Basel) user
on 10 October 2017



1388 Nucleic Acids Research, 2015, Vol. 43, No. 3

Figure 3. Relationship between the prediction scores obtained with different target prediction methods and the extent of down-regulation of target mRNAs
upon siRNA transfections. (A) Average over the siRNAs in the data set of Birmingham et al. (12). (B) Average over the siRNAs from Jackson et al. (13).
(C) Data from an individual siRNA identified by van Dongen et al. (14) to have prominent off-target effects. (D) Data from an individual siRNA identified
by van Dongen et al. (14) to have modest off-target effects. See also Table 2 and the text for details on the methods.

G targeting score across all the siRNAs of this library (Sup-
plementary Table S8). We then determined the enrichment
of KEGG pathways among the top 1000 genes with the
highest average score (Supplementary Table S9). Taking all
human genes as the background set, the TGF-� pathway
shows the 12th most significant enrichment. Other pathways
that are even more enriched than TGF-� and would thus be
expected to confound screening studies are the MAPK, neu-
rotrophin, insulin, mTOR and ErbB pathways. Relevant for
siRNA screening could be that the siRNAs in this library
are also predicted to affect endocytosis.

DISCUSSION

Computational prediction of miRNA targets has pro-
gressed at a fast pace after the discovery of miRNAs, aim-
ing to facilitate functional characterization of the thou-
sands of miRNA genes that emerged from next-generation
sequencing-based studies. Many methods are now avail-

able (46). However, a tendency to converge on a small
number of determinants has been apparent, even for tools
that have been in use for almost a decade. Although in-
creasingly large numbers of non-canonical miRNA binding
sites have been reported in the recent years, it is clear that
many miRNA target sites are perfectly complementary to
miRNA seed regions and that the degree of evolutionary
conservation of the miRNA-seed complementary region is
a strong predictor of target site functionality. In our study,
we took advantage of a biophysical model (http://www.
clipz.unibas.ch/index.php?r=tools/sub/mirza) of miRNA–
target interaction that is able to identify not only canon-
ical but also non-canonical interactions that are effective
in mRNA destabilization from CLIP data (8) to predict
such sites genome-wide. On its own, the biophysical model
can be used to identify the miRNAs that guided the in-
teraction of the Argonaute protein with CLIP-identified
sites. However, for an accurate prediction of miRNA as
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Figure 4. SiRNA off-targets in the TGF-β pathway. (A) Schema of the TGF-β pathway drawn based on the figure provided by the DAVID server (42,43).
Genes predicted to be off-targets of the top 100 siRNAs with the strongest effect in the screen are marked with red boxes. (B) Correlation between the
z-score of an siRNA in the screen (y-axis) and the score that our model assigns to the interaction of the siRNA with TGFBR2 (x-axis). (C) Scatter plot of
the predicted activities of the top 100 most active siRNAs on TGFBR1 and TGFBR2.
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well as siRNA binding sites at a genome-wide scale, fea-
tures beyond the energy of the small RNA–target site in-
teraction need to be taken into consideration. This was the
motivation for developing MIRZA-G. We have shown that
MIRZA-G improves to some extent the genome-wide pre-
diction of miRNA targets and substantially the prediction
of siRNA off-targets. The software is accessible at http:
//www.clipz.unibas.ch/index.php?r=tools/sub/mirza g. The
pipeline was implemented with the ruffus framework (51).

Our analysis indicates that the features that were previ-
ously found to characterize effective miRNA target sites,
whether they are located in the 3′ UTRs or coding regions
(52), are also informative for predicting siRNA off-target
sites, as has been argued before (22). Overall, this is not un-
expected because that siRNAs and miRNAs use the same
effector pathway. What may be surprising is that taking
evolutionary conservation into account improves the pre-
diction of siRNA target sites (compare the results of seed-
MIRZA-G-C with those of seed-MIRZA-G in Figure 3A
and B). This is consistent with the results of a previous study
which found that conserved siRNA seed matches are more
likely to be effective than non-conserved seed matches (22).
Although a trivial explanation could be that some siRNAs
share the seed sequence with endogenous miRNAs, exclud-
ing these siRNAs from the analysis does not completely
eliminate the signal (Supplementary Figure S6A and B). A
possible explanation is that the conservation of a 3′ UTR
region, indicative of its relevance for some biological pro-
cess, is correlated with other properties, such as its struc-
tural accessibility and nucleotide composition, that support
targeting by siRNAs or miRNAs. The same reasoning may
explain why functional miRNA-complementary sites pref-
erentially emerge at the beginning and end of long 3′ UTRs
(21).

Although much work has been invested in computational
miRNA target prediction, there remains substantial room
for improvement. This may come from improved estimates
of the rates of interaction between miRNAs and targets,
from the inclusion of context-dependent effects such as 3′
UTR isoforms (53), modulation of miRNA–target interac-
tions by RNA-binding proteins (54) and others. Computa-
tional modeling of the miRNA-induced effects in systems
in which measurements of relevant rate constants and abun-
dances of relevant molecular species are available, will pro-
vide further insights into this mode of regulation (55). Pre-
dictions generated by models such as MIRZA-G can pro-
vide essential entry points into such studies. Specifically in
the analysis of siRNA screens, an avenue that has not been
explored yet, is to use siRNA off-target predictions in con-
junction with the measured phenotypic effects to infer the
contribution of individual genes to the measured pheno-
type. This approach has been successfully used in the iden-
tification of transcription factors and miRNAs that have an
important contribution to the pattern of mRNA expression
in individual cell types (56). It would be interesting to ap-
ply this methodology to a large number of siRNA screens
to further unravel the contributions of individual molecular
pathways to phenotypes.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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