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UNCERTAINTY QUANTIFICATION FOR PDEs WITH
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Abstract. In this article, we consider elliptic diffusion problems with an anisotropic random
diffusion coefficient. We model the notable direction in terms of a random vector field and derive
regularity results for the solution’s dependence on the random parameter. It turns out that the decay
of the vector field’s Karhunen–Loève expansion entirely determines this regularity. The obtained
results allow for sophisticated quadrature methods, such as the quasi–Monte Carlo method or the
anisotropic sparse grid quadrature, in order to approximate quantities of interest, like the solution’s
mean or the variance. Numerical examples in three spatial dimensions are provided to supplement
the presented theory.

Key words. uncertainty quantification, anisotropic diffusion, regularity estimates

AMS subject classifications. 35R60, 65N30, 60H35

DOI. 10.1137/16M1085760

1. Introduction. Many phenomena in science and engineering are modeled as
boundary value problems for an unknown function. Because, in general, the com-
putation of an exact solution of such a boundary value problem is infeasible, it is
necessary to use numerical schemes that yield approximations of the solution. When
using numerical methods, such as finite elements or finite differences, the behavior
of these numerical simulations is generally well understood for input data, such as
boundary values or coefficients, that are given exactly. However, for many applica-
tions, the input data are not known exactly and can be thought of as being subject to
uncertainty, for example, when they are based on measurements. This then implies
that the solution of the boundary value problem is also subject to uncertainty.

Specifically, let us consider the second order diffusion problem where uncertainty
regarding the diffusion coefficient A has been accounted for by considering it as a
random matrix field over a given probability space (Ω,F ,P), i.e.,

for almost every ω ∈ Ω:


−divx

(
A(ω)∇x u(ω)

)
= f in D,

u(ω) = 0 on ΓD,〈
A(ω)∇x u(ω),n

〉
= g on ΓN ,

on a domain D given a mixed boundary condition, where the function f describes the
known source and the function g the conormal derivative at the Neumann boundary.

We note that the numerical treatment of isotropic random diffusion coefficients,
i.e., A(ω) = a(ω)I, has already been considered, for example, in [3, 4, 6, 8, 18].
However, since the simulations in applications may require anisotropic diffusion, we
subsequently consider anisotropic random diffusion coefficients that fit the following
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Fig. 1. Fiber orientation in the left ventricle.

description: The anisotropic random diffusion coefficient has, at every point in D,
a notable direction regarding diffusion; that is, a direction perpendicular to which
diffusion is isotropic with a global strength a and in which the strength of diffusion may
be considerably different and also may vary in space. We can represent this notable
direction with its spatially varying directional strength as a random vector field V.

One interpretation for random diffusion coefficients of this type is to consider
diffusion in a medium that is comprised of thin fibers. The direction of these fibers is
then described by the direction of V and the strength of diffusion in a fiber is given
by ‖V‖2. The diffusion from a fiber to a neighboring fiber is the diffusion that is
perpendicular to V and is thus considered to have strength a.

The application we have in mind here amounts from cardiac electrophysiology:
The electrical activation of the human heart has been an active area of research
during the last decades. It has been known for a long time that the heart exhibits
a fibrous structure. By now, it is well understood that these fibers play a major
role for both the electrical and the mechanical properties of the heart muscle. More
precisely, the fibers have a very complex but also well-organized structure, exhibiting
key features that can be identified in all healthy subjects, such as a helical distribution
with opposite orientations, from the endocardium to the epicardium, see, e.g., [19, 20].
A visualization of the fiber structure can be found in Figure 1.1 in particular, for
visualizations of the cardiac fiber structure. However, the exact fiber dislocations vary
between different individuals and may also change over time within a single individual
due to pathologies, such as infarctions. Then, the fiber structure is perturbed with
the introduction of high variability areas in the presence of scars. This uncertainty in
the fiber direction is modeled via the vector field V. In this particular application,
the ratio between ‖V‖2 and a is typically of the order ten to one; see, e.g., [9, 20].

Moreover, random diffusion coefficients of this type may also be used to model
the diffusion in a laminar medium, i.e., a medium comprised of stacked thin layers,
by choosing the direction of V as the normals on the layers. Then, we have that in a
layer, the diffusion is isotropic with the strength a, and in-between layers, that is, in
the direction given by V, the diffusion strength is given by ‖V‖2.

1We have to thank the research group of Prof. Dr. Rolf Krause from the Institute of Computa-
tional Science, Università della Svizzera Italiana, Lugano, Switzerland and in particular Sonia Pozzi
for providing us with this visualization.
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1004 H. HARBRECHT, M. D. PETERS, AND M. SCHMIDLIN

The sections hereafter are organized as follows: In section 2, we provide basic
definitions and notation concerning the functional analytic framework. Therafter, we
introduce the model problem which especially includes the formula that expresses the
diffusion coefficient A in terms of V and a. Then, in section 3, we reformulate the
model problem into a stochastically parametric and spatially weak formulation, by
using the Karhunen–Loève expansion of the diffusion describing field V to arrive at a
stochastically parametrized form of the diffusion coefficient A. This also enables us
to conclude the well-posedness of the model problem. Section 4 is dedicated to the
regularity of the solution of the model problem with respect to the random parameter
from the Karhunen–Loève expansion of the diffusion describing field V. This regular-
ity then yields convergence rates, when considering quasi–Monte Carlo or anisotropic
sparse grid quadrature to calculate the solution’s mean and variance. Numerical ex-
amples are then provided in section 5 as validation. Last, our conclusions are given
in section 6.

2. Problem formulation.

2.1. Notation and precursory remarks. For a given Banach space X and
a complete measure space M with measure µ the space Lpµ(M;X ) for 1 ≤ p ≤ ∞
denotes the Bochner space (see [15]), which contains all equivalence classes of strongly
measurable functions v : M→ X with finite norm

‖v‖Lpµ(M;X ) :=


[∫
M

∥∥v(x)
∥∥p
X dµ(x)

]1/p

, p <∞,

ess sup
x∈M

∥∥v(x)
∥∥
X , p =∞.

A function v : M→ X is strongly measurable if there exists a sequence of countably
valued measurable functions vn : M → X , such that for almost every m ∈ M we
have limn→∞ vn(m) = v(m). Note that, for finite measures µ, we also have the usual
inclusion Lpµ(M;X ) ⊃ Lqµ(M;X ) for 1 ≤ p < q ≤ ∞.

When X is a separable Hilbert space and M is a separable measure space, the
Bochner space L2

µ(M;X ) is also a separable Hilbert space with the inner product

(u, v)L2
µ(M;X ) :=

∫
M

(
u(x), v(x)

)
X dµ(x)

and is isomorphic to the tensor product space L2
µ(M)⊗X ; see [16].

Subsequently, we will always equip Rd with the norm ‖·‖2 induced by the canonical
inner product 〈·, ·〉 and Rd×d with the norm ‖·‖F induced by the Frobenius inner
product 〈·, ·〉F . Then, for v,w ∈ Rd, the Cauchy–Schwartz inequality gives us

|vTw| =
∣∣〈v,w〉∣∣ ≤ ‖v‖2‖w‖2 and the special case vTv = 〈v,v〉 = ‖v‖22,

and we also have, by straightforward computation, that ‖vwT‖F = ‖v‖2‖w‖2.

2.2. The model problem. Let (Ω,F ,P) be a separable, complete probabil-
ity space. We consider the following second order diffusion problem with a random
diffusion coefficient:

(1) for almost every ω ∈ Ω:


−divx

(
A(ω)∇x u(ω)

)
= f in D,

u(ω) = 0 on ΓD,〈
A(ω)∇x u(ω),n

〉
= g on ΓN ,
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UQ FOR PDEs WITH ANISOTROPIC RANDOM DIFFUSION 1005

where D ⊂ Rd is a Lipschitz domain with d ≥ 1 and ∂D = ΓD ∪ ΓN is a disjoint
decomposition of the boundary. The function f ∈ H̃−1(D) describes the known source
and g ∈ H−1/2(ΓN ) the known conormal derivative at the Neumann boundary. The
random matrix field A ∈ L∞P

(
Ω;L∞(D;Rd×d)

)
is the stochastically and spatially

varying diffusion coefficient, which satisfies the uniform ellipticity condition

(2) amin ≤ ess inf
x∈D

λmin

(
A(x, ω)

)
≤ ess sup

x∈D
λmax

(
A(x, ω)

)
≤ amax P-almost surely

for some constants 0 < amin ≤ amax < ∞ and is almost surely symmetric almost
everywhere. Without loss of generality, we assume amin ≤ 1 and amax ≥ 1.

To be able to capture the two situations arising from the fact that we might
have a pure Neumann boundary value problem, we introduce the solution space V
dependent upon the boundary measure of ΓD: If ΓD has nonzero boundary measure,
then we define

V := H1
ΓD (D) :=

{
v ∈ H1(D) : v(x) = 0 for all x ∈ ΓD

}
.

If ΓD has zero boundary measure, i.e., if we have a pure Neumann boundary value
problem, then we set

V := H1
∗ (D) :=

{
v ∈ H1(D) : (v, 1)L2(D) = 0

}
and also require that f and g fulfil the compatibility condition∫

D

f(x) dx = −
∫

ΓN

g(x) ds.

In both cases, the norm equivalence theorem of Sobolev (see [2]), implies for all
v ∈ V and some constant 0 < cV ≤ 1 that

cV ‖v‖H1(D) ≤ ‖v‖V =
∥∥∇x v

∥∥
L2(D;Rd)

≤ ‖v‖H1(D).

We will consider anisotropic diffusion coefficients that are of the form

(3) A(x, ω) := aI +
(∥∥V(x, ω)

∥∥
2
− a
)V(x, ω)VT(x, ω)

VT(x, ω)V(x, ω)
,

where a ∈ R is a given value and V ∈ L∞P
(
Ω;L∞(D;Rd)

)
is a random vector field.

Furthermore, we require that they satisfy bmin ≤ a ≤ bmax and

(4) bmin ≤ ess inf
x∈D

∥∥V(x, ω)
∥∥

2
≤ ess sup

x∈D

∥∥V(x, ω)
∥∥

2
≤ bmax P-almost surely

for some constants 0 < bmin ≤ bmax < ∞. Without loss of generality, we assume
bmin ≤ 1 and bmax ≥ 1.

We note that the field A accounts for a medium that has homogeneous diffusion
strength a perpendicular to V and has diffusion strength

∥∥V(x, ω)
∥∥

2
in the direction

of V. The randomness of the specific direction and length of V therefore quantifies
the uncertainty of this notable direction and its diffusion strength.

Lemma 2.1. A diffusion coefficient of form (3) is well-formed and indeed also
satisfies the uniform ellipticity condition (2) with bmin and bmax.
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1006 H. HARBRECHT, M. D. PETERS, AND M. SCHMIDLIN

Proof. For almost every ω ∈ Ω and almost every x ∈ D we have that A(x, ω) is
well-formed because of

VT(x, ω)V(x, ω) = ‖V(x, ω)‖22 ≥ b
2
min > 0,

and clearly symmetric. Furthermore, we can choose u2, . . . ,ud ∈ Rd that are per-
pendicular to V(x, ω) and are linearly independent; then, we know that, for all
i = 2, . . . , d,

A(x, ω)ui = aui and A(x, ω)V(x, ω) =
∥∥V(x, ω)

∥∥
2
V(x, ω).

This means that, for almost every ω ∈ Ω and almost every x ∈ D,

λmin

(
A(x, ω)

)
= min

{
a,
∥∥V(x, ω)

∥∥
2

}
≥ bmin,

λmax

(
A(x, ω)

)
= max

{
a,
∥∥V(x, ω)

∥∥
2

}
≤ bmax.

Therefore, A satisfies the uniform ellipticity condition (2) with bmin and bmax.

Thus, we will set amin := bmin and amax := bmax and, from here on, solely use
amin and amax.

3. Problem reformulation.

3.1. Karhunen–Loève expansion. To make the random field and, hence, also
the diffusion coefficient, feasible for numerical computations, we separate the spatial
variable x and the stochastic parameter ω by considering the Karhunen–Loève ex-
pansion of V. The mean field E[V] : Ω → Rd and the matrix-valued covariance field
Cov[V] : D ×D → Rd×d are given by

E[V](x) =

∫
Ω

V(x, ω) dP(ω)

and

Cov[V](x,x′) =

∫
Ω

V0(x, ω)VT
0 (x′, ω) dP(ω),

respectively, where

V0(x, ω) := V(x, ω)− E[V](x).

Let {λk,ψk}k denote the eigenpairs corresponding to the Hilbert–Schmidt oper-
ator C that is induced from the kernel Cov[V](x,x′), i.e.,

(Cu)(x) :=

∫
D

Cov[V](x,x′)u(x′) dx′.

Then, the Karhunen–Loève expansion of V is given by

(5) V(x, ω) = E[V](x) +

∞∑
k=1

√
λkψk(x)Yk(ω),

where the uncorrelated and centered random variables {Yk}k are given according to
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Yk(ω) :=
1√
λk

∫
D

VT
0 (x, ω)ψk(x) dx.

We note that the convergence of (5) is naturally in the L2
P
(
Ω;L2(D;Rd)

)
-norm. How-

ever, as shown in Lemma A.1, there holds img(C) ⊂ L∞(D;Rd). This particularly
implies that ψk ∈ L∞(D;Rd) and, as a consequence, also Yk(ω) ∈ L∞P (Ω).

Now, by parametrization of the Yk as yk and replacing the
√
λk with σk, we may

assume, without loss of generality, that yk ∈ [−1, 1], when considering the vector field
V in the parametrized form

(6) V(x,y) = E[V](x) +

∞∑
k=1

σkψk(x)yk,

where y = (yk)k∈N ∈ � := [−1, 1]
N

. Consequently, we can also view A(x,y) and
u(x,y) as being parametrized by y and restate (1) as

(7) for almost every y ∈ �:


−divx

(
A(y)∇x u(y)

)
= f in D,

u(y) = 0 on ΓD,〈
A(y)∇x u(y),n

〉
= g on ΓN .

We now impose some common assumptions, which make the Karhunen–Loève
expansion computationally feasible.

Assumption 3.1. The random variables (Yk)k∈N are independent and uniformly
distributed on

[
−
√

3,
√

3
]
, i.e., σk =

√
3λk. Moreover, the sequence γ = (γk)k∈N0

,
given by

γk :=
∥∥σkψk∥∥L∞(D;Rd)

,

is at least in `1(N0), where we have defined ψ0 := E[V] and σ0 := 1.

The assumption guarantees that the representation (6) also converges in the Bochner
space L∞P

(
Ω;L∞(D;Rd)

)
; see Lemma A.2 for a proof of this statement.

3.2. Spatially weak formulation. Since we want to pursue a finite element
approach in space to approximate the solution of (7), we will need the spatially weak
form thereof.

Given almost any y ∈ �, we have

−divx

(
A(x,y)∇x u(x,y)

)
= f(x) for all x ∈ D.

After multiplication with a test function v ∈ V and integration over D, we arrive at

−
∫
D

divx

(
A(x,y)∇x u(x,y)

)
v(x) dx =

∫
D

f(x)v(x) dx.

Now, Green’s identity implies

−
∫
D

divx

(
A(x,y)∇x u(x,y)

)
v(x) dx =

∫
D

〈
A(x,y)∇x u(x,y),∇x v(x)

〉
dx

−
∫
∂D

〈
A(x,y)∇x u(x,y),n(x)

〉
v(x) ds,

which, because of v|ΓD = 0 and
〈
A(y)∇x u(y),n

〉
= g on ΓN , simplifies to
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−
∫
D

divx

(
A(x,y)∇x u(x,y)

)
v(x) dx =

∫
D

〈
A(x,y)∇x u(x,y),∇x v(x)

〉
dx

−
∫

ΓN

g(x)v(x) ds.

We define B : �→
(
V ×V → R

)
, where B[y] is a continuous symmetric bilinear form

for almost any y ∈ �, by

B[y](u, v) :=

∫
D

〈
A(x,y)∇x u(x),∇x v(x)

〉
dx

and ` : V → R a continuous linear form by

`(v) :=

∫
D

f(x)v(x) dx +

∫
ΓN

g(x)v(x) ds.

Then, this leads us to the spatially weak formulation

(8)

{
Find u : �→ V such that

B[y]
(
u(y), v

)
= `(v) for almost every y ∈ � and all v ∈ V .

We conclude with the following well-known stability estimate.

Lemma 3.2. For almost every y ∈ �, there is a unique solution u(y) ∈ V of (8),
which fulfils ∥∥u(y)

∥∥
H1(D)

≤ amax

aminc2V

(
‖f‖H̃−1(D) + ‖g‖H−1/2(ΓN )

)
.

4. Parametric regularity.

4.1. Parametric regularity of the diffusion coefficient. In this paragraph,
we consider the parametric regularity of the diffusion coefficient. We will show that
its derivatives exhibit a decay, which directly corresponds to the decay of the vector
field’s Karhunen–Loève expansion. In the following, we use the notation

~s~ := ‖s‖L∞Py (�;L∞(D;R)) = ess sup
y∈�

ess sup
x∈D

∣∣s(x,y)
∣∣,

~v~d := ‖v‖L∞Py (�;L∞(D;Rd)) = ess sup
y∈�

ess sup
x∈D

∥∥v(x,y)
∥∥

2
,

~M~d×d := ‖M‖L∞Py (�;L∞(D;Rd×d)) = ess sup
y∈�

ess sup
x∈D

∥∥M(x,y)
∥∥
F

for s ∈ L∞Py

(
�;L∞(D;R)

)
, v ∈ L∞Py

(
�;L∞(D;Rd)

)
, and M ∈ L∞Py

(
�;L∞(D;Rd×d)

)
.

We will further make extensive use of the following straightforward result.

Lemma 4.1. Given v,w ∈ L∞Py

(
�;L∞(D;Rd)

)
, we have

�

�vTw
�

� ≤ ~v~d~w~d and
�

�vTv
�

� = ~v~
2
d

as well as

�

�vwT
�

�

d×d ≤ ~v~d~w~d and
�

�vvT
�

�

d×d = ~v~
2
d.
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In this section, we assume that the vector field V is given by a finite rank
Karhunen–Loève expansion, i.e.,

V(x,y) = ψ0(x) +

M∑
k=1

σkψk(x)yk.

If necessary this can be attained by appropriate truncation; see Lemma A.3 for a
proof of this statement.

We shall now provide regularity estimates for the different terms in (3).

Lemma 4.2. Let B be defined as B(x,y) := V(x,y)VT(x,y). Then, we have for
all α ∈ NM0 that

�

�∂αy B
�

�

d×d ≤ 2a2
maxγ

α.

Proof. More verbosely, B is given by

B(x,y) =

(
ψ0(x) +

M∑
k=1

σkψk(x)yk

)(
ψ0(x) +

M∑
k=1

σkψk(x)yk

)T

,

from which we can derive the first order derivatives, yielding

(9)

∂yiB(x,y) = σiψi(x)

(
ψ0(x) +

M∑
k=1

σkψk(x)yk

)T

+

(
ψ0(x) +

M∑
k=1

σkψk(x)yk

)
σiψ

T
i (x),

and from those also the second order derivatives. They are given by

(10) ∂yj∂yiB(x,y) = σiψi(x)σjψ
T
j (x) + σjψj(x)σiψ

T
i (x).

Since the second order derivatives with respect to y are constant, all higher order
derivatives with respect to y vanish.

We obviously have ~B~d×d = ~V~
2
d ≤ a2

max. From (9) we can now derive the
bound

�

�∂yiB
�

�

d×d ≤ 2
�

�σiψi
�

�

d

�

�

�

�

�

ψ0 +

M∑
k=1

σkψkyk

�

�

�

�

�

d

≤ 2γiamax

and (10) leads us to
�

�∂yj∂yiB
�

�

d×d ≤ 2
�

�σiψi
�

�

d

�

�σjψj
�

�

d
≤ 2γiγj . Therefore, we have

�

�∂αy B
�

�

d×d ≤


a2

maxγ
α if |α| = 0,

2amaxγ
α if |α| = 1,

2γα if |α| = 2,

0 if |α| > 2,

and are finished since amax ≥ 1.

Lemma 4.3. Let us define C(x,y) := VT(x,y)V(x,y), D(x,y) :=
(
C(x,y)

)−1
,

and E(x,y) :=
√
C(x,y). Then, we know for all α ∈ NM0 that

~∂αyD~ ≤ |α|! 1

a2
min

(
2a2

max

a2
min log 2

)|α|
γα and ~∂αy E~ ≤ |α|!amax

(
2a2

max

a2
min log 2

)|α|
γα.
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1010 H. HARBRECHT, M. D. PETERS, AND M. SCHMIDLIN

Proof. The function C can be expressed as

C(x,y) =

(
ψ0(x) +

M∑
k=1

σkψk(x)yk

)T(
ψ0(x) +

M∑
k=1

σkψk(x)yk

)
,

which, by derivation, gives the following expressions for the first order derivatives,

(11)

∂yiC(x,y) = σiψ
T
i (x)

(
ψ0(x) +

M∑
k=1

σkψk(x)yk

)

+

(
ψ0(x) +

M∑
k=1

σkψk(x)yk

)T

σiψi(x).

Computing the second order derivatives then yields

(12) ∂yj∂yiC(x,y) = σiψ
T
i (x)σjψj(x) + σjψ

T
j (x)σiψi(x)

and all higher order derivatives with respect to y are zero, since the second order
derivatives with respect to y are already constant.

We use (4) to arrive at a2
min ≤ ~C~ = ~V~

2
d ≤ a2

max, which also yields

1

a2
max

≤ ~D~ ≤ 1

a2
min

and amin ≤ ~E~ ≤ amax.

Using (11) yields the bound

�

�∂yiC
�

� ≤ 2
�

�σiψi
�

�

d

�

�

�

�

�

ψ0 +

M∑
k=1

σkψkyk

�

�

�

�

�

d

≤ 2γiamax

and, from (12), we can derive the bound
�

�∂yj∂yiC
�

� ≤ 2
�

�σiψi
�

�

d

�

�σjψj
�

�

d
≤ 2γiγj .

Thus, we know that

�

�∂αy C
�

� ≤ 2a2
maxγ

α.

Because D = v◦C with v(x) = x−1 and E = w◦C with w(x) =
√
x are composite

functions, we employ the Faà di Bruno formula (see [7]), to compute their derivatives.
The rth derivative of v is given by

dr

dxr
v(x) = (−1)rr!x−1−r = (−1)rr!v(x)r+1

and the rth derivative of w is given by

dr

dxr
w(x) = crx

1
2−r = crw(x)v(x)r,

where cr :=
∏r−1
i=0

(
1
2 − i

)
. For n = |α| we thus arrive at

(13) ∂αyD(x,y) =

n∑
r=1

(−1)rr!D(x,y)r+1
∑
P (α,r)

α!

n∏
j=1

(
∂
βj
y C(x,y)

)kj
kj !(βj !)

kj
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UQ FOR PDEs WITH ANISOTROPIC RANDOM DIFFUSION 1011

and

(14) ∂αy E(x,y) =

n∑
r=1

crE(x,y)D(x,y)r
∑
P (α,r)

α!

n∏
j=1

(
∂
βj
y C(x,y)

)kj
kj !(βj !)

kj
,

where P (α, r) is a subset of integer partitions of a multiindex α into r nonvanishing
multi-indices, given by

P (α, r) :=

{(
(k1,β1), . . . , (kn,βn)

)
∈
(
N0 × NM0

)n
:

n∑
j=1

kjβj = α,

n∑
j=1

ki = r,

and there exists 1 ≤ s ≤ n : kj = 0 and βj = 0 for all 1 ≤ j ≤ n− s,

kj > 0 for all n− s+ 1 ≤ j ≤ n and 0 ≺ βn−s+1 ≺ · · ·βn

}
.

The relation β ≺ β′ for multi-indices β,β′ ∈ NM0 means that either |β| < |β′| or, when
|β| = |β′|, there exists 0 ≤ k < m such that β1 = β′1, . . . , βk = β′k and βk+1 < β′k+1.

Taking the norm of (13) and (14) leads us to

�

�∂αyD
�

� ≤
n∑
r=1

r!~D~
r+1

∑
P (α,r)

α!

n∏
j=1

�

�∂
βj
y C

�

�

kj

kj !(βj !)
kj

≤
n∑
r=1

r!

(
1

a2
min

)r+1 ∑
P (α,r)

α!

n∏
j=1

(
2a2

maxγ
βj
)kj

kj !(βj !)
kj

= γα
n∑
r=1

r!

(
1

a2
min

)r+1 (
2a2

max

)r ∑
P (α,r)

α!

n∏
j=1

1

kj !(βj !)
kj

and

�

�∂αy E
�

� ≤
n∑
r=1

|cr|~E~~D~
r
∑
P (α,r)

α!

n∏
j=1

�

�∂
βj
y C

�

�

kj

kj !(βj !)
kj

≤
n∑
r=1

|cr|amax

(
1

a2
min

)r ∑
P (α,r)

α!

n∏
j=1

(
2a2

maxγ
βj
)kj

kj !(βj !)
kj

= γα
n∑
r=1

|cr|amax

(
1

a2
min

)r (
2a2

max

)r ∑
P (α,r)

α!

n∏
j=1

1

kj !(βj !)
kj
.

Since we know from [7] that∑
P (α,r)

α!

n∏
j=1

1

kj !(βj !)
kj

= Sn,r,

where Sn,r denotes the Stirling numbers of the second kind (see [1]), and that |cr| ≤ r!,
we can obtain

�

�∂αyD
�

� ≤ 1

a2
min

γα
n∑
r=1

r!

(
2a2

max

a2
min

)r
Sn,r ≤

1

a2
min

(
2a2

max

a2
min

)|α|
γα

n∑
r=1

r!Sn,r
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1012 H. HARBRECHT, M. D. PETERS, AND M. SCHMIDLIN

and

�

�∂αy E
�

� ≤ amaxγ
α

n∑
r=1

r!

(
2a2

max

a2
min

)r
Sn,r ≤ amax

(
2a2

max

a2
min

)|α|
γα

n∑
r=1

r!Sn,r.

Because
∑n
r=1 r!Sn,r equals the nth ordered Bell number, we can bound it (see [5]),

by

n∑
r=1

r!Sn,r ≤
n!

(log 2)n
.

This implies the assertion.

By combining the previous two lemmas, we derive the following result.

Lemma 4.4. We define F by

F(x,y) :=
V(x,y)VT(x,y)

VT(x,y)V(x,y)
.

Then, we have for all α ∈ NM0 that

�

�∂αy F
�

�

d×d ≤ |α|!
6a2

max

a2
min

(
2a2

max

a2
min log 2

)|α|
γα.

Proof. We can equivalently state F as F(x,y) = D(x,y)B(x,y). Then, by ap-
plying the Leibniz rule, we arrive at

∂αy F(x,y) =
∑
β≤α

(
α

β

)(
∂βyD(x,y)

)(
∂α−βy B(x,y)

)
.

Taking the norm and using the bounds from Lemmas 4.2 and 4.3 lead us to

�

�∂αy F
�

�

d×d ≤
∑
β≤α

(
α

β

)
�

�∂βyD
�

�

�

�∂α−βy B
�

�

d×d

≤
∑
β≤α

(
α

β

)
|β|! 1

a2
min

(
2a2

max

a2
min log 2

)|β|
γβ2a2

maxγ
α−β

≤ 2a2
max

a2
min

(
2a2

max

a2
min log 2

)|α|
γα

∑
β≤α

(
α

β

)
|β|!.

Last, the combinatorial identity

(15)
∑
β≤α
|β|=j

(
α

β

)
=

(
|α|
j

)

yields the bound

∑
β≤α

(
α

β

)
|β|! =

|α|∑
j=0

j!
∑
β≤α
|β|=j

(
α

β

)
=

|α|∑
j=0

j!

(
|α|
j

)
= |α|!

|α|∑
k=0

1

k!
≤ 3|α|!.D
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UQ FOR PDEs WITH ANISOTROPIC RANDOM DIFFUSION 1013

Gathering all the regularity estimates for the different terms in (3) gives us the regu-
larity of the diffusion matrix A.

Theorem 4.5. The derivatives of the diffusion matrix A defined in (3) satisfy

�

�∂αy A
�

�

d×d ≤ (|α|+ 1)!(2amax)
6a2

max

a2
min

(
2a2

max

a2
min log 2

)|α|
γα

for all α ∈ NM0 with |α| ≥ 1.

Proof. We can state A as A(x,y) = aI +E(x,y)F(x,y)− aF(x,y), which, with
the Leibniz rule, yields

∂αy A(x,y) =
∑
β≤α

(
α

β

)(
∂βyE(x,y)

)(
∂α−βy F(x,y)

)
− a∂αy F(x,y).

Then, by taking the norm and inserting the bounds from Lemmas 4.3 and 4.4, we
arrive at

�

�∂αy A
�

�

d×d ≤
∑
β≤α

(
α

β

)
�

�∂βyE
�

�

�

�∂α−βy F
�

�

d×d + amax

�

�∂αy F
�

�

d×d

≤
∑
β≤α

(
α

β

)
|β|!amax

(
2a2

max

a2
min log 2

)|β|
γβ

× |α− β|! 6a
2
max

a2
min

(
2a2

max

a2
min log 2

)|α−β|
γα−β

+ |α|!amax
6a2

max

a2
min

(
2a2

max

a2
min log 2

)|α|
γα

≤ amax
6a2

max

a2
min

(
2a2

max

a2
min log 2

)|α|
γα

∑
β≤α

(
α

β

)
|β|!|α− β|!

+ amax
6a2

max

a2
min

(
2a2

max

a2
min log 2

)|α|
γα|α|!.

Finally, the combinatorial identity (15) yields (see, e.g., [12]),

∑
β≤α

(
α

β

)
|β|!|α− β|! = (|α|+ 1)!.

If we now define the modified sequence µ = (µk)k∈N0
as

µk :=
4a2

max

a2
min log 2

γk and also cA := (2amax)
6a2

max

a2
min

,

we can summarize the results attained so far by2

�

�∂αy A
�

�

d×d ≤ |α|!cAµ
α.

2Note that the additional factor of 2 in µk removes the factor |α|+1 from the factorial expression,
since we know that 2|α| ≥ |α|+ 1.
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4.2. Parametric regularity of the solution. Next, we show that the decay
rates of the diffusion coefficient’s derivatives carry over to the solution’s derivatives.

Theorem 4.6. For almost every y ∈ �, the derivatives of the solution u(y) of
(8) satisfy

∥∥∂αy u(y)
∥∥
H1(D)

≤ |α|!µα

(
amax

aminc2V
max

{
2cA, ‖f‖H̃−1(D) + ‖g‖H−1/2(ΓN )

})|α|+1

.

Proof. By differentiation of the variational formulation (8) with respect to y we
arrive, for arbitrary v ∈ V , at(

∂αy
(
A(y)∇x u(y)

)
,∇x v

)
L2(D;Rd)

= 0.

Applying the Leibniz rule on the left-hand side yields∑
β≤α

(
α

β

)
∂α−βy A(y)∂βy ∇x u(y),∇x v


L2(D;Rd)

= 0.

Then, by rearranging and using the linearity of the gradient, we find∫
D

〈
A(y)∇x ∂

α
y u(y),∇x v

〉
dx = −

∑
β<α

(
α

β

)∫
D

〈
∂α−βy A(y)∇x ∂

β
yu(y),∇x v

〉
dx.

We now choose v = ∂αy u(y) and employ the coercivity as well as the bound from
Theorem 4.5. This results in

aminc
2
V

∥∥∂αy u(y)
∥∥2

H1(D)
≤ −

∑
β<α

(
α

β

)∫
D

〈
∂α−βy A(y)∇x ∂

β
yu(y),∇x ∂

α
y u(y)

〉
dx

≤
∑
β<α

(
α

β

)
�

�∂α−βy A
�

�

d×d

∥∥∂βyu(y)
∥∥
H1(D)

∥∥∂αy u(y)
∥∥
H1(D)

≤
∑
β<α

(
α

β

)
|α− β|!cAµα−β∥∥∂βyu(y)

∥∥
H1(D)

∥∥∂αy u(y)
∥∥
H1(D)

,

from which we derive∥∥∂αy u(y)
∥∥
H1(D)

≤ c

2

∑
β<α

(
α

β

)
|α− β|!µα−β∥∥∂βyu(y)

∥∥
H1(D)

,

where

c :=
amax

aminc2V
max

{
2cA, ‖f‖H̃−1(D) + ‖g‖H−1/2(ΓN )

}
.

We note that, by the definition of c, we have c ≥ 2 and, furthermore, because of
Lemma 3.2, we also have that

∥∥u(y)
∥∥
H1(D)

≤ c, which means that the assertion is

true for |α| = 0.
Thus, we can use an induction over |α| to prove the hypothesis∥∥∂αy u(y)

∥∥
H1(D)

≤ |α|!µαc|α|+1
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UQ FOR PDEs WITH ANISOTROPIC RANDOM DIFFUSION 1015

for |α| > 0. Let the assertions hold for all α which satisfy |α| ≤ n−1 for some n ≥ 1.
Then, we know for all α with |α| = n that

∥∥∂αy u(y)
∥∥
H1(D)

≤ c

2

∑
β<α

(
α

β

)
|α− β|!µα−β∥∥∂βyu(y)

∥∥
H1(D)

≤ c

2
µα

∑
β<α

(
α

β

)
|α− β|!|β|!c|β|+1

=
c

2
µα

n−1∑
j=0

∑
β<α
|β|=j

(
α

β

)
|α− β|!|β|!c|β|+1.

Making use of the combinatorial identity (15) yields

∥∥∂αy u(y)
∥∥
H1(D)

≤ c

2
µα

n−1∑
j=0

(
|α|
j

)
(|α| − j)!j!cj+1

=
c

2
|α|!µαc

n−1∑
j=0

cj ≤ c

2
|α|!µαc

c|α|

c− 1
≤ c

2(c− 1)
|α|!µαc|α|+1.

Now, since c ≥ 2, we have c ≤ 2(c− 1) and, hence, also∥∥∂αy u(y)
∥∥
H1(D)

≤ |α|!µαc|α|+1.

This completes the proof.

4.3. Numerical quadrature in the parameter. Because of the regularity
estimates shown before, we can refer to [13, Lemma 7], which is a straightforward
consequence from the results in [21], for the convergence rate of the quasi-Monte
Carlo method (QMC) based on the Halton points. Therefore, assuming that there is
an ε > 0 such that γk ≤ ck−3−ε for some constant c > 0, we can conclude that, for
any δ > 0, there is a constant Cδ such that∥∥∥∥∥E[u]− 1

N

N∑
i=1

u(2ξi − 1)

∥∥∥∥∥
H1(D)

≤ CδNδ−1.

A similar result also accounts for the variance V[u]; see, e.g., [14].
For the sparse grid (SG) quadrature, assume that γk ≤ ck−r−1 for some constants

c, r > 0. Then, the anisotropic sparse Gauss–Legendre quadrature on level q with
N(q) points satisfies the error estimate∥∥E[u]−Aw(q,M)u

∥∥
H1

0 (D)
≤ CN(q)−r/(2 log logM)‖u‖C(�;H1

0 (D))

with a constant C > 0; see [10]. Herein, we have wk := log
(

1
kγk

+
√

1 + 1/(kγk)2
)

(see, e.g., [4]), and

Aw(q,M) :=
∑

α∈Yw(q,M)

cw(α)Qα with cw(α) :=
∑

β∈{0,1}M
〈α+β,w〉≤q

(−1)|β|,D
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where Qα denotes the tensor product Gauss–Legendre quadrature operator of degree
dα/2e.3 The set Yw(q,M) is given according to

Yw(q,M) :=
{
α ∈ NM0 : q − ‖w‖1 ≤ 〈α,w〉 ≤ q

}
.

With similiar arguments as in [14], the convergence result again carries over to V[u].

5. Numerical results. We will now consider two examples of the model prob-
lem (1) with a diffusion coefficient of form (3) using the unit cube D := (0, 1)3 as the
domain of computation. In both examples, we set the global strength a to a := 0.12
and, for convenience, segment the boundary ∂D into three disjoint parts:

Γ0 := {1} × (0, 1)× (0, 1),

Γ1 := {0} × (0, 1)× (0, 1), and

Γ2 := ∂D \ (Γ0 ∪ Γ1).

Moreover, we choose the description of V to be defined by E[V](x) :=
[
1 0 0

]T
and

Cov[V](x,x′) := 0.01 exp

(
−
∥∥x− x′

∥∥2

2

50

)1 0 0
0 9s2(x,x′) 0
0 0 9s3(x,x′)

 ,
where

sj(x,x
′) := 16 · xj(1− xj) · x′j(1− x′j).

The effect of the function sj is to suppress the covariance along the normal direction
on the boundary Γ2. Some samples of the normalized vector field V/‖V‖2 used for our
examples, which are computed on the level 3 discretization, are shown in Figure 8 as
stream traces. By their definition, the stream traces are tracing our notable diffusion
direction.

The numerical implementation is performed with aid of the problem-solving en-
vironment DOLFIN [17], which is a part of the FEniCS Project [17]. The Karhunen–
Loève expansion of the vector field V is computed by the pivoted Cholesky decompo-
sition; see [11, 12] for the details. For the finite element discretization, we employ a
sequence of triangulations Tl; subsequently, we will call the index l the level, yielded by
successive uniform refinement, i.e., cutting each tetrahedron into 8 tetrahedra. Level
0 consists of 6 · 23 = 48 tetrahedra. Then, we use elementwise constant functions and
the truncated pivoted Cholesky decomposition for the Karhunen–Loève expansion
approximation and continuous elementwise linear functions in space. The truncation
criterion for the pivoted Cholesky decomposition is that the relative trace error is
smaller than 10−4 · 4−l; see Table 1 for the resulting parameter dimensions M . Since
the exact solutions of the examples are unknown, the errors will have to be estimated.
Therefore, in this section, we will estimate the errors for levels 0 to 5 by substituting
the exact solution with the approximate solution computed on the level 6 triangula-
tion T6 using the QMC quadrature based on Halton points with 104 samples; e.g., we
approximate the error for the mean according to

3Note that the quadrature operator Aw(q,M) refers rather to the SG combination technique
than the actual SG quadrature operator.
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Table 1
The number of samples for the first six levels and the respective parameter dimensions.

l 0 1 2 3 4 5

NQMC
l 10 24 57 135 320 762

NSG
l 1 7 29 87 265 909

NMC
l 1 4 16 64 256 1024

M 16 24 28 34 44 53

∥∥∥∥∥E[u]− 1

NQMC
l

NQMC
l∑
i=1

ul(2ξi − 1)

∥∥∥∥∥
H1(D)

≈

∥∥∥∥∥ 1

104

104∑
i=1

u6(2ξi − 1)− 1

NQMC
l

NQMC
l∑
i=1

ul(2ξi − 1)

∥∥∥∥∥
H1(D)

and

∥∥E[u]−Aw(ql,M)ul
∥∥
H1(D)

≈
∥∥∥∥ 1

104

104∑
i=1

u6(2ξi − 1)−Aw(ql,M)ul

∥∥∥∥
H1(D)

,

where ul is the finite element approximation on the triangulation Tl.
For every level, we also define the number of samples used by the different quadra-

ture methods. For the QMC method based on Halton points, we choose

NQMC
l :=

⌈
2l/(1−δ) · 10

⌉
with δ := 0.2; see Table 1 for the resulting values of Nl. For the SG quadrature, we set
ql = 2l+2. Based on these choices, we expect to see an asymptotic rate of convergence
of 2−l in the H1-norm for the mean and in the W 1,1-norm for the variance; see, again,
Table 1 for the resulting values of NSG

l := N(ql). As a validation for the reference
solution, we consider here also the convergence of a Monte Carlo (MC) quadrature,
using NMC

l := 4l samples on the level l, with respect to this reference. Note that to
obtain an approximation for the mean square error, we average five realizations of the
MC estimator.

5.1. Example. In the first example, we set the source to f(x) ≡ 1 and consider
homogeneous Dirichlet data, i.e., we set ΓD = Γ0 ∪ Γ1 ∪ Γ2 and ΓN = ∅.

Visualizations of the reference solution’s mean and variance are shown in Figure 2.
Note that, to enable a view of the inside, all data with coordinates [x1, x2, x3]T such
that x2 + x3 > 1 are clipped.

Figures 3 and 4 show the estimated errors of the solution’s mean on the left-hand
side and of the solution’s variance on the right-hand side, each versus the discretization
level for the different quadrature methods. As expected, each of the quadrature
methods achieves the predicted rate of convergence; however, QMC and SG provide
slightly better errors in the case of the variance.

5.2. Example. The data in this example are given as follows. We remove the
source, i.e., f(x) ≡ 0, and consider
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Fig. 2. Mean and variance of the solution.
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Fig. 3. H1-error in the mean.
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Fig. 4. W 1,1-error in the variance.

ΓN := Γ0 ∪ Γ1 with g(x) :=

{
1, x ∈ Γ0,

−1, x ∈ Γ1,

and ΓD := Γ2.
The respective visualizations of the reference solution’s mean and variance are

depicted in Figure 5.
Figures 6 and 7 exhibit the estimated errors of the solution’s mean on the left-hand

side and of the solution’s variance on the right-hand side, each versus the discretization
level for the different quadrature methods. Again, each of the quadrature methods
achieves the predicted rate of convergence. As in the previous example, QMC and
SG provide slightly better errors in the case of the variance.

6. Conclusion. In this article, we have introduced the diffusion coefficient (3)
that may be used to model anisotropic diffusion that has a notable direction of dif-
fusion with an associated strength, both of which are considered to be subject to
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Fig. 5. Mean and variance of the solution.
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Fig. 7. W 1,1-error in the variance.

uncertainty; this is encoded by the vector field V. While this type of diffusion coef-
ficient does not model all possible anisotropic diffusion coefficients, it can be used to
model both diffusion in media that consist of thin fibers or thin sheets, given that ei-
ther the diffusion between the fibers or in the sheets is isotropic with a global strength
that is not subject to uncertainty.

We derived, based on the decay of the Karhunen–Loève expansion of V, related
decay rates for the solution’s derivatives; given a sufficiently fast decaying Karhunen–
Loève expansion, this regularity then provides dimension independent convergence
when considering the QMC quadrature to approximate quantities of interest that
require the integration of the solution with respect to the random parameter. Fur-
thermore, it also allows the use of other quadrature methods like the anisotropic SG
quadrature which has been considered in the numerical experiments. The numerical
results corroborate the theoretical findings.
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Fig. 8. Stream traces of some samples of the vector field V/‖V‖2 used for the examples.
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Last, note that the model for the diffusion coefficient may, for example, be gen-
eralized to

A(x, ω) := a(x, ω)I +
(∥∥V(x, ω)

∥∥
2
− a(x, ω)

)V(x, ω)VT(x, ω)

VT(x, ω)V(x, ω)

without affecting regularity. With this type of diffusion coefficient, the diffusion per-
pendicular to the fibers is still isotropic at any point in the domain. However, it may
depend on the particular location and also be subjected to uncertainty. We especially
note that for two spatial dimensions this generalization already models all types of
random anisotropic diffusion coefficients.

Appendix.

Lemma A.1. We have img(C) ⊂ L∞(D;Rd). This implies that ψk ∈ L∞(D;Rd)
and, as a consequence, also Yk(ω) ∈ L∞P (Ω).

Proof. For almost every x ∈ D, we know that Cov[V](x, ·) ∈ L∞(D;Rd×d), where
we clearly have∥∥Cov[V](x, ·)

∥∥
L∞(D;Rd×d)

≤
∥∥Cov[V]

∥∥
L∞(D;L∞(D;Rd×d))

.

Thus, we can calculate for almost every x ∈ D that∥∥(Cu)(x)
∥∥

2
≤
∫
D

∥∥Cov[V](x,x′)u(x′)
∥∥

2
dx′

≤
∫
D

∥∥Cov[V](x,x′)
∥∥
F

∥∥u(x′)
∥∥

2
dx′

≤
∥∥Cov[V]

∥∥
L∞(D;L∞(D;Rd×d))

√
|D|‖u‖L2(D;Rd)

and conclude that ‖Cu‖L∞(D;Rd) ≤
∥∥Cov[V]

∥∥
L∞(D;L∞(D;Rd×d))

√
|D|‖u‖L2(D;Rd).

Lemma A.2. The representation (6) also converges in L∞P
(
Ω;L∞(D;Rd)

)
.

Proof. We define

VM (x,y) := E[V](x) +

M∑
k=1

σkψk(x)yk.

Since L∞Py

(
�;L∞(D;Rd)

)
is complete, it suffices to show that (VM )M∈N is a Cauchy

sequence in L∞Py

(
�;L∞(D;Rd)

)
. Let M ≤M ′ be two indices; then we have

∥∥VM ′ −VM
∥∥
L∞Py (�;L∞(D;Rd))

=

∥∥∥∥∥
M ′∑

k=M+1

σkψkyk

∥∥∥∥∥
L∞Py (�;L∞(D;Rd))

≤
M ′∑

k=M+1

∥∥σkψk∥∥L∞(D;Rd)

∥∥yk∥∥L∞Py (�;R)

≤
M ′∑

k=M+1

γk ≤
∞∑

k=M+1

γk.

Thus, since γ ∈ `1(N0), we know that
∥∥VM ′ −VM

∥∥
L∞Py (�;L∞(D;Rd))

M,M ′→∞−−−−−−−→ 0 and

so (VM )M∈N is a Cauchy sequence in L∞Py

(
�;L∞(D;Rd)

)
.
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Lemma A.3. The condition (4) is satisfied by any truncation of the Karhunen–
Loève expansion with a large enough M .

Proof. Recall the definition

VM (x,y) := E[V](x) +

M∑
k=1

σkψk(x)yk.

Clearly, for any M we have that

�

�VM
�

�

d
=

�

�

�

�

�

E[V] +

M∑
k=1

σkψkyk

�

�

�

�

�

d

=

�

�

�

�

�

ψ0 +

M∑
k=1

σkψkyk

�

�

�

�

�

d

≤
�

�ψ0

�

�

d
+

M∑
k=1

�

�σkψkyk
�

�

d
≤

M∑
k=0

γk ≤
∞∑
k=0

γk <∞,

since γ ∈ `1(N0). Then, because of

ess inf
y∈�

ess inf
x∈D

∥∥VM (x,y)
∥∥

2
= ess inf

y∈�
ess inf
x∈D

∥∥∥∥∥E[V](x) +

M∑
k=1

σkψk(x)yk

∥∥∥∥∥
2

= ess inf
y∈�

ess inf
x∈D

∥∥∥∥∥V(x,y)−
∞∑

k=M+1

σkψk(x)yk

∥∥∥∥∥
2

≥ ess inf
y∈�

ess inf
x∈D

‖V‖2 −

�

�

�

�

�

∞∑
k=M+1

σkψk(x)yk

�

�

�

�

�

d

≥ amin −
∞∑

k=M+1

γk

for any M that fulfils
∑∞
k=M+1 γk < amin, we can find constants with which VM

satisfies the condition (4). Since γ ∈ `1(N0) implies that
∑∞
k=M+1 γk

M→∞−−−−→ 0 , we
see that

∑∞
k=M+1 γk < amin is fulfilled for sufficiently large M .
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