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Mutations in LAMA2 cause a severe form of congenital muscular dystrophy, called

MDC1A. Studies in mouse models have shown that transgenic expression of a

designed, miniaturized form of the extracellular matrix molecule agrin

(‘mini-agrin’) or apoptosis inhibition by either overexpression of Bcl2 or appli-

cation of the pharmacological substance omigapil can ameliorate the disease.

Here, we tested whether mini-agrin and anti-apoptotic agents act on different

pathways and thus exert additive benefits in MDC1A mouse models. By com-

bining mini-agrin with either transgenic Bcl2 expression or oral omigapil appli-

cation, we show that the ameliorating effect of mini-agrin, which acts by

restoring the mechanical stability of muscle fibres and, thereby, reduces muscle

fibre breakdown and concomitant fibrosis, is complemented by apoptosis inhibi-

tors, which prevent the loss of muscle fibres. Treatment of mice with both agents

results in improved muscle regeneration and increased force. Our results show

that the combination of mini-agrin and anti-apoptosis treatment has beneficial

effects that are significantly bigger than the individual treatments and suggest

that such a strategy might also be applicable to MDC1A patients.
INTRODUCTION

Laminin-a2-deficient congenital muscular dystrophy (MDC1A)

is the most prevalent form of congenital muscular dystrophies.

Patients suffer from severe muscle degeneration often leading to

death in early childhood. Moreover, the disease is accompanied

by a rather mild neuropathy that is based on the demyelination

of the peripheral nerve (Miyagoe-Suzuki et al, 2000; Tome &

Fardeau, 1998). On the cellular level, muscles of MDC1A

patients are characterized by marked variation in muscle fibre

size, extensive fibrosis and proliferation of adipose tissue.

MDC1A is caused by mutations in LAMA2, the gene that

encodes the laminin-a2 chain, which is an important compo-

nent of the extracellular matrix of skeletal and heart muscle as
ity of Basel Kantons-
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well as peripheral nerve. In muscle, the most prevalent form of

laminin that contains laminin-a2 is laminin-211 (LM-211), a

heterotrimer consisting of the a2, the b1 and the g1 chain. LM-

211 is tightly attached to the basement membrane and interacts

with a-dystroglycan and a7b1 integrin expressed on the muscle

fibre surface (Colognato & Yurchenco, 2000). Laminin-a2

deficiency, therefore, disrupts the mechanical linkage between

the basement membrane and the muscle fibre. In addition, there

is evidence that the lack of LM-211 prevents activation of several

signalling cascades (Langenbach & Rando, 2002; Laprise et al,

2003). Although skeletal muscle fibres of MDC1A patients and

mouse models thereof show increased levels of LM-411, the

a4 chain seems not to be sufficient to fully compensate for the

loss of LM-211. The reason for this lack of compensation might

be the failure of LM-411 to induce laminin self-polymerization

and to bind to a-dystroglycan (Colognato & Yurchenco, 1999).

Despite the knowledge of molecular events underlying the

disease, there are no treatments available to date (Collins &

Bonnemann, 2010). Because the formation of basal lamina and

receptor-mediated signalling are important in the maintenance

of muscle, impairment of those functions probably determines
� 2011 EMBO Molecular Medicine 465
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the severity of MDC1A. Consequently, several mechanisms

contribute to the pronounced muscle wasting observed in

MDC1A. First, the lack of extracellular matrix–cytoskeletal

linkage and/or intracellular signalling results in the inability of

muscle fibres to withstand the mechanical forces imposed on

them during contraction and leads to their degeneration.

Secondly, regeneration of skeletal muscle after injury has been

shown to be abortive in mouse models for MDC1A (Bentzinger

et al, 2005; Kuang et al, 1999; Meinen et al, 2007). Thirdly,

apoptosis of myofibres was shown to contribute to the

dystrophic phenotype of MDC1A mouse models (Bentzinger

et al, 2005; Kuang et al, 1999; Miyagoe et al, 1997).

Agrin is an extracellular matrix molecule that is well known

for its function to induce postsynaptic specializations at the

neuromuscular junction (Bezakova & Ruegg, 2003). Alterna-

tively spliced forms of agrin that are expressed in non-neuronal

tissue, including muscle, lack this postsynapse-inducing activity

but bind with very high affinity to laminins via their N-terminal

end (Denzer et al, 1997) and to a-dystroglycan via their C-

terminal part (Gesemann et al, 1998). These binding data

indicate that agrin could potentially link LM-411 to a-

dystroglycan and thus reverse the structural deficit of MDC1A

muscle. Indeed, preclinical proof-of-concept studies in dyW/dyW

mice, a well-characterized mouse model for MDC1A (Kuang et

al, 1998b), have shown that overexpression of a miniaturized

form of agrin (calledmini-agrin) in skeletal muscle increased the

tolerance of muscle to mechanical load and improved

regeneration of muscle (Bentzinger et al, 2005; Moll et al,

2001) at any stage of the disease (Meinen et al, 2007). Mini-agrin

was also successfully delivered to skeletal muscles by systemic

application of adeno-associated viral vectors (Qiao et al, 2005).

Despite strong improvement, transgenic expression of mini-

agrin did not remove all of the disease symptoms. The main

reason for this is probably the lack of expression of mini-agrin in

peripheral nerve and in the central nervous system, but only

partial restoration of muscle function may also contribute. For

example, mini-agrin is not known to bind to integrins and thus,

any function mediated by the binding of LM-211 to integrins

cannot be compensated for. Indeed, laminin interactions with

integrins were shown to activate several pathways that prevent

apoptosis (Burkin & Kaufman, 1999; Kuang et al, 1998a, 1998b;

Laprise et al, 2002; Vachon et al, 1996, 1997). Interestingly,

muscle-specific overexpression of the apoptosis inhibitor Bcl2

(Dominov et al, 2005) or deletion of the pro-apoptotic factor Bax

(Girgenrath et al, 2004) significantly improved the dystrophic

phenotype and muscle function, and prolonged lifespan in

MDC1A mice. Moreover, the apoptosis inhibitors doxycycline

and omigapil have been shown to affect disease course in

dyW/dyW mice (Erb et al, 2009; Girgenrath et al, 2009). Because

mutations in LAMA2 cause a multitude of phenotypes that are

based on LM-211 affecting multiple pathways, we now

examined whether a combined treatment exerts additional

benefits and could increase treatment efficacy.

In a first ‘proof-of-concept’ study, we generated dyW/dyW

mice that overexpressed both mini-agrin and the apoptosis

inhibitor protein Bcl2 in skeletal muscle. In a step towards

application of a combined treatment, we also tested whether the
� 2011 EMBO Molecular Medicine
orally bioavailable apoptosis inhibitor omigapil (N(dibenz(b,f)-

oxepin-10-ylmethyl)-N-methyl-N-prop-2-ynylamine maleate),

when combined with mini-agrin, would add further benefit.

We report here that the combined treatment with mini-agrin and

apoptosis inhibitors indeed provides additive benefit to single

treatment on the disease progression in dyW/dyW mice. In

particular, we show that mini-agrin prevents muscle degenera-

tion due to mechanical load and thus reduces the replacement of

muscle with fibrotic tissue, whereas, inhibition of apoptosis

allows the muscle to maintain a near-normal number of fibres.

Together, apoptosis inhibitors and mini-agrin potentiate the

regeneration capacity and allow diseased muscle fibres to

increase in diameter. Most importantly, the dual treatment

resulted in a marked increase in muscle force.
RESULTS

Bcl2 and mini-agrin affect different parameters in muscle of

dyW/dyW mice

To see whether inhibition of apoptosis and stabilization of the

connection between basement membrane and muscle sarco-

lemma would have an additive benefit for the muscle disease,

we mated heterozygous dyW/wt mice with mice transgenic for

Bcl2 (Dominov et al, 2005; Girgenrath et al, 2004) or mini-agrin

(Moll et al, 2001). The resulting offsprings with the correct

genotype were then further mated to eventually obtain mice that

were deficient for laminin-a2 and transgenic for Bcl2 (called

dyW/Bcl), mini-agrin (dyW/mag) or both transgenes (dyW/Bcl/

mag). To assure that expression of all transgenes was not altered

by the genotype, protein levels were determined in the triceps

muscle frommice with the different genotypes. Indeed, Bcl2 and

mini-agrin were expressed at high levels in the transgenic mice

as determined by Western blot analysis (Fig S1A of Supporting

information).

To determine the effect of the transgenes on the muscle

pathology, we analysed the fast-twitch foreleg muscle triceps

brachii (Fig 1) and the slow-twitch hindlegmuscle soleus (Fig 2).

The latter becomes progressively paralysed in dyW/dyW mice as

a consequence of peripheral nerve demyelination (Kuang et al,

1998b). Haematoxylin & Eosin (H & E; Merck) and Masson’s

trichrome stainings of triceps muscle of 12- (Fig 1A) and 16-

week-old animals (Fig 1B) are shown. They revealed extensive

fibrosis and a high proportion of small, rounded fibres in

dyW/dyW mice (Fig 1A). Expression of mini-agrin (dyW/mag)

largely impeded the replacement of muscle with fibrotic tissue

while Bcl2 expression (dyW/Bcl) seemed to increase fibrosis in

dyW/dyW muscle (Fig 1A), a finding that was confirmed by

quantification of the relative fibrotic area (Fig 1C) and by

determining the amount of the collagen-specific amino acid

hydroxyproline, which is a measure of fibrosis (Fig S2A of

Supporting information). However, co-expression of mini-agrin

(dyW/Bcl/mag) eliminated the fibrotic impact of Bcl2 (Fig 1A

and C and Fig S2A of Supporting information). The high degree

of fibrosis in Bcl2 transgenic dyW/dyW mice coincided with a

strong increase in the number of macrophages in triceps of

dyW/Bcl mice (Fig S2C and D of Supporting information). Like
EMBO Mol Med 3, 465–479 www.embomolmed.org
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Figure 1. Histological analysis of triceps brachii muscle from 12- to 16-week-old mice.

A. H & E and Masson’s trichrome staining of cross-sections from 12-week old mice.

B. Masson’s trichrome staining from 16-week-old mice. Pathological changes observed in dyW/dyW mice, such as fibrosis, variation of muscle fibre diameters,

increase in small fibres and collagen-containing tissue (blue in Masson Trichrome staining), are reduced in dyW/mag and dyW/Bcl/mag mice but are similar or

stronger in dyW/Bcl mice.

C. Percentage of fibrotic area per triceps cross-section. Mini-agrin reduces (p¼ 0.007), whereas Bcl2 increases (p¼0.03) fibrosis in dyW/dyW muscle. Fibrosis is

comparable in dyW/mag and dyW/Bcl/mag muscles at 12- (p¼0.22) and at 16- (p¼ 0.14) weeks of age. N� 3�5.

D. Muscle fibre size distribution of 12-week-old mice. Values represent relative numbers of fibres in a given diameter class (5 mm/class). DyW/Bcl muscles contain

many more small fibres than dyW/dyW muscles. The fibre size distribution of dyW/Bcl/mag is shifted to smaller fibres compared to dyW/mag or control (ctrl)

muscles; N¼ 4.

E. Change in fibre size distribution from 12- to 16-week-old dyW/Bcl/mag and dyW/mag mice. Percentage of fibres with larger diameters increases from 12 to

16 weeks of age in dyW/Bcl/mag (arrows) but not in dyW/mag mice; N¼4.

F. Mean fibre diameter. The size of dyW/Bcl/mag fibres increases from 12 to 16 weeks of age (two-way ANOVA: p¼0.02) and becomes similar to the mean fibre

size in dyW/mag muscle (p¼ 0.22); N¼ 4.

G. Muscle area (mm2) of mid-belly triceps cross-sections. Control muscle has nearly twice the size compared to all the other genotypes at 12 weeks of age.

Although not significantly different over all time points (two-way ANOVA: p¼0.058), muscle area of dyW/Bcl/mag mice increases from 12 to 16 weeks of age

(two-way ANOVA: p¼0.026) and becomes significantly larger than in dyW/mag mice (p¼0.03) at 16 weeks of age; N¼4.

H. Total number of fibres per triceps cross-section. At 12 weeks of age, dyW/dyW (p< 0.001) and dyW/mag (p¼ 0.001) muscles have a significantly reduced

number of fibres, whereas, the fibre number is near normal in dyW/Bcl (p¼0.8) and dyW/Bcl/mag (p¼ 0.08) mice. In 16-week-old dyW/Bcl/mag mice, the

number of fibres is similar to controls (p¼ 0.86). Two-way ANOVA analysis confirmed the normalization of the fibre number over all ages in dyW/Bcl/mag when

compared to dyW/mag muscle (p< 0.0001). Bcl2 expression did not increase the number of fibres on WT background (Bcl); N�3 �5. All values represent the

mean � SEM; N indicates the animal number per experimental group. p-Values are Student’s t-test (���p�0.001; ��p� 0.01; �p� 0.05; n.s. p> 0.05) or two-

way ANOVA if indicated (8p�0.05). Size bars ¼100 mm.
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Figure 2. Histological analysis of soleus muscle from 12-week-old mice.

A. H & E staining of soleus cross-sections. Whereas, mini-agrin reduces fibrosis (dyW/mag and dyW/Bcl/mag), small fibres are very frequent in dyW/Bcl muscle.

B. Percentage of fibrotic area in soleus cross-sections. Fibrosis is more prominent in dyW/Bcl than in dyW/dyW (p¼ 0.002) muscle. In dyW/mag and dyW/Bcl/mag

mice, fibrosis is similar (p¼0.49) and is lower compared to dyW/dyW muscle (dyW/mag: p¼0.004; dyW/Bcl/mag: p¼0.005); N� 3�4.

C. Muscle fibre size distribution. Values represent relative numbers of fibres in a given diameter class (5mm/class). None of the transgenes was able to normalize

the fibre size distribution; N¼ 4.

D. Muscle area (mm2) of mid-belly soleus cross-sections. Area is increased in dyW/Bcl/mag muscle compared to dyW/mag (p¼0.014) muscle; N�3� 4.

E. Total number of fibres per soleus cross-section. The number of fibres is increased in dyW/Bcl and dyW/Bcl/mag mice compared to dyW/dyW and dyW/mag mice.

The number of fibres in dyW/Bcl/mag mice reaches that found in WT controls, whereas, mini-agrin alone does not strongly influence fibre numbers; N� 3� 4. N

indicates the animal number per experimental group. p> 0.05). Size bars ¼100mm.

468
the fibrosis, inflammation was reduced by the co-expression of

mini-agrin. The same histological results were also obtained in

the soleusmuscle of 12-week-old mice (Fig 2A and B and Fig S2B

of Supporting information), indicating that the progressed

paralysis of the hindlegs did not affect fibrosis.

As respiratory insufficiency is one of the clinical symptoms of

MDC1A patients, we also examined the general histopathology

of the diaphragm by H & E staining (Fig S3A of Supporting

information) and measured fibrosis using the hydroxyproline

assay (Fig S3B of Supporting information). The diaphragm of 12-

week-old dyW/dyW mice was thin, fibrotic and showed a clearly

reduced fibre number per width when compared to the other

genotypes. Fibrosis was also prominent in the diaphragm of

dyW/Bcl mice. In dyW/mag and dyW/Bcl/mag mice, the

diaphragms were wider and less fibrotic. Moreover, the
� 2011 EMBO Molecular Medicine
phenotype did not significantly worsen between the age of 12

and 16 weeks (Fig S3A and B of Supporting information). These

results are largely the same as those obtained in triceps brachii

and soleus muscles.

Combined treatment with mini-agrin and Bcl2 enables the

dyW/dyW muscle to grow

Change in muscle fibre size distribution is a hallmark of MDC1A

and dyW/dyW mice. Expression of Bcl2 increased the number of

small fibres even further, both in triceps (Fig 1D) and soleus

(Fig 2C), whereas, expression of mini-agrin normalized the fibre

size distribution. Interestingly, co-expression of mini-agrin with

Bcl2 reversed the effect of Bcl2 alone and resulted in the

normalization of fibre size distribution in 16-week-old mice,

reaching the same profile as seen in dyW/mag mice (Fig 1E and
EMBO Mol Med 3, 465–479 www.embomolmed.org
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F). This normalization was also seen in the mean size of muscle

fibres (Fig 1F). In contrast to triceps muscle, no effect of mini-

agrin on muscle fibre size distribution was observed in soleus

muscle (Fig 2C). Because mini-agrin and Bcl2 are not expressed

in peripheral nerve (Dominov et al, 2005; Moll et al, 2001), the

paralysis of the hindlegs was not prevented at this age. Thus, the

small fibre size in transgenic mice is probably due to the atrophy

induced by the paralysis of the hindlegs.

During our analysis, we realized that the total area of mid-

belly cross-sections of triceps (Fig 1G) and soleus (Fig 2D)

muscle from 12-week-old dyW/dyWmice wasmuch smaller than

in age-matched controls. Overexpression of Bcl2, mini-agrin or

the combination of both caused a small but non-significant

increase in the cross-sectional area (CSA; Fig 1G and Fig 2D).

Interestingly, when mini-agrin was co-expressed with Bcl2, this

trend to increase the CSA became significant in triceps muscle

from 16-week-old mice (Fig 1G). Because of the peripheral

neuropathy that causes a progressive atrophy of the hindleg

muscles in dyW/dyW (Miyagoe-Suzuki et al, 2000) as well as in

dyW/Bcl, dyW/mag and dyW/Bcl/mag mice, this effect was not

examined in soleus muscles from 16-week-old mice. However,

the results obtained from triceps indicate that muscle of

dyW/Bcl/mag mice has the capability to grow.

Bcl2 enables the maintenance of the original muscle fibre

number in dyW/dyW mice

Next, we tested whether the change in muscle area was due to

changes in the total number of muscle fibres.While 12-week-old

dyW/dyW and dyW/mag mice contained about 40% fewer fibres

than controls (Fig 1H and 2E), the number of fibres was largely

normalized in dyW/Bcl and dyW/Bcl/mag mice, both in the

triceps (Fig 1H) and soleus muscle (Fig 2E). Moreover, the

number of fibres remained normal in the triceps of 16-week-old

dyW/Bcl/mag mice. Interestingly, Bcl2 expression on a wild-

type (WT) background (Bcl) did not increase the fibre number

(Fig 1H), suggesting that Bcl2-mediated inhibition of apoptosis

may allow the dyW/dyW muscle to maintain the original fibre

number, including the small fibres that would have disappeared

in the absence of Bcl2.

To verify the role of apoptosis in the loss of fibres in dyW/dyW

mice, we used TdT-mediated dUTP nick end labelling (TUNEL)

which recognizes nuclear in situ DNA-strand breaks that occur

in nuclei undergoing apoptosis. In dyW/dyW and dyW/mag

muscles, apoptotic TUNEL-positive muscle fibres could be

identified (Fig 3A, arrows) and represented 1.7 and 1% of all

fibres, respectively (Fig 3B). In contrast, no TUNEL-positive

myonuclei were found upon Bcl2 expression. The TUNEL-

positive nuclei detected in dyW/Bcl and dyW/Bcl/mag mice all

seemed to belong to non-muscle cells (Fig 3A, arrowheads).

Apoptosis has been suggested to increase during abortive

muscle regeneration in MDC1A patients (Hayashi et al, 2001)

and mouse models thereof (Bentzinger et al, 2005; Dominov et

al, 2005; Girgenrath et al, 2004; Kuang et al, 1999). To account

for this, we also counted the number of TUNEL-positive,

centrally localized myonuclei. Central nucleation has been

shown to be indicative of regenerative processes. As shown in

Fig 3C, triceps muscle from dyW/dyW and dyW/mag contained
www.embomolmed.org EMBO Mol Med 3, 465–479
more regenerating fibres that were TUNEL-positive than those

expressing Bcl2. These results indicate that Bcl2 largely prevents

the death of fibres both in normal and regenerating muscle,

which may maintain the number of fibres to the levels of control

mice.

Bcl2 enhances the regeneration efficiency in dyW/mag muscle

Besides its function in stabilizing muscle fibres during

contraction, LM-211 has also been shown to be important for

the successful regeneration of muscle (Bentzinger et al, 2005;

Kuang et al, 1999). In addition, regeneration is improved in dyW/

mag mice (Meinen et al, 2007). Regenerating muscle fibres

transiently express the developmental form of myosin heavy

chain (dMyHC; Novocastra, NCL-MHCd) and newly regenerated

fibres have their nuclei in the centre and not in the periphery.

Thus, the number of dMyHC-positive and centrally nucleated

fibres (CNF) is a measure of ongoing and successful regenera-

tion. To assess the role of apoptosis inhibition in the

regeneration process, we first counted the number of CNF in

the different mouse models. As shown earlier, the number of

CNF was increased in dyW/dyW mice due to ongoing muscle

degeneration when compared to WT controls (Fig 4A). Expres-

sion of Bcl2 resulted in a further threefold increase in the

number of CNF, suggesting that regeneration of muscle fibres is

more effective. Similarly, the number of CNF was increased in

dyW/mag mice compared to dyW/dyW but was lower than in

dyW/Bcl mice. This finding is consistent with the previous

interpretation that mini-agrin enables successful regeneration

but primarily prevents muscle degeneration by its linking of the

basement membrane to a-dystroglycan (Moll et al, 2001).

Interestingly, expression of both Bcl2 and mini-agrin resulted in

a further increase of the number of CNF in 12- and 16-week-old

mice compared to dyW/mag mice. To test for ongoing

regeneration, we also stained for dMyHC. As with CNF, the

number of dMyHC-positive fibres in triceps muscle was

several fold higher in dyW/Bcl than in dyW/dyW mice and the

effect of Bcl2 was also seen when combined with mini-agrin

(Fig 4B and C).

To follow muscle regeneration directly, we next injected the

myotoxin notexin into tibialis anterior muscle and examined

muscles over time. One week post-injection, regenerating

dMyHC-expressing fibres were rare and small in dyW/dyW

muscle while many fibres were dMyHC-positive in all the other

genotypes (Fig 4D). Strikingly, the regenerating fibres in

dyW/Bcl mice were very small and the muscle included large

regions with mononucleated cells and damaged tissue (Fig 4D,

asterisks). In contrast, regenerating fibres in dyW/mag and

dyW/Bcl/mag mice were rather large and reached a similar size

as in controls. Two weeks after notexin injection, the structure

of the entire muscle was re-built in dyW/mag, dyW/Bcl/mag and

control muscles, whereas, the muscle in dyW/Bcl and dyW/dyW

mice contained large fibrotic regions (asterisks) and the fibres

remained unconnected (Fig 4E and F). Thus, although the

muscle of dyW/Bcl mice shows early signs of a successful

regeneration, late steps in this process are not completed. In

contrast, these late steps are successfully completed if mice are

also transgenic for mini-agrin.
� 2011 EMBO Molecular Medicine 469
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Figure 3. Apoptosis in triceps brachii.

A. Apoptotic nuclei recognized by TUNEL staining (green, separately shown in the bottom row) of triceps brachii cross-sections from 12-week-old mice. Muscles

were counterstained with WGA (red) to visualize membranes and fibrotic areas and with DAPI (blue) to stain nuclei. Muscle fibres containing apoptotic nuclei

are found in dyW/dyW and to a lower extent in dyW/mag muscle (arrows). Apoptotic nuclei recognized in dyW/Bcl and dyW/Bcl/mag muscle reside outside of the

muscle fibres (arrowheads).

B. Relative number of the TUNEL-positive muscle fibres. Bcl2 expression inhibits apoptosis in muscle fibres of dyW/dyW (p¼0.004). Similarly, Bcl2 prevents

apoptosis in dyW/mag mice at 12 weeks (p� 0.001), at 16 weeks (p¼ 0.002) as well as over both ages (two-way ANOVA: p<0.0001); N� 3�4.

C. Percentage of centrally localized nuclei that undergo apoptosis. In dyW/dyW muscles almost 7% and in dyW/mag muscles 3.5% of the regenerating fibres are

TUNEL-positive. Apoptosis of regenerating fibres is strongly decreased by expression of Bcl2 in muscles of dyW/dyW (p¼ 0.02) and dyW/mag mice (12 weeks:

p¼0.03; 16 weeks: p¼ 0.04; two-way ANOVA over both ages: p¼0.0027); N�3� 4. All values represent the mean � SEM; N indicates the animal number per

experimental group. p-Values are Student’s t-test (���p� 0.001; ��p� 0.01; �p�0.05; n.s. p>0.05) or two-way ANOVA as noted above. Size bars¼ 50 mm.
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Effect of co-expression of Bcl2 and mini-agrin on behaviour

and survival in dyW/dyW mice

We next evaluated the effect of the different treatments on

overall health. As a single transgene, Bcl2 had a moderate but

significant effect on survival, whereas, mini-agrin tripled mean

survival compared to dyW/dyW mice (Fig 5A). Although mice

that expressed both mini-agrin and Bcl2 survived a little bit

longer than dyW/mag mice, the difference was not significant.

Bcl2 had also a small effect on body weight (Fig 5B), overall

health (Fig 5C), locomotory activity (Fig 5D) and grip strength

(Fig 5E). Compared to dyW/dyW mice, the effect of Bcl2 was

significant over all time points (see figure legend). Transgenic

expression of Bcl2 was also beneficial in dyW/mag mice in all

those paradigms and the effect was significant over all time
� 2011 EMBO Molecular Medicine
points for the body weight (Fig 5B) and the grip strength (Fig 5E)

but not for the locomotion (Fig 5D). Interestingly though,

locomotion reached significance at the last time point of

16 weeks (compare dyW/Bcl/mag with dyW/mag). Thus, these

data confirm previous work using Bcl2 (Dominov et al, 2005;

Girgenrath et al, 2004) but also show that the effect of mini-agrin

is much larger than that of Bcl2 and that the additional benefit

gained by co-expressing Bcl2 with mini-agrin is rather small and

becomes significant at the older age.

Muscle function is improved in dyW/Bcl/mag mice

To test directly whether the difference on grip strength reflected

an improvement in the force of muscles, we next measured the

contractile properties in isolated extensor digitorum longus
EMBO Mol Med 3, 465–479 www.embomolmed.org
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Figure 4. Spontaneous and injury-induced muscle regeneration.

A. Percentage of CNF. In dyW/dyW mice, only 9% of the muscle fibres are centrally nucleated, indicative of impaired regeneration. In dyW/mag muscle the

number of CNF is increased and is further elevated by co-expression of Bcl2 in both 12- and 16-week-old dyW/Bcl/mag mice (two-way ANOVA over all ages:

p<0.0001); N¼4.

B. Spontaneous muscle regeneration in 12-week-old muscles. Antibodies to dMyHC (green) and laminin-g1 (red) were used. DAPI (blue) visualizes nuclei. Only

few dMyHC-positive fibres are found in dyW/dyW mice. Some more dMyHC-positive fibres are present in dyW/mag (arrows) muscle, whereas, many more are

detected upon Bcl2 expression in dyW/Bcl and dyW/Bcl/mag (encircled areas).

C. Quantification of dMyHC-positive fibres. The number of dMyHC-positive fibres is highest in Bcl2 transgenic mice (dyW/Bcl and dyW/Bcl/mag) followed by

dyW/mag and dyW/dyW mice. Although not significant at 12 or 16 weeks of age (t-test), the increase of dMyHC-positive fibres in dyW/Bcl/mag compared to

dyW/mag muscles becomes significant when measured over all ages (two-way ANOVA: p¼ 0.022). No spontaneous regeneration was detected in control

muscles (ctrl); N� 4� 6.

D.–F. Regenerative response of tibialis anterior muscle of 6-week-old mice after notexin injection.

D. Muscle cross-sections were stained with antibodies to dMyHC (green) and laminin-g1 (red), and with the nuclear marker DAPI (blue) 1 week after notexin

injection. Only very few dMyHC-positive fibres are detected in dyW/dyW mice, while many muscle fibres are dMyHC-positive in dyW/Bcl, dyW/mag, dyW/Bcl/

mag and control (ctrl) mice. Note that muscle fibres in dyW/Bcl mice are small; N�4 �5.

E. Regeneration status of tibialis anterior 2 weeks after notexin injection. Antibodies to dMyHC (green), laminin-g1 (red) and the nuclear marker DAPI (blue)

were used. Absence of dMyHC-positive fibres and large areas devoid of laminin-g1 staining (asterisks) are indicators of the failed regeneration in dyW/dyW

and dyW/Bcl muscles. The presence of few dMyHC-positive fibres and the non-disrupted laminin-g1 staining indicate successful muscle regeneration in dyW/

mag, dyW/Bcl/mag and control mice; N�3� 4.

F. H & E staining of tibialis anterior 2 weeks after notexin injection shows the failure in regeneration leading to fibrosis in dyW/dyW and dyW/Bcl muscles

(asterisks) and the successful regeneration in dyW/mag, dyW/Bcl/mag and control mice; N� 3� 4. All values represent the mean� SEM; N indicates the

animal number per each experimental group. p-Values are Student’s t-test (���p� 0.001; ��p� 0.01; �p� 0.05; n.s. p>0.05) or two-way ANOVA as noted in

the text. Size bars ¼ 50mm.
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Figure 5. Survival and behaviour of mice.

A. Average survival (left panel) and Kaplan–Meier cumulative survival

plot (right panel). Average survival of dyW/dyW mice increases by 30%

upon Bcl2 expression (p¼0.02). Expression of mini-agrin triples the

mean survival time (p�0.001). In the few (N¼ 5) double transgenic

dyW/Bcl/mag mice tested, the survival was not prolonged compared

to dyW/mag mice; N¼35, 22, 8 and 5 for dyW/dyW, dyW/Bcl, dyW/mag

and dyW/Bcl/mag, respectively.

B. Body weight at the ages of 8, 12 and 16 weeks. Both transgenes

increase the body weight of dyW/dyW mice. Although the effect of Bcl2

is rather small in comparison to the effect exerted by mini-agrin, Bcl2

significantly elevates body weight in dyW/dyW mice over all time

points (two-way ANOVA: p<0.0001). In addition, Bcl2 expression

increases body weight over all ages in dyW/mag mice (two-way

ANOVA: p¼ 0.002); N�4 �11.

C. Overall health status of mice was judged by the assessment of

activity, appetite, posture, fur and eyes of 8, 12 and 16-week-old

mice. For details on the score sheet used see Materials and Methods

Section; N�4 �11.

D. Open-field locomotion during 10 min. Bcl2 expression delays the loss

of locomotory activity in dyW/dyW mice over all time points (two-way

ANOVA: p� 0.001) but does not reach the same efficacy as mini-agrin.

Although not significant over all time points (two-way ANOVA:

p¼ 0.28), locomotion becomes improved in 16-week-old dyW/Bcl/

mag when compared to dyW/mag mice (p¼0.048); N� 4� 11.

E. Grip strength was measured by placing the mice on a vertical grid.

The test was stopped after 180 s. DyW/Bcl mice are stronger than dyW/

dyW mice measured over all time points (two-way ANOVA: p¼ 0.005).

In 16-week-old dyW/mag mice, co-expression of Bcl2 prevents the

loss of grip strength (p�0.001). Over all time points, Bcl2 increased

the muscle strength of dyW/mag mice (two-way ANOVA: p¼ 0.014);

N� 4� 11. All values represent the mean � SEM; N indicates the

animal number per experimental group; p-values are Student’s t-test

(���p�0.001; ��p�0.01; �p�0.05; n.s. p> 0.05) or two-way ANOVA if

indicated (888p� 0.001; 88p� 0.01; 8p�0.05; n.s. p> 0.05).
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(EDL; Table 1, Fig 6A, C and E) and soleus (Table 1; Fig 6B, D

and F) muscles. To avoid falsification of the results by the

MDC1A-typical progressing hindleg paralysis (Miyagoe-Suzuki

et al, 2000), we analysed the muscles in young, 4-week-old

animals, when paralysis was not yet prominent and muscle

histology of dyW/mag mice was still largely indistinguishable

from control mice (Fig S4 of Supporting information). In both

muscles, the wet weight, optimal contraction length (L0), CSA

and the twitch-to-tetanus ratio (Pt/P0) increased from dyW/dyW,

dyW/Bcl, dyW/mag and dyW/Bcl/mag to control mice (Table 1).

There was some improvement in most of the parameters from

dyW/dyW to dyW/Bcl mice, although this trend was never

statistically significant (Table 1 and Fig 6). Interestingly, when

Bcl2 and mini-agrin were co-expressed (dyW/Bcl/mag) there

was a significant increase in the absolute twitch force (Pt)

compared to dyW/mag mice in both EDL and soleus muscle

(Table 1 and Fig 6A and B). Similarly, the normalized,

maximum isometric tetanic force (Po) was higher in

dyW/Bcl/mag mice than in dyW/mag mice (Fig 6C and D).

However, upon normalization of Po to muscle size [i.e.

maximum specific tetanic force (sPo)], the significance of the

difference between dyW/mag and dyW/Bcl/mag mice got lost

(Fig 6E and F). The fact that the difference between dyW/Bcl/mag

and dyW/mag mice is higher for the absolute force than the

specific force is in agreement with our finding (Fig 1H and E)
EMBO Mol Med 3, 465–479 www.embomolmed.org
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Table 1. In vitro function of EDL and soleus muscles.

dyW/dyW dyW/Bcl dyW/mag dyW/Bcl/mag ctrl

Body weight (g) 8.4 � 1.4 9.1� 1.2 14.3 �0.1 15.9 �1.1 21.3 �1.6

EDL

Nmuscles 6 5 5 7 6

Wet muscle mass (mg) 3.5 � 0.5 3.8� 0.3 6.3 �0.8 6.7 �0.2 9.0 �0.4

L0 (mm) 7.9 � 0.3 8.4� 0.7 10.4 �0.2 10.4 �0.3 10.9 �0.4

CSA (mm2) 0.42 � 0.04 0.42 � 0.01 0.54 �0.04 0.62 �0.04 0.78 �0.04

Pt (mN) 2.9 � 1.5 4.3� 1.4 11.9 �1.7 24.6 �4.6 51.5 �5.3

sPt (mN/mm2) 5.9 � 2.2 10.0 � 3.2 20.5 �1.8 38.7 �6.7 67.5 �8.3

TPt (ms) 12.0 � 0.7 11.0 � 0.4 10.8 �0.6 12.3 �0.9 12.5 �0.7

RT1/2 (ms) 37.4 � 4.2 34.2 � 3.5 30.9 �2.8 28.9 �0.9 30.8 �2.9

P0 (mN) 20.9 � 8.0 30.9 � 5.3 84.2 �5.3 120.2 �11.0 227.5 �21.1

sP0 (mN/mm2) 42.3 � 8.4 72.5 � 11.8 146.2 �15.0 193.2 �24.4 297.2 �32.9

Pt/P0 0.118 � 0.02 0.129� 0.03 0.146 �0.02 0.195 �0.02 0.228 �0.02

soleus

Nmuscles 5 5 6 6 5

Wet muscle mass (mg) 3.46 � 0.7 3.6� 0.3 3.8 �0.2 4.8 �0.2 7.3 �0.3

L0 (mm) 8.0 � 0.2 7.9� 0.3 8.25 �0.2 8.75 �0.3 9.1 �0.2

CSA (mm2) 0.41 � 0.08 0.42 � 0.03 0.431 �0.03 0.52 �0.02 0.76 �0.03

Pt (mN) 1.8 � 0.6 3.3� 0.6 5.4 �1.2 9.7 �1.3 21.6 �3.5

sPt (mN/mm2) 3.9 � 0.8 7.6� 1.2 12.0 �2.2 20.7 �3.3 24.6 �2.6

TPt (ms) 24.0 � 0.9 26.4 � 2.5 29.0 �2.0 24.0 �1.0 23.8 �1.7

RT1/2 (ms) 56.4 � 4.0 59.2 � 4.8 62.8 �3.5 57.4 �2.4 56.8 �5.3

P0 (mN) 22.2 � 7.9 30.4 � 4.1 45.5 �8.5 70.2 �5.5 105.2 �14.6

sP0 (mN/mm2) 47 � 13 71� 8 102�14 124�11 138 �17

Pt/P0 0.092 � 0.01 0.112� 0.02 0.115 �0.00 0.155 �0.03 0.164 �0.04

The table shows the in vitro contractile properties at 308C of EDL and soleus muscle. Data (mean � SEM) include: number of tested muscles (N(muscles)), animal body

weight (g), wet muscle weight (mg), optimal muscle length (L0, mm), CSA (mm2), peak twitch force (Pt; mN), specific twitch force represents Pt normalized to CSA

(sPt; mN/mm2), time to peak twitch tension (TPt; ms), half-relaxation time (RT1/2; ms), maximum isometric tetanic force (P0; mN), maximum specific tetanic force

(sP0; mN/mm2) and twitch tetanus ratio (Pt/P0).

Figure 6. Contraction properties of EDL and soleus

muscle.

EDL (A, C, E) and soleus (B, D, F) muscles from mice

with the indicated genotypes.

A,B. Absolute twitch force (Pt), measured by a single

electrical stimulation at 15 V, is similar in

dyW/dyW and dyW/Bcl mice (EDL: p¼0.52;

soleus: p¼ 0.15) but increases from dyW/Bcl to

dyW/mag (EDL: p¼ 0.009; soleus: p¼ 0.05), from

dyW/mag to dyW/Bcl/mag (EDL: p¼ 0.018;

soleus: p¼ 0.03) and from dyW/Bcl/mag to

control (EDL: p¼ 0.006; soleus: p¼ 0.001).

C,D. Maximum isometric tetanic force (P0) of EDL

(C) or soleus muscle (D) expressed as percentage

of controls (P0/P0 ctrl). Co-expression of Bcl2

(dyW/Bcl/mag) increases the maximal tetanic

force of dyW/mag in EDL (p¼ 0.03) and in soleus

(p¼0.02).

E,F. The maximum specific tetanic force (sP0)

increases gradually from dyW/dyW to control

mice in both EDL (E) and soleus (F). However, no

significant change of sP0 is seen between

dyW/Bcl/mag and dyW/mag mice in EDL

(E; p¼ 0.07) or in soleus (F; p¼0.24) muscle. All

values represent the mean � SEM; N numbers

are shown in Table 1. p-values are Student’s

t-test (���p�0.001; ��p�0.01; �p� 0.05; n.s.

p> 0.05).
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that the number of fibres is much increased in dyW/Bcl/mag

mice. Thus, although the force generated per muscle fibre is not

much higher in dyW/Bcl/mag mice than in dyW/mag mice, the

total force is significantly increased. These data show that

expression of Bcl2 in dyW/mag mice increases muscle force by up

to 50% and thus indicates that dyW/dyW mice do benefit from a

combined treatment with mini-agrin and inhibition of apoptosis.

Pharmacological inhibition of apoptosis enhances

amelioration by mini-agrin

We have recently shown that oral application of the pharma-

cological apoptosis inhibitor omigapil to dyW/dyW mice amelio-

rates MDC1A pathology (Erb et al, 2009). Based on the finding

that transgenic expression of Bcl2 increased the therapeutic effect

of mini-agrin, we next tested whether the combination of mini-

agrin and systemic application of omigapil would be of benefit.

To this end, dyW/mag mice were treated with a daily dose of

0.1mg/kg omigapil starting at the age of 15 days. The first week

of treatment, omigapil was injected into the peritoneum followed

by oral gavage after weaning. Mice were analysed at the age of

12 weeks. Visual inspection of H & E-stained cross-sections from

triceps muscle did not reveal a striking difference between

omigapil- (dyW/mag-omigapil) and vehicle- (dyW/mag-vehicle)

treated dyW/mag mice (Fig 7A). Quantitative assessment of

changes showed, however, lowered creatine kinase (CK) levels in

the blood (Fig 7B), normalized muscle fibre size distribution

(Fig 7C), a trend to increasing the mean fibre size (Fig 7D) and to

enlarging muscle area in dyW/mag mice (Fig 7E). In addition,

omigapil also reduced the muscle fibre loss in dyW/mag mice

(Fig 7F). Importantly, many of the functional parameters were

significantly improved by omigapil. Those included body weight

gain (Fig 7G), locomotive activity in the open-field test (Fig 7H)

and grip strength (Fig 7I). However, we could not detect a

difference in the overall survival (Fig 7J). Together, treatment of

dyW/mag mice with omigapil further improved several of the

disease parameters but did not affect survival.
DISCUSSION

In this work, we tested whether the combination of anti-

apoptosis treatment and transgenic expression of mini-agrin has

additive effects on the disease progression in a mouse model for

MDC1A. Indeed, we find such an additive effect for several of the

parameters measured. This was particularly obvious in the grip

strength (Fig 5E), the force measurements on isolated muscles

(Fig 6), and the number and size of muscle fibres (Fig 1).

Combination of mini-agrin and Bcl2 improves force

production in MDC1A muscles

Our data indicate that expression of Bcl2 is the key factor that

preserves the number of muscle fibres while expression of mini-

agrin is important for the preservation of force in individual

muscle fibres. Support for this hypothesis stems from the singly

transgenic mice. In dyW/Bcl mice, the muscles contain the same

number of fibres as in control mice (Fig 1E). However, the

muscle fibres in dyW/Bcl mice are small, even significantly
� 2011 EMBO Molecular Medicine
smaller than those in dyW/dyW mice (Fig 1D and F). This

decrease can explain the finding that the area of mid-belly cross-

sections remains as small as in dyW/dyW muscles (Fig 1G)

despite the increase in fibre number and fibrosis (Fig 1C; Fig S2A

of Supporting information).

Thus, prevention of apoptosis by Bcl2 seems to allow survival

but not the growth of muscle fibres. Mice singly transgenic for

mini-agrin, in contrast, show a fibre size distribution that is

close to that in control muscles (Fig 1D and E), but individual

muscles of the dyW/mag mice contain fewer fibres (Fig 1H).

Consequently, the area of mid-belly cross-sections is still smaller

than in control muscles (Fig 1G). Thus, mini-agrin seems to

allow growth and stabilization of muscle fibres. Intriguingly, the

combination of Bcl2 and mini-agrin increases the CSA in triceps

muscle up to 70% of that of control muscle (Fig 1G).

Importantly, co-expression of Bcl2 and mini-agrin tended to

further potentiate the gain of muscle force measured in vitro

(Fig 6). The fact that this test was performed in as young as

4-week-old mice, an age at which the typical hindleg paralysis of

dyW/dyWmice is not yet prominent and at whichmuscle histology

of dyW/mag mice is comparable to control mice (Fig S4 of

Supporting information; Moll et al, 2001), indicates that co-

expression of the two transgenes indeed improvesmuscle strength

and not only delays the loss of muscle force in dyW/dyW mice.

Together, these results suggest that inhibition of apoptosis by Bcl2

in combination with the mechanical stabilization of muscle by

mini-agrin can enhance contractile properties of muscle.

Mini-agrin and Bcl2 potentiate their effect on muscle

regeneration in dyW/dyW mice

Besides the function of LM-211 to stabilize muscle fibre

integrity, its binding to a7b1 integrin has been suggested to

activate signals important for survival (Vachon et al, 1996,

1997). Muscle regeneration is strongly impaired in dyW/dyW and

dy3K/dy3K mice (Bentzinger et al, 2005; Kuang et al, 1999;

Miyagoe et al, 1997) and Bax levels have been shown to be

increased during regeneration (Olive & Ferrer, 2000). Thus, non-

productive muscle regeneration in laminin-a2-deficient mice

might be due to increased apoptosis and inhibition of apoptosis

may thus be particularly important during regenerative

processes. Indeed, Bcl2 levels have been shown to be

considerably increased in the early period of muscle fibre

regeneration (Bulyakova & Azarova, 2006; Shefer et al, 2002).

Whenwe tested this idea, we found that manymuscle fibres of

dyW/Bcl mice contained centralized myonuclei and re-expressed

the regeneration marker dMyHC (Fig 4B). One week after

notexin-induced muscle damage, many muscle fibres of dyW/Bcl

mice were dMyHC-positive (Fig 4D) but regeneration was not

successful after 2 weeks (Fig 4E and F) because most of the

initially formed muscle fibres remained unconnected and were

replaced by fibrotic tissue. Co-expression of mini-agrin prevented

this fibrosis, allowed regenerating fibres to increase in diameter

and to re-build a structured muscle tissue (Fig 4E and F). Thus,

the combined treatment of apoptosis inhibition and mini-agrin

expression increased the regeneration efficiency in dyW/dyW

muscles. This effect is based on the Bcl2-mediated prevention

of apoptosis at early stages of regeneration and the mini-agrin-
EMBO Mol Med 3, 465–479 www.embomolmed.org
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Figure 7. Effects of omigapil treatment in 12-week-old dyW/mag mice.

A. H & E staining of cross-sections from triceps brachii muscle of dyW/mag mice treated daily with 0.1 mg/kg omigapil (dyW/mag-omigapil) or vehicle

(dyW/mag-vehicle).

B. Blood CK levels expressed as percentage of control. Omigapil treatment in dyW/mag mice significantly lowers the CK levels (p¼0.023); N� 6�8.

C. Muscle fibre size distribution of triceps brachii. Values represent relative numbers of fibres in a given diameter class (5 mm/class). Muscles from vehicle-treated

dyW/mag mice contain more small-caliber fibres than muscles from age-matched dyW/mag-omigapil mice; N¼5.

D. Mean fibre diameter. Omigapil treatment slightly but not significantly (p¼0.07) elevates the mean fibre size in dyW/mag muscles; N¼ 5.

E. Muscle area (mm2) of mid-belly triceps cross-sections. Omigapil treatment tends to enlarge muscle area in dyW/mag mice (p¼ 0.06); N¼5.

F. Total number of fibres per triceps cross-section. Omigapil treatment reduces muscle fibre loss in dyW/mag (p¼0.006) but does not completely normalize fibre

numbers, as control muscle contain >6000 fibres (dashed line); N¼5.

G. Weight gain normalized to the body weight at 15 days of age (onset of treatment). For each week, body weight data were averaged from daily measurements.

Body weight at 15 days of age (starting body weight) was 5.55 � 0.20 g for dyW/mag-omigapil mice and 6.88 �0.21 g for dyW/mag-vehicle mice. Body weight

curve for vehicle-treated dyW/dyW mice (Erb et al, 2009) is shown for comparison (dotted line); N� 9�11.

H. Locomotion within a 10 min observation period. Locomotive activity of dyW/mag-omigapil mice is significantly increased compared to vehicle-treated

dyW/mag mice (p¼0.046). Locomotion of dyW/dyW (dashed line) and WT control mice (dotted line) are given for comparison; N� 9�11.

I. Grip strength is expressed as time mice were able to hold on a vertical grid. Omigapil treatment significantly increases the grip strength in dyW/mag mice

(p¼ 0.02). Grip strength of dyW/dyW mice is indicated (dashed line). WT control mice stay >180 s on the grid; N� 9�11.

J. Kaplan–Meier cumulative survival plot. Daily treatment (0.1 mg/kg) with omigapil does not improve the survival probability of dyW/mag mice. All values are

mean � SEM. N indicates the animal number per experimental group. p-Values are Student’s t-test (���p� 0.001; ��p� 0.01; �p� 0.05; n.s. p> 0.05). Scale

bar¼50 mm.
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mediated reconnection of the muscle fibres to the extracellular

matrix, which is essential to complete regeneration. In addition

and since notexin leaves the satellite cells unharmed, the added

benefit by combining Bcl2 and mini-agrin in the muscle

regeneration process might also originate, at least in part, from

a protective effect on the satellite cells. Thus, the cumulative

action of Bcl2 and mini-agrin during spontaneous muscle

regeneration is probably the molecular basis for the overall

increase in fibre number and size in the dyW/Bcl/mag mice.

Systemic inhibition of apoptosis prevents the inflammatory

phenotype of muscle-restricted Bcl2 expression

Mini-agrin is known to markedly reduce the replacement of

muscle with fibrotic tissue. Unlike others (Dominov et al, 2005),

we observed prominent fibrosis (Fig 1A–C; Fig 2A and B) and

inflammation (Fig 2Aand B of Supporting information) inmuscles

of dyW/Bcl mice. Indeed, Bcl2 expression under control of the

muscle-specific MyoD promoter inhibits apoptosis in dyW/dyW

muscle fibres (Fig 3A and B), but accumulates other (inflamma-

tory) cell types that frequently are apoptotic (Fig 3A, arrowheads).

Together with the finding that Bcl2 impairs the removal of

damaged tissue from notexin-injured dyW/dyW muscle (Fig 4D

and E), the increased fibrosis in muscles of dyW/Bcl mice may

trigger an inflammatory response that activates macrophages.

Although the mechanical muscle stabilization by mini-agrin

largely counteracts this adverse effect of Bcl2 (Fig 1A–C; Fig 2A

and B; Fig S2C and D of Supporting information), only a

generalized inhibition of apoptosis can prevent the inflammatory

response completely. This is seen in the experiments using oral

application of omigapil (Erb et al, 2009) or in the whole-body

deletion of the pro-apoptotic gene Bax (Girgenrath et al, 2004).

Thus, the increased fibrosis in the Bcl2 transgenic mice might be

due to the restricted inhibition of apoptosis to skeletal muscle.

In this context, we also noticed that omigapil already at

12 weeks of age enhanced the ameliorative effect of mini-agrin

and improved fibre size distribution (Fig 7F), mean fibre size

(Fig 7D), muscle area (Fig 7E), grip strength (Fig 7I) and

locomotion (Fig 7H). In contrast, in dyW/Bcl/mag mice these

parameters were ameliorated only at the age of 16 weeks

(Fig 1E–G; Fig 5D and E). It is well possible that this age-specific

difference relies on the fact that inhibition of apoptosis by

systemic application of omigapil acts on many cell types,

whereas, inhibition of apoptosis by Bcl2 expression is restricted

to muscles. Therefore, we think that the increased fibrosis and

inflammatory phenotype upon muscle-restricted Bcl2 expres-

sion in dyW/dyW mice is a secondary effect that resides in

another cell type than muscle fibres and thus might not be of

concern for the treatment of MDC1A.

Translational aspects for the treatment of MDC1A by mini-

agrin or apoptosis inhibitors

Another important insight of our studies is the observation that

the efficacy of mini-agrin is by far greater than that of anti-

apoptosis treatment. This is particularly striking in the survival,

overall health, the locomotive activity and muscle force

measurements (grip strength and force measurements on

isolated muscle). For example, although Bcl2 expression or
� 2011 EMBO Molecular Medicine
omigapil treatment extend the lifespan of dyW/dyWmice (Fig 5A;

Dominov et al, 2005; Erb et al, 2009), no prolongation of lifespan

was seen in the dyW/Bcl/magmice (Fig 5A). This lack of efficacy

is probably due to the extended lifespan of dyW/mag mice,

whichmakes it difficult to detect a significant further increase by

anti-apoptosis treatment. However, when the mice were forced

to hold themselves on a vertical grid, dyW/Bcl/mag mice could

hold-on the grid more than twice as long as dyW/mag mice

(Fig 5E). Correspondingly, the orally administered anti-

apoptotic drug omigapil also improved muscle strength in

dyW/mag mice (Fig 7I). The improvement of muscle function is

of utmost importance for MDC1A patients.

We hypothesize that the difference in efficacy between mini-

agrin and apoptosis inhibition is due to the different levels

where the two treatments interfere with the disease process.

While mini-agrin will take over at least some of the structural

functions of LM-211, apoptosis is a late step in the cascade of

events triggered by the absence of the laminin-a2 chain and thus

its interference with the disease process is less specific. On the

other hand, interference with such late steps has the advantage

that potential drugs can be useful for a broad range of muscle

dystrophies as those late events are common to several diseases.

One possible mechanism underlying the additive effect of mini-

agrin and the anti-apoptotic treatment could be the well-

described effect of LM-211 to bind to a7b1 integrin. This

interaction has been proposed to be important for the prevention

of muscle fibre death (Vachon et al, 1996, 1997). As mini-agrin

does not bind to this integrin, it can also not prevent apoptosis

induced by the loss of LM-211 in dyW/dyW mice.

In conclusion, a combined treatment with apoptosis inhibitors

and mini-agrin increases the regeneration efficiency in dyW/dyW

muscles and, thereby, maintains muscle integrity. This in turn,

enables the muscle to increase in size (Fig 1G and 2D), which

results in the improvement of muscle strength and function

(Fig 5D and E). Thus, a treatment that makes use of the additive

benefit of apoptosis inhibition and mini-agrin might constitute a

valuable therapy for MDC1A patients. However, realization of a

combined treatment involves the development of a method that

delivers mini-agrin to the skeletal muscles of human MDC1A

patients, which is not feasible at the moment. Thus, pharmaco-

logical treatment options can probably be developed much faster.

This is particularly true for omigapil, which shows the same

efficacy as transgenic expression of Bcl2 (this work). Its clinical

development iswell advanced and it was proven to be safe in large

clinical trials with Parkinson’s disease and amyotrophic lateral

sclerosis patients (Miller et al, 2007; Olanow et al, 2006).
MATERIALS AND METHODS

Mice

DyW/dyW mice containing a LacZ insertion in the LAMA2 gene served as

the mouse model for MDC1A. Genotyping of dyW/dyW mice was

performed as previously described (Kuang et al, 1998a). The chick mini-

agrin transgene (mag) was expressed under the control of the muscle-

specific CK promoter (Moll et al, 2001). The mice were genotyped as

described (Meinen et al, 2007). Transgenic mice expressing full-length
EMBO Mol Med 3, 465–479 www.embomolmed.org



Research Article
Sarina Meinen et al.
human Bcl2 under control of an approximately 7 kb-long fragment of

the mouse MyoD promoter (Dominov et al, 2005; Girgenrath et al, 2004;

Tapscott et al, 1992) were obtained from Dr Janice Dominov. The MyoD

promoter was described to be active in myoblasts, activated satellite

cells and in muscle fibres (Charge et al, 2008; Dominov et al, 2005;

Girgenrath et al, 2004; Tapscott et al, 1992). Since their generation, all of

the transgenic mouse lines were maintained in C57BL/6J mice and

whenever possible littermate controls were used. To ensure optimal

access of the dystrophic mice to water and food, cages were supplied

with long-necked water bottles and wet food. All procedures were

performed in accordance with the Swiss regulations for animal

experimentation and under the required licenses.

Treatment of dyW/mag mice with omigapil

Homozygous dyW/mag were treated with 0.1mg/kg omigapil dissolved

in 0.5% ethanol as vehicle. For all experiments, treatment started at

the age of 15 days. For the first week of drug treatment, omigapil was

administered once daily by intraperitoneal injection. After weaning

(3 weeks of age), omigapil was applied once daily by oral gavage. Age-

matched animals treated with vehicle only were used as controls.

Masson trichrome, haematoxylin & eosin and

immunostainings

Triceps brachii and soleus muscles were immersed in 7% gum

Tragacanth (Sigma, St. Louis, MO, USA) and rapidly frozen in liquid

nitrogen-cooled isopentane (�1508C). Cross-sections of 12mm thick-

ness were cut and collected on SuperFrost1 Plus slides. General

histology was performed using H & E staining. To visualize collagenous

tissue, Masson’s trichrome staining (Luna, 1968) was performed using

Trichrome Stain (Masson) Kit (Sigma–Aldrich, HT-15). The antibodies

used for immunofluorescence were purchased from the following

commercial sources: Monoclonal mouse anti-rat dMyHC, monoclonal

rat anti-mouse laminin-g1 chain (Chemicon, MAB1914) and mono-

clonal rat anti-mouse F4/80 (Abcam, ab6640). Membrane-bound and

extracellular epitopes were visualized with Alexa-488- or Alexa-594

conjugated wheat germ agglutinin (WGA; Molecular Probes). Appro-

priate secondary antibodies were: Cy3-conjugated (Jackson ImmunoR-

esearch Laboratories), Alexa Fluor1 488-conjugated secondary

antibodies (Molecular Probes) and TRITC-labelled streptavidin. Apopto-

tic myonuclei were detected by ‘TdT-mediated dUTPbiotin nick end

labelling’ (TUNEL) using the ‘In Situ Cell Death Detection Kit, Fluorescein’

according to the manufacturer’s protocol (Roche Diagnostics Ltd). DAPI

(40 ,60-Diamidino-2-phenylindole hydrochloride) was used to stain

nuclei. Pictures of stained cross-sections were collected using a Leica

DM5000B fluorescence microscope, a digital camera (F-View; Soft

Imaging System), and analySIS1 software (Soft Imaging System).

Histological quantifications

Mid-belly cross-sections of triceps brachii and soleus muscles were

analysed. Muscle area, fibre number and fibre size distribution was

evaluated using analySIS1 software (Soft Imaging System). The muscle

fibre size distribution was quantified on entire WGA-stained cross-

sections using the minimum distance of parallel tangents at opposing

particle borders (minimal ‘Feret’s diameter’) as described (Briguet et al,

2004). Normalization of the number of fibres in each fibre diameter

class of 5mm was based on the total fibre number per muscle. Fibrotic

area was evaluated on entire WGA-stained cross-sections, was normal-
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ized to muscle area and was expressed relative to controls. Fibres with

centrally located nuclei (CNF) and regenerating dMyHC-positive fibres

were counted in the entire WGA/DAPI-stained and dMyHC/laminin-g1/

DAPI stained cross-sections, respectively. Only TUNEL- and DAPI-positive

nuclei located within muscle fibres were counted as apoptotic

myonuclei. F4/80 staining allowed counting of macrophages in the

entire cross-sections. In all histological quantification experiments, at

least four mice of each testing group were analysed.

Notexin-induced muscle damage

Tibialis anterior of 6-week-old mice was injured by injection of 15ml

notexin (Sigma, 50mg/ml) as described (Bentzinger et al, 2005). Mice

were sacrificed 6 and 14 days post-injection and muscles were

isolated and processed as described above.

Western blot

Triceps brachii muscles were homogenized in RIPA protein extraction

buffer (Abcam). Equal amounts of protein were separated on 20%

(Bcl2, 25 kD) or 12% (mini-agrin, double band �120 kD) SDS–PAGE

and immunoblotted. Nitrocellulose membrane was incubated with

antibody to human Bcl2 (CST#2872) and polyclonal rabbit anti-chick

N25C95 mini-agrin (Ab 201), that was produced in-house (Gesemann

et al, 1995). For detection, appropriate horse radish peroxidase-

conjugated antibodies were used and immunoreactivity was visua-

lized by the ECL detection method (Pierce).

Body condition and behavioural tests, creatine kinase assay

Overall disease score was assessed using a health score sheet that

judges activity, appetite, posture, fur and eyes of 8-, 12- and 16-week-

old mice. Scores: from 0 to 4¼ good health: bright and active attitude;

normal posture, movements, fur and eyes; 5–8¼ fair health: Several

measures are mildly affected; 9–11¼ poor health: mouse is obviously

sick (inactivity, small size, hunchback, severe uncoordinated move-

ments, dull fur and eyes); 12–14¼ death expected in near future:

almost unable to move, small, thin, dehydrated, unkempt fur and

matted eyes. Body weight was measured at the age of 8, 12 and

16 weeks. Locomotive behaviour was evaluated by placing the mice

into a new cage and measuring motor activity (walking, digging and

righting up) during 10min (Moll et al, 2001). Grip strength was

determined by measuring the time the animals can hold on a vertical

grid. Cut-off time was 180 s. All values were normalized to values

obtained from control animals. Blood levels of CK were determined

with 2ml of serum using the CK-NAC Liqui-UV kit (Rolf Greiner

Biochemica). In omigapil-treated mice, body weight and death events

were recorded daily. The body weight was recorded for each animal

from day 15 (onset of the experiment) onwards. For each animal, the

average weight gain per week was calculated.

In vitro muscle force assessment

Left and right EDL and soleus muscles of at least three 4-week-old

mice per genotype were carefully dissected and mounted into a

muscle testing setup (Heidelberg Scientific Instruments) to test force

in vitro. By stimulation with a single electrical pulse (4 kHz, 15 Volt,

0.5ms) using an AD Instruments converter, muscles were adjusted to

the optimum length (L0; mm) which is achieved when isometric twitch

force is maximal (Pt; mN). Tetanus and force-frequency relationship

were evaluated in response to 400ms pulses at 10–120Hz in EDL and
� 2011 EMBO Molecular Medicine 477
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The paper explained

PROBLEM:

Congenital muscular dystrophies are early onset, often severe

diseases of the skeletal muscle that are of heterogeneous genetic

origin. MDC1A is the most prevalent form of those congenital

muscular dystrophies and is caused by mutations in the gene

encoding laminin-a2, which is one of the subunits of LM-211, a

major component of the muscle basement membrane. MDC1A

patients often cannot stand or walk, suffer from respiratory

distress and eventually die in early childhood. There is no

treatment option for those patients but recent years have seen

quite some progress in the understanding of the disease

mechanisms and preclinical studies have suggested a few new

treatment options.

RESULTS:

This study is based on previous, preclinical experiments that

established two independent ways to slow down disease

progression in a mouse model for MDC1A, the dyW/dyW mice. The

first option uses a miniaturized form of the extracellular matrix

molecule agrin (mini-agrin), which is not homologous to LM-211,

but shares binding properties with the protein that allow it to

restore the mechanical linkage between muscle fibre and

basement membrane. The second option uses inhibition of

apoptosis, as muscle fibres in MDC1A undergo massive cell death

because of their fragility. Although each treatment alone does not

alleviate all of the dystrophic symptoms in mice, they both offer

distinctive and interesting entry points for a possible treatment of

MDC1A patients. We therefore examined in a mouse model for

MDC1A whether the combination of both treatments would exert

additive benefits and thus increase treatment efficacy.

We find that such a combined treatment with mini-agrin and

apoptosis inhibition by either transgenic Bcl2 expression or

application of the orally available apoptosis inhibitor omigapil

indeed provides additive benefit on the disease progression in

dyW/dyW mice. The side-by-side comparison also showed that

mini-agrin treatment is superior to apoptosis inhibition, which is

consistent with the notion that mini-agrin exerts its function at

the early steps of the disease. The combination proved superior to

single treatment with mini-agrin in preserving the number of

muscle fibres and allowing improved survival of muscle fibres

upon damage thereby improving muscle regeneration. Impor-

tantly, this improvement resulted in a marked increase in muscle

force.

IMPACT:

Our work thus represents a proof-of-concept study showing

that combination therapies might be beneficial for the

treatment of MDC1A patients. Unfortunately, gene therapeutic

approaches in patients (which could be used to apply mini-

agrin) are still facing challenges. Thus, our work also suggests

that the combination of pharmacological inhibition of apoptosis

combined with low efficacy application of mini-agrin (e.g.

injection of recombinant protein or low efficacy gene therapy)

might still be a valuable option to improve the disease in

MDC1A patients. The finding that muscle force is clearly

improved by the combination treatment in the dyW/dyW mice

further suggest that such a therapy might be particularly

beneficial to improve muscle function and thus the mobility of

MDC1A patients.
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in response to 1100ms pulses at 10–150Hz in soleus. Maximum

absolute isometric tetanic force (P0) was determined from the plateau

of the frequency–force relationship, which was typically achieved with

150Hz for EDL, and for soleus muscles with 100Hz. Since absolute P0

is dependent upon muscle size, P0 values were normalized for CSA

[CSA¼muscle mass/L0�1.06; (Brooks & Faulkner, 1988) and were

expressed as specific force (sP0; kN/m
2).

Statistical analysis

Quantitative data are expressed as mean� SEM. To compare the

different genotypes, p-values were calculated using the unpaired two-

sample Student t-test assuming equal variances. Statistical analysis of

values that were measured at two different time points used the two-

way ANOVA test. Kaplan–Meier survival curves were generated and

compared using the Peto–Peto Wilcoxon test.
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