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Regular endurance exercise remodels skeletal muscle, largely through the peroxisome 

proliferator-activated receptor γ coactivator 1α (PGC-1α). PGC-1α promotes fiber type 

switching and resistance to fatigue and intracellular calcium levels might play a role in 

both adaptive phenomena. Using mice with transgenic over-expression of PGC-1α, we 

now investigated the effect of PGC-1α on calcium handling in skeletal muscle.  

We demonstrate that PGC-1α induces a quantitative reduction in calcium release from 

the sarcoplasmic reticulum by diminishing the expression of calcium releasing 

molecules. Concomitantly, maximal muscle force is reduced in vivo and ex vivo.  

In addition, PGC-1α over-expression delays calcium clearance from the myoplasm by 

interfering with multiple mechanisms involved in calcium removal, leading to higher 

myoplasmic calcium levels following contraction. During prolonged muscle activity, the 

delayed calcium clearance facilitates force production in mice over-expressing PGC-1α.  

Our results reveal a novel role of PGC-1α in altering the contractile properties of 

skeletal muscle by modulating calcium handling. Overall, our findings suggest that 
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PGC-1α reduces maximal force, increases resistance to fatigue and drives fiber-type 

switching partly through remodeling of calcium transients in the adaptation to chronic 

exercise. 

 

 

Abbreviations 

 

CRU  calcium release unit 

DHPR  1,4-dihydropyridine receptor 

FFDM  fat free dry mass 

Jnc  junctin 

MICU  mitochondrial calcium uptake 

NCX  sodium-calcium exchanger 

PLB  phospholamban 

PGC-1α peroxisome proliferator-activated receptor γ coactivator 1α 

PVA  parvalbumin 

RyR1  ryanodine receptor type 1 

SERCA sarcoplasmic/endoplasmic reticulum calcium ATPases 

SLN  sarcolipin 

SR  sarcoplasmic reticulum 

TBP  tata box binding protein 

Tdn  triadin 

TRα  thyroid hormone receptor α 
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Introduction 

 

More than six hundred different muscles are present in the human body and every skeletal 

muscle is composed of a distinct set of heterogeneous muscle fibers with various contractile 

properties (Bottinelli & Reggiani, 2000; Spangenburg & Booth, 2003). Based on their twitch 

characteristic, muscle fibers are broadly classified into two major groups: fast-twitch fibers, 

which are capable of strong, explosive contractions, and slow-twitch fibers, which are suitable 

for prolonged physical activities (Westerblad et al., 2010).  

 

A cardinal difference between different fiber types is their respective peak amplitude and rate 

of calcium transients (Baylor & Hollingworth, 2003). Compared to slow-twitch fibers, fast-

twitch fibers express higher amounts of proteins involved in calcium release. The voltage 

sensor DHPR (1,4-dihydropyridine receptor) and the calcium channel ryanodine receptor1 

(RyR1) are both abundant in the sarcoplasmic reticulum of fast-twitch muscles (Froemming et 

al., 2000). Thus, more calcium can be released in response to motor neuron activation (Baylor 

& Hollingworth, 2003). Once released from the sarcoplasmic reticulum, calcium binds to 

troponin, thereby pulling away tropomyosin, exposing the myosin binding sites and allowing 

contraction. A direct quantitative relationship exists between calcium release and force 

generation (Moss et al., 1985; Metzger & Moss, 1990). Moreover, fast-twitch fibers are 

endowed with a high amount of Sarcoplasmic/endoplasmic reticulum calcium ATPase 1 

(SERCA1), a protein that pumps calcium back into the sarcoplasmic reticulum and with 

parvalbumin (PVA), a protein that sequesters calcium and enhances calcium re-uptake 

(Leberer & Pette, 1986; Froemming et al., 2000). The interplay of these proteins allows rapid 

muscle relaxation. With respect to their amplitude and dynamic of calcium handling, the 

respective muscle fibers thus clearly differ with fast-twitch fibers displaying much higher 

peak amplitudes and faster rates of calcium turn-over. 

 

The fiber type composition of muscle displays considerable plasticity even in the adult, 

differentiated state. In response to certain environmental demands (e.g exercise), skeletal 

muscle remodels accordingly to adapt its functional capacity (Fluck & Hoppeler, 2003; 

Bassel-Duby & Olson, 2006). A prominent hallmark of adaptation to chronic endurance 

exercise is the fiber type switching towards an increased proportion of slow-twitch fibers. The 

underlying molecular networks are complex and only partially elucidated. An interplay of 
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various, independent signaling pathways mediate exercise adaptation, many of which seem to 

converge ultimately on common key molecules where these signals are integrated (Bassel-

Duby & Olson, 2006; Finck & Kelly, 2006). The peroxisome proliferator-activated receptor γ 

coactivator 1α (PGC-1α) represents such a systemic hub in muscle plasticity (Lin et al., 2002; 

Bassel-Duby & Olson, 2006; Handschin & Spiegelman, 2006, 2008).  

 

The central importance of PGC-1α in exercise adaptation is impressively exemplified by 

studies using PGC-1α transgenic mice. Muscle-specific over-expression of PGC-1α, even in 

the absence of physical activity, is sufficient to drive changes that are typical of endurance 

training. PGC-1α increases the oxidative capacity by promoting mitochondrial biogenesis 

(Lin et al., 2005), it improves oxygen supply to muscle by promoting angiogenesis (Arany et 

al., 2008), increases peak oxygen consumption (Calvo et al., 2008), lipid oxidation and 

energy refueling (Summermatter et al., 2010). Most importantly, PGC-1α has been shown to 

drive fiber-type switching from fast, glycolytic towards slow, oxidative fibers as defined by 

changes in myosin heavy chain composition and metabolic parameters (Lin et al., 2002). 

Accordingly, muscle-specific PGC-1α transgenic mice exhibit an increased endurance 

capacity in treadmill exercise tests (Calvo et al., 2008). 

 

Whether PGC-1α changes calcium handling cell-autonomously in skeletal muscle is currently 

not known. Thus, we investigated whether PGC-1α modulates calcium levels, whether it 

quantitatively and/or qualitatively affects force generation in skeletal muscle and which 

mechanisms might underlie such changes. To address these issues, we used a mouse model 

with physiological over-expression of PGC-1α that is limited to skeletal muscle (Lin et al., 

2002).  
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Materials and Methods 

 

Ethical approval 

All studies were performed according to criteria outlined for the care and use of laboratory 

animals and with approval of the Swiss authorities. MPGC-1α TG mice (Lin et al., 2002) and 

control littermates were maintained according to institutional guidelines in a conventional 

facility with a fixed 12-h light/dark cycle on a commercial pellet chow diet and free access to 

tap water.  

 

In-vivo and ex-vivo muscle strength assessment 

Maximal force was tested in vivo using a grip strength meter (Chatillon, DFE Series Digital 

Force Gauge). To test force ex vivo, EDL muscles were dissected and mounted into a muscle 

testing setup (Heidelberg Scientific Instruments). Muscle force was digitized at 4 kHz by 

using an AD Instruments converter. EDL tetanus was recorded in response to 400-ms pulses 

at 100 Hz. Specific force was normalized to the muscle cross-sectional area [CSA = wet 

weight (mg)/length (mm) × 1.06 (density mg/mm3)] (Delbono et al., 2007). To test resistance 

to fatigue, repeated tetani were recorded in response to 350ms pulses at 100 Hz with intervals 

of 3.65secs (Gonzalez & Delbono, 2001). 

 

Electron microscopy 

Electron microscopy to determine muscle composition was performed as described previously 

(Hoppeler et al., 1985). Glutaraldehyde-fixed samples were dehydrated in increasing ethanol 

concentrations and embedded in Epon. After cutting ultrathin sections (50–70 nm) on a LKB 

Ultrotome III, uranyl acetate and lead citrate staining was performed. The sections were then 

photographed and examined. We analyzed 15 micrographs of one section per animal.  

 

RNA extraction and RT-PCR 

Frozen tissues were homogenized under liquid nitrogen and total RNA was isolated using 

Trizol reagent (Invitrogen). RNA concentrations were adjusted and reverse transcription was 

carried out using random hexamer primers (Promega). Real-time PCR analysis (Power SYBR 

Green Master Mix, Applied Biosystems) was performed using the ABI Prism 7000 Sequence 

Detector. Relative expression levels for each gene of interest were calculated with the ΔΔCt 
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method and normalized to the expression of the Tata box binding protein (TBP). Primer 

sequences are listed in Supplementary Table 1. 

 

Body composition 

Body composition was determined with an EchoMRI qNMR (Echo Medical Systems). 

 

Calcium transients 

Flexor digitorum brevis (FDB) muscles were enzymatically dissociated at 37°C for 60 min in 

an incubator for cell culture in Tyrode’s solution containing 0.20% collagenase I (Sigma 

C0130-16). The muscles were rinsed in DMEM 10% FCS, transferred to DMEM and 

mechanically dissociated with fire polished pasteur pipettes. The dissociated fibers were 

placed on glass coverslips previously coated with 1.5 microliter laminin (1 mg/ml) (Invitrogen 

cat. 23017-015).  FDB fibers were loaded for 20 min at 20°C in Tyrode’s solution ( NaCl 137 

mM, KCl 5.4mM, MgCl2 0.5mM, CaCl2 1.8mM, HEPES-NaOH  11.8mM  pH 7,4, Glucose 

0.1%) containing  10 μM Mag-Fluo-4-AM and 50 μM BTS (4-Methyl-N-

(phenylmethyl)benzenesulphonamide), and calcium transients was triggered by field 

stimulation with a 40 V pulse of 0.5 msec duration and tetanic stimulation at 100Hz and 

300ms train pulse duration (Hollingworth et al., 2009; Calderon et al., 2010). Fluorescent 

signals were recorded with a Nikon EclipseTE2000-U fluorescent microscope equipped with 

a P101 photomultiplier and digitized at 10 kHz. Calcium transients were calculated as (Fmax - 

Frest)/Frest 

 

SERCA activity 

SERCA activity was determined as described by Simonides and Hardeveld (Simonides & van 

Hardeveld, 1990). In brief, fresh muscle homogenates were incubated in buffer A (1mM 

EGTA, 10mM phosphoenolpyruvate, 18 U/ml each of pyruvate kinase and lactate 

dehydrogenase, 0.2mM NADH, 20mM Hepes, pH 7.5) supplemented with 200mM KCl, 

15mM MgCl2, 200mM NaN3 and Triton X-100 (0.005%). The assay was started by addition 

of 4mM MgATP followed by calcium at various concentrations. 

 

Western blotting 

Protein extraction was performed as described previously (Summermatter et al., 2008). In 

brief, frozen tissues were crushed under liquid nitrogen, homogenized in lysis buffer (20 mM 

Tris–HCl, 138 mM NaCl, 2.7 mM KCl, 5% (v/v) glycerol, 1% (v/v) NP-40, and various 
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hydrolase inhibitors) and incubated for 60 min. After centrifugation at 12 000 rpm for 15 min, 

protein concentration in the supernatant was quantified and equal amounts of protein extracts 

were separated by SDS–PAGE. The gels were then blotted on PVDF membranes and 

analyzed with the following antibodies: calsequestrin 1 and 2 (Sigma), SERCA 1, 2 and 

tubulin (Cell Signalling), thyroid hormone receptor α (TRα) (Abcam), sarcolipin, 

phospholamban and phospho-phospholamban (Thr17) (Santa Cruz Biotechnology). 

 

Data analysis and statistics 

All data are presented as means ± SE. The data were analyzed by 2-tailed, unpaired Student’s 

t test or Mann-Whitney test when the difference between the two SDs was significantly 

different. Levels of significance are indicated as follows: *** p<0.001, ** p< 0.01, * p< 0.05. 
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Results 

 

Reduced muscle strength, but unchanged muscle mass in MPGC-1α TG mice 

 

PGC-1α drives the formation of slow-twitch, oxidative fibers (Lin et al., 2002). However, it is 

unresolved whether characteristic features of fast-twitch fibers are lost upon PGC-1α-induced 

fiber-type transition. We thus first tested whether PGC-1α-induced fiber type switching 

affects muscle strength in vivo. MPGC-1α TG mice generated less force (fore limbs (-12%, 

p<0.05) (Fig. 1A) and hind limbs (-15%, p<0.01) (Fig. 1B)) than control animals in the 

absence of alterations in body weight (Fig. 1C) or fat free dry mass (Fig. 1D).   

To scrutinize further the nature of the reduced muscle force generation, the experiments were 

extended to intact muscle preparations ex vivo. Isolated fast-twitch EDL muscle of MPGC-1α 

TG mice showed reduced absolute (-25%, p<0.001) (Fig. 2A) and specific (-25%, p<0.01) 

(Fig. 2B) tetanic force compared to their control littermates. EDL weight (Fig. 2C) and length 

(Fig. 2D) were not different between control and transgenic animals, indicating that the 

reduced force was not due to loss in muscle mass. Despite the lower force in MPGC-1α TG 

mice, kinetics of muscle force contraction (Fig. 2E) and relaxation (Fig. 2F) in response to 

tetanic stimulation remained similar in both groups.  

 

Altered muscle morphology in EDL of MPGC-1α TG mice 

 

Since muscle mass was equal between transgenic and control mice, we speculated that the 

reduced force generation could conceivably result from altered muscle morphology. To test 

whether structural changes account for the reduced force, the composition of EDL muscle was 

determined by electron microscopy. Due to the over-expression of PGC-1α, transgenic mice 

showed elevated mitochondrial mass (+187%, p<0.001), at the expense of total myofibrilar 

structures, which were reduced by 20% (p<0.001) (Fig. 3A).  

 

Detailed quantitative analyses revealed that both mitochondrial sub-populations were elevated 

to a similar extent, the centrally located intramyofibrillar mitochondria, which are in close 

contact to the sarcoplasmic reticulum, by +198% (P<0.001) and the subsarcolemmal 

mitochondria by +175% (P<0.01) (Fig. 3B). 
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Capacity for calcium release is diminished in EDL of MPGC-1α TG mice 

 

Calcium release from the sarcoplasmic reticulum is an important determinant of muscle force 

generation. The skeletal muscle L-type Ca2+ channel (1,4-dihydropyridine receptor; DHPR) 

serves as the voltage sensor for excitation-contraction (EC) coupling and activates Ca2+ 

release from the sarcoplasmic reticulum via the type 1 ryanodine receptor (RyR1) (Sheridan et 

al., 2006). RyR1 entertains a complex network with regulatory proteins, such as calsequestrin, 

triadin and junctin (Beard et al., 2009). 

While the mRNA expression of DHPRα1s was similar between wild-type and transgenic 

animals, the mRNA expression levels of RyR1, triadin and junctin were reduced in EDL 

muscles of transgenic animals (Fig. 4A).  

In addition, the mRNA expression of calsequestrin 1 was reduced, while calsequestrin 2 was 

elevated (Fig.4B and C, respectively). The same pattern was observed at the protein level 

(Supplementary Fig.1). This is in line with the fiber type switching towards oxidative fibers in 

the MPGC-1α TG animals, as calsequestrin 1 and 2 are specific for fast-twitch and slow-

twitch fibers, respectively (Beard et al., 2009). 

To test functionally whether reduced expression of the calcium release machinery impairs 

calcium release from the SR, single fibers were isolated from FDB muscle and stimulated 

electrically. The kinetic of the calcium rise was unaltered in the transgenic animals (Fig.4D). 

However, quantitatively less calcium was released into the myoplasm in transgenic animals 

compared to controls (Fig. 4E and Supplementary Fig. 2).  

 

Improved resistance to fatigue in EDL of MPGC-1α TG mice 

 

Interestingly, when muscles of MPGC-1α TG mice and control littermates were repeatedly 

stimulated, they showed different temporal development of force generation. The first tetanic 

stimulation generated less force in transgenic animals than in their control littermates. 

However, following repeated tetanic stimulation, transgenic animals displayed higher force 

generation than wild type animals over time (Fig. 5) and were therefore more resistant to 

fatigue, similar to previously published data that demonstrated an increased time of 

stimulation in muscles of MPGC-1α TG animals until force generation dropped to 30% (Lin 

et al., 2002).  
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Calcium reuptake capacity is diminished in EDL of MPGC-1α TG mice 

 

A possible explanation for the relative higher tetanic force in transgenic animals in response 

to repeated tetani could reside within a delayed decay of the calcium transient. Reduced 

calcium reuptake into the sarcoplasmic reticulum has been demonstrated in fatigue-resistant 

endurance-trained athletes (Li et al., 2002). Sarcoplasmic/endoplasmic reticulum calcium 

ATPases (SERCAs) are largely responsible for post-contraction calcium clearance. In adult 

skeletal muscle, two major isoforms of SERCA exist: SERCA1, which is very abundant in 

glycolytic muscle and SERCA2, which has generally a low expression in all muscles, but 

which is the predominant isoform in slow oxidative fibers (Beard et al., 2009). 

EDL muscle over-expressing PGC-1α showed reduced mRNA levels of SERCA1 (Fig. 6A), 

but unaltered levels of SERCA2 (Fig. 6B). These results were confirmed at the protein level 

(Supplementary Fig.1). Total SERCA activity was significantly reduced in transgenic animals 

(Figure 6C). In line with this finding, the half relaxation time of the calcium transient was 

increased in transgenic animals (Fig. 6D).  

Besides calcium re-uptake by the sarcoplasmic reticulum, calcium binding to the buffering 

molecule parvalbumin (Leberer & Pette, 1986), mitochondrial calcium uptake through 

MICU1 (Perocchi et al., 2010) and calcium export by sodium-calcium exchangers (NCX) 

(Bers & Bridge, 1989) are involved in muscle relaxation. Parvalbumin expression was 

significantly reduced in PGC-1 transgenic animals (Fig. 6E), while MICU1 was unaltered 

(Fig. 6F). Moreover, NCX levels were significantly reduced in MPGC-1α TG mice (Fig. 6G). 

 

Potential inhibitory mechanisms of SERCA in MPGC-1α TG mice 

 

The expression of SERCA is regulated by thyroid hormones (Simonides & van Hardeveld, 

2008). We thus tested whether thyroid hormone receptor expression is altered in skeletal 

muscle of PGC-1 transgenic mice. We observed a significant reduction in thyroid hormone 

receptor mRNA expression in transgenic mice (Fig. 7A). Moreover, protein levels of the 

thyroid hormone receptor were reduced (Fig 7A). Finally, we tested the expression of 

inhibitors of SERCA activity. Relative mRNA and protein levels of sarcolipin were elevated 

in MPGC-1α TG mice (Fig.7B). Furthermore, we found elevated mRNA and protein levels of 

phospholamban (un-phosphorylated and phosphorylated) in MPGC-1α TG mice (Fig.7C). 
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Discussion 

 

Muscle fibers are distinguished based on their physiological features, such as appearance (red 

vs. white), predominant myosin heavy chain (MHC) isoform (MHC I and IIA vs. MHC IIB 

and X), metabolic parameters (oxidative vs. glycolytic) or contractile properties (slow- vs. 

fast-twitching) (Spangenburg & Booth, 2003; Bassel-Duby & Olson, 2006; Baar, 2010; Booth 

et al., 2010; Handschin et al., 2010). The latter concept is inextricably linked to calcium 

handling. The speed of calcium release, clearance and its peak amplitude determine the 

characteristic of the twitch (Baylor & Hollingworth, 2003; Trinh & Lamb, 2006). 

Interconversion of different fiber types can occur due to the high plasticity of skeletal muscle. 

PGC-1α confers a reddish appearance to skeletal muscle, increases slow MHC isoform 

expression and metabolically promotes a more oxidative phenotype (Lin et al., 2002). We 

have now shown that PGC-1α remodels calcium release by reducing the levels of several 

components of the sarcoplasmatic reticulum calcium channel complex (namely RyR1, triadin 

and junctin). The ensuing lower concentration of calcium in combination with a decrease in 

contractile elements culminates in a diminished maximal force generation. Furthermore, 

PGC-1α prolongs myoplasmic calcium transients by impairing SERCA expression and 

activity, thereby inhibiting calcium reuptake into the SR, by decreasing the levels of the 

cytosolic calcium buffer parvalbumin, and by reducing NCX levels and hence calcium export 

from the muscle fiber. 

In contrast, the levels of the mitochondrial calcium importer MICU1 remains unaltered. Given 

the increase in mitochondrial mass, relatively lower calcium importers per mitochondria occur 

in MPGC-1α TG mice. 

Taken together, our findings demonstrate that PGC-1α slows down calcium handling in 

skeletal muscle. Altered calcium transients secondarily influence force generation, fatigability 

and fiber type switching (Fig. 8). 

 

Importantly, while PGC-1α regulates the expression of post-synaptic genes in skeletal muscle 

(Handschin et al., 2007), the modulation of calcium signaling by PGC-1α is at least in part 

exerted in a cell autonomous manner. Thus, we observed altered calcium transients following 

electrical stimulation ex vivo in the absence of a motor neuron. Moreover, expression of the 

voltage dependent sensor DHPR that connects motor neuron activity with calcium release is 
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unaltered in MPGC-1α TG mice. Thus, muscle PGC-1α per se is able to change calcium 

handling in skeletal muscle. 

 

PGC-1α strongly promotes mitochondrial biogenesis in skeletal muscle and other tissues (Lin 

et al., 2002). We now demonstrate that subsarcolemmal and intermyofibrillar mitochondria 

are both elevated to a similar extent. Intermyofibrillar mitochondria are often positioned 

adjacent to calcium release units (CRUs) and are even tethered to them (Vendelin et al., 2005; 

Boncompagni et al., 2009). This proximity facilitates the communication between 

mitochondria and sarcoplasmic reticulum (Dirksen, 2009). Emerging evidence suggest that 

mitochondria exert an inhibitory action on local SR calcium release presumably by 

controlling the local redox environment of CRUs (Isaeva & Shirokova, 2003; Isaeva et al., 

2005; Martins et al., 2008). Support for this hypothesis derives from studies on isolated slow 

and fast twitch fibers. Mitochondria-rich slow-twitch fibers display diminished local SR 

calcium release compared to mitochondria-poor fast-twitch fibers (Isaeva & Shirokova, 2003; 

Isaeva et al., 2005).  

 

SERCA accounts for the majority of calcium removal in skeletal muscle and its expression is 

regulated by thyroid hormones (Simonides & van Hardeveld, 2008). We now show that PGC-

1α diminishes the levels of thyroid hormone receptor in skeletal muscle and thereby reduces 

SERCA transcription. Moreover, it has been demonstrated that calcium represses thyroid 

hormone dependent transcription of SERCA1 (Thelen et al., 1997). The coordinated effect of 

reduced thyroid hormone receptor and sustained elevated myoplasmic calcium levels through 

PGC-1α thus explains the transcriptional reduction in SERCA1. In addition, we observed 

elevated mRNA and protein levels of sarcolipin in MPGC-1α TG mice. Sarcolipin inhibits 

SERCA activity and mice that over-express sarcolipin in muscle are resistant to fatigue but 

have weaker muscles compared to their control littermates (Tupling et al., 2002), a phenotype 

that is remarkably similar to the PGC-1α muscle-specific transgenic animals in that regard. 

Similarly, we found elevated mRNA and protein levels of the SERCA inhibitor 

phospholamban. Phospholamban is mainly expressed in slow-twitch muscle, where it 

interacts with SERCA2 and thereby inhibits calcium reuptake into the sarcoplasmatic 

reticulum. Interestingly, the inhibitory effect of phospholamban can be amplified by 

sarcolipin (Asahi et al., 2002). Paradoxically, the levels of phosphorylated phospholamban 

were simultaneously increased. Although the quantitative contribution of the different 
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inhibitors remains unclear, their interplay clearly results in inhibition of total SERCA activity 

and delayed calcium removal from the myoplasm. 

Taken together, PGC-1α interferes with multiple mechanisms that can lower myoplasmic 

calcium levels post contraction, but mainly affects SERCA expression and activity. Overall, 

PGC-1α slows down calcium removal and thus induces features of calcium handling in fast-

twitch fibers that are reminiscent of fatigue-resistant slow-twitch fibers. How PGC-1α 

reduces the expression of these genes mechanistically remains unclear. 

 

Beyond its key role in excitation-contraction coupling, calcium could be implicated in fiber 

type switching. Inhibition of the calcium release channel is crucial for fiber type 

transformation since RyR activity in fast muscle fibers contributes to the repression of slow 

muscle specific genes (Jordan et al., 2004). Furthermore, calcium is involved in 

transcriptional regulation through calcium dependent enzymes such as calcineurin and 

calmodulin-dependent kinases. In adult mouse skeletal muscle fibers, the concerted action of 

the two pathways is required to accomplish a fast-to-slow fiber type transformation (Mu et al., 

2007). Our results suggest that modified calcium handling in PGC-1α muscle-specific 

transgenic animals could relieve the repression on slow muscle specific genes and support 

sustained activation of calcium dependent enzymes that drive fiber type switching. 

Interestingly, PGC-1α thus seems to be downstream and upstream of calcium signaling in 

muscle: the induction of PGC-1α gene expression in endurance exercise is mediated to a large 

extent by calcium signaling (Handschin et al., 2003) and in turn, PGC-1α promotes a slow 

fiber type-specific calcium handling in muscle.  

 

In conclusion, we have provided the first evidence that PGC-1α drives changes in muscular 

calcium handling by reducing calcium release and clearance. Decreased calcium release 

accounts for reduced maximal force and relieves the inhibition of slow muscle specific genes, 

while diminished calcium clearance promotes resistance to fatigue and fiber type-switching. 

Our data suggest that for fiber type switching, a minimal amount of physical activity remains 

a prerequisite. PGC-1α alters calcium handling capacity, but elevated calcium levels, which 

support fiber type switching, can be achieved only in response to contraction. Our findings 

provide new physiological insights into the role of PGC-1α in skeletal muscle adaptation. 
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Figures and legends 

 

Figure 1. Reduced maximal force in MPGC-1α TG animals. 

(A and B) Maximal force of front legs (A) and hind legs (B) in MPGC-1α TG and control 

mice.  

(C and D) Total body weight (C) and FFDM (D) in MPGC-1α TG and control mice. 

Abbreviations: FFDM, fat-free dry mass. All values are expressed as means ±SE (n =7 per 

group); * p<0.05; ** p<0.01 

 

Figure 2. Reduced tetanic force, but unaltered kinetic of force generation in EDL muscle 

of MPGC-1α TG animals. 

(A and B) Absolute (A) and relative tetanic force (B) in EDL muscle of MPGC-1α TG and 

control mice in response to 100 Hz stimulation ex vivo.  

(C and D) Muscle weight (C) and length (D) of EDL muscle of MPGC-1α TG and control 

mice. 

(E and F) Half contraction time (E) and half relaxation time (F) of EDL muscle of MPGC-1α 

TG and control mice following tetanic stimulation at 100 Hz. 

All values are expressed as means ±SE (n =8 per group); ** p<0.01; *** p<0.001 

 

Figure 3. Elevated subsarcolemmal and intermyofibrillar mitochondria, but diminished 

myofibrilar structures in EDL muscle of MPGC-1α TG animals. 

(A) Quantification of morphometrical analysis of EDL muscle of MPGC-1α TG and control 

mice.  

(B) Detailed quantification of different mitochondrial subpopulations. 

(C) Representative micrographs from electron microscopy of EDL muscle of MPGC-1α TG 

and control mice. Arrows indicate intermyofibrillar mitochondria and arrowheads indicate 

subsarcolemmal mitochondria. 

All values are expressed as means ±SE (n =8 per group); ** p<0.01; *** p<0.001 
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Figure 4. Decreased calcium release in muscle of MPGC-1α TG animals. 

(A) Relative expression of genes involved in calcium release from the sarcoplasmic reticulum 

in muscle of MPGC-1α TG and control mice. 

(B and C) Relative mRNA expression of fast-twitch specific calsequestrin 1 (B) and slow-

twitch specific calsequestrin 2 (C). 

(D) Half rise time of myoplasmic calcium in response to electrical stimulation. 

(E) Peak amplitude of calcium in muscle of MPGC-1α TG and control mice. 

Abbreviations: RyR1, ryanodine receptor1; DHPR, 1,4-dihydropyridine receptor; Tdn, 

triadin; Jnc, junctin. 

All values are expressed as means ±SE (n =8 per group); ** p<0.01; *** p<0.001 

 

Figure 5. Resistance to fatigue in MPGC-1α TG animals. 

Absolute force of EDL muscle from MPGC-1α TG and control mice in response to repeated 

tetanic stimulation at 100 Hz. 

All values are expressed as means ±SE (n =8 per group); ** p<0.01; *** p<0.001 

 

Figure 6. Diminished calcium removal in muscle of MPGC-1α TG animals. 

(A and B) Relative mRNA expression of SERCA1 (A) and SERCA2 (B) in muscle of 

MPGC-1α TG and control mice. 

(C) Total SERCA activity in skeletal muscle of MPGC-1α TG and control mice. 

(D) Half decay time of calcium following electrical stimulation ex vivo. 

(E) Relative expression of genes involved in calcium removal in muscle of MPGC-1α TG and 

control mice. Abbreviations: SERCA, Sarcoplasmic/endoplasmic reticulum calcium ATPases; 

PVA, parvalbumin; MICU1, mitochondrial calcium uptake1; NCX, sodium-calcium 

exchanger. 

All values are expressed as means ±SE (n =8 per group); ** p<0.01; *** p<0.001 

 

Figure 7. Mechanisms of SERCA inhibition. 

(A) Relative mRNA expression and protein levels of thyroid hormone receptor in muscle of 

MPGC-1α TG and control mice. 

(B)  Relative mRNA expression and protein levels of sarcolipin in muscle of MPGC-1α TG 

and control mice. 
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(C)  Relative mRNA expression, protein levels and phosphorylation of phospholamban in 

muscle of MPGC-1α TG and control mice 

Abbreviations: TR, thyroid hormone; SLN, sarcolipin; PLB, phospholamban. 

All values are expressed as means ±SE (n =8-10 per group); * p<0.05 

 

 

Figure 8. PGC-1α slows down calcium handling in skeletal muscle. 

This model integrates the findings of the present study. PGC-1α promotes mitochondrial 

biogenesis and exerts an inhibitory effect on the CRU, which consists of RyR1, Tdn, Jnc and 

calsequestrin. Subsequently lower levels of calcium are released from the sarcoplasmic 

reticulum and force generation is altered. Moreover, NCX, PVA and SERCA1, which are 

responsible for post-contraction calcium removal, are reduced in MPGC-1α TG mice. 

Concomitantly the levels of SERCA inhibitors (SLN and PLB) are elevated. Thus calcium 

transients in the cytoplasm are slowed down and can influence muscle fatigability and fiber 

type switching.  

Abbreviations: NCX, sodium-calcium exchanger; DHPR, 1,4-dihydropyridine receptor; PVA, 

parvalbumin; Ryr1, ryanodine receptor1; Tdn, triadin; Jnc, junctin; CRU, calcium releasing 

unit, MICU1, mitochondrial calcium uptake1; SERCA, Sarcoplasmic/endoplasmic reticulum 

calcium ATPases, SLN, sarcolipin; PLB, phospholamban. 

 

 

Supplementary Figure 1: Western blots 

Western blot analyses of Calsequestrin 1 and 2, SERCA 1 and 2, and Tubulin in wt (left) and 

MPGC-1α TG mice (right) 

 

Supplementary Figure 2: Calcium trace in isolated FDB fibers 

Representative calcium trace in FDB fiber isolated from wt (black) and MPGC-1α TG (red) 

animals. 

 

Supplementary Table 1: Primer list 
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