Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Lumni Ademi, Edwin C. Constable, Catherine E.
Housecroft,* Markus Neuburger and Silvia Schaffner

Department of Chemistry, University of Basel, Spitalstrasse 51, CH4056 Basel, Switzerland

Correspondence e-mail:
catherine.housecroft@unibas.ch

Key indicators

Single-crystal X-ray study
$T=173 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.021$
$w R$ factor $=0.025$
Data-to-parameter ratio $=23.3$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
trans-Diacetonitriledibromopalladium(II)

In the title compound, $\left[\mathrm{PdBr}_{2}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}\right)_{2}\right]$, the square-planar $\mathrm{Pd}^{\mathrm{II}}$ atom, on an inversion centre, has trans arrangements of the MeCN and of the bromo ligands. The molecules pack with weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{Br}$ interactions supporting a three-dimensional network.

Comment

Square-planar $\mathrm{Pd}^{\mathrm{II}}$ and $\mathrm{Pt}^{\mathrm{II}}$ complexes of the type $\left[M X_{2}(\mathrm{NCR})_{2}\right](M=\mathrm{Pd}$ or $\mathrm{Pt} ; X=\mathrm{Cl}, \mathrm{Br}$ or $\mathrm{I} ; R=$ alkyl or aryl $)$ are widely used as starting materials in coordination chemistry. The synthesis of $\left[\mathrm{PdCl}_{2}(\mathrm{NCPh})_{2}\right]$ was first reported by Kharasch et al. (1938) and this method of preparation has subsequently been adopted for a range of related complexes (Doyle et al., 1960). Recently, we have had cause to use $\left[\mathrm{Pd} X_{2}(\mathrm{NCMe})_{2}\right]$ complexes, and during these studies we obtained crystals of the title compound, trans$\left[\mathrm{PdBr}_{2}(\mathrm{NCMe})_{2}\right]$, (I). Although complexes of the form $\left[M X_{2}(\mathrm{NCMe})_{2}\right](M=\mathrm{Pd}$ or $\mathrm{Pt} ; X=\mathrm{Cl}, \mathrm{Br}$ or I) are well documented synthetically, a search of the Cambridge Structural Database (CSD, Version 5.27; Allen, 2002) revealed little structural information (Edwards et al., 1998; Kritzenberger et al., 1994; Newkome et al., 1986; Rochon et al., 1984).

(I)

Fig. 1 shows the structure of a molecule of (I), together with the numbering scheme adopted. Atom Pd1 lies on an inversion centre. The square-planar coordination is as expected for $\mathrm{Pd}^{\mathrm{II}}$ and exact planarity is imposed by crystallographic symmetry requirements. All bond distances and angles are unexceptional (Table 1).
There are only two other structures of trans- $\left[\mathrm{MX}_{2}(\mathrm{NCMe})_{2}\right]$ in the CSD: $M=\mathrm{Pd}, X=\mathrm{Cl}$ (Edwards et al., 1998) and $M=\mathrm{Pt}$, $X=\mathrm{Cl}$ (Kritzenberger et al., 1994). These complexes and (I) crystallize in the space group $P 2_{1} / c$ and cell dimensions for all three complexes are similar.

A discussion of the packing is instructive. Of the previously reported analogues, the structure of trans-[$\left.\mathrm{PdCl}_{2}(\mathrm{NCMe})_{2}\right]$ (Edwards et al., 1998) is deposited in the CSD as a private communication, while for trans- $\left[\mathrm{PtCl}_{2}(\mathrm{NCMe})_{2}\right]$ (Kritzenberger et al., 1994), no H -atom positions are included. Fig. 2

Figure 1
The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. (Symmetry code for unlabelled atoms: $-x,-y,-z$.)

Figure 2
The packing of (I), viewed approximately down the a axis, showing the intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{Br}$ interactions (black lines).
shows a view of the packing for (I). The molecules are aligned so as to optimize short intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{Br}$ contacts (Table 2). These intermolecular interactions support a threedimensional network. However, we note that the formation of $\mathrm{C}-\mathrm{H} \cdots \mathrm{Br}-\mathrm{Pd}$ hydrogen bonds between a weak donor and a strong acceptor is not surprising in the light of detailed analyses of halide ions and $M-X(X=$ halogen $)$ behaving as hydrogen-bond acceptors (Aullón et al., 1998; Brammer et al., 1999; Brammer et al., 2001; Steiner, 1998).

Experimental

A mixture of $\mathrm{PdBr}_{2}(200 \mathrm{mg}, 0.75 \mathrm{mmol})$ in $\mathrm{MeCN}(10 \mathrm{ml})$ was heated at reflux overnight. The resutling orange solution was filtered while hot and the filtrate cooled to room temperature. The volume of the solution was reduced to half under vacuum, and then $\mathrm{Et}_{2} \mathrm{O}$ was added to precipitate the product. This was collected by fitration, washed and dried in vacuo. Crystals were grown by slow evaporation of an acetonitrile solution of the complex. trans- $\left[\mathrm{PdBr}_{2}(\mathrm{NCMe})_{2}\right]$ was isolated as a dark-orange powder (yield $166 \mathrm{mg}, 63.6 \%$). Analysis,
found for $\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{Pd} \cdot 1.5 \mathrm{H}_{2} \mathrm{O}$: C 12.8, H 2.4, N 7.4\%; calculated: C 12.8, H $2.4, \mathrm{~N} 7.5 \%$.

Crystal data

$\left[\mathrm{PdBr}_{2}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}\right)_{2}\right]$
$Z=2$
$M_{r}=348.31$
Monoclinic, $P 2_{\mathrm{a}_{1}} / c$
$a=5.1979$ (3) \AA
$b=12.0686$ (7) \AA
$c=7.0740$ (3) \AA
$\beta=90.327(3)^{\circ}$
$V=443.75(4) \AA^{3}$
$D_{x}=2.607 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=11.02 \mathrm{~mm}^{-1}$
$T=173 \mathrm{~K}$
Block, dark orange
$0.24 \times 0.19 \times 0.15 \mathrm{~mm}$

Data collection

Nonius KappaCCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(DENZO/SCALEPACK;

Refinement

Refinement on F
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.021$
$w R\left(F^{2}\right)=0.025$
$S=1.03$
1003 reflections
43 parameters
H -atom parameters constrained
$w=\left[1-\left(F_{\mathrm{o}}-F_{\mathrm{c}}\right)^{2} / 36 \sigma^{2}(F)\right]^{2} /$
$\left[0.377 T_{0}(x)+0.221 T_{1}(x)+\right.$
Table 1
Selected geometric parameters ($\left(\AA{ }^{\circ}\right)$.

Pd1-Br1	$2.4203(3)$	$\mathrm{C} 1-\mathrm{C} 2$	$1.452(4)$
$\mathrm{Pd} 1-\mathrm{N} 1$	$1.966(2)$	$\mathrm{C} 1-\mathrm{N} 1$	$1.136(4)$
$\mathrm{Br} 1-\mathrm{Pd} 1-\mathrm{N} 1$	$89.93(7)$	$\mathrm{Pd} 1-\mathrm{N} 1-\mathrm{C} 1$	$178.7(2)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1$	$179.6(3)$		

Table 2
Hydrogen-bond geometry (\AA, ${ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 2-\mathrm{H} 21 \cdots \mathrm{Br}^{\mathrm{i}}$	0.96	3.05	$3.718(3)$	128
$\mathrm{C} 2-\mathrm{H} 22 \cdots 1^{\mathrm{iii}}$	0.97	3.09	$3.698(3)$	122
$\mathrm{C} 2-\mathrm{H} 23 \cdots \mathrm{Br}^{\mathrm{iii}}$	0.96	2.89	$3.794(3)$	157

Symmetry codes: (i) $x, y, z+1$; (ii) $x+1, y, z+1$; (iii) $x+1,-y+\frac{1}{2}, z+\frac{1}{2}$.
H atoms were found in a difference map and initially refined with appropriate restraints, with a target $\mathrm{C}-\mathrm{H}$ of $0.96 \AA$ and $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{C})$. They were then treated as riding.

Data collection: COLLECT (Nonius, 2001); cell refinement: DENZOISCALEPACK (Otwinowski \& Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: CRYSTALS.

The authors thank the Swiss National Science Foundation and the University of Basel for financial support.

metal-organic papers

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435.
Aullón, G., Bellamy, D., Brammer, L., Bruton, E. A. \& Orpen, A. G. (1998). Chem. Commun. pp. 653-654.
Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, C. K. \& Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.

Brammer, L., Bruton, E. A. \& Sherwood, P. (1999). New J. Chem. 23, 965968.

Brammer, L., Bruton, E. A. \& Sherwood, P. (2001). Cryst. Growth Des. 1, 277290.

Doyle, J. R., Slade, P. E. \& Jonassen, H. B. (1960). Inorg. Synth. 6, 218219.

Edwards, P. G., Paisey, S. J. \& Albers, T. (1998). Private communication to the Cambridge Structural Database (refcode FEQCOT).

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Kharasch, M. S., Seyler, R. C. \& Mayo, F. R. (1938). J. Am. Chem. Soc. 60, 882 884.

Kritzenberger, J., Yersin, H., Range, K.-J. \& Zabel, M. (1994). Z. Naturforsch. Teil B, 49, 297-300.
Newkome, G. R., Gupta, V. K. \& Fronczek, F. R. (1986). Acta Cryst. C42, $1643-$ 1644.

Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Prince, E. (1982). Mathematical Techniques in Crystallography and Materials Science, p. 113. Weinheim: Springer-Verlag.
Rochon, F. D., Melanson, R., Howard-Lock, H. E., Lock, C. J. L. \& Turner, G. (1984). Can. J. Chem. 62, 860-869.

Steiner, T. (1998). Acta Cryst. B54, 456-463.
Watkin, D. J. (1994). Acta Cryst. A50, 411-437

[^0]: © 2006 International Union of Crystallography All rights reserved

