Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Jonathon E. Beves, Edwin C. Constable, Catherine E. Housecroft,* Markus Neuburger and Silvia Schaffner

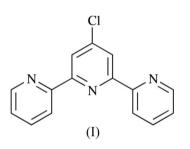
Department of Chemistry, University of Basel, Spitalstrasse 51, CH4056 Basel, Switzerland

Correspondence e-mail: catherine.housecroft@unibas.ch

Key indicators

Single-crystal X-ray study T = 173 K Mean σ (C–C) = 0.003 Å R factor = 0.030 wR factor = 0.032 Data-to-parameter ratio = 10.7

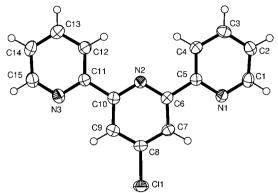
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.


4'-Chloro-2,2':6',2"-terpyridine

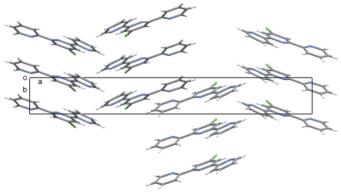
In the title compound, $C_{15}H_{10}ClN_3$, the terpyridine unit adopts a *trans,trans* conformation. Molecules assemble into π -stacked columns along the *b* axis, with an interplanar distance of 3.51 Å.

Received 26 April 2006 Accepted 23 May 2006

Comment


Despite the widespread use of ligands based on 2,2':6',2''terpyridine (tpy) in coordination chemistry (Andres & Schubert, 2004; Baranoff *et al.*, 2004; Constable, 1986; Hofmeier & Schubert, 2004; Thummel, 2004), few crystal structures of ligands with simple substituents have been reported. Ligands with substituents in the 4'-position (Fallahpour, 2003) are of particular significance in the design of extended assemblies with controlled stereochemistry. 4'-Chloro-2,2':6',2''-terpyridine, (I) (Constable & Ward, 1990), is commonly used as a precursor to other 4'-substituted-tpy ligands. We present here the crystal structure of (I).

Crystals of (I) were grown by slow cooling of a hot methanol solution of the ligand. Fig. 1 shows the structure of a molecule of (I). As expected, the three pyridine rings adopt a trans, trans conformation. Bond distances and angles are unexceptional. The molecule is close to being planar: the angles between the least-squares planes of the pyridine rings containing atoms N1 and N2, and N2 and N3 are 8.0 (1) and 5.4 (1)°, respectively. Molecules of (I) pack in π -stacked columns which run along the b axis (Fig. 2). The distance between the least-squares planes (each containing 29 atoms) of adjacent molecules is 3.51 Å. Atom Cl is not involved in any short intermolecular contacts. A search of the Cambridge Structural Database (CSD, Version 5.2.7; Allen, 2002; Bruno et al., 2002) for tpy-based ligands containing single atoms (e.g. halogen) or short rigid-rod substituents at the 4'-position yielded no hits except for the parent 2,2':6',2"-terpyridine (Bessel et al., 1992). That report describes the closest intermolecular interactions as being C-H···N contacts in the range 2.76–2.93 Å. A re-examination of the structure reveals that the packing also features π stacking (distance between least-squares planes of adjacent molecules = 3.45 Å). In


© 2006 International Union of Crystallography

All rights reserved

Figure 1

The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radius.

Figure 2

The packing of (I) viewed down the c axis, showing the π -stacked columns of molecules. Symmetry code for translation of molecules along a column (x, y + 1, z).

contrast to the simple stacked columns of molecules in (I), those of 2,2':6',2"-terpyridine form a more complex arrangement.

Experimental

Compound (I) was prepared as previously reported (Constable & Ward, 1990) and crystals were grown by slow cooling of a hot methanol solution.

Crystal data

C ₁₅ H ₁₀ ClN ₃	Z = 4
$M_r = 267.72$	$D_x = 1.460 \text{ Mg m}^{-3}$
Orthorhombic, <i>Pna</i> 2 ₁	Mo $K\alpha$ radiation
a = 29.8317 (15) Å	$\mu = 0.30 \text{ mm}^{-1}$
b = 3.8344 (2) Å	T = 173 K
c = 10.6476 (5) Å	Plate, colourless
$V = 1217.94 (11) \text{ Å}^3$	$0.20 \times 0.17 \times 0.04~\text{mm}$

Data collection

```
Nonius KappaCCD diffractometer
\varphi and \omega scans
Absorption correction: multi-scan
  (DÊNZO/SCALEPACK;
  Otwinowski & Minor, 1997)
  T_{\min} = 0.95, T_{\max} = 0.99
```

Refinement

Refinement on F	$w = 1/[\sigma^2(F^2) + (0.02P)^2]$
$R[F > 2\sigma(F)] = 0.030$	where $P = [\max(F_o^2, 0) + 2F_c^2]/3$
wR(F) = 0.032	$(\Delta/\sigma)_{\rm max} = 0.001$
S = 0.94	$\Delta \rho_{\rm max} = 0.14 \text{ e } \text{\AA}^{-3}$
1848 reflections	$\Delta \rho_{\rm min} = -0.18 \ {\rm e} \ {\rm \AA}^{-3}$
173 parameters	Absolute structure: Flack (1983),
H-atom parameters constrained	1130 Friedel pairs
-	Flack parameter: -0.04 (6)

All H atoms were treated as riding atoms, with C-H = 0.96 Å and $U_{iso}(H) = 1.2U_{eq}(C).$

7250 measured reflections 2554 independent reflections

 $R_{\rm int} = 0.098$

 $\theta_{\rm max} = 27.6^{\circ}$

1848 reflections with $I > 3\sigma(I)$

Data collection: COLLECT (Nonius, 2001); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare *et al.*, 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: CRYSTALS.

We thank the Swiss National Science Foundation and the University of Basel for financial support.

References

- Allen, F. H. (2002). Acta Cryst. B58, 380-388.
- Altomare, A., Cascarano, G., Giacovazzo, G., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
- Andres, P. R. & Schubert, U. S. (2004). Adv. Mater. 16, 1043-1068.
- Baranoff, E., Collin, J.-P., Flamigni, L. & Sauvage, J.-P. (2004). Chem. Soc. Rev. 33, 147-155.
- Bessel, C. A., See, R. F., Jameson, D. L., Churchill, M. R. & Takeuchi, K. J. (1992). J. Chem. Soc. Dalton Trans. pp. 3223-3228.
- Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.
- Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M. K., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.
- Constable, E. C. (1986). Adv. Inorg. Chem. Radiochem. 30, 69-121.
- Constable, E. C. & Ward, M. D. (1990). J. Chem. Soc. Dalton Trans. pp. 1405-1409
- Fallahpour, R.-A. (2003). Synthesis, pp. 155-184.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Hofmeier, H. & Schubert, U. S. (2004). Chem. Soc. Rev. 33, 373-399.
- Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.
- Thummel, R. P. (2004). Comprehensive Coordination Chemistry II, edited by J. A. McCleverty & T. J. Meyer, Vol. 2, pp. 41-53. Oxford: Elsevier.