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Photoinduced Electron and Proton
Transfer with Metal Complexes and
Organic Molecules

Oliver S. Wenger*

Abstract: This article provides an overview of some of the research performed in the author’s group over the
past few years. This includes work on organic mixed-valence species with photoisomerizable components, as
well as studies of proton-coupled electron transfer between photoexcited metal complexes and organic reaction
partners. This research relies on a combination of synthetic work with optical spectroscopic and electrochemical
studies, and the results are relevant in the greater context of light-to-chemical energy conversion.
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1. Introduction

Electron transfer can occur between
reaction partners that are spatially well
separated from each other and so-called
long-range electron transfer reactions play
an important role in many enzymes.[1:2]
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Photoinduced electron transfer is an el-
ementary reaction step in natural photo-
synthesis, and if we are to emulate bio-
logical light-to-chemical energy conver-
sion with artificial systems a thorough
understanding of photoinduced electron
transfer seems desirable. However, many
of the most interesting fuel-forming reac-
tions are not ‘simple’ electron transfers in
the sense that they require multiple redox
equivalents and proton-coupled electron
transfer (PCET) chemistry. To name just
one specific example, the oxidation of
water to dioxygen requires the accumu-
lated loss of four electrons and four pro-
tons. Against this background the author’s
group performs mechanistic studies of
‘simple’ photoinduced electron transfer
and phototriggered PCET using suitable
model compounds which are either tran-
sition metal complexes or purely organic
molecules. Recently, the focus has been
on understanding elementary aspects of
charge delocalization (section 2) and pro-
ton-electron coupling (section 3).

2. Charge-delocalization in Organic
Mixed-valence Compounds

Initial studies of ‘simple’ electron
transfer in the author’s group concen-
trated on photoinduced electron tunneling
in covalent donor-bridge-acceptor mol-
ecules,34! but for investigation of certain
aspects the study of organic mixed-valence
compounds turned out to be more favor-
able. The donor-bridge-acceptor molecule
(10) shown in Fig. 1a contains a phenothi-
azine electron donor, a photoisomerizable
dithienylethene bridge, and a Ru(bpy),**
(bpy = 2,2’-bipyridine) acceptor.l5] The
dithienylethene spacer can reversibly pho-
toisomerize between a relatively weakly

n-conjugated open form (1o0) and a more
strongly m-conjugated closed form (1c).
The question how much better the more
m-conjugated closed isomer (1¢) mediates
electron transfer than the open form (10) is
of long-standing interest.[”] Unlike in prior
studies of comparable systems a so-called
flash/quench technique was used to gen-
erate a strongly oxidizing Ru(1ir) species
out of the initially present Ru(ir) complex,
but nevertheless the photochemistry of the
overall system remains complicated:[3!
The basic problem is that photoexcitation
of the Ru(bpy),** complex triggers elec-
tron transfer and photoisomerization at the
same time, and it is difficult to disentangle
the two competing photoreactions.

The organic systems shown in Fig. 1b
are monocations of bis(biarylamines) with
a central dithienylethene spacer. Radical
monocations of bis(triarylamines) may be
regarded as mixed-valence compounds in
which the odd electron is delocalized to
different extents depending on the molecu-
lar bridge connecting the two redox-active
amino-groups. Compared to many mixed-
valence species based on coordination
compounds the intervalence absorption
bands of bis(triarylamine) monocations
are relatively easy to detect, and triaryl-
amines bearing para-substituents show
nicely reversible electrochemistry.8°1 The
results obtained from cyclic voltammetry
and optical absorption are compatible with
the scenario illustrated in Fig. 1b. In the
one-electron oxidized forms of molecules
20 and 3o the unpaired electron is essen-
tially localized on one of the two triaryl-
amine branches. Upon photoisomerization
to the closed isomers (2¢*, 3c¢*), partial
charge delocalization is occurring in the
case of the molecule with p-xylene spac-
ers between the N atoms and the dithienyl-
ethene unit (3¢*) while in the other mixed
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Fig. 1. (a) Donor-bridge-acceptor molecule with a photoisomerizable spacer;® (b) monocations of
bis(triarylamine) compounds for organic mixed-valence studies.®!

valence species (2¢*) there is complete
charge delocalization. In other words, the
extent of charge delocalization can be con-
trolled using UV and visible light, and out
of class I mixed-valence compounds (20*,
30*) one obtains class II (3¢*) or class III
(2¢*) mixed-valence species. Because the
extent of charge delocalization can be
probed with infrared light by monitoring
intervalence absorption bands, the experi-
mental difficulties mentioned above for the
donor-bridge-acceptor molecule 1o do not
occur for 20* and 30".['01 Similar studies
can be performed by monitoring optical
electron transfer between electron-rich tri-
arylamine units and electron-deficient tri-
arylboryl groups.['!l The ability to control
the extent of charge delocalization in func-
tional molecules is of key interest in view
of a possible future molecular electronics

technology.
Related work on biarylamine end-
capped  oligothiophene = monocations

provided additional insight into charge-
delocalization across heteroaromatic sys-
tems (Fig. 2). Comparison to analogous
phenylene-bridged systems is particularly
insightful. Based on a combination of
electrochemical, optical spectroscopic and
EPR investigations 4* was found to be a
class III mixed-valence species while the
longer congeners 5* and 6* seem to be at
the borderline of class III and class II.[12]
The analogous phenylene-bridged sys-
tems 7+, 8%, and 9* show a much steeper
distance dependence of charge delocaliza-
tion: Only 7* is a class III mixed valence
compound (at the borderline to class II),

8* is a class II species, and 9* is already
a fully charge-localized class I species.[#]
Such investigations of charge delocaliza-
tion phenomena in oligothiophenes and
related heteroaromatics are relevant in the
context of organic light-emitting diodes.

3. Phototriggered PCET

The Ru(bpz),* (bpz = 2,2’-bipyrazine)
complex (10) differs from the more com-
monly used Ru(bpy),”* complex mainly
by the presence of peripheral N atoms that
can be protonated under favorable circum-
stances. This permits investigation of pho-
totriggered PCET with phenols as reaction
partners (Fig. 3a).[13] In the course of the

overall PCET reaction an electron is trans-
ferred from the phenolic unit to the pho-
toexcited Ru(bpz),** complex, and this is
coupled to the transfer of the phenolic pro-
ton to a peripheral N atom of a bpz ligand.
The overall reaction can be monitored by
transient absorption and luminescence
spectroscopy. Depending on what phe-
nol is used, sizeable hydrogen/deuterium
kinetic isotope effects are detected (up to
~10), and this contains information about
the reaction mechanism.!'415 With most of
the investigated phenols (R = OCHB, CHS,
H, CI, Br, CN), electron and proton trans-
fer seems to occur in a concerted fashion.
To be able to predictably perform photoin-
duced concerted proton/electron transfers
is of key interest for artificial light-to-
chemical energy conversion.

The rhenium-phenol dyads in Fig. 3b
(11, 12) were synthesized to mimic the
function of the P680/Tyr-Z/His-190 reac-
tion triple of photosystem IL[!6] Transient
absorption studies reveal that the photo-
chemistry of these dyads is strongly de-
pendent on the distance between the Re
complex and the p-hydroxy group of the
benzene ring. Molecule 11 essentially acts
like a photoacid; Re(1) excitation leads to
the release of the phenolic proton. By con-
trast, molecule 12 exhibits PCET chemis-
try; phenol-to-Re electron transfer is fol-
lowed by release of the phenolic proton to
the CH,CN/H,O solution. In molecule 12,
the photoinduced PCET process leading to
the phenoxyl radical seems to occur via a
sequence of electron and proton transfer
steps (one after the other), whereas the
thermal backward reaction (re-establishing
the initial Re complex in its ground state
and neutral phenol) appears to involve
either concerted proton-electron transfer,
or a rate-limiting proton transfer step.
Understanding the fundamentals of such
bidirectional PCET reactions could be im-
portant for example for building up charge
and proton gradients across an interface.
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Fig. 2. Comparison of thiophene- and phenylene-bridged mixed-valence systems. 912
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phototriggered PCET
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In molecular dyads and triads photo-
excitation often creates a short-lived elec-
tron-hole pair, or a so-called charge-sepa-
rated state. This is the case also in the triads
shown in Fig. 4 (13, 14) which are com-
prised of a triarylamine donor, a Ru(bpy),**
13) or Os(bpy)_f* (14) photosensitizer,
and an anthraquinone acceptor.[!7-18]
Excitation of the metal complexes with
visible light leads to the formation of such
a charge-separated state with the electron
localized on the anthraquinone and the
hole localized on the triarylamine unit. The
lifetime (7, ) of this charge-separated state
turns out to be strongly solvent dependent.
Interestingly, this lifetime correlates with
the hydrogen-bond donor strength of the
solvent rather than with the solvent dielec-
tric constant.[1%21] For example, in mole-
cule 14 1, increases from 50 ns in CH,CI,
to 2 s in hexafluoroisopropanol.[20] This
suggests that the anthraquinone radical an-
ion is stabilized by hydrogen-bond forma-
tion, and this may be considered a variant
of PCET.

-0 PCET;"® (ET = elec-
tron transfer; PT =
proton transfer).

HsCO,

HyCO

Fig. 4. Molecular triads exhibiting
hydrogen-bond stabilized charge-separated
states.["7-20

4. Summary and Outlook

Research in the author’s group com-
bines synthetic work with optical spectro-
scopic and electrochemical studies. The
key experimental technique is transient
absorption spectroscopy, spectro-electro-
chemistry is an important complementary
technique. Aside from the mixed valence
phenomena and PCET processes outlined
herein, photoinduced multi-electron trans-
fer is an important line of research current-
ly pursued in the author’s group.
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