
Density functional theory calculation on many-cores hybrid central processing unit-
graphic processing unit architectures

Luigi Genovese, , Matthieu Ospici, Thierry Deutsch, Jean-François Méhaut, Alexey Neelov, and Stefan
Goedecker

Citation: The Journal of Chemical Physics 131, 034103 (2009); doi: 10.1063/1.3166140
View online: http://dx.doi.org/10.1063/1.3166140
View Table of Contents: http://aip.scitation.org/toc/jcp/131/3
Published by the American Institute of Physics

http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/20939943/x01/AIP-PT/JCP_ArticleDL_0117/PTBG_orange_1640x440.jpg/434f71374e315a556e61414141774c75?x
http://aip.scitation.org/author/Genovese%2C+Luigi
http://aip.scitation.org/author/Ospici%2C+Matthieu
http://aip.scitation.org/author/Deutsch%2C+Thierry
http://aip.scitation.org/author/M%C3%A9haut%2C+Jean-Fran%C3%A7ois
http://aip.scitation.org/author/Neelov%2C+Alexey
http://aip.scitation.org/author/Goedecker%2C+Stefan
http://aip.scitation.org/author/Goedecker%2C+Stefan
/loi/jcp
http://dx.doi.org/10.1063/1.3166140
http://aip.scitation.org/toc/jcp/131/3
http://aip.scitation.org/publisher/


Density functional theory calculation on many-cores hybrid central
processing unit-graphic processing unit architectures

Luigi Genovese,1,a� Matthieu Ospici,2,3,4 Thierry Deutsch,4 Jean-François Méhaut,2

Alexey Neelov,5,6 and Stefan Goedecker5

1European Synchrotron Radiation Facility, 6 rue Horowitz, BP 220, 38043 Grenoble, France
2Laboratoire d’Informatique de Grenoble, Université Joseph Fourier, INRIA, 51, av. Jean Kuntzmann,
38330 Montbonnot Saint-Martin, France
3Bull SAS, 1 rue de Provence, 38130 Echirolles, France
4Laboratoire de Simulation Atomistique (L_Sim), SP2M, INAC, CEA-UJF, 38054 Grenoble Cedex 9, France
5Institut für Physik, Universität Basel, Klingelbergstr. 82, 4056 Basel, Switzerland
6Institute for Computational Physics, Universität Stuttgart, Pfaffenwaldring 27, 70569 Stuttgart, Germany

�Received 10 April 2009; accepted 10 June 2009; published online 16 July 2009�

We present the implementation of a full electronic structure calculation code on a hybrid parallel
architecture with graphic processing units �GPUs�. This implementation is performed on a free
software code based on Daubechies wavelets. Such code shows very good performances, systematic
convergence properties, and an excellent efficiency on parallel computers. Our GPU-based
acceleration fully preserves all these properties. In particular, the code is able to run on many cores
which may or may not have a GPU associated, and thus on parallel and massive parallel hybrid
machines. With double precision calculations, we may achieve considerable speedup, between a
factor of 20 for some operations and a factor of 6 for the whole density functional theory code.
© 2009 American Institute of Physics. �DOI: 10.1063/1.3166140�

I. INTRODUCTION

The Kohn–Sham �KS� formalism of the density func-
tional theory �DFT� approach1 is a well-established first-
principles method to investigate properties of atomistic sys-
tems. In recent years, the raising of the computational power
of modern supercomputers further stimulated the interest of
the community for electronic structure calculations of sys-
tems with many electrons. Systems, which were untractable
only few years ago, now became accessible with the advent
of modern machines. However, despite the approximate na-
ture of the approach, the computational demand already be-
comes huge for systems with few hundreds of atoms. For the
most distributed DFT codes, the number of computational
operations increases with the third power of the number of
atoms �cubic scaling�. As a result, the computational over-
head for treating systems with large number of atoms now
represents a serious limitation for the maximum size of the
system considered. A possible strategy to circumvent this
problem can be provided by the development of linear scal-
ing algorithms for electronic structure calculations, which
have been widely developed in recent years �see, e.g., Ref.
2�. Such kind of approach has a crossover point with the
traditional cubic codes, which is placed right around few
hundreds atoms and, at present, they represent one of the
most promising strategies for ab initio simulation of large
systems that exhibit quantum mechanical behavior.

In the past few years, the possibility of using graphic
processing units �GPUs� for scientific calculations raised a
lot of interest. A technology initially developed for home
personal computer hardware rapidly evolved in the direction

of programmable parallel streaming processor. The features
of these devices, in particular, the very low price perfor-
mance ratio, together with the relatively low energy con-
sumption, make them attractive platforms for intensive sci-
entific computations. A lot of scientific applications have
been recently ported on GPU, including, for example, mo-
lecular dynamics,3 quantum Monte Carlo,4 and finite element
methods.5 In the domain of electronic structure calculation,
the calculation of the exchange-correlation term in a Gauss-
ian based DFT code has been implemented on GPU,6 as well
as the evaluation of the Coulomb potential7 and the
resolution-of-the-identity MP2 technique.8 The self-
consistent field calculation of the Gaussian-based GAMESS

code was also ported on GPU.9,10 Most of these implemen-
tation are performed on single precision calculation units and
with a single CPU core connected to a single GPU card.

In this paper, we will present an implementation of a full
DFT code which can run on massive parallel hybrid CPU-
GPU clusters. Our implementation is based on the architec-
ture of the most recent NVidia GPU cards �compute capabil-
ity of type 1.3�, which supports double precision floating
point numbers. The routines that define the GPU kernels are
thus coded within the specification of the CUDA language.11

Our GPU port is performed over a DFT code based on
Daubechies wavelets.12 The latter is a systematic, orthogo-
nal, multiresolution real-space basis set that presents optimal
properties for expanding localized information. The proper-
ties of this basis set are well suited for an extension on a
GPU-accelerated environment. This DFT code, named
BIGDFT,13 is delivered within the GNU-GPL license either in
a standalone version or integrated in the ABINIT �Ref. 14�
software package.a�Electronic mail: luigi.genovese@esrf.fr. Tel.: �33 4 76 88 25 54.
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The paper is organized as follows. First we present the
main features of the BIGDFT code to explain how the opera-
tors of the KS Hamiltonian can be written in Daubechies
wavelets basis. We will then discuss the implementation of
these operators in the GPU architectures and inspect their
performances separately from the complete DFT code. After-
wards we will inspect the problem of the transfer of the data
on the card and we will finally discuss the performances of
the full DFT code on parallel environments.

II. OVERVIEW OF THE BIGDFT CODE

In the KS formulation of DFT, the KS wave functions
��i� are eigenfunctions of the KS Hamiltonian, with pseudo-
potential Vpsp,

�− 1
2�2 + VKS��� + Vpsp���i� = �i��i� . �1�

The KS potential VKS��� is a functional of the electronic
density of the system,

��r� = �
i=1

Norbitals

nocc
�i� ��i�r��2, �2�

where nocc
�i� is the occupation of orbital i.

The KS potential VKS���=VH���+Vxc���+Vext contains
the Hartree potential VH, the solution of the Poisson’s equa-
tion �2VH=−4��, the exchange-correlation potential Vxc and
the external ionic potential Vext acting on the electrons. In the
BIGDFT code the pseudopotential term Vpsp is under the form
of norm-conserving GTH-HGH pseudopotentials,15–17 which
have a local and a nonlocal term, Vpsp=Vlocal+Vnonlocal. The
KS Hamiltonian can then be written as the action of three
operators on the wave function18–21

�− 1
2�2 + VL + Vnonlocal���i� = �i��i� , �3�

where VL=VH+Vxc+Vext+Vlocal is a real-space based �local�
potential and Vnonlocal comes from the pseudopotentials.

As usual, in a KS DFT calculation, the application of the
Hamiltonian is a part of a self-consistent cycle, needed for
minimizing the total energy. In addition to the usual orthogo-
nalization routine, in which scalar products ��i �� j� should
be calculated, another operation performed on wave func-
tions in BIGDFT code is preconditioning. This is calculated by
solving the Helmholtz equation

�− 1
2�2 − �i��g̃i� = �gi� , �4�

where �gi� is the gradient of the total energy with respect to
the wave function ��i� of energy �i. The preconditioned gra-
dient �g̃i� is found by solving Eq. �4� by a preconditioned
conjugate gradient method.

A. Daubechies basis and convolutions

The set of basis functions used to express the KS orbitals
is of key importance for the nature of the computational op-
erations, which have to be performed. In the case of the
BIGDFT code, the locality of the basis functions allows us to
store the expansion coefficients of a KS orbital in a com-
pressed form where only the nonzero values are stored. The
basis set being orthogonal, several operations such as scalar

products among different orbitals and between orbitals and
the projectors of the nonlocal pseudopotential can directly be
carried out in this compressed form. The application of ki-
netic and local potential operators can be written in terms of
three-dimensional convolutions with short, separable filters.
Such convolutions belong to three different classes; the ki-
netic one expresses analytically the expansion coefficients of
the Laplacian of the KS wave function in the basis set. The
second type of convolutions, the wavelet transformations,
switches back and forth between a two-resolution level de-
scription and a uniform, high resolution description. The
third class is the so-called “magic filter” transformations,
through which the values of the KS wave functions on the
points of the simulation box can be expressed with optimal
accuracy. A more complete description of these operations
can be found in the BIGDFT reference paper.13

B. Local Hamiltonian operator

The described above operations must be combined for
the application of the local Hamiltonian �−�1 /2��2+VL�r��.
The order of the operation must be the following:

�1� Decompression of the data.
�2� Wavelet transformation.
�3� Local potential application:

�a� Magic filter transformation.
�b� Potential multiplication.
�c� Transposed magic filter transformation.

�4� Kinetic operator from the output of �2�.
�5� Sum with potential application.
�6� Inverse wavelet transformation.
�7� Data compression.

In the CPU version of BIGDFT some of these operations
are merged, e.g., �2� and �3a�, as well as �3c� and �6�, are
combined into a set of common filters. However, in our GPU
implementation, we chose to apply these operations sepa-
rately, since it is simpler and accounts for better modularity.
The wave function compression-decompression can also be
calculated in the card.

C. Local density calculation, Poisson solver

The density of the electronic system is derived from the
square of the point values of the wave functions, �see Eq.
�2��. As described in Sec. II A, a convenient way to express
the point values of the wave functions is to apply the magic
filter transformation to the Daubechies basis expansion coef-
ficients. The operations needed to calculate the local density
would then be identical to points �1�, �2�, and �3a� of the list
at Sec. II B, followed by an accumulation of the squares of
the wave functions in the same array.

The local potential VL can be obtained from the local
density � by solving the Poisson’s equation and by calculat-
ing the exchange-correlation potential Vxc���. These opera-
tions are performed via a Poisson solver based on interpolat-
ing scaling functions,22 a basis set tightly connected with
Daubechies functions. The properties of this basis are opti-
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mal for electrostatic problems and mixed boundary condi-
tions �BCs� can be treated explicitly. A description of this
Poisson solver can be found in papers.23,24

D. Parallelization for homogeneous computing
clusters „CPU code…

Two data distribution schemes are used to parallelize the
code. In the orbital distribution scheme �used for Hamil-
tonian application, preconditioning�, each processor works
on one or a few orbitals for which it holds all its expansion
coefficients. The other operations are performed in the coef-
ficient distribution scheme, in which each processor holds a
certain subset of the coefficients of all the orbitals. The MPI
global transposition routine MPI_ALLTOALL is used to switch
back and forth between the orbital distribution scheme and
the coefficient distribution scheme. Further flexibility has
been added by allowing each processor to store variable
number of orbitals and/or wave function coefficients. This is
particularly useful for a hybrid architecture, when only some
of the cores can be in relation with some hardware accelera-
tor, like a GPU card. In the case of this variable repartition
case, the communications are performed with suitable calls
to MPI_ALLTOALLV routines. For parallel computers in which
the cross sectional bandwidth25 scales well with the number
of processors, this global transposition does not require a lot
of CPU time. The BIGDFT code shows very good computa-
tional performances and an excellent efficiency �above 90%�
on such kind of architectures.

E. Wavelet transformation and magic filters
convolutions

In order to present the computational implementation, let
us analyze in detail the magic filter transformation. A three-
dimensional array s �input array� of dimension n1 ,n2 ,n3 is
transformed into the output array �r given by

�r�I1,I2,I3� = �
j1,j2,j3=−L

U

� j1
� j2

� j3
s�I1 − j1,I2 − j2,I3 − j3� .

�5�

With a lowercase index ip we indicate the elements of the
input array, while with a capital index Ip we indicate the
indices after application of the magic filters �i, which have
extension from −L to U. In BIGDFT, different BCs can be
applied at the border of the simulation region, which affects
the values of the array s in Eq. �5� when the indices are
outside bounds. For our GPU implementation we use peri-
odic BC in the three dimensions, i.e., data are wrapped peri-
odically, though the original CPU version of these convolu-
tions also admits isolated and slablike BC. However, our
GPU implementation can be straightforwardly extended to
such BCs.

The most convenient way to calculate a three-
dimensional convolution of this kind is by combining one-
dimensional �1D� convolutions and array transpositions, as
explained in Ref. 26. In fact, the calculation �5� can be cut in
three steps:

�1� F3�I3 , i1 , i2�=� j� js�i1 , i2 , I3− j� ∀ i1 , i2,

�2� F2�I2 , I3 , i1�=� j� jF3�I3 , i1 , I2− j� ∀ I3 , i1,
�3� �r�I1 , I2 , I3�=� j� jF2�I2 , I3 , I1− j� ∀ I2 , I3.

The final result is thus obtained by a successive application
of the same operation:

F�I,a� = �
j=−L

U

� jG�a,I − j� ∀ a = 1, . . . ,N,I = 1, . . . ,n .

�6�

The lowest level routine, which will be ported on GPU, is
then a set of N independent, 1D �periodic�, convolutions of
arrays of size n. The number N equals n1n2, n1n3, and n2n3,
respectively, for each step of the three-dimensional construc-
tion, while n equals to the dimension, which is going to be
transformed. The output of the first step is then taken as the
input of the second, and so on and so forth.

This procedure can also be applied to the wavelet trans-
formation by suitably changing the values of the filters and
their extensions. This can be done thanks to the fact that the
latter is a three-dimensional separable convolution as well,
i.e., it has the same formal expression as Eq. �5�.

F. Kinetic convolution

A little, but substantial, difference should be stressed for
the kinetic operator application. In this case, the three-
dimensional filter is the sum of three different filters. This
implies that the kinetic filter operation must be cut differ-
ently from the other separable convolutions:

�1� K3�I3 , i1 , i2�=� jTjs�i1 , i2 , I3− j� ∀ i1 , i2,
�2� K2�I2 , I3 , i1�=� jTjs�i1 , I2− j , I3�+K3�I3 , i1 , I2� ∀ I3 , i1,
�3� ŝ�I1 , I2 , I3�=� jTjs�I1− j , I2 , I3�+K2�I2 , I3 , I1� ∀ I2 , I3.

Here T indicates the one-dimensional kinetic filter. In this
case, the three-dimensional kinetic operator can be also seen
as a result of a successive application of the same operation,

Kp�I,a� = �
j

TjGp−1�a,I − j� + Kp−1�a,I� and

�7�
Gp�I,a� = Gp−1�a,I� ∀ a,I .

In other terms, the 1D kernel of the kinetic energy has two
input arrays, Gp−1 and Kp−1, and returns two output arrays,
Kp and Gp, which are the transpositions of Gp−1. At the first
step �p=1� we put G0=s and K0=0. Eventually, for p=3, we
have K3= ŝ and G3=s. If K0�0, then K3= ŝ+K0. This per-
mits the merge of steps �4� and �5� in the list of Sec. II B by
putting K0 equal to the output of step �3c�. This algorithm
can also be used for the Helmholtz operator of the precondi-
tioner by putting K0=−�is.

III. IMPLEMENTATION OF CONVOLUTIONS ON GPU

A. NVidia GPU architecture

A NVidia GPU is composed of a global memory and a
set of multiprocessors.11 Each multiprocessor includes eight
computing units �cores� and a “private” shared memory. To
obtain optimal performance, it is necessary to store the data
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to be processed in the private memory of multiprocessors.
Fine-grained threads are the basic activities of parallel execu-
tion in CUDA. Indeed, a CUDA program is mapped on a set
�“grid”� of execution blocks running on multiprocessors. A
block contains several threads executed by the processors of
a multiprocessor. The processors execute the threads in a
synchronous way �data parallel threads�, in groups of 32 par-
allel threads called warps. The memory bandwidth of a GPU
is used more efficiently when each half of a warp accesses a
set of contiguous elements in the global memory. The shared
memory is divided in 16 banks, each one containing a 32-bit
word. Two contiguous words belong to different banks. Any
shared memory request made of addresses in different banks
can be performed simultaneously. Optimal performance will
then be achieved for shared memory access if each thread of
a half-warp accesses a different memory bank �no bank con-
flict�. In this case, accessing the shared memory is as fast as
accessing a register. The GPU can dialog with the CPU via
the PCI-Express bus, which has rather high latency time
�around 20 �s�. It is thus convenient to reduce as much as
possible the number of data transfers between host memory
and the GPU. In the following section, we will show the
design and implementation of the magic filter convolution
described in Sec. II E on NVidia GPUs.

B. Implementation details

From the GPU parallelism point of view, there is a set of
N independent convolutions to be computed. Each of the
lines of n elements to be transformed is split in chunks of
size Ne. Each multiprocessor of the graphic card computes a
group of N� different chunks and parallelizes the calculation
on its computing units. After the calculation of the convolu-
tion values, these NeN� elements are copied in the corre-
sponding part of the output array, which is transposed with
respect to the input. The size of the data fed to each block is
identical �such as to avoid block-dependent treatment�, hence
when N and n are not multiples of N� and Ne, some data
treated by different blocks may overlap. This fact has no

double-counting effect since the overlap is reproduced also
in the output array. Figure 1 shows the data distribution on
the grid of blocks during the transposition.

In order to perform the convolution for Ne elements,
Ne+Nbuf elements must be sent to the shared memory for the
calculation, where Nbuf depends on the size of the filter. Nbuf

is equal to L+U for the convolution described in Sec. II E.
The shared memory must thus contain buffers to store the
data needed for the convolution computations. The desired
BCs �periodic in our case� are implemented in the shared
memory buffers during the data transfer.

To avoid bank conflicts, the half warp size �16 for mod-
ern cards� must be a multiple of N�. Each half warp thus
computes at least 16 /N� values and Ne is a multiple of that
number, chosen in such a way that the total number of ele-
ments N��Ne+Nbuf� fits in the shared memory �which has 16
kbyte maximum capacity�.

IV. PERFORMANCE EVALUATION OF GPU
CONVOLUTION ROUTINES

In this section, we will evaluate the performance of 1D
convolution routines described in Eqs. �7� and �6�, together
with the analogous operation for the wavelet transformation,
by comparing the execution times on CPU and GPU. For
these evaluations, we used a computer with an Intel Xeon
processor X5472 �3 GHz� and a NVidia Tesla S1070 card.

The CPU version of BIGDFT is deeply optimized with
optimal loop unrolling and compiler options. The GPU code
is compiled with the Intel Fortran compiler �10.1.011� and
optimal compiler options �which turned out to be –O2 –xT
for our case�. With these options, the magic filter convolu-
tions on CPU run at about 3.4 Gflops. All benchmarks are
performed with double precision floating point values.

The GPU versions of the 1D convolutions are about one
order of magnitude faster than their CPU counterparts. For
the magic filter convolutions as well as for the kinetic opera-
tor we have a factor of roughly 10, while the GPU wavelet
transformation is 20–25 times faster. This fact is mainly re-
lated to the CPU implementation of the wavelet transforma-
tion, which has a different memory access pattern. Indeed,
the values to be convolved for a wavelet transformation be-
long to two different arrays instead of being contiguous. This
fact has no effect on the GPU implementation since the
shared memory access does not exhibit cache-miss behavior.
We can then achieve an effective performance rate of the
GPU convolutions of about 40 Gflops by also considering
the data transfers in the card. These values are lower than the
peak performances declared by the vendor, which, for double
precision calculations, are of the order of 200 Gflops. A more
precise inspection shows that the reason for this fact is that,
on GPU, a considerable fraction of time is still spent in data
transfers rather than in calculations. This appears since data
should be transposed between input and output array and the
arithmetic needed to perform convolutions is not heavy
enough for hiding the latency of all the memory transfers.
This behavior is much more evident for the compression-
decompression operations, since it has no arithmetic at all
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FIG. 1. Data distribution for 1D convolution+transposition on the GPU.
Input data �left panel� are ordered along the N-axis, while output �right
panel� is ordered in the n-axis direction, see Eq. �6�. When executing GPU
convolution kernel, each block �i , j� of the execution grid is associated with
a set of N� �N-axis� times Ne �n-axis� elements. The filled patterns in the
figure indicate the overlap region, i.e., data which are associated to more
than a block. Behind the �i , j� label, in light gray, it is indicated the portion
of data which should be copied to the shared memory to treat the data in the
block, which also contains the buffers needed for computing the
convolution.
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and is just five to seven times faster on GPU. We will later
show that these results are really satisfying for our purposes.

These building blocks must be combined to build the
three-dimensional operators �see the list of Sec. II B�. The
multiplication with the potential and the calculation of the
square of the wave function are performed via the applica-
tion of some special GPU kernels, based on the same guide-
lines as the others. The reduction operations, such as the
calculation of the potential and kinetic energy, can be seen as
linear algebra operations and can thus be performed with
suitable calls to the corresponding CUBLAS routines.

The performance of the three-dimensional operations,
which are based on convolutions, is rather high. We obtain
speedups between a factor slightly below 20 for the applica-
tion of the local Hamiltonian and a factor of 10 for the pre-
conditioner operator. This is related to the fact that, in the
latter, the relative importance of the compression-
decompression operations is higher, while this becomes al-
most negligible for the former. Intermediate performances
are obtained for the local density construction, which exhib-
its an overall speedup of about 15. The results for the GPU
speedups of the 1D building blocks and for the three-
dimensional operators of the BIGDFT code are represented in
Fig. 2 as a function of the compressed wave function size.

V. TOWARD A COMPLETE HYBRID CODE

The memory transfers between memories of CPU and
GPU using the PCI-Express bus are well known to be poten-
tially a bottleneck and, consequently, a major obstacle to
high performance. Hence, we have to adapt the algorithm to
reduce the memory transfers as much as possible. In our
case, this can be carried out thanks to the scheduling of op-
erations in the BIGDFT code. Indeed, an optimization iteration
of a single wave function is organized as follows:

�I� Density construction.
�II� Poisson solver→local potential �VH+Vxc�.
�III� Local Hamiltonian.
�IV� Nonlocal Hamiltonian.
�V� Wave function residue.
�VI� Residue preconditioning.

�VII� Wave function update.
�VIII� Orthogonalization �Cholesky factorization�.

The wave functions do not evolve between steps �I� and �III�.
Therefore, they can be transferred on the GPU �global
memory� before computing the density. After step �III�, they
can be sent back to the host memory �CPU�, thus saving two
memory transfers. Moreover, in this way, computation time
is saved since the operations needed for the density calcula-
tion coincide with the first part of the operations for the local
Hamiltonian �see Sec. II C�. Given the above scheduling of
operations, the full CPU-GPU implementation of BIGDFT

code can be efficiently implemented. In the current hybrid
implementation, we can execute on the GPU steps �I�, �III�,
and �VI� and also all BLAS routines performed in steps �V�
�DGEMM� and �VIII� �DSYRK�. However, all other opera-
tions, such as LAPACK routines �step �VIII�� or the multipli-
cation with the nonlocal pseudopotentials �step �IV�� are still
executed on the CPU and can be ported on GPU. We left
these implementations to future versions of the hybrid code.

A. Parallel distribution

Hybrid architectures are becoming more and more popu-
lar with configurations of several CPU and GPU. Typically, a
configuration may be composed of two quadcore processors
�Intel Xeon or Nehalem� and two NVidia GPUs. Hence, in
this case, the two GPUs have to be shared between the eight
CPU cores. The problem of data distribution and load bal-
ancing is a major issue to achieve optimal performance. The
operators implemented on GPU are parallelized within the
orbital distribution scheme �see Sec. II D�. This means that
each core may host a subset of the orbitals and apply the
operators of Sec. IV only to these wave functions.

A possible solution to the GPU sharing is to dedicate
statically one GPU to one CPU core. Two CPU cores are
thus more powerful because they have access to GPU. The
six other CPU cores do not interact with the GPU. Since the
number of orbitals, which may be assigned to each core, can
be adjusted, a possible way to handle the inhomogeneity
CPU/GPU would be to assign more orbitals to the cores that
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FIG. 2. Double precision speedup for the GPU version of the fundamental operations �left panel� and for the three-dimensional operators used in the BIGDFT

code �right panel� as a function of the single KS orbital size.
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have a GPU associated. Such kind of approach can be real-
ized thanks to the flexibility of the data distribution scheme
of BIGDFT �see Sec. II D�, but it may be difficult for the end
user to optimally define a repartition of the orbitals between
the different cores for a given system.

For this reason, we designed an alternative approach
where the GPU are completely shared by all CPU cores. The
major consequence is that the set of orbitals is equally dis-
tributed to CPU cores. In brief, in a given node each of the
CPU cores is allowed to use one of the GPU cards, so that a
card is associated with a group of CPU cores. A GPU is then
associated to two semaphores, which control the memory
transfers and the calculations. In this way the memory trans-
fers of the data between the different cores and the card can
be executed asynchronously and overlapped with the calcu-
lations. This is optimal since each orbital is processed inde-
pendently. The technical details of this implementation will
be described in a more technical paper. In the next section,
we will focus on the performance of the hybrid BIGDFT code.

VI. PERFORMANCE EVALUATION OF HYBRID
CODE

As a test system for the full DFT code, we used the ZnO
crystal, which has a wurtzite bulklike structure. Such a sys-
tem has a relatively high density of valence electrons so that
the number of orbitals is rather large even for a moderate
number of atoms. Our calculations are performed on the hy-
brid part of the CINES IBLIS machine, which has 12 nodes,

connected to an Infiniband 4X DDR connectX network, each
node �2 Xeon X5472 quadricore� connected with 2 GPU of a
tesla S1070 card.

We performed two different tests. In the first one, we
performed a set of calculations for different supercells with
increasing number of MPI processes, so that the number of
orbital per MPI process is kept constant. We performed a
comparison for the same runs in which the total number of
GPU used equals the number of MPI processes, thus with a
1/1 ratio GPU/CPU cores. The aim of this test is to verify the
overall speedup of the hybrid code, considering that not all
the computational operations of the code are ported on the
card.

The second test is conceived to verify the behavior of the
hybrid code where the GPU/CPU ratio is lower than one. In
this test, for a given system size, we controlled the behavior
for 1/2 and a 1/4 ratios by using the shared GPU repartition
described at the end of Sec. V A. In these runs, a GPU can be
viewed as a coprocessor, which is shared between two and
four CPU cores, respectively. This could be carried out
thanks to the data transfer overlap, which allows for multiple
cores to share the same card.

A. One-to-one CPU/GPU binding

Figure 3 shows the results of the first test. Our compari-
son shows an overall speedup of the whole code by a factor
of around 6. As expected, we can see in Fig. 4 that the
speedup of the different GPU-ported parts of the code is in
agreement with the performances of the separate three-
dimensional operators presented in Sec. IV.

FIG. 3. Relative speedup of the hybrid DFT code with respect to the equivalent pure CPU run, as a function of the number of orbitals. The calculation is
performed in parallel such that each CPU core holds the same number of orbitals �36 in this figure�. The number of atoms of each system is eight times the
number of CPU cores considered. Also the time in seconds for a single minimization iteration is indicated, showing a speedup of a factor of around 6 with
the hybrid CPU-GPU architecture, in double precision computation.
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These results are interesting and sound very promising
for a number of reasons. First of all, as discussed before, not
all the routines of the code were ported on GPU. We focus
our efforts in particular on the operators that can be written
via a convolution. The application of the nonlocal part of the
Hamiltonian can also be performed on the GPU and we are
planning to do so in further developments. Moreover, the
actual implementation of the GPU convolutions can be fur-
ther optimized. For example, in the preconditioner the wave-
let transformation can be combined with the kinetic operator
�as it is done in the CPU version� in order to define a faster
GPU kernel. This is not negligible since the preconditioner
still represents a considerable fraction of the overall time in
the GPU version as well. The linear algebra operations can
also be further optimized. Currently, only the calls to the
BLAS routines were accelerated on the GPU, via suitable calls
to the corresponding CUBLAS routines. The LAPACK routines,
which are needed to perform the orthogonalization process,
can also be ported on GPU, with a considerable gain. Indeed,
the linear algebra operations represent the most expensive
part of the code for very large systems �see Ref. 13�. Figure
4 shows that for large systems the overall speedup is domi-
nated by the linear algebra operations; an optimization of this
section is then crucial for future improvements of the hybrid
code.

B. Many-to-one CPU/GPU binding

For the second test, we performed runs with two differ-
ent systems, with 64 and 128 atoms, respectively. For each
system, we collected the overall speedups of the full DFT
code when one GPU card is associated with two or four CPU
cores. In Fig. 5, these results are represented as a function of
the total number of MPI processes. The speedup is about 3.5
for a 1/4 repartition, while for a 1/2 repartition it tends to be
of the same order as the homogeneous case �see Fig. 4�.
There is thus no need to reserve an entire GPU per MPI
process, since the same speedup can be achieved by sharing
the card between two cores. In other terms, we can say that
during the calculation only the 50% of the GPU is used.
According to this, the speedup of a four-to-one repartition is

thus roughly halved. In particular such a repartition is the
more common in modern hybrid CPU-GPU supercomputers
�where each node contains eight CPU cores and two GPUs�.
These results are particularly encouraging since at present
only the convolutions operators are desynchronized by the
semaphores �see Sec. V A� and the BLAS routines are ex-
ecuted at the same time on the card. Future improvements in
this direction may allow us to better optimize the load on the
cards in order to further increase the efficiency.

VII. CONCLUSIONS AND PERSPECTIVES

The port of the principal sections of a electronic struc-
ture code over GPUs has been shown. Such GPU sections
have been inserted in the complete code in order to have a
production DFT code which is able to run in a multi-GPU
environment. The DFT code we used, named BIGDFT, is
based on Daubechies wavelets and has high systematic con-
vergence properties, excellent performances, and optimal ef-
ficiency on parallel computation. The GPU implementation
of the code we presented fully respects these properties. With
double precision calculations, considerable speedup is
achieved for the converted routines �up to a factor of 20 for
some operations�. Our developments are fully compatible
with the existing parallelization of the code and the commu-
nication between CPU and GPU does not affect the effi-
ciency of the existing implementation. The data transfers be-
tween the CPU and the GPU can be optimized in such a way
that more than one CPU core communicates with the same
card. This is optimal for modern hybrid supercomputer ar-
chitectures in which the number of GPU cards is generally
smaller �normally a 25% ratio� than the number of CPU
cores. We tested our implementation by running systems of
variable number of atoms on a 12-node hybrid machine.
These developments produce an overall speedup on the
whole code of a factor of around 6 for a fully parallel run as
well. It should be stressed that, for these runs, our code has
no hot-spot operations and all the sections which are ported
on GPU contribute to the overall speedup. Moreover, given
the nature of the parallelization of the BIGDFT code, we ex-
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pect these results to also hold on bigger systems in massive
parallel hybrid environments, such as the machine installed
in France at the Centre de Calcul Recherche et Technologie.

The GPU port of the routines was performed for fully
periodic BC, but different BCs can also be implemented
without altering the nature of the developments. This is par-
ticularly interesting since it means that all these develop-
ments are totally compatible with the addition of new func-
tionalities, like a linear scaling approach of the BIGDFT code,
which is under way.

Such results can be further improved by optimizing the
present GPU routines and by accelerating other sections of
the code. The hybrid BIGDFT code, like its pure CPU coun-
terpart, is available under GNU-GPL license and can be
downloaded from the site in Ref. 13. To our knowledge, it is
the first time that a systematic electronic structure code has
been able to run on hybrid �super-� computers in �massively�
parallel environment. To summarize, our results open a path
toward the use of GPU for double precision DFT calcula-
tions and encourage us to proceed further in this direction.
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