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Using variable atomic numbers within molecular grand-canonical ensemble theory, the highest
occupied Kohn-Sham eigenvalue of isoelectronic benzene derivatives is tuned. The performed
transmutational changes correspond to the iterative doping with boron and nitrogen. The molecular
Fukui function proves to be a reliable index in order to predict the changes in the highest occupied
molecular orbital eigenvalue due to doping. © 2007 American Institute of Physics.
�DOI: 10.1063/1.2752811�

I. INTRODUCTION

The design of molecular materials plays a crucial role in
the growing field of molecular electronics.1,2 The elucidation
and subsequent tuning of electronic structure and morpho-
logical details, which determine the charge mobilities, are
crucial steps in the engineering of organic conducting
films.3–5 The fundamental problem of engineering molecular
properties through compositional variations, however, origi-
nates in the factorial scaling of the cardinal number of the
high-dimensional space spanned by all possible stoichiom-
etries and isomers.6,7 A successful compound design ap-
proach should enable an efficient and reliable a priori iden-
tification of promising compounds for material synthesis.
Rational in silico approaches to materials design are rather
recent8–13 and have not yet been used for the optimization of
molecular properties relevant to this field.

Apart from the important aspects of synthesizability, sta-
bility, and material morphology,14 means to control elec-
tronic orbitals, especially highest occupied molecular orbital
�HOMO� and lowest unoccupied molecular orbital, via
chemical doping are highly desirable to improve charge
transport properties.2 The idea of replacing CC units in or-
ganic compounds by BN pairs is of special interest since the
electronic characteristics of polycyclic aromatic hydrocar-
bons could be altered significantly while maintaining crucial
structural features.15 Boron nitride exemplifies this by being
similar to graphite in many physical properties, e.g., having a
graphitelike layer structure of alternating B and N. In anal-
ogy to the conversion of graphite to diamond, the layer struc-
ture of BN can even be converted into a tetrahedral diamond-
like structure, known as boraxon.16 BN-doped benzene
derivatives are another example of such systems. They have
already been studied theoretically from the point of view of
stability and electronic structure. Some of them were synthe-
sized and characterized, e.g., borazine, or “inorganic ben-
zene,” B3N3H6, which has formal structural resemblance to
benzene and very similar physical properties.17 The chemical

properties of borazine, however, indicate the absence of aro-
maticity and it has been suggested that properties of benzene
and borazine can be interpolated through “hybrid” structures
containing �HNBH� and �HCCH� moieties.18 Indeed, while
1,3-azaborine, BC4NH6, exhibits significant bond delocaliza-
tion, the 1,2- and 1,4-isomers appear to be best described as
heterocyclic dienes.19 Similar calculations have been done
for diazadiborines, B2C2N2H6, containing one �HCCH� and
two �HNBH� moieties.18

In this study, we apply the recently introduced molecular
grand-canonical ensemble density functional theory7,10,13

�DFT� to the problem of predicting the changes in HOMO
eigenvalues of benzene derivatives due to doping at various
sites in the molecule without the actual evaluation of the
electronic structure of the corresponding mutants. If the pre-
dictions are sufficiently accurate, more efficient compound
design algorithms for the tailoring of the electronic structure
of more realistic molecules, such as hexabenzocoronene or
pentacene, through compositional BN mutations become
conceivable. In order to obtain these predictions, we com-
pute the molecular Fukui function, i.e., the changes in the
electrostatic potential due to a small variation in the HOMO
occupation number. Based on this quantity, susceptibilities of
the HOMO eigenvalue due to doping are obtained for all the
respective nuclear sites. Iterating this procedure, we visit all
mutants, analyze their electronic structure, and validate the
accuracy by comparison to the corresponding eigenvalues.

Our choice of isolated benzene as a test system is moti-
vated by the fact that �i� the number of all the possible
benzene-derived mutants is small, allowing for a direct as-
sessment of the HOMO values for all possible mutants and
thorough control of all approximations; �ii� benzene can
serve as a prototype for triphenylene and even larger pol-
yaromatic hydrocarbons, i.e., an extension of the proposed
approach to these systems is rather straightforward.

The paper is organized as follows. Section II outlines the
notion of a chemical space, summarizes the molecular grand-
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canonical DFT framwork, and provides the computational
details. The ability of the grand-canonical approach to pre-
dict correct electronic structure is then addressed in Sec. III,
which also summarizes the main results.

II. THEORY

A. Chemical space

All molecules consist of superimposed positive �nuclear�
and negative �electrons� charge densities which have to inte-
grate to the total number of protons, Np, and electrons, Ne, of
the system. The molecular charge is then the difference of
these two numbers, Q=Np−Ne.

We will restrict ourselves to isoelectronic benzene de-
rivatives with Ne=30 valence electrons, i.e., Ne is constant
and doped mutants are exclusively obtained from transmuta-
tional variations which result in the atomic numbers of B, C,
and N. For this study, the chemical space is spanned by all
the isoelectronic B- and N-doped benzene derivatives
Bn�C6−n�−n�Nn�H6, where non-negative integer numbers n�
and n� can take the values 0, 1, 2, and 3. In total, there are 18
different neutral �Q=0� compounds which can be further di-
vided into four stoichiometrical cases: one isomer for n�=0,
three isomers for n�=1, eleven isomers for n�=2, and three
isomers for n�=3. We allow also for charged compounds,
where Np is restrained to 30±�Np at the sites �RI� of the six
nuclei I=1, . . . ,6 of benzene. For example, Q=−1 if one
proton has been removed, i.e., one of the system’s atoms
decreased its atomic number �for example, changing carbon,
Z=6, into boron, Z=5�, and Q= +1 if a proton has been
added, i.e., the system has been doped at one of the nuclear
sites with an atomic number which was larger than before
�for example, changing carbon, Z=6, into nitrogen, Z=7�.
Here, we only consider the charged mutants with n�=n�±1
because in chemical space they represent intermediates be-
tween the neutral mutants �n�=n��. All the neutral and singly
doped intermediates are depicted in Fig. 1.

B. Electronic structure and the molecular Fukui
function

We first summarize the molecular grand-canonical en-
semble DFT approach, and show how to apply it to the prob-
lem of tuning the HOMO eigenvalue. For more details and
discussions of the theory the reader is referred to Refs. 7, 10,
and 13.

Following Ref. 7, let us assume that molecules are rep-
resented by single particle electron and proton densities, ��r�
and Z�r�, which can be formally defined within the Born-
Oppenheimer approximation. Furthermore, we assume the
standard molecular Hamiltonian,

Ĥtotal = Ĥee + ĤeZ + ĤZZ, �1�

where Ĥee and ĤZZ are the Hamiltonians of the isolated elec-

tronic and nuclear subsystems and ĤeZ is the interaction be-
tween them, the total Kohn-Sham �KS� energy,28,29

E�Ne ,Z�r��, in terms of electron and proton densities is given
by

E�Ne,Z� = Fee��� + EeZ��,Z� + EZZ�Z�

= Fee��� −� dr��r�v�r� + 1
2 � drZ�r�v̄�r� . �2�

Here, Fee is the universal Hohenberg-Kohn functional, ex-
pressible within KS-DFT in terms of the noninteracting ki-
netic �Ts���i��, where �i�r� is a KS orbital�, Hartree �EH�,
and exchange-correlation �Exc� energies,

Fee��� = Tee��� + Vee��� = Ts���i�� + EH��� + Exc��� . �3�

When considering a somewhat artificial “quantum-chemical”
proton density, one has to take into account that protons de-
fining the same nucleus would repel each other. This problem
can be circumvented using a modified external potential of
the form

v̄�r� =� dr�
Z�r��erf���r − r���

�r − r��
, �4�

for the nuclear Coulomb repulsion term. Here, the parameter
� can be chosen large enough that only a vanishingly small
neighborhood around �r−r��	0 is excluded.

Derivatives of Eq. �2� with respect to the particle densi-
ties define the electronic and the nuclear chemical potentials,
�e=�Ne

E and �n�r�=�Z�r�E, respectively. �e has been related
to the negative of the molecular electronegativity.20,21 Using
Janak’s theorem,22 which equates the partial derivative of the
total potential energy with respect to the occupation number
of a given KS orbital to the corresponding eigenvalue,

FIG. 1. Geometry optimized structures of all doped benzene derivatives and
all anionic �singly charged� B-doped intermediates. The inset shows the
color coding. Corresponding cationic intermediates can be obtained by ex-
changing B with N and n� with n�.
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�ni
E�Ne ,Z�=�i, one can relate the HOMO eigenvalue �H to

the electronic chemical potential, �e=�Ne
E=�nH

E=�H.
�n�r�, on the other hand, can be identified as the func-

tional derivative, �E /�Z�r�,

�n�r� = VESP�r� =� dr�
Z�r��erf���r − r��� − ��r��

�r − r��
, �5�

which corresponds to a modified electrostatic potential of the
proton and electron distributions, Z�r� and ��r�, respectively,
excluding “intranuclear” proton-proton Coulomb repulsion.

Now, using a Maxwell relation and in analogy to the
conventional and nuclear Fukui functions, fc�r�=�v�r��e and
�fn�RI�=�RI

�e�, respectively,21,23,24 a molecular Fukui func-
tion, fm�r�, can be defined as the mixed second order deriva-
tive of the total potential energy with respect to Z�r� and
electron number Ne,

fm�r� =
��n�r�

�Ne
=

��e

�Z�r�
=

�

�Ne

�

�Z�r�
E . �6�

Exchanging the order of differentiation for the functional
and partial derivatives in Eq. �6� �see Ref. 7�, the molecular
Fukui function equates the derivative of the modified elec-
trostatic potential VESP with respect to Ne, to the variation of
the HOMO eigenvalue �H with respect to the change in Z�r�,

fm�r� =
�VESP�r�

�Ne
=

��H

�Z�r�
. �7�

Equation �7� provides a direct way of predicting the
change in the HOMO eigenvalue �H due to variation of Z�r�
at any given r in the molecule through a single evaluation of
the change in electrostatic potential due to a small variation
of the HOMO’s occupation number by �nH. To this end, we
calculate the left-hand side derivative in Eq. �7� by slightly
decreasing the HOMO occupation number. For all the

nuclear sites �RI�, the values of the molecular Fukui function
fm�RI� represent the susceptibility of the HOMO eigenvalue
due to variation of the atomic number Z�RI� of nucleus I,

fm�RI� =
VESP�RI,Ne + �Ne� − VESP�RI,Ne�

�Ne
. �8�

Note that in order to evaluate this derivative, fractional par-
ticle numbers shall be used, which is perfectly valid as far as
reversible changes of state functions are concerned: they can
be seen as points on arbitrary but reversible paths connecting
two real systems. However, they do lack a realistic corre-
spondence in chemical space and are consequently irrelevant
if the connecting path is irrelevant. We refer to Ref. 7 for a
more in-depth discussion of this aspect.

The change in the HOMO eigenvalue can then be esti-
mated from the right-hand side part in Eq. �7�,

�H�Z�r� + �Z� = �H�Z�r�� + 

I

fm�RI��ZI, �9�

where the sum goes over all atoms which shall be doped;
�ZI=�Z�RI� is the variation of the atomic number through
doping, �Z=
I�ZI. Here, we limit ourselves to �Z=0, ±1
and to changes which only lead to the atomic numbers cor-
responding to carbon, nitrogen, or boron.

C. Computational details

The BLYP-approximation25–27 to the Kohn-Sham
exchange-correlation potential28,29 has been used together
with the Goedecker pseudopotentials from Refs. 30–32, and
a converged plane-wave basis. Geometries have been opti-
mized for every doping step and before evaluating the new
HOMO eigenvalues. Fractional occupation numbers have
been imposed by using noninteger charges, a standard fea-
ture in the employed ab initio code, CPMD.33

In order to evaluate Eq. �9�, the HOMO occupation num-
ber has been reduced in Eq. �8� from nH=2 to 1.98, such that
�Ne=�nH=0.02, and the electronic singlet spin multiplicity
has been kept constant for all cases. Furthermore, errors due
to the employed approximated exchange-correlation poten-
tial, such as an increasing self-interaction error for fractional
occupation number,34 or due to the use of pseudopotentials
have been neglected.

Figure 2 exemplifies the procedure of how to apply Eq.
�9� to Bn�=0C5Nn�=1H6

+ in order to obtain the predicted
change in �H due to the doping leading to any of the three
possible mutants with the stoichiometry Bn�=1C4Nn�=1H6 �see
also Fig. 1�.

Firstly, the KS-DFT HOMO eigenvalue ��H�Z�r��� in Eq.
�9� is calculated for C5NH6

+. Secondly, the molecular Fukui
function, i.e., the change in the electrostatic potential due to
a slight variation in HOMO occupation number, �nH=0.02,
is computed for the same compound �Eq. �8�� at each atomic
site. Finally, using Eq. �9�, HOMO eigenvalues of the three
mutants after an additional boron doping are predicted. �Z is
always equal to −1 in this example, i.e., the atomic number
decreases by one when substituting a carbon nucleus by a
boron.

FIG. 2. Example of the employed procedure to predict changes in HOMO
eigenvalues due to doping: �i� obtain �H�old� from the self-consistent field
KS-DFT calculation for Bn�=0C5H6Nn�=1

+ ; �ii� perform a finite difference
calculation of the molecular Fukui function �fm�RI�� according to Eq. �8� at
each nuclear site RI. The green isosurface illustrates the spatial distribution
of the molecular Fukui function for a cutoff value of 6.34 eV at which the �
site is dissected; and �iii� calculate the predicted �H�new� after doping ac-
cording to Eq. �9�.
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III. RESULTS AND DISCUSSION

A. Accuracy of the predicted changes

In order to assess the accuracy of the predicted HOMO
eigenvalues, actual KS-DFT eigenvalues have also been cal-
culated for all the mutants and compared to the predicted
ones. Evaluating the derivatives of the electrostatic potential
we set �Ne to be small �0.02�. In this case Eq. �7� is practi-
cally exact. The change in the HOMO eigenvalue, however,
is predicted for relatively large changes in ZI, �ZI= ±1. This
error, introduced by the finite difference, can be evaluated for
each mutant through direct comparison of the predicted and

calculated HOMO eigenvalues. Of course, this is only fea-
sible because of the limited number of possible mutants.

Figure 3 shows the correlation between predicted and
actual �calculated with the standard KS-DFT self-consistent
field procedure� HOMO eigenvalues. The change in the
HOMO eigenvalue due to doping can be estimated via cat-
ionic or anionic intermediates, which we refer to as a one-
step prediction. It is also possible to skip the charged inter-
mediates and change two atomic numbers simultaneously
�with opposite signs�. This of course yields only neutral in-
termediates and is denoted as a two-step prediction. The in-
sets in Fig. 3 feature the correlation for the neutrally doped
species only; however, the estimations were done using both
one- and two-step predictions.

Root mean square deviations of the HOMO values of the
neutral systems indicate that there is a systematic shift of the
correlation for those results involving the cationic N-doped
intermediates. This difference in accuracy might be a conse-
quence of the fact that anionic systems are frequently less
accurately described by conventional generalized gradient
approximations than cationic systems.35 For the correlation
resulting from the use of anionic B-doped intermediates, no
systematic shift has been found. Apart from the employed
large changes in ZI the difference in the correlation might
also be due to the employed pseudopotentials. A quantitative
analysis of these contributions is a work in progress.

Overall, the correlation between the predicted and calcu-
lated HOMO eigenvalues is good. This implies that the
change in electronic eigenvalues due to doping can be pre-
dicted with reasonable accuracy and without evaluation of
the actual eigenvalue corresponding to the doped mutant.

B. Doping pathways

Table I summarizes all the actual HOMO eigenvalues
corresponding to the structures in Fig. 1, which are corre-
lated with the predicted values in Fig. 3. The table shows that
the �BNBNBN� isomer has the globally lowest eigenvalue,
−6.66 eV �predicted values −6.29 eV via N or −6.06 eV via
B�. The highest eigenvalue is exhibited by the �CBNCBN�
mutant, −4.67 eV �predicted −3.94 eV via N doping, or
−4.27 eV via B doping�.

For the rational design search of an optimized compound

FIG. 3. Correlation between predicted HOMO eigenvalues from Eq. �9�
with actually computed values. �a� anionic B-doped intermediates ��H

	1 eV�; �b� cationic N-doped intermediates ��H	−12 eV�.

TABLE I. HOMO eigenvalues in eV for all the isoelectronic mutants as defined in Fig. 1. Each column contains
all the structural isomers for a given stoichiometry and charge as defined by the label �n� ,n��.

�0,0� �1,0� / �0,1� �1,1� �2,1� / �1,2� �2,2� �3,2� / �2,3� �3,3�

−6.07 −12.13/0.40 −5.70 −11.57/0.62 −4.67 −12.82/0.50 −6.66
−5.18 −11.79/0.23 −4.97 −11.30/0.78 −5.52
−5.42 −12.11/0.76 −4.72 −11.79/0.21 −4.93

−11.42/0.79 −5.61 −12.26/0.94
−11.08/0.16 −5.33 −11.39/1.19
−11.85/0.64 −4.99 −11.41/1.06

−4.82
−5.26
−4.74
−5.72
−5.08
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�e.g., with maximal/minimal HOMO eigenvalue�, the predic-
tions of the eigenvalues based on gradients �Fukui function�
shall be combined with an optimization or transition-path
searching algorithm. In the case of benzene, even the steep-
est descent algorithm, which uses neither backward moves
nor bookkeeping, is capable of finding the compound with
the lowest/highest HOMO value. In order to illustrate this,
the “doping paths” corresponding to the steepest descent in
HOMO values, are displayed in Fig. 4. Here, the change in
the minimal eigenvalue with the progressive doping �increas-
ing values of n�=n� from left to right in Fig. 1� is shown.
The choice of this coordinate is as arbitrary as the initial
value for n�=n�. The actual values correspond to sampling of
all possible mutants, for which the complete set of actual
HOMO eigenvalues is needed. This is the most inefficient
approach but it ensures the globally optimal path.

Figure 4 shows that the one step series of cationic
N-doped intermediates visits other mutants than the optimal
path, but still leads to the correct, globally optimal, com-
pound �BNBNBN�. The pathway containing only anionic
B-doped intermediates does not lead to the optimal com-
pound but is trapped in a local minimum. This exemplifies
the fact that the chemical space “energy” ��H� landscape is
high dimensional with many local minima. Together with the
imposed “prohibition” of backward moves �i.e., dedoping of
the systems and choosing an alternative path�, this indicates
the need for more sophisticated algorithms for finding effi-
cient transition paths. Such algorithms are already available36

and can easily be merged with our approach.

C. Conclusion

In summary, using benzene and its BN-doped derivatives
as test case systems, we have demonstrated that the molecu-
lar grand-canonical ensemble density functional theory can
significantly improve the efficiency of rational compound de-
sign approaches towards B- and N-doped conjugated materi-
als. This approach promises that an enhancement of effi-
ciency can be achieved in comparison to the screening of the
entire chemical space. A significant impact is expected on the

in silico design of compounds derived from larger molecules
such as hexabenzocoronene or pentacene, which is work in
progress.
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