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We present numerical estimates of the leading two- and three-body dispersion energy terms in van
der Waals interactions for a broad variety of molecules and solids. The calculations are based on
London and Axilrod–Teller–Muto expressions where the required interatomic dispersion energy
coefficients, C6 and C9, are computed “on the fly” from the electron density. Inter- and
intramolecular energy contributions are obtained using the Tang–Toennies �TT� damping function
for short interatomic distances. The TT range parameters are equally extracted on the fly from the
electron density using their linear relationship to van der Waals radii. This relationship is
empiricially determined for all the combinations of He–Xe rare gas dimers, as well as for the He and
Ar trimers. The investigated systems include the S22 database of noncovalent interactions, Ar,
benzene and ice crystals, bilayer graphene, C60 dimer, a peptide �Ala10�, an intercalated drug-DNA
model �ellipticine-d�CG�2�, 42 DNA base pairs, a protein �DHFR, 2616 atoms�, double stranded
DNA �1905 atoms�, and 12 molecular crystal polymorphs from crystal structure prediction blind test
studies. The two- and three-body interatomic dispersion energies are found to contribute
significantly to binding and cohesive energies, for bilayer graphene the latter reaches 50% of
experimentally derived binding energy. These results suggest that interatomic three-body dispersion
potentials should be accounted for in atomistic simulations when modeling bulky molecules or
condensed phase systems. © 2010 American Institute of Physics. �doi:10.1063/1.3432765�

I. INTRODUCTION

Noncovalent forces play an exceedingly important role
for stability and functionality of many molecular as well as
soft and solid condensed phase systems.1–5 The current level
of understanding of these interactions permits quantitative
predictions for simple systems such as rare gases6–8 or small
molecules.9–11 With the growing availability of ever more
powerful computer hardware and computational methods,
such as linear scaling electronic structure codes, increasingly
realistic systems can be tackled, which are also relevant for
materials science and biomolecular communities.12–19

Due to their electronic many-body quantum nature �de-
pendence on excited electronic states�, interatomic and inter-
molecular dispersion van der Waals �vdW� forces are inher-
ently challenging to predict accurately from first principles.
Although not necessarily being negligible20 interatomic
many-body contributions to dispersion forces are rarely ex-
plicitly accounted for by conventionally constructed empiri-
cal force fields designed for extended sampling of phase
space. Recently, it was shown21,22 that these forces are also
largely overestimated at equilibrium distances within popular
approximations of the Kohn–Sham density functional theory
�KS-DFT�,23,24 frequently used for ab initio molecular dy-
namics. Even on average quite reliable quantum-chemical
methods, such as second-order Møller–Plesset perturbation

theory �MP2�, do not yield satisfying results for the many-
body dispersion energy. Since triple and higher-order elec-
tronic excitations are explicitly required to model many-body
dispersion terms, MP2 theory fails to capture the ubiquitous
Axilrod–Teller–Muto triple dipole as well as higher-order
terms.25,26 Only coupled-cluster theory including single,
double, and perturbative triple excitations, CCSD�T�, has
been shown to consistently yield accurate interactions be-
tween organic molecules.9 Unfortunately, CCSD�T� is pro-
hibitively expensive from the computational point of view
even for moderately small systems �50–100 light atoms�, not
to mention the condensed phase.

For systems dominated by dispersion forces, such as
rare-gas crystals, estimates of interatomic many-body contri-
butions to cohesive energies range from 6% to 10%.27 Ever
since the seminal work of Axilrod and Teller and Muto25,26 in
1943, attempts were made to quantify three-body contribu-
tions to rare gas systems. In this context, we only refer to
studies on short and large distances28,29 using the Kim–
Gordon model,30 on nonlocal DFT via fluctuations,31 or on
exchange contributions.32

In the present study, we report numerical estimates of the
leading two- and three-body contributions in molecular and
condensed phase systems, markedly more complex than rare
gas crystals. We highlight that in contrast with other studies
of intermolecular three-body terms such as in Ref. 33, the
focus of this paper lies on interatomic three-body terms, in
strict analogy to London’s atom pairwise C6 term.34,35 Spe-
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cifically, we will first briefly review dispersion contributions
to interatomic potentials at typical equilibrium geometries
using the three-body Axilrod–Teller–Muto expression.25,26

Then, we will discuss the necessary triple dipole C9 coeffi-
cients that are obtained in analogy to the recently devised
scheme for predicting dynamic double dipole C6 from elec-
tron densities.36 Within this scheme, atomic C6 and C9 coef-
ficients depend on the chemical environment of each atom,
and therefore become functionals of the electron density.
Thereafter we will shift focus to the treatment of interatomic
equilibrium distances, as they occur in a broad variety of
vdW systems. The two- and three-body dispersion energies
are damped at short distances according to an adapted two-
body potential following the work of Tang and Toennies.6,37

For He–Xe rare gas dimer results from literature, we found a
linear correlation between van der Waals radii and Tang-
Toennies �TT� range parameters which we exploit to com-
pute the range parameters from dynamic van der Waals radii
�determined “on the fly” from the electron density�. An in-
terpolation of literature values for He and Ar trimers yields a
similar relationship for TT range parameters that damp the
three-body contribution. The first resulting dispersion energy
estimates are consistent with results from symmetry-adapted
perturbation theory �SAPT� where available.38,39 We will
proceed with a comparison of the two- and three-body dis-
persion energies to experimental or high-level theoretical
binding and cohesive energies for a broad variety of systems.
Numerical estimates are presented for the S22 data set,9 a
range of large molecular and condensed matter systems in-
cluding bilayer graphene, ice, C60-dimer, benzene crystal, di-
hydrofolate reductasee �DHFR� protein, double stranded
DNA, � helical polyalanine decamer, intercalator drug
ellipticine-DNA complex, 42 base pairs from the JSCH-2005
database,9 and several molecular crystals from a crystal
structure blind test.40 Finally, we will discuss impact and
potential future applications of the here presented scheme.

Various assumptions underlie our predictions. First of
all, we use dispersion coefficients that are derived from an
isotropic model of atoms in molecules �Hirshfeld partition-
ing�. Second, all our C6 and C9 interactions, inter- as well as
intramolecular, are assumed to be free of dynamic screening
effects due to the surrounding electronic and nuclear envi-
ronment. In particular, we expect this assumption to be ques-
tionable for solids where the screening is known to play a
significant role.41 Further assumptions include the specific
form of the damping function, which is strictly valid only for
interactions between spherical atoms. Approximations made
within the determination of the dispersion coefficients ac-
cording to Ref. 36 are quantified by comparison to reliable
reference data for molecules.

Our main finding is that the three-body dispersion en-
ergy is not negligible even though it is generally smaller than
15% of binding or cohesive energies. For some relevant sys-
tems, however, such as bilayer graphene, this contribution
can reach up to 50% of relevant binding energies. The mag-
nitude of three-body dispersion energy can be large enough
to affect rankings of energetically competing dimer conform-
ers or molecular crystal morphologies. The two-body contri-
bution is found in many cases to be equal or larger than the

intermolecular binding energies or cohesive energies of sol-
ids, a finding that underscores the need for accurate ap-
proaches.

II. THEORY

A. Interatomic dispersion energies

The dispersion contribution to the energy of an ensemble
of atoms �I� residing at �RI� can be written as a many-body
expansion of potentials,

Edisp��RI�� =
1

2�
IJ

E�2��RI,RJ� +
1

6�
IJK

E�3��RI,RJ,RK� + HOT,

�1�

where HOT are the higher order terms. In the dissociative
limit or for �spherical� neutral atoms with nonoverlapping
electron density these terms correspond to

E�2��RI,RJ� = −
C6IJ

RIJ
6 −

C8IJ

RIJ
8 −

C10IJ

RIJ
10 − HOT, �2�

E�3��RI,RJ,RK� = C9IJK

3 cos��I�cos��J�cos��K� + 1

RIJ
3 RIK

3 RJK
3 + HOT,

�3�

where RIJ= �RI−RJ� and ��i� are the angles in atomic tri-
angle. The first term of the three-body dispersion contribu-
tion to the total energy of three atoms, I ,J ,K, is given by the
Axilrod–Teller–Muto expression.25,26 Figure 1 illustrates the
behavior of this term for an isosceles triangle as a function of
one angle.

B. Dispersion coefficients

The Casimir–Polder integral,

C6IJ
=

3

�
	

0

�

d��I�i���J�i�� , �4�

FIG. 1. Axilrod–Teller–Muto three-body energy �E�3� /C9IJK
� �solid black

line� in an isosceles triangle as a function of � according to Eq. �3� for
RIJ=RJK=1. The red solid curve is the damping function of Eq. �13�. The
red dashed curve corresponds to the product of the two functions.
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C9IJK
=

3

�
	

0

�

d��I�i���J�i���K�i�� , �5�

yields the double-dipole C6 and triple-dipole C9

coefficients.25,42 �I�i�� is the frequency-dependent dipole
polarizability of site I. The difficulty consists of obtaining
distributed or fragmented polarizabilities of sites in
molecules.1 For this study, we determined the C9IJK

coeffi-
cients in Eq. �3� for atoms in molecules through extension of
the recently devised scheme to predict �electron-density de-
pendent� C6IJ

coefficients.36 We use a single-term
Padé approximant43 for �I�i�� and the following combina-
tion rule to derive the heteronuclear C9IJK

coefficient from
homonuclear C9III

values,

C9IJK
=

8

3

PIPJPK�PI + PJ + PK�
�PI + PJ��PJ + PK��PK + PI�

, �6�

with

PI = C9III

�0,J�0,K

�0,I
2 , �7�

where �0,I=�I��=0� is the static polarizability of atom I in a
molecule. See also Ref. 44 for a more complete derivation of
the above combination formula.

In analogy to the previous work on C6 coefficients,36 we
approximate the dynamic, i.e., electron-density dependent,
homonuclear coefficients C9III

and �0,I in Eq. �7� for an atom
in a molecule as

C9III
�n�r�� 
 � VI�n�r��

VI
free�nfree�r���

3

C9III

free, �8�

�0,I�n�r�� 
 � VI�n�r��
VI

free�nfree�r����0,I
free, �9�

VI
free and VI representing the atomic volume of the free atom

and of the atom in the molecule, respectively. An analogous
approximation to the C6 coefficient has been shown to be
accurate within 5% compared to experimental data for a
wide range of molecules.36

The reference free-atom C9III

free coefficients have been cal-
culated according to Eq. �5� and using the frequency-
dependent polarizability data obtained by Chu and
Dalgarno45 who relied on self-interaction corrected time-
dependent DFT. Furthermore, they scaled the static polariz-
ability to reproduce experimental or high-level many-body
quantum electrodynamics calculations, leading to C6II

free coef-
ficients of nonmetallic elements with only 3% averaged de-
viation from experiment. Due to the triple product of polar-
izability in Eq. �5�, slightly larger errors ��5%� are found for
the C9III

coefficients.
The volume ratio in Eq. �8� is computed according to

Hirshfeld volume partitioning46,47 of an atom in a molecule,

VI�n�r��
VI

free�nfree�r��
= � drr3nI�r�

drr3nI
free�r�� , �10�

where r is the distance from atom I, and nI�r� is the effective
electron density of atom I in a molecule with electron density

n�r� :nI�r�=nI
free�r� ·n�r� /�JnJ

free�r�. The sum goes over all
atoms J, positioned as in the molecule. It turns out that the
volume ratio is fairly invariant with respect to the approxi-
mations made when computing the electronic structure. Un-
less stated otherwise, here we compute atomic and molecular
electron densities using KS-DFT with the generalized gradi-
ent approximated functional PBE.48

C. Damping at short distances

Equations �2� and �3� are exact in the dissociative limit
�RIJ→��. While the two-body dispersion energy is known49

to converge to a finite attractive value in the limit of RIJ

→0 it is less obvious how to interpolate two- and three-body
interatomic contributions at equilibrium geometries. Within
the usual two-body C6 correction schemes, empirical damp-
ing functions are used to this end as a smooth switch.50–53

For the dispersion interaction energy between two hydrogen
atoms, however, Koide, Meath, and co-workers54 derived an
analytical damping function that takes the form of an incom-
plete gamma function. Here, we use the corresponding sim-
plification thereof, as proposed by Tang and Toennies.6,37

f6
d�RIJ� = 1 − e−bIJRIJ�

k=0

n=6
�bIJRIJ�k

k!
, �11�

where b is a range parameter that reflects the size of the atom
pair, IJ. Interatomic potentials based on this damping func-
tion yielded CCSD�T� quality predictions for rare gas and
mercury dimers.7,55 This approach has also been leveraged
for the accurate prediction of intermolecular dispersion ener-
gies within dispersion-corrected Møller–Plesset second-order
perturbation theory.56 The physical justification for the accu-
racy of the TT damping function for atoms other than hydro-
gen or rare gases is provided by the law of corresponding
states. Note that the choice of the damping strongly affects
quantitative estimates of dispersion contributions not only
for short interatomic distances but also for equilibrium ge-
ometries. Since the TT damping has been derived from re-
sults for spherical atoms, we consider it to represent the least
approximate way of damping. Our comparison to SAPT dis-
persion energy results �see below� empirically justifies this
choice.

Correlation of rare gas dimers suggests a linear depen-
dence of the range parameter bIJ on DIJ, the sum of atomic
vdW radii of atoms I and J �see Fig. 2�, bIJ=−0.33DIJ

+4.39 bohr−1. Such a linear relationship was already pro-
posed by Meath and co-workers,54 and here we confirm this
idea for a large and consistent database of interatomic pairs.
We define b for any rare gas dimer from the sum of its
atomic vdW radii as extracted from the scaled atomic vol-
ume in a molecule �Eq. �10��. The required free atom vdW
radii have been obtained from coupled-cluster calculations of
the free atom electron density.36

In order to damp the C9 term, we adapt the aforemen-
tioned scheme by assuming that a triple product of two-body
damping functions can be used,

fATM
d �RI,RJ,RK� = f6��RIJ� � f6��RIK� � f6��RJK� , �12�

with
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f6��RIJ� = 1 − e−bIJ� RIJ�
k=0

n=6
�bIJ� RIJ�k

k!
. �13�

Szalewicz and co-workers found this assumption to be accu-
rate for the He and Ar trimer. We continue to build on their
results by interpolating, in analogy to the two-body case, the
three-body range parameters bIJ� as a function of DIJ for these
two trimers.57,58 This interpolation is also shown in Fig. 2,
bIJ� =−0.31DIJ+3.43 bohr−1. We note that the slope of the
�correlated� two- and �interpolated� three-body range param-
eters is similar. Due to a samller value of the intercept, how-
ever, the three-body dispersion is damped more rapidly than
the two-body term for decreasing distances. A qualitative il-
lustration of the damped three-body energy as a function of
the angle for an isosceles triangle is given in Fig. 1. Note that
in the remainder of this study, we shall denote sums over
damped interatomic C6 and C9 energy terms in Eqs. �2� and
�3� collectively as E�2� and E�3�, respectively.

III. BENCHMARK OF C9, E„2…, AND E„3…

In order to benchmark the above outlined scheme for C9

coefficients we used the dipole oscillator strength distribu-
tion �DOSD� reference database of Meath and
co-workers.59–72 It includes pseudo-DOSD data for 49 atoms
and molecules, allowing the calculation of 18 424 intermo-
lecular and interatomic reference C9 coefficients. The accu-
racy of pseudo-DOSD C6 and C9 coefficients is limited only
by the quality of experimental dipole oscillator strength data
and they were shown to be accurate within 2%–3%, as illus-
trated by comparison between different sets of experimental
data.59–72 We calculated intermolecular dispersion coeffi-
cients as a sum over the corresponding interatomic C6 and C9

coefficients �see Eq. �8� and Ref. 36�. Geometries of all mol-
ecules in the database were optimized with the PBE �Ref. 48�
functional using DFT calculations in the FHI-AIMS �Ref. 73�
computer code. Our scheme yields a mean absolute error of
7.2% with respect to 18 424 reference pseudo-DOSD C9 co-
efficients. Such an accuracy is similar to previously obtained
molecular C6 coefficients.36 A slightly larger error for C9

coefficients �7.2% versus 4.5% for C6� is commensurate with
the aforementioned larger errors obtained for the free-atom

C9III
coefficients calculated from frequency-dependent polar-

izabilities of Chu and Dalgarno.45

We performed additional testing of the accuracy of inter-
atomic E�2� and E�3� energies by comparing to SAPT results
for �−� interacting dimer potential energy surface of ben-
zene �491 dimer geometries�,38 and B-DNA structures �ten
geometries�.39 For all the 491 geometries, our E�2� and E�2�

+E�3� contributions never exceed 100% of the SAPT disper-
sion energy. On average, the interatomic C6 terms yield 73%
of the benzene dimer SAPT results, adding the overall repul-
sive C9 terms reduces this value to 70%. In the case of the
DNA structures, we recover 77% and 66% for the E�2� and
E�2�+E�3� contributions, respectively. These findings are con-
sistent with literature estimates for small molecular dimers
where the higher-order two-body C8 and C10 contributions to
the attractive dispersion energy still account for 30%–40%.47

IV. RESULTS

A. Computational details

For the remainder of this study all the C6 and C9 calcu-
lations have been carried out for fixed geometries using the
FHI-AIMS �Ref. 73� computer code with the PBE functional.
In the case of DHFR and DNA, the fixed averaged C6 and C9

coefficients from Table I have been used. All calculation pa-
rameters �k-points and basis sets� were converged with re-
spect to atomic volume ratio in Eq. �10�.

All molecular figure pictures have been generated using
the program VMD,74 the molecular crystal figures have been
generated using the program GDIS.75 We also reiterate that, in
the remainder of this study, we shall denote sums over
damped interatomic C6 and C9 energy terms in Eqs. �2� and
�3� collectively as E�2� and E�3�, respectively.

B. Dispersion coefficients

Atomic dispersion coefficients C6, C9, vdW radii, and
polarizabilities of free atoms H, He, C, N, O, F, Ne, Si, P, S,
Cl, Ar, Br, and Kr feature in Table I. These coefficients have
been obtained by numerical integration according to Eqs. �4�
and �5� and using the frequency-dependent polarizability
data of Chu and Dalgarno.45 Both dispersion coefficients re-
flect the usual trends of the periodic table, as one goes to the
right in a period, they decrease, same as polarizability, as one
goes down, they increase. In order to also illustrate the im-
pact of placing atoms into molecules, typical C9 and C6 co-
efficients of hybridized atoms are also enlisted; the change
within a given row is most pronounced for carbon and sili-
con.

Furthermore, for carbon and oxygen the variation in
electronic configuration/hybridization affects both coeffi-
cients. They decrease as one goes from sp to sp2 to sp3.
Clearly, the meaning of this observation is that due to the
increasing number of covalently bonded neighbors, as sp
turns into sp3, atomic polarizability, and thereby dispersion
coefficients, decrease.

FIG. 2. Correlation of sum of rare gas atomic vdW radii, DIJ, with range
parameters bIJ and bIJ� in the TT damping function for two-body �circle� and
three-body �square� terms, respectively. Linear regression for two-body:
bIJ=−0.33�DIJ+4.39 Bohr−1, and interpolation for three-body:
bIJ� =−0.31�DIJ+3.43 Bohr−1. Regression data from Ref. 6 and interpola-
tion data from Refs. 57 and 58.
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C. S22 data set

Interatomic C6 and C9 contributions to dimer interaction
energies of the S22 benchmark data set9 feature in Table II.
This data set contains a representative sample of vdW and
hydrogen bonded molecular dimers, and is frequently used
for benchmarking vdW corrections. Note that the total mag-
nitude of the two-body dispersion energies can be of the
same order as the binding energy, in the case of benzene
dimer even twice as large. This result is consistent with per-
turbational analysis of intermolecular energies according to
SAPT.38 Note that at equilibrium distance the attractive
terms, including two-body dispersion energies, are counter-
balanced by all repulsive terms, such as Pauli repulsion or
three-body dispersion energy. This explains why the attrac-
tive dispersion energy can be larger than the total binding
energy and highlights the importance of an accurate treat-
ment of the former.

As one would expect for isolated and small to medium-
sized molecular dimer cases the three-body dispersion con-
tribution is mostly rather small. However, in some cases such
as stacked adenine-thymine or indole-benzene the C9 contri-
bution is significant, reaching 10% or 20% of the total bind-
ing energy, respectively. This differing behavior can be un-

derstood when considering the particular geometry of the
�-� interacting systems. Figure 3 depicts the indole-benzene
geometry. There are many configurations corresponding to
repulsive triangular triplets across the two molecules
���2� /3�, and fewer attractive configurations �2� /3��
�4� /3�. Furthermore, for some dimers in this data set, the
C9 contribution is negligible simply because the molecules
are too small to exhibit any triplet that is not attenuated by
the damping function.

D. Bulky systems

For a variety of bulky systems, i.e., macromolecular or
condensed phase systems, Table III features estimates of E�2�

and E�3� contributions, together with relevant energies such
as binding or cohesive energies.

TABLE I. Computed C6 and C9 coefficients in �Hartree Bohr6� and
�Hartree Bohr9�, respectively. Atomic polarizabilities �Bohr3� and atomic
vdW radii �bohr�. Atomic polarizabilities correspond to static values of fre-
quency dependent polarizabilities in Ref. 45, scaled by volume for hybrid-
ized atoms in molecules. Hybridized values are averaged over molecules in
the DOSD database. The vdW radii are computed using atomic CCSD elec-
tron density as explained in Ref. 36. Superscripts s, sp2, and sp3 denote
atomic hybridization states.

Atom � C6 C9 RvdW

Hfree 4.50 6.5 21.6 3.10
Hs 2.75 2.42 4.91 2.63
He 1.38 1.46 1.47 2.65
Cfree 12.0 46.6 373 3.59
Csp 9.73 30.6 199 3.35

Csp2
9.67 30.3 195 3.34

Csp3
8.64 24.1 139 3.22

Nfree 7.40 24.2 117 3.34

Nsp2,sp3
6.36 17.9 74.4 3.18

Ofree 5.40 15.6 52.6 3.19

Osp2
4.92 13.0 39.8 3.09

Osp3
4.81 12.4 37.1 3.07

Ffree 3.80 9.52 24.2 3.04

Fsp3
3.46 7.89 18.3 2.95

Nefree 2.67 6.38 12.0 2.91
Sifree 37.0 305 8550 4.20

Sisp3
25.6 146 2846 3.72

Pfree 25.0 185 3561 4.01
Sfree 19.6 134 1925 3.86

Ssp3
18.2 115 1532 3.76

Clfree 15.0 94.6 1014 3.71

Clsp3
14.6 89.4 932 3.68

Ar 11.1 64.3 518 3.55
Brfree 20.0 162 2511 3.93

Brsp3
19.5 155 2340 3.90

Kr 16.8 130 1572 3.82

TABLE II. Interatomic E�2� and E�3� contributions to S22 benchmark data
set results in kcal/mol. CCSD�T� results from S22 data set in Ref. 9.

No. E�2� E�3� CCSD�T�

1 �NH3� dimer �C2h� �1.43 0.00 �3.17
2 �H2O� dimer �Cs� �1.80 �0.01 �5.02
3 Formic acid dimer �7.87 0.02 �18.61
4 Formamide dimer �C2h� �5.69 0.02 �15.96
5 Uracil dimer �C2h� �7.03 �0.07 �20.65
6 2-pyridoxine-2-aminopyridine �C1� �7.16 �0.02 �16.71
7 Adenine-thymine WC �7.54 �0.04 �16.37
8 �CH4� dimer �D3d� �0.68 0.02 �0.53
9 �C2H4� dimer �D2d� �1.96 0.05 �1.51
10 Benzene-CH4 �C3� �1.97 0.14 �1.50
11 Benzene dimer �C2h� �5.64 0.68 �2.73
12 Pyrazine dimer �Cs� �5.92 0.60 �4.42
13 Uracil dimer �C2� �8.90 0.96 �10.12
14 Indole-benzene �C1� �8.48 1.10 �5.22
15 Adenine-thymine stack �13.04 1.54 �12.23
16 Ethene-ethine �C2v� �0.93 0.01 �1.53
17 Benzene-H2O �Cs� �2.35 0.15 �3.28
18 Benzene-NH3 �Cs� �2.15 0.14 �2.35
19 Benzene-HCN �Cs� �2.84 0.15 �4.46
20 Benzene dimer �C2v� �3.61 0.21 �2.74
21 Indole-benzene T-shape �5.24 0.30 �5.73
22 Phenol dimer �C1� �5.18 0.19 �7.05

FIG. 3. Indole/C6H6 structure in S22 data set used to estimate two- and
three-body interatomic dispersion contribution. The red lines illustrate one
of all the atomic triplets that are at the origin of a repulsive intermolecular
three-body contribution.
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1. Crystals

For the Ar crystal, the three-body estimate amounts to
less than 5%, which compares well to the total many-body
contribution of 6.6% in Ref. 22. However, using the same
level of theory we predict more than 15% for the molecular
benzene crystal. Using SAPT�DFT�, Podeszwa and
Szalewicz85 calculated an intermolecular three-body disper-
sion contribution for the cyclic benzene trimer in crystal
structure geometries of 0.18 kcal/mol. For the same trimer,
the corresponding intermolecular C9 term by summing over
all those triplets that involve one atom per molecule amounts
to 0.14 kcal/mol, in good agreement with the work of
Podeszwa and Szalewicz. On the other hand, the total inter-
atomic C9 contribution to the three-body energy in the ben-
zene trimer is 0.89 kcal/mol. This analysis reveals that the
large relative C9 contribution of 15% to the cohesive energy
of the benzene crystal is dominated by three-body summa-
tions involving benzene dimers.

By contrast, E�3� contributes only slightly more than 1%
to the cohesive energy in the diamond crystal. This is not
surprising since this energy is dominated by strong covalent
bonds. The E�2� contribution is more surprising in this case.
However, one can speculate if this result is real, or rather due
to insufficient damping at short covalent bond distances, or
due to the neglect of the dynamic screening of long range
dispersion interactions. In Ref. 86, van der Waals contribu-
tions to the cohesive energy of the silicon crystal �exhibiting

the same crystal structure� were estimated to reach up to
10%. We also note that the E�3� /E�2� ratio reduces from 10%
to 4% when going from benzene to diamond crystal.

In the case of ice-Ih the E�3� contribution is nearly neg-
ligible; we note that the E�2� contribution in ice is likewise
rather small when compared to its relative contribution to
cohesive energies in the other molecular crystals. This find-
ing suggests that the considerable cooperativity found for
water clusters87 has other origins than dispersion.88

2. Carbon materials

We investigated the fullerene dimer and bilayer graphene
as representative model systems for aromatic carbon nano-
materials. For these two examples, the C9 contributions reach
remarkable magnitudes, namely, 14% and 51%. We reiterate
that these terms correspond to interatomic potentials and do
not represent three-body terms in the sense of intermolecular
interaction perturbation theory. Furthermore, the higher order
interatomic terms might counteract this effect. In addition,
one may argue about the accuracy of the damping function.
However, especially in the bilayer graphene case, a signifi-
cant part of the repulsive three-body contribution comes
from distances beyond the influence of the damping function.
At such distances, it is reasonable to expect the Axilrod–
Teller–Muto term to yield an accurate representation of the
three-body dispersion energy.

3. Biomolecules

Current flavors of force-field based biomolecular simu-
lation do not dispose of many-body dispersion terms. At
most, many-body contributions due to induction are intro-
duced via empirical polarizability. See Ref. 89 and references
therein. Predicting accurate biomolecular noncovalent inter-
action energies to compare ligand candidates is a crucial
component in drug design that relies on force field docking
tools for screening,90,91 or more efficient first principles ra-
tional compound design approaches.92–94

The potential energy of interaction between DNA and
the intercalator drug ellipticine has recently been estimated
to amount to �37 kcal /mol.84 We find that the correspond-
ing two- and three-body dispersion energies amount to con-
siderable �57.0 and 8.9 kcal/mol, respectively. The interca-
lated drug in Fig. 4 illustrates the large number of atomic
pairs and triplets at typical vdW distances resulting in such
large energy contributions.

The E�3� contribution to the potential energy difference
per residue between folded and elongated polyalanine
decamer �Ala10� amounts to 46%. This is mainly due to a
very small energy difference between �-helical and fully ex-
tended geometries due to the formed macrodipole in the
former structure. However, this example highlights the im-
portance of an accurate description of many-body dispersion
to achieve the “chemical accuracy” �1 kcal/mol� also in bio-
logical systems.

The macromolecular DHFR and DNA systems, depicted
in Fig. 4, pose convergence problems in electronic structure
calculations, prohibiting straightforward evaluation of dy-
namic dispersion coefficients. We have therefore estimated

TABLE III. Estimates of leading two- and three-body dispersion energy
contributions to cohesive, binding, and folding energies E, respectively. All
values are in kcal/mol.

System E�2� E�3� E

Crystals
Ar crystal �2.17 0.07 �2.03a

Benzene crystal �16.1 1.67 �10.6b

Diamond �50.5 2.03 �171.3c

Ice Ih �2.96 0.04 �14.1d

Carbon materials
Bigraphene �2.30 0.61 �1.20e

�C60�2 �11.4 1.02 �7.33f

Biomolecules
Drug �ellipticine� �57.0 8.90 �37.0g

Ala10��-FES�/residue �5.95 0.44 �0.96h

DHFR/amino acidi �74.8 2.8 ¯

DNA/basei �130.9 5.8 ¯

aCohesive energy, experimental, and theoretical from Refs. 27, 76, and 77,
respectively.
bCohesive energy/molecule experimental result from Ref. 78.
cExperimental cohesive energy per atom pair from Ref. 79 and references
therein.
dExperimental low temperature �10 K� lattice energy per molecule from Ref.
80, structure relaxed with PBE from Ref. 81.
eBinding energy derived from exfoliation of finite graphene flakes from Ref.
82.
fExperimental fullerene interaction energy from Ref. 83.
gTheoretical interaction energy from Ref. 84.
hTheoretical energy difference between elongated planar backbone and
�-helical folded conformers, using PBE+C6 �Ref. 36�.
iAveraged residual contributions to unknown total energies, made for fixed
C6- and C9-values from Table I.
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averaged residual E�2� and E�3� contributions to total energies
of these two systems using constant typical coefficients from
Table I. The DNA structure corresponds to a test system in
the latest distribution of the visualization package VMD,74 the
DHFR protein structures have been downloaded from the
protein data bank. To avoid counting the intraresidue cova-
lent bonding contributions for these two systems, we esti-
mated the E�2� and E�3� energies in the following way:

E�2� =
1

N
�

n

�E�2�,full − E�2�,full−n − E�2�,n� , �14�

where “full” signifies the full system and “full−n” means the
full system without residue n, all geometries being frozen.
The index n runs over all residues �amino acids or base
pairs�. The E�3� energy is calculated using the same formula.
The two-body contribution is still significant even after re-
moval of the intraresidue covalent bonds, however, the val-
ues are reasonable if we compare them to the purely inter-
molecular E�2� energy for the drug-DNA binding. One should
also note that some part of E�2� and E�3� for DHFR and DNA
is due to the backbone-residue covalent bonds. As such these
estimates give only a vague idea of the order of magnitude
for these systems. The three-body estimates of �3 kcal /mol
per residue for DHFR and �6 kcal /mol per base pair for
double-stranded DNA are far from being negligible, how-
ever. These numbers are evidently too large to be neglected
while still aiming to achieve “chemical accuracy”: the level
of accuracy ideally realized within truly predictive atomistic
simulation methods.

E. Energy ranking

In Sec. IV D, numerical estimates of the energetic con-
tributions due to two- and three-body dispersion effects have
been provided. While for some systems the relative three-
body contributions can be substantial �carbon materials, bio-
molecules�, for other systems they are very small �ice, dia-
mond�. In this section, we investigate systems where these
many-body contributions might affect trends, i.e., the quali-
tative outcome of predicted energy rankings. Specifically, we
studied intermolecular energies of 42 DNA base pairs, as
well as relative cohesive energies among polymorphs of four
different molecular crystals.

1. Ranking of base pair interactions

Table IV features state-of-the-art coupled-cluster inter-
molecular binding energies and two- and three-body contri-
butions for 42 selected inter- and intrastrand DNA base pairs,
as published in the JSCH-2005 database.9 We have used this
data to reveal the effect of the three-body dispersion contri-
bution on the ranking of intermolecular energies by testing if
the ranking of intermolecular energies is altered when three-
body dispersion contributions are being neglected. The three-
body term can reach up to 1.4 kcal/mol, a substantial contri-
bution when compared to intermolecular energies that range
from �11 to 5 kcal/mol. If we assume that the E�3� term due
to C9 is the dominating many-body dispersion contribution,
subtracting E�3� from the CCSD�T� estimates will evidence
the impact of E�3� on the ranking. To this end, E�3� has been
subtracted from the CCSD�T� estimates, and the entries in
Table IV are ranked according to that difference. The results
in Table IV clearly demonstrate that the ranking of base pairs
does alter on occasion depending on if three-body dispersion
forces have been taken into account or not. The overall or-
dering of the CCSD�T� energies, however, is rather con-
served.

FIG. 4. Pictures of investigated ellipticine drug intercalated in DNA model
according to Ref. 84, DHFR, and DNA structures. For fixed geometries
these systems have been used to estimate two- and three-body interatomic
dispersion energy contributions in Table III.
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We used the results in Table IV to elucidate another
aspect, namely, the relationship between E�3� and E�2�.
For these DNA base pair structures, a clear correlation
exists between these two energy contributions, E�3�

= �−0.14�E�2��−0.19 kcal /mol, with correlation coefficient
r=0.986 �see Fig. 5�. If this correlation proved to be trans-
ferable one could effectively estimate the more complicated
three-body contributions via the two-body terms.

2. Molecular crystals

Polymorphism of molecular crystal structures plays a
major role in pharmaceutical considerations of drug

candidates.95 In Ref. 96, Neumann et al. recently succeeded
to predict from first principles the experimentally determined
most stable polymorphs of four different molecular crystals
set forth within the fourth crystal structure blind test.40 To
this end they developed a force-field approach based on DFT
combined with C6 corrections97 using the PW91 exchange-
correlation functional.98,99 Geometries and unit cells of said
four crystals are displayed in Fig. 6. Functional groups that
feature in this set of molecules include aromatic cores, flex-
ible alkyl chains, nitrogen, and sulfur atoms in differing hy-
bridization states, as well as halogens. Within our approach,
the presence of different atomic environments leads to

TABLE IV. Computed two-body dispersion E�2� and three-body dispersion E�3� contributions to intermolecular
energies of selected stacked and intrastrand base pairs from the JSCH-2005 database �Ref. 9� in kcal/mol. The
column O indicates the order when ranked according to the coupled cluster interaction energy �CC-column�
from Ref. 9. The systems have been ranked according to the CC-E�3�-column: CC interaction energies without
three-body dispersion contribution.

System E�2� E�3� CC-E�3� O CC

GUst �9.72 1.16 �11.94 1 �10.78
GGst �11.23 1.40 �11.94 2 �10.54
CUst �8.01 0.90 �10.64 3 �9.74
GCst �8.96 1.07 �10.27 4 �9.2
GAst �10.71 1.33 �10.09 7 �8.76
CCst �8.18 0.94 �9.98 5 �9.04
CC4 �8.43 0.96 �9.77 6 �8.81
CC11 �7.92 0.88 �9.45 8 �8.57
ACst �9.28 1.11 �9.35 10 �8.24
CC14 �8.55 0.96 �9.18 11 �8.22
CC8 �7.22 0.77 �9.16 9 �8.39
AUst �9.46 1.14 �9.12 12 �7.98
CC9 �8.43 0.99 �8.9 13 �7.91
CC3 �8.55 0.96 �8.73 15 �7.77
CC13 �6.84 0.76 �8.65 14 �7.89
GA_AG �11.78 1.47 �8.14 19 �6.67
CC10 �7.99 0.92 �8.07 18 �7.15
CG0_GC �6.62 0.60 �7.79 17 �7.19
CC12 �4.50 0.38 �7.69 16 �7.31
UUst �7.23 0.82 �7.24 20 �6.42
AAst �10.02 1.23 �6.99 21 �5.76
AG_AG �8.64 1.06 �6.75 22 �5.69
TA08_AT �13.40 1.50 �6.55 24 �5.05
AT10_AT �9.27 1.13 �6.17 25 �5.04
AG_TC �6.79 0.76 �6.1 23 �5.34
TG_TG �6.70 0.63 �5.47 26 �4.84
AA0_AA �10.04 1.18 �5.09 27 �3.91
GT10_AC �8.82 1.05 �4.86 28 �3.81
AA20_AA �10.63 1.29 �4.81 30 �3.52
TG_AC �7.47 0.74 �4.54 29 �3.8
GT10_TG �10.66 1.26 �4.44 31 �3.18
AA0_TT �9.32 0.99 �3.56 33 �2.57
CC2 �8.50 0.99 �3.29 34 �2.3
AA20_TT �2.23 0.03 �2.92 32 �2.89
GG0_GG �6.08 0.67 �2.11 35 �1.44
GG0_CC �0.82 0.04 �0.61 36 �0.57
CC7 �5.14 0.51 �0.49 37 0.02
GA_TC �6.97 0.80 0.25 38 1.05
CC5 �8.08 0.91 1.25 39 2.16
CC6 �8.24 0.94 1.58 40 2.52
CC1 �7.66 0.91 3.41 41 4.32
GC0_GC �10.43 1.24 3.43 42 4.67
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changes in the effective dispersion coefficients. For example,
the resulting C6 coefficients range from 30 to 39 for carbon,
91 to 100 for sulfur, and 17 to 19 Hartree Bohr6 for nitro-
gen.

Our two- and three-body energy contributions to relative
cohesive energies per molecule are given in Table V, to-
gether with cohesive energies according to DFT+C6 esti-
mates from Ref. 96, or according to the PBE+vdW method
of Ref. 36 computed for this study. Both dispersion corrected
DFT methods predict the same polymorph to be the most
stable for all four crystals. However, they yield differing re-
sults, up to half a kcal/mol, when comparing polymorphs 2
or 3. It is difficult to tell if this is mainly due to the
exchange-correlation functional, to the differing definition of

C6 and vdW radii �one being constant, the other being dy-
namic�, or to the choice of the damping function.

Inspection of the two- and three-body contributions in
Table V makes clear that the most stable polymorph has the
largest attractive E�2� as well as the largest repulsive E�3�.
Note that both of these contributions are at least of a similar
order of magnitude as the cohesive energy differences be-
tween the polymorphs. Adding the three-body contribution to
the cohesive energy can alter the ranking between polymor-
phs 2 and 3 for crystals XI and XIV.

V. DISCUSSION

Conventionally, many atomistic force fields assume that
many-body dispersion terms can be effectively incorporated
in the Lennard-Jones type of potentials.89 Our results are
relevant in this context, possibly for the construction of more
sophisticated effective two- and three-body interatomic po-
tential models that explicitly include not only many-body
induction but also dispersion effects. In this context, the
scheme presented here promises to be particularly useful to
further the development of automated force field optimiza-
tion approaches, such as in Ref. 100, toward more sophisti-
cated potentials that are capable to deal with real systems.
For example, one could envision the parametrized dynamic
determination of atomic volumes within reactive force field
simulations, or exploiting links to polarizable force
fields,101,102 or force fields with variable polarizabilities.

Furthermore, the presented scheme might prove helpful
for developing interatomic dispersion corrections to elec-
tronic structure theory. The accuracy of DFT, for example,
depends greatly on the deployed approximation to the
exchange-correlation potential �vxc�, and on the system and
properties that are being studied.103 The difficulties to obtain

FIG. 5. Correlation of two- and three-body dispersion energy contributions
to DNA base pair intermolecular energies displayed in Table IV,
E�3�=−0.14�E�2�−0.19 kcal /mol. Correlation coefficient: 0.986.

FIG. 6. Structures of the most stable polymorphs in Table V. Molecules XII
�top, left�, XI �top, right�, XIV �bottom, left�, and XV �bottom, right�. Red
denotes oxygen, green carbon, white hydrogen, orange bromine, turquoise
chlorine �in between bromine� and fluorine �para with respect to chlorine�,
violet nitrogen, and yellow sulfur.

TABLE V. Relative cohesive energies per molecule in kcal/mol according to
the molecular crystal structure blind test 2007 �Ref. 40�. Polymorph struc-
tures and PW91+vdW were published in Ref. 96. Geometries and unit cells
of the most stable polymorphs �1� are shown in Fig. 6.

No. of polymorph PW91+vdW a PBE+vdW b E�2� E�3�

XII
1 0.0 0.0 0.0 0.0
2 0.28 0.58 1.66 �0.07
3 0.47 0.40 �1.07 0.06

XI
1 0.0 0.0 0.0 0.0
2 0.32 0.59 0.70 �0.09
3 0.34 0.88 1.77 �0.21

XIV
1 0.0 0.0 0.0 0.0
2 0.47 1.05 1.94 �0.32
3 1.05 0.98 1.25 �0.13

XV
1 0.0 0.0 0.0 0.0
2 0.50 0.35 1.54 0.02
3 0.59 0.75 2.72 �0.14

aConstant C6 corrected DFT results from Ref. 97.
bComputed with dynamic C6 corrected DFT described in Ref. 36.
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a reasonable DFT based description of van der Waals inter-
actions are well recognized.104–106 To superimpose a disso-
ciative pairwise interatomic London potential decaying as
R−6 constitutes one of the simplest but most effective rem-
edies for this inaccuracy.107,108 Today a broad range of imple-
mentations has been designed and used for many
systems.36,50,52,53,109–114 An extension in the sense of DFT
+E�2�+E�3� could lead to increasingly accurate predictions,
once damping functions are devised that appropriately nego-
tiate the combination with a given functional. Recently we
realized that nonempirical �semi-� local functionals do not
appear to be suitable for such a scheme.21,22 A DFT+E�2�

+E�3� approach should be particularly accurate if the DFT
functional accounts for the correct interatomic short range
energetics in the regime of orbital overlap.

VI. CONCLUSIONS

We extended, and assessed, the dynamic dispersion co-
efficient calculation methodology presented in Ref. 36 for
computing the long range triple dipole C9 terms that enter the
Axilrod-Teller-Muto expression25,26 for the three-body dis-
persion energy. The average deviation of computed C9 coef-
ficients from C9 coefficients obtained using experimental
DOSD data is 7.2%.

For interatomic short ranges, we adapted the TT scheme
to consistently damp two- and three-body dispersion ener-
gies. The required damping range parameters, bIJ, have been
obtained as functions of vdW radii using a correlation for
rare gas dimer and an interpolation for rare gas trimer data,
respectively. We noted that the slope of the correlation is
very similar to the slope of the interpolation.

For 491 geometries of the benzene dimer and ten differ-
ent DNA base pair dimers, we found E�2� and E�3� contribu-
tions that are consistently smaller than available correspond-
ing SAPT data for the full dispersion energy from literature.
We expect that adding higher order pairwise terms, C8 and
C10, will bring E�2�+E�3� in better agreement with the SAPT
predictions.

We presented a comprehensive table of C6 and C9 values
for free atoms and atoms in molecules. Neglecting on-the-fly
effects of these coeffecients, they can serve as parameters in
effective interatomic potentials that account for atom pair-
wise as well as nonadditive dispersion energies.

For various systems we estimated the leading order two-
and three-body dispersion contributions to binding or cohe-
sive energies. Throughout the systems investigated, the two-
body dispersion energies are always of similar magnitude or
even larger than the considered energy. For large molecular
and condensed systems also the three-body dispersion ener-
gies become significant.

We conclude that it remains questionable if it is reason-
able to generally neglect three-body dispersion energies. For
the binding energies of the fullerene dimer, the bilayer
graphene, and the DNA-ellipticine complex, the E�3� contri-
butions can reach remarkable magnitudes, namely, 14%,
51%, and 24%, respectively. However, also to the cohesive
energy of the molecular benzene crystal, three-body disper-
sion forces contribute more than 15%. For 42 DNA base

pairs or competing molecular crystal morphologies we have
shown that the neglect of three-body dispersion energies can
affect the energetic ranking qualitatively.
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