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A single-passage, bimodal magnetic force microscopy technique optimized for scanning samples

with arbitrary topography is discussed. A double phase-locked loop system is used to mechanically

excite a high quality factor cantilever under vacuum conditions on its first mode and via an oscilla-

tory tip-sample potential on its second mode. The obtained second mode oscillation amplitude is

then used as a proxy for the tip-sample distance, and for the control thereof. With appropriate z-

feedback parameters, two data sets reflecting the magnetic tip-sample interaction and the sample to-

pography are simultaneously obtained. VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4932174]

Magnetic Force Microscopy is a versatile technique to

image local magnetic fields with high spatial resolution.1 It

is achieved by scanning an ultrasharp, high-aspect ratio mag-

netic tip along the surface of the sample at small tip-sample

distances under vacuum conditions. The latter is required for

a high Q-factor of the cantilever, which in turn allows

obtaining high sensitivity to small magnetic forces.2 Usually,

a dual passage method is used, where each measurement line

is scanned twice.3,4 A first scan is carried out in the intermit-

tent contact mode and reveals the topography. A subsequent

scan takes place without tip-sample contact at a user selected

lift height, following the topography data recorded in the first

scan. However, the use of the intermittent contact mode in

vacuum remains challenging.2

Recently, single passage measurement methods have

been reported that use bimodal cantilever excitation suitable

for operation in air5 and in vacuum.2 They rely on the ability

to separate magnetic from non-magnetic (van der Waals or

electrostatic) forces on the basis of their different decay

lengths. But magnetic fields of small magnetic structures can

have the same decay length as van der Waals forces, making

the separation of magnetic and topography-induced forces

difficult in these situations. Moreover, scanning at constant

average height, as is often convenient for quantitative data

analysis,6,7 or operation at larger tip-sample distances

becomes challenging, because the situation arises where the

(longer-ranged) magnetic forces dominate the (shorter-

ranged) topographical forces. The latter can then no longer

be used for tip-sample distance control. Additional problems

arise if measurements are performed at different tempera-

tures or external magnetic fields. Both change the resonance

frequency of the free cantilever, requiring a re-adjustment of

the frequency shift set-point used for recording the topogra-

phy. Although such reset is possible, it is often impractical,

e.g., when the magnetization of the magnetic coating on the

cantilever beam settles slowly over time leading to a corre-

sponding creep of the free resonance frequency.

Here, we propose a single passage measurement tech-

nique that overcomes these limitations. Figure 1 depicts its

schematic setup.8 As in our previous work,2 a first phase-

locked loop (PLL) is used to drive mechanically the cantilever

on its first flexural resonance f1, typically with an oscillation

amplitude A1 ¼ 10 nm (zero-to-peak), chosen to optimize the

ratio between the measured magnetic force induced frequency

shift and the frequency noise caused by thermal fluctua-

tions.2,9 Unlike our previous work2 the second cantilever os-

cillation mode at f2 ¼ 6:27 � f1 (Ref. 10) is not driven

mechanically but by applying an oscillatory tip-sample bias.

In general, a bias of the form UðtÞ ¼ Udc þ Uac cosð2pfactÞ
generates an electrostatic force given by

FE z; tð Þ ¼
1

2

@C zð Þ
@z
� U2

dc þ 2UdcUac cos 2pfactð Þ
�

þ U2
ac cos2 2pfactð Þ�; (1)

where C(z) is the distance dependent tip-sample capacity,

Udc ¼ U
ðKÞ
dc þ U

ðaÞ
dc is the sum of the contact and applied

potential, and Uac is the amplitude of the potential modula-

tion. We see from Eq. (1) that FE has components at fre-

quency fac and 2fac, the latter being

FE;2fac
zð Þ ¼ 1

4

@C zð Þ
@z
� U2

ac : (2)

FIG. 1. Schematic of the dual-PLL system required for bimodal oscillation

of high quality factor cantilevers. The first PLL mechanically drives the can-

tilever on its first mode, and tracks shifts of its resonance frequency. The

second PLL excites the cantilever via an oscillatory electric field at half the

resonance frequency of its second mode. The z-feedback then keeps the

obtained second mode oscillation amplitude constant to map the sample to-

pography. The required z-travel then reflects the topography of the sample.
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In particular, a cantilever oscillation will be induced at 2fac

that is proportional to @C=@z but independent of Udc (and

thus also insensitive to contact potentials). That is significant

because @C=@z carries information of the tip-sample dis-

tance, so that the amplitude at 2fac can be a measure thereof.

A spatial dependence of the contact potential U
ðKÞ
dc would

lead to a corresponding variation of the first (and second)

mode frequency shift, unless the Kelvin potential is compen-

sated through a suitable implementation of a Kelvin feed-

back loop.

By setting fac ¼ 1=2 � f2, i.e., half the second mode reso-

nance frequency, resonance amplification ensures a conven-

iently large amplitude A2, but a second PLL is needed to

track 2fac as shown in Fig. 1. The latter requirement arises

because magnetic forces acting on the tip and changes of the

tip-sample distances generate frequency shifts that can easily

be larger than the width of the resonance peak and thus

would significantly change the force-to-amplitude transfer

function.

With the above setup we can obtain tip-sample distance

dependent A2ðzÞ curves, a representative example of which

is given in Fig. 2(a), red line. Note that the first mode reso-

nance frequency Df1ðzÞ can be measured simultaneously

with the measurement of A2ðzÞ—cf. Fig. 2(a), blue line. The

monotonicity of A2ðzÞ shows that it is suitable for controlling

the tip-sample distance, i.e., modifying the value of z by Dz
until A2ðzÞ equals a predefined setpoint, provided the dielec-

tric response of the sample remains constant within the scan

area. Further, the quality factor Q2 must remain constant.

The latter could change if, for example, magnetic dissipation

occurred. That would however also affect the first mode

quality factor Q1, which is not the case for our

measurements.

Conveniently, the slope of A2ðzÞ increases with decreas-

ing z, whereby the signal-to-noise ratio of the measured

A2ðzÞ is improved. This facilitates a faster control of the tip-

sample distance when it is of the same order or smaller than

the height variation of topographical features. Measuring

with a z-feedback that rapidly adapts to the local conditions

implies that A2ðzÞ is (in an ideal case) constant, and that the

map of the corresponding Dz is a measure of the topography

(constant local height imaging). Conversely, if the z-feed-

back is disabled, A2ðzÞ should a priori vary with position in

accordance with the topography. Note, however, that by the

unavoidable drift of the tip-sample distance, the latter will

change not only locally, but on average. Such drift, but not

local variations of the tip-sample distance, will be corrected

if the A2ðzÞ-based control is retained but made sufficiently

slow. With a slow z-feedback mode a type of constant aver-
age height imaging mode is obtained, wherein A2ðzÞ is a

measure of topography. Importantly, very small to almost

arbitrarily large average distances from the sample surface

can be maintained, on account of the large range where
@CðzÞ
@z

varies. This represents a major advantage to the aforemen-

tioned bimodal technique.2

To investigate the characteristics of this control mode in

greater practical detail, we work with a Ta(5 nm)/Pt(5 nm)/

[Co(0.4 nm)/Pt(0.7 nm)]4/Pt(3.5 nm) multilayer deposited

onto a hexagonal array of domes in an anodic alumina tem-

plate with 100 nm period, similar to Ref. 11. This sample

provides small magnetic features, but also large topographi-

cal ones which typically constitute a major difficulty for

high-resolution magnetic force microscopy. In prior work,12

the topography of such a sample was measured in air, with

the intermittent contact mode. The typical bump-to-bump

height variation was found to be around 5 nm, but at defects

much larger height variations of up to 68 nm—cf.

Fig. 3(a)—were measured.

A Team-Nanotec cantilever without coating, with a

length of 225 lm, a width of 35 lm, and a nominal stiffness

of 0.7 N/m was used. Its high aspect ratio tip was made sensi-

tive to magnetic stray fields by sputter coating one tip side

with 2 nm Ti and 4 nm Co, and subsequently magnetizing it

to have a north pole at the tip end. The contact potential of

592 mV was compensated (i.e., Udc¼ 0). An oscillatory

potential Uac ¼ 500 mV was applied resulting in the A2ðzÞ
curve depicted in red in Fig. 2(a) for a range of z.

FIG. 2. (a) Second mode amplitude A2ðzÞ (red line), and first mode fre-

quency shift Df1ðzÞ (blue line) as a function of tip sample distance. (b) The

measured Df1-signal is re-plotted as a function of A2.

FIG. 3. Data obtained with A2 kept constant, i.e., using a fast z-feedback. (a)

Signal from the topography of the sample, i.e., the 68 nm z-travel required

to keep A2 constant during scanning. (b) Df1ðx; yÞMFM data recorded simul-

taneously with (a) in zero field. The yellow/blue circles highlight dots with

an up/down magnetization. (c) MFM image taken at �153 mT. An area

between the dots with an up magnetization is visible between the three

domes inside the blue frames. (d) MFM data acquired in a field of �406 mT

that saturates the magnetic layer. (e) MFM measurement at þ20 mT of the

area framed in green in (d).
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Figures 3(a) and 3(b) show two simultaneously recorded

channels of a first scan, taken in zero field, in which A2 was

kept constant with a fast feedback loop that varied z. It is an

example of constant local height imaging. The left panel is

the map of 68 nm Dz-travel required to keep A2 constant

during the scan, and is a measure of the topography

Dzmðx; yÞ. For instance, it can be used to align images

acquired in different fields. The corresponding Fig. 3(b)

shows the first mode frequency shift Df1ðx; y; zmðx; yÞÞ. It

contains a pattern of spots congruent with Fig. 3(a), with an

additional contrast pattern that is usually associated with the

magnetic up and down domains (cf. Ref. 12). The yellow/

blue circles in Figs. 3(b) and 3(c) indicate domes with an up/

down magnetization. Magnetic contrast with high spatial re-

solution can also be obtained between the domes, but is gen-

erally difficult to assess whether such an area can switch its

magnetization independently from that of the adjacent

domes. In most cases, an area between two domes changes

its contrast from bright to dark if both adjacent domes switch

from up to down. This could be caused by the magnetic

exchange coupling of the film on the domes with the film at

the location of the intermediate area, but could also be an ar-

tifact arising from a limited spatial resolution of the MFM.

However, at least at a few positions—highlighted in the blue

insets in Figs. 3(b)–3(d)—the magnetization of the domes

switch from up to down while part of areas between the two

adjacent domes remains up (white) in a field of �153 mT,

but switch to down in a field of �406 mT.

A salient feature of the above Df1ðx; y; zmðx; yÞÞ images

is the presence of dark spots at the centers of the domes, irre-

spective of the underlying magnetization orientation. In

order to exclude that this contrast is of magnetic origin the

area highlighted by the green frame in Fig. 3 was also meas-

ured in a field of þ20 mT. At such a field most of the film

retains the down-state obtained at �406 mT field, as known

from prior work,12 but the magnetization of the tip has

flipped. The latter can be seen from the dark contrast arising

from the very few areas of the film with a magnetization

direction changed from the down- to the up-state (see Fig.

3(e)). The dark spots (domes) however remain the most

prominent features in the Df1 image, although the tip mag-

netization is now antiparallel to the majority of the sample

areas. If the contrast was of magnetic origin, the domes

should now appear as white circles, which is clearly not the

case. Hence, apart from a small modification of the grey-

level of the contrast at the location of the domes, the dark

spots visible in all Df1 images are not of magnetic origin, but

arise from a spatial variation of the van der Waals force, as

already pointed our earlier work.12

However, in the present work A2 was kept constant. One

might thus expect that the local tip-sample distance, and thus

also the van der Waals interaction remains constant. Then

the domes should not be visible. The data taken in saturation

(Fig. 3(d)), however, show that this is not the case. The rea-

son for this discrepancy can be traced back to the different

interaction length of two involved tip-sample forces: electro-

static (Uac 6¼ 0) and attractive van der Waals ones, and thus

to the respective interaction volumes. The difference is con-

firmed by the departure from linearity of Df1ðA2Þ (Fig. 2(b)),

taking into account that the magnetic part of the interaction

does not alter this fact. Therefore, the van der Waals contri-

bution to Df1 will not remain constant when the tip traces

lines of constant A2, and the z-travel Dzmðx; yÞ required to

keep A2 constant will differ (slightly) from the true topogra-

phy of the sample. Consequently, the domes will remain visi-

ble even if the image is acquired in a saturating field of

�406 mT—cf. Fig. 3(d).

A more practical limitation of the constant local height
method is that because of the small size of the A2 the signal-

to-noise ratio (SNR) available for z-control is limited. As a

consequence the z-position noise and thus also the Df1 noise

in the image increases with the z-feedback speed, a fact that

ultimately limits the sensitivity for small magnetic forces.

Samples generating only weak stray fields are thus best

measured at constant average height, i.e., with slow propor-

tional and integral parameters of the z-feedback. They should

be sufficiently fast to correct drift of the tip-sample distance

but slow enough that localized topographical features

encountered during the scan do not trigger a z-correction.

Note that apart from allowing to scan faster this method

facilitates the quantitative interpretation of the MFM data.6

Figure 4 displays one such constant average height mea-

surement of the same area shown in Fig. 3. The data were

acquired in zero field immediately after the constant A2-scan

in zero field was completed. The magnetic state of the sam-

ple thus is the same as shown in Fig. 3(b). The variations of

A2 (Fig. 4(a)) using this measurement mode arise when local

topography is (mostly) not compensated by the feedback.

These images of A2ðx; yÞ, taken at constant average height,

can be translated into a frequency shift using the Df vdW
1 ðA2Þ

FIG. 4. (a) A2ðx; yÞ data arising from topography-induced variations of the

tip-sample distance. (b) Simultaneously measured Df1ðx; yÞ frequency shift

data recorded at constant average tip-sample distance, i.e., with a slow z-

feedback. (c) Van der Waals force induced variations of the frequency shift

Df vdW
1 calculated from the Df1ðA2Þ�curve depicted in Fig. 2(c). (d) Result of

subtracting the data in (c) from that of (b), showing a magnetic interaction

force-dominated image, which resembles the MFM image measured with a

fast z-feedback shown in Fig. 3(b).
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dependence plotted in Fig. 2(b), which was derived from the

measurements (Fig. 2(a)). The result of this computation is

shown in Fig. 4(c). It can now be subtracted from the “raw”

Df1ðx; yÞ data (Fig. 4(b)) to enhance the relative weight of

magnetic information in it. Figure 4(d) displays the result,

which qualitatively and quantitatively matches that acquired

at constant local A2 (Fig. 3(b)). It shows a substantial mag-

netic contrast with a weak background arising from the

incomplete compensation of local van der Waals force varia-

tions. Clearly, an ideally local treatment of van der Waals

and electrostatic tip-sample interactions is an approximation

that deteriorates when the sample topography is comparable

to the tip that images it. Future implementations of this tech-

nique could rely on an explicit deconvolution, utilizing sepa-

rate calibration measurements, to more perfectly compensate

the topography-induced effects.

At this point, it is convenient to note that the technique

for distance control presented here could also prove useful

for large area non-contact measurements of the Kelvin

potential. The z-feedback that keeps Df1 (the frequency shift

arising from van der Waals or interatomic forces) constant

represents the topography only if the Kelvin potential is

locally compensated. Usually this means that two feedbacks

(the Kelvin- and the distance feedback) are arranged in se-

ries, rendering the selection of appropriate feedback parame-

ters challenging and reducing the overall feedback speed.

From equation Eq. (1) follows that the A2 signal is independ-

ent from the dc-potential (applied and Kelvin potential).

Hence, a distance feedback using the A2 signal will not be

affected by the (slow) Kelvin feedback.

More fundamentally, a distance feedback relying on van

der Waals (or interatomic) forces requires the use of small

tip-sample distances, an inherent difficulty in large area-

scans of samples with substantial topography.

In conclusion, the capacitively controlled methods just

discussed provide the experimenter with a robust technique

for approaching, measuring, and studying magnetic struc-

tures in the presence of non-negligible topography. It can be

seen that any Scanning Force Microscopy technique where

C(z) can be measured will benefit from the control of the tip-

sample distance independently from non-capacitive tip-sam-

ple interaction forces of interest.
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