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ABSTRACT:	The synthesis and characterization of a series of new cyclometalated iridium(III) 
complexes [Ir(ppy)2(N^N)][PF6] in which Hppy = 2-phenylpyridine and N^N is (pyridin-2-
yl)benzo[d]thiazole (L1), 2-(4-(tert-butyl)pyridin-2-yl)benzo[d]thiazole (L2), 2-(6-
phenylpyridin-2-yl)benzo[d]thiazole (L3), 2-(4-(tert-butyl)-6-phenylpyridin-2-
yl)benzo[d]thiazole (L4), 2,6-bis(benzo[d]thiazol-2-yl)pyridine (L5), 2-(pyridin-2-
yl)benzo[d]oxazole (L6) or 2,2'-dibenzo[d]thiazole (L7) are reported. The single crystal 
structures of [Ir(ppy)2(L1)][PF6].1.5CH2Cl2, [Ir(ppy)2(L6)][PF6].CH2Cl2 and [Ir(ppy)2(L7)][PF6] 
have been determined. The series of seven complexes are efficient red emitters and have been 
used in the active layers in light emitting electrochemical cells (LECs). The effects of 
modifications of the 2-(pyridin-2-yl)benzo[d]thiazole ligand on the photoluminescence and LEC 
performance have been examined. Extremely stable red-emitting LECs are obtained and when 
[Ir(ppy)2(L1)][PF6], [Ir(ppy)2(L2)][PF6] or [Ir(ppy)2(L3)][PF6] are used in the active layer, 
device lifetimes >1000, 6000 and 4000 hours, respectively, are observed	

1. INTRODUCTION 

Lighting is one of the most important needs for daily life. Light-emitting electrochemical 

cells (LECs) have great potential as light-emitting devices that have emerged over the last 20 

years.1-11 LECs are simpler than organic light-emitting diodes (OLEDs), because they are 

typically based on a single layer architecture, whereas OLEDs employ a multilayer stack.12 The 

active layer of a LEC consists of an emitter containing ions, either using a polymeric material or 

an ionic transition-metal complex (iTMC),13-15 sandwiched between two air-stable electrodes. 

This allows for the preparation of novel form factors such as fibers,16 and on-chip designs. 

iTMCs, and particularly iridium-iTMCs, are the most explored type of electroluminescent 
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material in LECs due their phosphorescence emission that allows to theoretically achieve 100% 

of luminescence conversion.17 The operation of LECs depends on the movement of ions, which 

can lead to a delay in turn-on of light emission after applying a bias. Additionally, the 

movement of ions eventually also leads to a reduction of luminance. If LECs are to be applied 

commercially, a combination of fast responses with efficient and stable devices must be 

accomplished. Since 2004,18 when Slinker et al. employed the first iridium-iTMC, many types 

of ligands and substituents have been studied, reporting lifetimes up to 3000 hours for orange-

emitting LECs.19 We have shown that this objective is facilitated by operating the device under 

pulsed current.14 

The stability of LECs, as for OLEDs, depends on the current applied through the device 

and decreases with increasing current density. This dependency is typically stronger in LECs 

because of the increase in ion separation leading to the growing of doped regions20 or to 

chemical degradation.21 Additionally, the efficiency typically decreases with increasing current 

densities, due to exciton-polaron and exciton-exciton quenching processes. Recently, reports 

were published showing that the charge carrier balance is improved by adding lithium salts to 

the light-emitting layer.22-24  Many different emission colors have been reported ranging from 

blue to deep red and even near infrared, yet few pure red-emitting LECs have been reported.25 

This color is important in applications such as signage and automotive. Generally, pure-red 

LECs under DC operation mode exhibit lifetimes of a few hours.8,11,25,26 Tamayo et al. reported a 

red-emitting complex, [Ir(tbutyl-ppz)2(biq)][PF6] (tbutyl-ppz− = 4׳-tert-butylphenyl)pyrazolato, 

biq = 2,2׳-biquinoline), that was used in LECs showing a luminance of 7500 cd m‒2 (no lifetime 

data were presented).8 Zhang et al. also reported a red-LEC using the [Ir(ppy)2(pyoxd)][PF6] 

complex (ppy− = 2-phenylpyridinate, pyoxd = 2-phenyl-5-(2-pyridyl)-1,3,4-oxadiazole) with an 

EQE of 9.51%.11 However, the lifetime of the device (time required to reach one-half of the 

maximum luminance, t1/2) under constant-voltage of 5 V was 490 min. Hu et al. introduced in a 

host-guest configuration an N^N ancillary benzoimidazole ligand in [Ir(ppy)2(qIbi)][PF6] (qIbi 

= 2-(1-phenyl-1H-benzoimidazol-2-yl)quinoline) producing a LEC with a deep red emission.27  

In cyclometalated [Ir(C^N)2(N^N)]+ complexes, the benzothiazole moiety has previously 

been used as part of the cyclometalating C^N ligand, for example as 2-

phenylbenzo[d]thiazole.28-30 Although complexes of other metal ions coordinated by 2-(pyridin-

2-yl)benzo[d]thiazole (btzpy) have been investigated,31,32 there is only one example of an 

[Ir(C^N)2(N^N)]+ complex incorporating a related N^N domain (N^N = 2-(pyridin-2-yl)-4,5-

dihydrothiazole); in this example, the focus of attention was on the use of the iridium(III) 

complex as a photosensitizer for catalytic water reduction.33 

Here, we report a series of LECs using the ionic iridium(III) complex 

[Ir(ppy)2(btzpy)][PF6] having ppy− as the cyclometalating ligand and btzpy as the N^N ancillary 
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ligand. The incorporation of substituents, replacement for other ligands, and the role of the 

heteroatom in the benzothiazole unit are analyzed. All LECs exhibit deep red to infrared 

electroluminescence. Long lifetimes even when driven at high current densities are obtained. 

 

2. EXPERIMENTAL SECTION 

Synthesis and compound characterization: Starting materials were obtained in reagent grade 

and used as received. Dry solvents were purchased from Sigma-Aldrich or Acros Organics and 

used for reactions carried out under inert atmosphere. For all other reactions, solvents used were 

of reagent grade or distilled. HPLC grade solvents were used for analyses. Column 

chromatography was performed using Fluka silica gel 60 (0.040–0.063 mm). 

1D and 2D NMR spectra were measured on a Bruker Avance III-500 (500 MHz) 

spectrometer. Chemical shifts are referenced to residual solvent peaks with δ(TMS) = 0 ppm. 

Electrospray ionization mass spectra were recorded on a Bruker esquire 3000plus spectrometer. 

LC-ESI mass spectra were obtained on a combination of Shimadzu (LC) and Bruker AmaZon X 

instruments. Elemental analysis was performed on an Elementar Vario Micro Cube instrument 

and high resolution ESI mass spectra on a Bruker maXis 4G QTOF spectrometer. FT-IR spectra 

were recorded on a Perkin Elmer Spectrum Two UATR instrument. Absorption spectra were 

measured on an Agilent 8453 spectrophotometer and solution emission spectra on a Shimadzu 

5301PC spectrofluorophotometer. Solution and powder photoluminescence quantum yields 

were recorded on a Hamamatsu absolute PL quantum yield spectrometer C11347 Quantaurus 

QY. Emission spectra of powder samples as well as solution and powder excited-state lifetime 

measurements were carried out on a Hamamatsu Compact Fluorescence lifetime spectrometer 

C11367 Quantaurus Tau. Electrochemical measurements were performed using cyclic and 

square-wave voltammetry on a CH Instruments 900B potentiostat with both glassy carbon and 

platinum working and platinum auxiliary electrodes; a silver wire was used as a pseudo-

reference electrode. Dry, purified CH2Cl2 was used as solvent and 0.1 M TBAPF6 as supporting 

electrolyte. Ferrocene as internal reference was added at the end of each experiment. 

Crystallography: Single crystal structure determination was carried out on a Bruker APEX-

II diffractometer. Data reduction, solution and refinement used the programs APEX34 and 

SHELXL97.35 Structure analysis was done using Mercury v. 3.6.36 

Photoluminescence characterization: The samples for thin-film photoluminescence 

measurements were done with the same composition and thickness than the emissive layer of 

LECs. Each complex was mixed with the ionic liquid (IL) 1-butyl-3-methylimidazolium 

hexafluoridophosphate ([Bmim][PF6]) in a 4-to-1 molar ratio. A 100 nm thick film was 
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deposited from a 20 mg mL‒1 solution of complexes 1, 5, and 6 in acetonitrile, complexes 2, 3, 

and 4 in dichloromethane, and complex 7 in methyl ethyl ketone:anisol 3:2, respectively. Prior 

to deposition, all solutions were filtered with a 0.22 µm pore size filter and spin-coated at 1000 

rpm for 30 s in air onto cleaned quartz substrates. As the films obtained from the filtered 

solutions of complexes 2 and 4 in the LEC layout were inhomogeneous, a small amount of 2 wt-

% of PMMA was added to improve the homogeneity of the layer. 

The thin-film photoluminescence spectra and quantum yields were measured in air with a 

Hamamatsu C9920-02 Absolute PL Quantum Yield Measurement System. 

Computational details: Density functional calculations (DFT) were carried out with the 

D.01 revision of the Gaussian 09 program package37 using Becke's three-parameter B3LYP 

exchange-correlation functional38,39 together with the 6-31G** basis set for C, H, N, S, and O,40 

and the “double-ζ” quality LANL2DZ basis set for the Ir element.41 An effective core potential 

(ECP) replaces the inner core electrons of Ir leaving the outer core [(5s)2(5p)6] electrons and the 

(5d)6 valence electrons of Ir(III). The geometries of the singlet ground state (S0) and of the 

lowest-energy triplet state (T1) were fully optimized without imposing any symmetry restriction. 

Phosphorescence emission energies were estimated as the vertical difference between the energy 

of the minimum of the lowest-energy triplet state and the energy of S0 at the T1 optimized 

geometry. The calculation of the energy of S0 at the T1 geometry was performed as an 

equilibrium single-point calculation with respect to the solvent reaction field/solute electronic 

density polarization process. All the calculations were performed in the presence of the solvent 

(dichloromethane). Solvent effects were considered within the self-consistent reaction field 

(SCRF) theory using the polarized continuum model (PCM) approach.42-44 Time-dependent DFT 

(TD-DFT)45-47 calculations of the lowest lying 6 triplets of all systems, and the lowest 40 

singlets of 1 and 7, were performed in the presence of the solvent at the minimum-energy 

geometry optimized for the ground state. 

LEC fabrication: All materials were used as received. Poly(3,4-

ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS Clevios P VP Al 4083) was 

purchased from Heraeus. The ionic liquid (IL) 1-butyl-3-methylimidazolium 

hexafluoridophosphate ([Bmim][PF6]) and the poly(methyl metacrylate) (PMMA, Mw = 

120000 g	 mol‒1) were purchased from Sigma Aldrich. The solvents acetonitrile, 

dichloromethane, methyl ethyl ketone, and anisol were purchased from Sigma Aldrich. The 

photolithography-patterned indium tin oxide (ITO) glass substrates were purchased from 

Naranjo Substrates (www.naranjosubstrates.com). 

LECs were prepared as follows. The substrates were subsequently cleaned with soap, 

deionized water, and isopropanol in an ultrasonic bath for 5 minutes each, followed by 20 
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minutes of UV-ozone treatment. Onto the clean ITO substrates, an 80 nm thick film of 

PEDOT:PSS was spin-coated at 1000 rpm for 60 s. The PEDOT:PSS was added from a syringe 

and filtered with a 0.45 µm pore size filter .The PEDOT:PSS layer was dried at 150 ºC for 15 

minutes. On top of it, a 100 nm thick film of the emissive layer was deposited in the same 

conditions that were described for thin-film photoluminescence samples. In brief, filtered 

solutions of complex:IL in a 4-to-1 molar ratio were spin-coated in air at 1000 rpm for 30 s and 

transferred to a glove box (MBraun, O2 <0.1 ppm, H2O <0.1 ppm) for annealing at 100 ºC for 1 

hour. Finally, a 70 nm thick film of aluminum was deposited as top electrode contact using a 

shadow mask. The active area in all devices is 0.634 cm2. 

LEC characterization: LECs using complexes 1‒6 were tested by applying pulsed current 

and by monitoring the voltage and the luminance with a True Colour Sensor (MTCSiCT Sensor, 

MAZeT GimbH) using a Lifetime Test System (Botest OLT OLED Lifetime-Test System, 

Botest System GmbH). The pulsed current consisted of a block wave at 1 kHz frequency with a 

duty cycle of 50%. LEC with complex 7 was tested by applying pulsed current with the 

Lifetime Test System and the irradiance was monitored with a sensitive Si-photodiode coupled 

to an integrating sphere. The peak current density of the pulse was 200 A m‒2 and the average 

current density was 100 A m‒2 for LECs 1‒6. For further understanding of the stability of LEC 

1, this device was driven at average current densities of 300, 700, 1250, and 1500 A m‒2.  

Electroluminescence spectra were recorded using an Avantes fibre optics photo-spectrometer. 

All devices were tested without encapsulation and were characterized inside the glove-box at 

room temperature. For each device configuration, we evaluated 8 cells to ensure meaningful 

statistics. 

 

3. RESULTS AND DISCUSSION 

Ligand synthesis 

The chemical structures of ancillary ligands L1–L7 used in this series of complexes are 

shown in Scheme 1 and the syntheses are detailed in the Supporting Information. 2-(Pyridin-2-

yl)benzo[d]thiazole (L1), 2-(4-(tert-butyl)pyridin-2-yl)benzo[d]thiazole (L2), and 2-(pyridin-2-

yl)benzo[d]oxazole (L6) were prepared by adaptation of a copper-catalyzed coupling reaction 

described in the literature.48 2,6-Bis(benzo[d]thiazol-2-yl)pyridine (L5)49 and 2,2'-

bibenzo[d]thiazole (L7)50 were synthesized following reported literature procedures by a 

condensation reaction of 2-aminothiophenol with 2,6-pyridinedicarboxaldehyde or oxalic acid, 

respectively. The synthesis of 2-(6-phenylpyridin-2-yl)benzo[d]thiazole (L3) and 2-(4-(tert-

butyl)-6-phenylpyridin-2-yl)benzo[d]thiazole (L4) has not yet been reported. Bromination of 2-
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phenylpyridine and 4-(tert-butyl)-2-phenylpyridine with n-BuLi/LiDMAE and CBr4
51 gave 2-

bromo-6-phenylpyridine and 2-bromo-4-(tert-butyl)-6-phenylpyridine, which were then used in 

Cu(I)-catalyzed coupling reactions with benzothiazole48 to yield the desired products L3 and L4 

in moderate yields. Ligands L3 and L4 were characterized by 1D and 2D NMR spectroscopy, 

LC-ESI mass spectrometry, IR spectroscopy, and elemental analysis. In the mass spectra, the 

base peaks at m/z 289.0 (for L3) and 345.1 (for L4) correspond to the protonated ligands 

[M+H]+. 

 

 

Scheme 1. Synthesis of iridium(III) complexes 1–7. Reaction conditions: a) AgPF6, MeOH, 

room temperature, 2–3.5 h; b) N^N (L1–L7), MeOH, room temperature, overnight. Reported 

yields (over two steps) are calculated based on the dimer starting materials. 

Synthesis of [Ir(C^N)2(N^N)][PF6] complexes 

Cationic iridium complexes of the type [Ir(C^N)2(N^N)]+ are typically synthesized by 

cleavage of the [Ir(ppy)2Cl]2 dimer with the desired N^N ligand in MeOH or CH2Cl2/MeOH.52-

54 Using this method, however, traces of chloride ions can be carried through to the final 

product, despite using an excess of NH4PF6 for ion metathesis. We have recently shown that 

these chloride impurities are detrimental to device performance.55 Therefore, the complexes in 

this series were prepared via an intermediate solvento complex, formed by the reaction of the 

iridium dimer with AgPF6 in MeOH (Scheme 1). During the reaction, AgCl precipitates and is 

removed by filtration through Celite®. The filtrate is concentrated and the solvento intermediate 

is used immediately without purification or characterization for subsequent transformations. As 

shown in a series of stable orange emitters, the purity obtained by this synthetic route can lead 
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to excellent LEC performance, decreasing the risk of chloride ion impurities in the final 

complexes.56 In Scheme 1, the synthetic strategy to complexes 1–7 is shown. Reaction of the 

[Ir(ppy)2(MeOH)2][PF6] intermediate with the corresponding N^N ligands L1–L7 in MeOH at 

room temperature gave the desired iridium complexes in moderate to good yields based on the 

iridium dimer starting material. All complexes in this series were fully characterized by 1D and 

2D NMR spectroscopy, IR spectroscopy, ESI-MS, and elemental analysis. The base peaks in the 

ESI mass spectra correspond to the [M−PF6]+ cations. 

Crystal structures 

Single crystals of 1·1.5CH2Cl2, 6·CH2Cl2, and 7 were grown by layering CH2Cl2 solutions of 

the complexes with Et2O. Structures of the complex cations are shown in Figures 1 to 3, 

confirming that coordination occurs through the nitrogen atom(s) of the 

benzothiazole/benzoxazole unit(s) in all three complexes. 1·1.5CH2Cl2 and 6·CH2Cl2 crystallize 

in the monoclinic space groups P21/c and P21/n, respectively, whereas 7 crystallizes in the 

orthorhombic space group Fdd2. CH2Cl2 solvent molecules are heavily disordered in 

1·1.5CH2Cl2 and have been removed using the SQUEEZE57 method. In 6·CH2Cl2, the CH2Cl2 

solvent molecule is ordered. The asymmetric unit of 7 contains half a cation and half an anion; 

in each case, the second half is generated by a C2 rotation axis which is parallel to the c axis of 

the unit cell and runs through the iridium or the phosphorus center, respectively. 

 

Figure 1. Structure of the Λ-[Ir(ppy)2(L1)]+ cation in 1·1.5CH2Cl2. H atoms omitted for clarity 

and ellipsoids plotted at 50% probability level. Selected bond parameters: Ir1–N1 = 2.172(2), 

Ir1–N2 = 2.050(2), Ir1–N3 = 2.143(2), Ir1–N4 = 2.041(2), Ir1–C5 = 2.007(3), Ir1–C32 = 

2.014(3), S1–C15 = 1.731(3), S1–C17 = 1.742(3) Å; N1–Ir1–N3 = 76.15(9), N2–Ir1–C5 = 

80.63(10), N4–Ir1–C32 = 80.65(10), N1–Ir1–C5 = 171.48(9), N2–Ir1–N4 = 172.68(9), N3–Ir1–

C32 = 175.40(10), C15–S1–C17 = 88.97(14)°. 
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For 1·1.5CH2Cl2 and 6·CH2Cl2, the phenylpyridine ligand, of which the coordinating C atom is 

trans to the benzothiazole/benzoxazole unit, is nearly planar (angles between the ring planes are 

3.3 and 2.7°, respectively). The other ppy cyclometallating ligand (coordinating carbon trans to 

the pyridine ring of the ancillary ligand) shows deviation from planarity, with angles between 

the ring planes of 8.2 and 10.9°, respectively. Whereas the L1 ancillary ligand in 1·1.5CH2Cl2 is 

distorted from planarity (angle between the ring planes = 8.2°), ligand L6 in 6·CH2Cl2 does not 

exhibit the same behavior (angle between the ring planes = 2.2°). In 7, both the ppy− and the L7 

ligands are twisted so that the angles between the ring planes amount to 7.1 and 7.5°, 

respectively. 

 

 

Figure 2. Structure of the Δ-[Ir(ppy)2(L6)]+ cation in 6·CH2Cl2. H atoms omitted for clarity and 

ellipsoids plotted at 50% probability level. Selected bond parameters: Ir1–N1 = 2.044(2), Ir1–

N2 = 2.055(2), Ir1–N3 = 2.173(2), Ir1–N4 = 2.140(2), Ir1–C11 = 2.009(3), Ir1–C22 = 2.008(3), 

O1–C28 = 1.355(4), O1–C29 = 1.394(4) Å; N1–Ir1–C11 = 80.60(11), N2–Ir1–C22 = 80.60(11), 

N3–Ir1–N4 = 76.33(9), N1–Ir1–N2 = 172.13(9), N3–Ir1–C11 = 170.59(10), N4–Ir1–C22 = 

173.90(10), C28–O1–C29 = 103.9(2)°. 
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Figure 3. Structure of the Λ-[Ir(ppy)2(L7)]+ cation in 7. H atoms omitted and ellipsoids plotted 

at 50% probability level. Symmetry code: i = −x+½,−y+½,z+1. Selected bond parameters: Ir1–

N1 = 2.176(3), Ir1–N3 = 2.048(2), Ir1–C20 = 2.004(3), S1–C6 = 1.730(4), S1–C7 = 1.718(3) Å; 

N1–Ir1–N1i = 75.58(14), N3–Ir1–C20 = 80.75(12), N1–Ir1–C20 = 175.83(13), N3–Ir1–N3i = 

168.96(15), C6–S1–C7 = 88.77(16)°. 

Electrochemical properties 

Electrochemical data gained from cyclic voltammetry measurements in CH2Cl2 solution are 

summarized in Table 1; cyclic voltammograms are depicted in Figure S1. Reduction potentials 

are similar for complexes 1–4 and 6 (−1.55 to −1.62 V), indicating that reduction takes place 

mainly on the benzothiazole unit of the ancillary ligand and replacing benzothiazole by 

benzoxazole does not significantly influence the reduction potential. Both 5 and 7 are more 

readily reduced than complex 1, with E1/2
red  shifted by 0.08 and 0.28 V, respectively. The 

introduction of a second benzothiazole moiety therefore has a pronounced stabilization effect on 

the LUMO, especially in 7, where the two benzothiazoles are directly linked. A second 

reduction peak is observed for both complexes, which is not seen for the remaining five 

compounds within the accessible solvent window. Oxidation potentials are in a close range 

(+0.86 to +1.01 V), as expected for [Ir(ppy)2(N^N)][PF6] complexes in which the HOMO is 

located on the iridium center and the cyclometalating ligand. For compound 7, oxidation is 

shifted to higher potential, which can be explained by the extremely electron-deficient nature of 

ligand L7, making oxidation of the iridium center more difficult. The opposite trend is seen in 3 

and 4, where the introduction of a phenyl group on the ancillary ligand facilitates oxidation. For 

complex 5, two irreversible oxidation waves are observed, whereas all other complexes exhibit 

only one reversible to quasi-reversible oxidation. 

Table 1. Electrochemical data of complexes 1–7 in de-aerated CH2Cl2 solutions and 

referenced to Fc/Fc+ (see also Figure S1).a 

Complex 
E1/2
ox  [V] 

(Epa–Epc [mV]) 
E1/2
red [V] 

(Epc–Epa [mV]) 
ΔE1/2 [V] 

1 +0.94 (92) −1.55 (83) 2.49 

2 +0.92 (95) −1.59 (89) 2.51 

3 +0.86qr (126) −1.57 (95) 2.43 

4 +0.87qr (151) −1.62 (89) 2.49 

5 
+0.99ir, 
+1.17ir 

−1.47 (86), 
−2.30ir 

2.46 

6 +0.92qr (114) −1.61 (104) 2.53 

7 +1.01qr (144) 
−1.27qr (123), 
−2.03qr (140) 

2.28 
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aMeasured using Pt working and counter electrodes, an Ag pseudo-reference electrode, and 

0.1 M TBAPF6 as supporting electrolyte at a scan rate of 0.1 V s−1. ir = irreversible, qr = quasi-

reversible. 

 

Photophysical properties 

UV-Vis absorption spectra in CH2Cl2 solution are shown in Figure 4. All complexes show 

intense absorption bands in the UV with maxima in the range 254–314 nm, which are ascribed 

to spin-allowed π→π* transitions of the ligands. Lower energy bands between 350 and 450 nm 

correspond to spin-allowed metal-to-ligand (1MLCT) and ligand-to-ligand charge transfer 

(1LLCT) excitations, whereas the low intensity tails above 450 nm arise from spin-forbidden 
3MLCT, 3LLCT, and ligand-centered (3LC) transitions.14 With the exception of 7, the UV-Vis 

absorption spectra of all complexes in this series are similar. Compound 7 exhibits more intense 

absorption bands at wavelengths higher than 360 nm compared to the other complexes, with 

considerably stronger absorption bands extending into the visible region (around 450 nm). This 

feature is attributed to the ancillary ligand (L7).  

Table 2. Photophysical properties of complexes 1–7 (see also Table S1). 

Complex	
Solutiona	 Powder	 Filmf	

λem
max	

[nm]b	
τ1/2	

[ns]c,d	
PLQY	
[%]b	

λem
max	

[nm]d	
τave	

[ns]d,e	
PLQY	
[%]b	

λem
max	

[nm]	
PLQY	
[%]	

1	 644	 222	 7.7	 630	 277	 8.6	 645	 11.0	

2	 636	 329	 14.0	 630	 305	 16.0	 642	 17.6	

3	 645	 183	 6.5	 638	 214	 8.5	 651	 9.7	

4	 636	 275	 11.0	 625	 287 10.0	 626	 12.5	

5	 652	 169e	 4.1	 648	 185	 3.1	 658	 5.8	

6	 636	 166e	 5.9	 616	 236	 9.7	 625	 12.3	

7	 686	 126	 3.6	 656	 565	 17.0	 693	 6.7	
a De-aerated CH2Cl2 solutions. b λexc = 266 nm for 1, 270 nm for 2–4 and 6, 265 nm for 5 and 

259 nm for 7. c Measured under an atmosphere of argon. d λexc = 280 nm. e τave (biexponential fits 

were used for the excited state lifetime determination). f λexc = 320 nm. 
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Figure 4. UV-Vis absorption spectra in CH2Cl2 solution (1.0 × 10−5 mol dm−3) of complexes 1–

7. 

Excitation of CH2Cl2 solutions of complexes 1–7 gives the photoluminescence spectra 

shown in Figure 5 with photophysical data summarized in Table 2. Emission maxima lie in the 

red to deep-red region, ranging from 636 to 686 nm. For all complexes, the shapes and positions 

of the emission bands are independent of the excitation wavelength. Introduction of ligand L1 

leads to a 49 nm red-shift of the emission maximum in CH2Cl2 when compared to the archetype 

complex [Ir(ppy)2(bpy)][PF6] (595 nm, bpy = 2,2’-bipyridine).58 This red-shift can be explained 

by the electron-deficient nature of the benzothiazole moiety, leading to stabilization of the 

LUMO and as a consequence a smaller energy gap. Replacing the pyridine ring of L1 by 

another benzothiazole unit (ligand L7) leads to a further 42 nm bathochromic shift of the 

emission maximum in 7. Substituting L1 with a further benzothiazole group (ligand L5) does 

not have the same effect as L7; the pendant benzothiazole ring in 5 red-shifts the emission 

maximum by only 8 nm. Coordination of the benzothiazole to the iridium center is therefore 

crucial for a substantial bathochromic shift. With the exception of 7, the emission maxima of all 

complexes in this series are found in a small 16 nm range between 636 and 652 nm, 

corresponding to red emission. Introduction of a pendant phenyl (3) or benzothiazole ring (5) 

exerts a negligible influence on the luminescence maximum. An 8 nm blue-shift of the emission 

band is observed upon tert-butyl substitution on the pyridyl ring in complexes 2 and 4. The 

same effect is observed by changing the benzothiazole to a benzoxazole unit in the ancillary 

ligand (complex 6). The majority of complexes in this series show broad, unstructured emission 

profiles, indicating a large charge transfer character of the emissive state. Some vibrational 

structure is observed in the emission bands of complexes 2 and 6, suggesting that the 3LC 

contribution is more pronounced in the emissive state of these two complexes. 

Photoluminescence quantum yields in solution are generally low (<10%) within this series of 

complexes (Table 2), but unexceptional for red emitters. A tert-butyl substituent on the ancillary 
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ligand in 2 and 4 leads to slightly higher PLQYs of 14.0 and 11.0%, respectively. Lifetimes 

were determined using biexponential fits in the case of compounds 5 and 6; data are given in 

Table 2. 

 

Figure 5. Photoluminescence spectra in CH2Cl2 solution (1.0 × 10−5 mol dm−3) of complexes 1–

7. λexc = 430 nm for 1–6 and 445 nm for 7. 

Emission spectra of powder samples are depicted in Figure 6; emission maxima, quantum 

yields, and excited-state lifetimes are summarized in Table 2. All complexes exhibit a blue-shift 

in the range 4–30 nm on going from CH2Cl2 solution to the solid state (powder). The largest 

shift is seen for compound 7; this is also the only complex in this series which has a structured 

emission profile in the solid state. PLQYs vary from 3.1% for complex 5 to 17.0% for complex 

7. Biexponential fits were used for solid state decay curves of all complexes. Average lifetimes 

lie in the range 185–565 ns, with complex 7 exhibiting not only the highest quantum yield, but 

also the longest τave. Thin films of the complexes combined with [Bmim][PF6] as ionic liquid 

(4:1 ratio) were spin-coated onto quartz substrates to determine their photophysical properties. 

For compound 2, 2 wt-% poly(methyl methacrylate) (PMMA) was added to increase the quality 

of the film. The photoluminescence spectra of the different films are depicted in Figure 7 and 

the deduced emission maxima and quantum yields are reported in Table 2. Apart from complex 

4, red-shifts in the emission maxima are observed for all complexes on going from powder 

samples to thin films. A pronounced red-shift of 37 nm is seen for complex 7, resulting in an 

emission maximum close to the near-infrared region (693 nm). All other complexes exhibit 

smaller bathochromic shifts ranging from 9 to 15 nm. Interaction of the complexes with the 

ionic liquid in thin films apparently leads to a slight stabilization of the triplet emissive state and 

thus a smaller energy gap. The PLQY of the films of all but complex 7 are similar to the values 

obtained from the powder samples (Table 2). Only for complex 7, the PLQY is significantly 

lower in film (6.7%) than for the powder sample (17%). 
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Figure 6. Solid-state photoluminescence spectra of powder samples of complexes 1–7. λexc = 

280 nm. 

 

Figure 7. Thin-film photoluminescence spectra of complexes 1–7. λexc = 320 nm. 

 

Theoretical calculations 

To obtain a deeper knowledge of the electrochemical and photophysical properties of 

complexes 1‒7, the molecular and electronic structures of the respective [Ir(ppy)2(N^N)]+ 

cations, in both ground and excited electronic states, were investigated by means of density 

functional theory (DFT) calculations at the B3LYP/(6-31G**+LANL2DZ) level in presence of 

the solvent (CH2Cl2). 

The minimum-energy geometries calculated for the [Ir(ppy)2(N^N)]+ cations in their 

electronic ground state (S0) reproduce the near-octahedral coordination of the Ir metal and are in 

good agreement with the X-ray diffraction data presented above for 1, 6, and 7. For these 

complexes, the N^N ligands are predicted to be mainly planar (angle between ring planes = 2.7, 

1.9 and 3.8º, respectively). For 3, 4, and 5, the ancillary ligand deviates more from planarity 

(angle between ring planes = 14.6, 16.0, and 14.3º respectively) to accommodate the pendant 
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phenyl or benzothiazolyl groups. These groups give rise to a face-to-face π-stacking with the 

phenyl group of the adjacent ppy− ligand, similar to the intracation stacking observed for 

[Ir(ppy)2(Phbpy)]+ (Phbpy = 6-phenyl-2,2'-bipyridine) and [Ir(ppy)2(Naphbpy)]+ (Naphbpy = 6-

(2-naphthyl)-2,2'-bipyridine) in previous studies.55,59 The centroid-centroid distance between the 

stacked rings is 3.78, 3.80, and 3.74 Å for 3, 4, and 5, respectively. 

 

Figure 8. Schematic representation comparing the energies calculated for the frontier molecular 

orbitals of the archetype complex [Ir(ppy)2(bpy)]+ and of complexes 1‒7. Isovalue contours 

(±0.03 a.u.) of the HOMO and LUMO are included for [Ir(ppy)2(bpy)]+, 1, and 7. Hydrogen 

atoms are omitted for clarity. The chemical structure of the N^N ligands is shown in the upper 

part of the Figure. 

 

Figure 8 compares the energies calculated for the frontier molecular orbitals of complexes 

1‒7 with those obtained for the archetypal [Ir(ppy)2(bpy)]+ complex. The contour plots of the 

highest-occupied (HOMO) and lowest-unoccupied (LUMO) molecular orbitals show the same 

topology for all the complexes and only those computed for [Ir(ppy)2(bpy)]+, 1, and 7 are 

depicted in Figure 8 as representative examples. As usually found for [Ir(C^N)2(N^N)]+ 

complexes, the HOMO spreads over the iridium center and the phenyl rings of the ppy− ligands, 

whereas the LUMO is located over the N^N ligand. The energy of the HOMO remains almost 

constant along the series 1‒6 (‒5.83 to ‒5.86 eV), and close to that of the archetypal complex (‒

5.80 eV). This is an expected behavior because all the complexes bear the same C^N ligands 

and the structural differences are related to the ancillary ligand from which the HOMO has no 
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contribution. Hence, the energy of the HOMO is only indirectly affected as in complex 7, that 

features a slightly lower HOMO energy (‒5.92 eV) due to electron-deficient nature of ligand 

L7. The theoretical predictions are in good agreement with the very similar oxidation potentials 

measured for complexes 1‒4 and 6, and the higher value recorded for 7. No significant 

difference is expected for complex 5, for which the measured potential is irreversible. 

Regarding the LUMO, its energy undergoes significant changes due to the different 

structure of the ancillary ligand (see Figure 8). The substitution of the bpy ligand in the 

reference [Ir(ppy)2(bpy)]+ complex by the btzpy ligand incorporating the benzothiazole unit in 1 

stabilizes the LUMO by 0.33 eV, passing from ‒2.66 eV in [Ir(ppy)2(bpy)]+ to ‒2.98 eV in 1. 

The attachment of additional tert-butyl and phenyl groups to the pyridine moiety of btzpy leads 

to accumulative destabilizations of the LUMO of 2 (‒2.89 eV), 3 (‒2.91 eV), and 4 (‒2.82 eV) 

compared with 1. Replacing benzothiazole by benzoxazole has a similar small destabilization 

effect in the LUMO of 6 (‒2.90 eV). In contrast, the attachment of a second benzothiazole unit 

produces a small stabilization of the LUMO of 5 (‒3.02 eV). The greatest effect is found for 

complex 7 (‒3.29 eV), for which the pyridine ring is substituted by a second electron-deficient 

benzothiazole unit, and the LUMO is stabilized by 0.31 eV. The theoretical trends fully support 

the reduction potentials measured experimentally (Table 1), which present close values for 2, 3, 

4, and 6 (around ‒1.60 V), slightly more negative than 1 (‒1.55 V), and less negative values for 

5 (‒1.47 V) and especially for 7 (‒1.27 V). 

The HOMO–LUMO energy gaps calculated for 1‒7 are in all cases smaller than that 

computed for the archetype complex (3.14 eV). The largest gap in the family is predicted for 

complex 4 (3.02 eV), it decreases for complexes 2, 3, and 6, that show gaps around 2.95 eV, and 

in passing to 1 (2.88 eV) and 6 (2.83 eV), and the smallest gap is predicted for complex 7 (2.63 

eV). If emission comes from a triplet excited state originating in the HOMO → LUMO 

excitation, these results justify, in a first approach, the gradual shift to the red experimentally 

observed for the emission of complexes 1‒6, and especially for 7, when compared with 

[Ir(ppy)2(bpy)]+ (Table 2). 

To verify the nature of the emitting state, time-dependent DFT (TD-DFT) calculations of 

the lowest-energy triplet states were performed for the cations of complexes 1‒7 at the 

optimized geometry of S0. Table S2 in the Supporting Information compiles the vertical 

excitation energies and the electronic description computed for the first three triplet excited 

states. Results for complexes 1‒7 mostly present the same pattern. The lowest-lying triplet state 

(T1) is mainly described by the HOMO → LUMO excitation and has a 3MLCT/3LLCT nature. 

The second lowest state (T2), which also has a 3MLCT/3LLCT nature, appears 0.3‒0.4 eV higher 

in energy than T1 and presents some 3LC character (13‒22%) due to excitations centered on the 

ancillary ligand. The third state (T3) mainly implies the C^N ligands (3LC nature) with some 



16	
	

contribution from the metal and is computed more than 0.5 eV above T1. The energy differences 

between these states point to the HOMO → LUMO 3MLCT/3LLCT state as the emissive triplet 

state for complexes 1‒7. 

To further confirm the nature of the emitting triplet, the geometry of the lowest-lying triplet 

state was optimized using the spin-unrestricted UB3LYP approach. Figure 9a summarizes the 

adiabatic energy difference between S0 and T1 (ΔE) and the emission energy (Eem) estimated as 

the vertical energy difference between T1 and S0 at the optimized minimum-energy geometry of 

T1. Fig. 9b shows the unpaired-electron spin-density distributions computed for the fully relaxed 

T1 states of complexes 1 and 7 as representative examples. All the complexes exhibit similar 

spin density plots spreading the ppy-Ir environment and the N^N ligand (Ir ∼ 0.5e, C^N ligands 

∼ 0.5e, N^N ligand ∼ 1.0e) that perfectly match the topology of the HOMO → LUMO 

excitation indicating an electron transfer from the Ir(ppy)2 moiety to the ancillary ligand. This 

supports the 3MLCT/3LLCT nature predicted for the emitting state by the TD-DFT calculations 

and agrees with the broad and unstructured bands observed in the photoluminescence spectra. 

The DFT values predicted for Eem are in the range 1.58‒1.79 eV (Figure 9a) underestimating the 

experimental emission energies by 0.1‒0.2 eV. They correctly reproduce the main experimental 

trends featuring similar emission energies for complexes 1‒4 and 6, a slightly redder emission 

for 5, and a deeper red emission for 7. 

 

 

Figure 9. a) Schematic energy diagram showing the adiabatic energy difference (ΔE) between 

the S0 and T1 states and the emission energy (Eem) from T1 calculated for complexes 1‒7. b) 

Unpaired-electron spin-density contours (0.002 a.u.) calculated for fully relaxed T1 states of 

complexes 1 and 7. 
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TD-DFT calculations of the lowest-lying singlet excited states were also performed to 

disentangle the different features observed in the absorption spectra (Figure 4). For complex 7, 

two relatively intense S0 → Sn electronic transitions are computed at 362 and 373 nm, with 

oscillator strengths of 0.10 and 0.59 respectively. These transitions originate from π → π* 

excitations centered over the 2,2'-bibenzo[d]thiazole (L7) ligand. The corresponding transitions 

for complexes 1‒6 are found at higher energies and show lower intensities (for 1: 328 and 335 

nm, with oscillator strengths of 0.30 and 0.15, respectively). These differences explain the more 

intense absorption bands recorded experimentally for 7 at wavelengths higher than 360 nm, 

which are not observed for the other complexes (Figure 4). 

 

Light-emitting electrochemical cells (LECs) 

Simple two-layer LECs were prepared to investigate the electroluminescent properties of 

complexes 1‒7. For clarity, LECs fabricated using complexes 1‒7 will be referred as LECs 1‒7. 

LEC structure is as follows, ITO/PEDOT:PSS/complex(1‒7):IL/Al layout, as explained in the 

experimental section. The IL was added to reduce the turn-on time (ton) defined as the time to 

reach a luminance of 100 cd m‒2.60 

LECs are dynamic devices and are characterized in a different way than OLEDs. In 

particular, the frequently used luminance and current density versus voltage scans used in 

OLEDs cannot be used since, due to the slow ionic motion occurring in LECs, they operate in a 

different manor depending on the scan speeds. Therefore, LECs are generally studied under 

either fixed voltage or fixed current density over time. As mentioned earlier, our group has 

shown the benefits of operating the device under pulsed-current driving.14,61 In this study, LECs 

1‒7 were evaluated using a pulsed-current with an average current density of 100 A·m‒2, 

consisting of a block wave at a 1000 Hz frequency with a duty cycle of 50 %. Using the pulsed 

driving mode LEC 7 did not produce any electroluminescence. This is most likely related to the 

poorer film quality of complex 7 resulting from its low solubility. Owing to the poor film 

quality, the distance between the anode and the cathode is not uniform over the device area 

which can lead  to higher leakage current. A very high current density was indeed observed 

when operating LEC 7 under a constant-voltage of 4 V, corroborating our hypothesis of high 

leakage currents (Figure S2). 

The electroluminescence (EL) spectra of LECs 1‒7 are shown in Figure 10. All the LECs 

1‒7 emit in the red region The Commision Internationale de l’Eclairage (CIE) coordinates for 

LECs 1‒6 were determined from the electroluminescence spectra and are collected in Table 3. 

The EL spectra for LECs 1, 2, 3 and 5 are similar to the PL spectra indicative of the similar 
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excited states being involved in the light emission process. LEC 4 show a red-shift of 22 nm 

(λemmax EL = 648 nm) and LEC 6 has a blue-shift of 27 nm (λemmax EL = 598 nm), for reasons, 

currently not yet understood. These electroluminescence spectra are very interesting as up to 

now only few pure red LECs have been reported.25,62-64 

 

Figure 10. Electroluminescence spectra of LECs 1‒7 driven either at an average pulsed-current 

density of 100 A·m‒2 (1000 Hz, 50% duty cycle, block wave) for 1-6 or constant-voltage for 7. 

 

The evolution of the luminance versus time for LECs 1‒6 driven at 100 A·m‒2 average 

pulsed-current density is shown in Figure 11 and the performance key parameters are given in 

Table 3. LECs 1‒6 present the typical behavior under pulsed-current mode operation. The 

luminance rises while the voltage drops due to the growth of the p- and n-doped regions in the 

active layer.14 Once the maximum luminance is attained, the luminance starts to decrease and 

the operating average voltage remains constant with values between 2.00 and 2.58 V. 
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Figure 11. Luminance (a, c) and average voltage (b) versus time of LECs 1‒6 operated under an 

average pulsed-current density of 100 A·m‒2 (1000 Hz, 50% duty cycle, block wave). Panel c 

shows the extrapolation of the luminance to half the initial value for LECs 1-3. 

	

LEC 1 presents a maximum luminance of 77 cd·m‒2 after 54 h under operation, which 

implies that the ionic movement in this system is slow. The device lifetime, expressed by the 

time to reach one-half of the maximum luminance (t1/2), was estimated by extrapolating the 

luminance curve leading to a value higher than 1000 h. Moreover, the LECs 2, and 3 actually 

show a higher maximum luminance (200 and 119 cd·m-2) and further enhanced device stability 

than LEC 1 (Table 3). The best device of the series (LEC 2) has a t1/2in excess of 6000 h under 

the operating conditions (average pulsed-current density of 100 A·m‒2). An extended time-

dependent luminance graph for LEC 2 up to 1200 h under operation is depicted in Figure S3. Its 
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turn-on (ton) defined as time to reach 50 cd·m-2 rises similar to LEC 1 (4.6 and 4.3 h for LEC 1 

and 2 respectively), yet its luminance continues to increase over a long time indicating that 

optimum charge injection and charge balance are only slowly obtained, which could indicate 

that this slow ionic motion leads to a very slow doping growing over time becoming beneficial 

for the device lifetime.65,66 The higher luminance obtained for LEC 2 is due to the higher PLQY 

measured for complex 2 (17.6%) compared with complex 1 (11%). LEC 3 incorporating the 

complex with the pendant phenyl group attached to the N^N ligand also shows a higher 

luminance (lummax = 119 cd·m‒2 at 63 h) and a longer lifetime (> 4500 h) than complex 1 (> 

1000 h). When increasing the size of the substituents beyond that of complex 3 as in 4 and 5, the 

corresponding LECs have a significantly reduced stability, they now decay on a timescale of 

tens of hours. The replacement of the benzothiazole unit (LEC 1) by a benzoxazole (LEC 6) 

maintains the luminance (Lummax = 77 and 97 cd·m‒2, respectively), yet produces a detrimental 

effect in terms of stability (t1/2  > 1000 and 150 h, respectively). In general, the time to reach the 

maximum luminance (tmax) and ton for LECs 4‒6 is almost four times faster than for LECs 1‒3, 

which support the hypothesis that the device lifetime is mainly affected by the growth of the 

doped zones, which increases the quenching of excitons. LEC 7, as mentioned above, emits in 

the near infrared and is not included in Figure 11 because it did not work under pulsed driving 

operation. The response of LEC 7 under constant-voltage operation is shown in Figure S5. 

Conclusions are difficult to draw due to the high current density caused probably by the poor 

film formation, and higher-solubility complexes would be needed to evaluate this type of 

complexes more carefully. 

 

Table 3. Performance parameters and electroluminescence data obtained for LECs 1‒6 operated 

under a pulsed-current of 100 A·m‒2 (1000 Hz, 50% duty cycle, block wave). 

LEC 
Lummax

a 
/ cd·m−2 

ton
b 

/ h 
tmax

c 
/ h 

t1/2
d
 

/ h 
Efficacymax

e 
/ cd·A−1 

PEmax
f 

/lm·W−1 
EQEmax

g 
/ % 

λem
max EL 

/ nm 
CIEh 

1 77 4.6 54 >1000* 0.75 0.47 0.70 636 0.6289, 
0.3674 

2 200 4.3 870 >6000* 2.02 1.22 2.00 642 0.6297, 
0.3663 

3 119 0.2 63 >4500* 1.22 0.77 1.49 651 0.6436, 
0.3524 

4 91 1.3 18 63* 1.01 0.51 1.04 648 0.6219, 
0.3748 

5 9 - 4.8 >150* 0.09 0.06 0.14 655 0.6476, 
0.3393 

6 97 0.2 0.84 9 0.97 0.54 0.55 598 0.5852, 
0.4109 

aMaximum luminance reached. bTime to reach 50 cd·m‒2 luminance. cTime to reach the 

maximum luminance. dTime to reach one-half of the maximum luminance. eMaximum efficacy 
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reached. fMaximum power efficiency reached. gMaximum external quantum efficiency reached. 
hThe Commission Internationale de l’Eclairage (CIE) colour coordinates. *Extrapolated values. 

 

The current efficiency of LEC 1 is around 0.75 cd·A‒1 and is stable over time. The stability 

is a result of the stable luminance resulting from the complex and the pulsed-current driving 

approach. The efficiency is not very high in part due to the emission wavelength, which is only 

in part visible to the human eye. LECs 2 and 3 are slightly better, as can be observed from their 

higher luminance values (Table 3), with efficacies of 2.02 and 1.22 cd·A‒1, respectively.  

In view of the deep-red emission wavelength, it is better to express the efficiency as the 

external quantum efficiency (EQE) defined as: 

 EQE = bϕ/2n2 (1) 

where b is the recombination efficiency (equal to 1 for two ohmic contacts), ϕ is the 

fraction of excitons that decay radiatively, and n is the refractive index of the glass substrate and 

is equal to 1.5 (the factor 1/2n2 accounts for the coupling of light out of the device). As the 

Ir(III)-based complexes can efficiently harvest both singlet and triplet excitons, ϕ should 

resemble the PL efficiency. Hence, the efficiency of the device is mainly determined by the 

PLQY of the iTMC emitter. The maximum EQE that can be obtained with a PLQY of 11% 

without special outcoupling structures is roughly 2.4%.  

Experimentally, this value is not observed, instead a maximum EQE of 0.70% for LEC 1 

was obtained. However, due to the higher luminance achieved for LECs 2 and 3, the maximum 

EQE values for LECs 2 and 3 were 2.00 and 1.49%, respectively. Several examples of red-

emitting LECs have been reported under constant-voltage operation,8,11,67,68 leading to champion 

peak EQEs of 9.51% with a limited t1/2 of 8.2 h.11  As commented before, the best way to attain 

stable devices is pulsed-current driving and, to the best of our knowledge, the best device 

lifetime for red-emitting LECs have been reported under pulsed-current69-71 or constant-

current72,73 operation with a maximum lifetime of 110 h. Hence, the characteristics described 

here for LECs 1‒3 show stabilities ranging from 10 to 60 times longer than those reported 

previously. These values are exceptional and are only comparable to very few orange emitting 

LECs operated under the same driving conditions.19 The performance of the stable red LECs is 

limited by the moderate luminance and the rather slow response, which is dependent on the 

applied current and generally linked to the device stability (higher current density leads to lower 

device lifetime). For this reason, we further investigate how the device stability is affected by 

increasing the current density.  
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Figure 12. Time-dependent luminance of LEC 1 operated under different pulsed-current 

densities from 300 to 1500 A·m‒2. 

 

To do this, a good performing complex obtained in sufficient large quantities is needed to 

prepare a number of devices to be operated under increasing average current densities. Complex 

1 was selected for this more in-depth analysis due to its simplest chemical structure. The 

luminance versus time measured for LEC 1 devices operated using pulsed-current densities 

(block wave, 1000 Hz, and 50% duty cycle) of 300, 700, 1250, and 1500 A·m‒2 are depicted in 

Figure 12. The luminance decay is always very slow and, surprisingly, it does not depend very 

strongly on the applied current density. As mentioned before, this is remarkable as in 

electroluminescent devices a strong dependency of the lifetime on the current density is 

normally observed. There is virtually no luminance decay over the first 100 h (Figure 12) when 

driven under the pulsed conditions at average current densities of 300 and 700 A·m‒2, and only a 

moderate decrease of approximately 10% is observed when the average current density is set at 

1250 and 1500 A·m‒2 after 100 h.  The luminance decay of the LEC 1 driven at 700 A·m‒2 was 

followed for a longer time (450 h) resulting in a decay of only 15% (Figure S4). The quasi 

steady-state luminance that is reached by each device increases linearly in the range from 100 to 

700 A·m‒2. For clarity, the luminance curve for the lower current density (100 A·m-2) is not 

depicted in Figure 12. At higher applied current densities than 700 A·m-2, the luminance values 

still increase but less than linearly. This linear dependence has been previously reported in LEC 

devices operated in pulse mode at very low current densities. However, this linearity is not 

usually present at high current densities.56 This implies that there is little exciton-exciton or 

exciton-polaron quenching up to high current densities of 700 A·m‒2, as this would lead to a 

sublinear increase, and that the luminance intensity can be tuned by the current density applied. 

The time to reach the maximum luminance (Figure S5a) is also affected by the applied average 

current density and interestingly, the time to reach 100 cd·m-2 is substantially reduced to the 

second scale, from 500 s at 300 A·m-2 to 5 s at 1500 A·m-2 (Figure 13). For lower current 
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densities it takes longer to reach the maximum luminance. This is related to the voltage that is 

applied, which is lower for lower applied current densities (FigureS5b). Once the maximum 

luminance is reached, the operating voltage rapidly drops to values in between 2.5 and 2.9 V, 

depending on the set current density. Herein it is demonstrated the possibility of tuning the 

luminance levels, fast response with almost no lost in device stability, which is step forward in 

the demand for red light applications.  

 

Figure 13. Time to reach 100 cd·m-2 (t100 cd m-2) versus applied current densities (pulsed current, 

1000 Hz, 50 % duty cycle, block wave) for LEC 1. 

 

4. CONCLUSIONS 

In conclusion, a series of ionic iridium(III) complexes using two 2-phenylpyridinate 

cyclometalating ligands and one 2-(pyridin-2-yl)benzo[d]thiazole based ancillary (N^N) ligand 

have been designed, prepared, and fully characterized. These complexes are efficient red 

emitters and have been used to prepare light-emitting electrochemical cells. The effects of 

modifying the chemical structure of the 2-(pyridin-2-yl)benzo[d]thiazole ligand and its 

substitution by 2-(pyridin-2-yl)benzo[d]oxazole and 2,2'-bibenzo[d]thiazole units on the 

photoluminescence and device performance are carefully studied. Density functional 

calculations clearly show that these chemical changes only affect the LUMO level leading to 

important reductions of the HOMO−LUMO energy gap compared to the archetypal 

[Ir(ppy)2(bpy)] complex. The emissive triplet state corresponds in all cases to the 

HOMO→LUMO 3MLCT/3LLCT state. Strikingly, stable red-emitting LECs are obtained. In 

particular, LECs using the complexes incorporating 2-(pyridin-2-yl)benzo[d]thiazole, 2-(4-(tert-

butyl)pyridin-2-yl)benzo[d]thiazole, and 2-(6-phenylpyridin-2-yl)benzo[d]thiazole as ancillary 

ligands exhibit lifetimes in excess of 1000, 6000, and 4000 h, respectively. This demonstrates 

that these ligands are very interesting to be further explore in both ionic and neutral iridium-

based phosphorescent complexes. 
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Supporting Information. Synthetic details, crystallographic, cyclic voltammetry and 

phololuminescence data and TD-DFT results, and electroluminescent data. 
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