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We develop a model for predicting fine- and hyperfine intensities in the direct photoionization of
molecules based on the separability of electron and nuclear spin states from vibrational-electronic
states. Using spherical tensor algebra, we derive highly symmetrized forms of the squared photoioni-
zation dipole matrix elements from which we derive the salient selection and propensity rules for fine-
and hyperfine resolved photoionizing transitions. Our theoretical results are validated by the analysis
of the fine-structure resolved photoelectron spectrum of O2 reported by Palm and Merkt [Phys. Rev.
Lett. 81, 1385 (1998)] and are used for predicting hyperfine populations of molecular ions produced
by photoionization. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4955301]

I. INTRODUCTION

Photoionization and photoelectron spectroscopies are
among the eminent experimental techniques to gain infor-
mation on the electronic structure of molecules, on their
photoionization dynamics, and the structure and dynamics of
molecular cations.1–4 Since the first photoelectron spectro-
scopic studies of molecules in the 1960s, the resolution of the
technique has steadily been improved, such that vibrational
and thereon rotational structures were resolved during the
following decades.4–6 Along with the experimental progress,
the theoretical understanding of molecular photoionization
has been successively refined. Vibrational structure in the
spectra can often be modeled in terms of the Franck-Condon
principle (see, e.g., Ref. 3). Concerning rotational structure,
Buckingham, Orr, and Sichel (BOS) presented in a seminal
paper7 in 1970 a model to describe rotational line intensities
in photoelectron spectra of diatomic molecules. Subsequently,
extended models, e.g., for resonance-enhanced multiphoton
ionization8 or to describe the angular distribution of the
photoelectrons,9–11 have been developed. Also, the BOS model
has been rephrased in terms of spherical tensor algebra12 and
extended to asymmetric rotors.6 Moreover, dipole selection
rules for photoionizing transitions have been developed based
on these intensity models13 as well as on general symmetry
considerations.14,15

Over the last decades, fine (spin-rotational) structure
has been resolved in high-resolution photoelectron spectra.16

Hyperfine structure has been resolved in millimeter-wave
spectra of high Rydberg states of rare gas atoms such as
Kr and diatomics such as H2 and its isotopomers, see,
e.g., Refs. 17–22. Fine- and hyperfine-structure effects in
molecular photoionization have also become of importance
in precision spectroscopy and dynamics experiments with
molecular ions produced by photoionization in which the
ionic hyperfine populations are governed by the underlying
hyperfine photoionization dynamics.23–25 Aligned molecules
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have also been shown to depolarize because of hyperfine
interactions.26 Thus, there is a growing need for theoretical
models capable of describing fine- and hyperfine effects in
molecular photoionization. Whereas the hyperfine structure
in Rydberg spectra has previously been treated within
the framework of multichannel quantum-defect theory
(MQDT),17–22 we are not aware of any previous treatments
of hyperfine intensities in direct photoionization which
can be applied to the interpretation of line intensities in
high-resolution photoelectron spectra and to the prediction
of level populations of molecular cations produced by
photoionization. The present work aims at filling this gap
by developing closed expressions for fine- and hyperfine-
structure resolved intensities in molecular photoionization.
The theory is developed here for diatomic molecules in
Hund’s coupling case (b), but can readily be extended to
other coupling cases by a suitable basis transformation27

of our final result or to symmetric- and asymmetric-top
molecules by a suitable modification of the rotational basis
functions.6

In the present paper, we develop the general theory
for fine- and hyperfine-resolved photoionization intensities
and apply our model to the analysis of the fine structure
of the photoelectron spectrum of O2 from Ref. 16 and of
hyperfine propensities in the photoionization of N2. In Paper
II,28 we extend our model to resonance-enhanced multiphoton-
ionization processes and address the problem of hyperfine-
preparation of molecular cations.

II. GENERAL CONSIDERATIONS

We consider the ionization of a molecule M yielding
the molecular ion M+ by ejection of a photoelectron e−

through interaction with electromagnetic radiation via the
electric-dipole operator µ,

M
µ

−−−−−→ M+ + e−. (1)
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The relevant transition matrix element is given by

(⟨ψM+| ⟨ψe−|) µ|ψM⟩, (2)

with |ψM⟩ standing for the internal quantum state of the
neutral molecule and |ψM+⟩|ψe−⟩ for the product of the internal
state of the molecular ion M+ and the state of the photo-
electron e−.

The squared magnitude of the transition matrix element
summed over all the quantum states contributing to the
observed ionization rate,

P(M → M+) =

ψM


ψM+


ψe−

� (⟨ψM+| ⟨ψe−|) µ|ψM⟩�2, (3)

is proportional to the ionization probability per unit time.
Here, the sums over ψM and ψM+ include all degenerate
(or spectroscopically unresolved) states of the neutral
molecule and the molecular ion, respectively, involved in
the photoionizing transition. The sum over ψe− includes the
orbital angular momentum and the spin state of the emitted
photoelectron. We suppose that neither the angular distribution
nor the spin polarization of the photoelectron is detected in
the photoionization experiment.

III. FINE-STRUCTURE RESOLVED PHOTOIONIZATION
INTENSITIES

We start by developing the theory for fine-structure-
resolved photoionization intensities which will form the
basis for the subsequent inclusion of hyperfine structure
in Sec. IV. We note that a similar result for fine-structure
resolved photoionization has previously been derived by
McKoy and co-workers.8,29 In Hund’s case (b), fine structure
manifests itself in the coupling of the orbital-rotational
angular momentum N (corresponding to the mechanical
rotation of the molecule in Σ states) with the electron
spin S to form J: J = N + S. Therefore, we evaluate
Eq. (3) for a diatomic molecule in Hund’s case (b) by
expressing the quantum states of the neutral molecule |ψM⟩
and the molecular ion |ψM+⟩ in the basis |nΛ, v,NΛSJMJ⟩
and |n+Λ+, v+,N+Λ+S+J+M+J ⟩, respectively. The definitions
of the relevant angular-momentum quantum numbers are
summarized in Table I. n (n+) and v (v+) denote the electronic
and the vibrational quantum number in the neutral molecule
(molecular ion). The state of the photoelectron |ψe−⟩ is
expressed as a tensor product of its spin state and its partial
wave |s,ms⟩|l,ml⟩.

The quantity P(J, J+) which is proportional to the
ionization probability on the photoionizing transition J → J+

may hence be written as

P(J, J+) =
∞
l=0

l
ml=−l

s
ms=−s

J
MJ=−J

J+
M+

J
=−J+

���
�⟨n+Λ+, v+,N+Λ+S+J+M+J | ⟨s,ms | ⟨l,ml |� µ |nΛ, v,NΛSJMJ⟩���

2
. (4)

We follow the approach of Xie and Zare12 and identify the electric-dipole operator µ and the photoelectron partial wave
|l,ml⟩ with the spherical tensors T1

µ0
and Tl

−ml
, respectively. We then contract the product of these two spherical tensors27,30,31

according to

Tl
−ml
⊗ T1

µ0
=

l+1
k=|l−1|

Ck p

l−ml1µ0
Tk
p, (5)

where p = −ml + µ0 and µ0 denotes the polarization state of the photon. C jm
j1m1 j2m2

stands for a Clebsch-Gordan coefficient.30–32

The spherical tensor operator Tk
p of Eq. (5) describes the combined effect of absorbing electromagnetic radiation via the electric

dipole operator and ejecting a photoelectron in the state |l,ml⟩ (with l = k ± 1).
The term with k = l does not contribute to the sum in Eq. (4) because of parity selection rules and may be omitted.12,14

Ignoring proportionality constants, the matrix element in Eq. (4) is thus expressed as

�⟨n+Λ+, v+,N+Λ+S+J+M+J | ⟨s,ms | ⟨l,ml |� µ|nΛ, v,NΛSJMJ⟩
=

k=l±1

Ck p

l−ml1µ0

�⟨n+Λ+, v+,N+Λ+S+J+M+J | ⟨s,ms |�Tk
p |nΛ, v,NΛSJMJ⟩, (6)

where negative values for k are to be excluded.
To proceed, we decouple spin and orbital-rotational angular momenta in the neutral state according to

|nΛ, v,NΛSJMJ⟩ =


MN,MS

CJMJ
NMNSMS

|nΛ, v,NΛMN ,SMS⟩ (7)

and analogously in the ionic state. The transition matrix element in Eq. (6) then reads
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TABLE I. Angular momentum quantum numbers relevant to the photoionization of diatomic molecules.

Magnitude
quantum
numbers

Molecule
fixed

projection
Space-fixed
projection Description

N Λ MN Orbital-rotational angular momentum of the neutral molecule
S . . . MS Total electron spin of the neutral molecule
J . . . MJ Total angular momentum of the neutral molecule excluding nuclear spin
I . . . MI Nuclear spin of the neutral molecule
F . . . MF Total angular momentum of the neutral molecule
N+ Λ+ M+N Orbital-rotational angular momentum of the molecular ion
S+ . . . M+S Total electron spin of the molecular ion
J+ . . . M+J Total angular momentum of the molecular ion excluding nuclear spin
I+ . . . M+I Nuclear spin of the molecular ion
F+ . . . M+F Total angular momentum of the molecular ion
l . . . ml Orbital angular momentum (partial wave) of the photoelectron
s . . . ms Spin of the photoelectron (s = 1/2)
1 . . . µ0 Angular momentum due to the electric-dipole interaction with the

electromagnetic field
k q p Total orbital angular momentum transferred to/from the molecule in the

ionization process (p =−ml+ µ0)
u . . . w Total angular momentum transferred to/from the molecule in the

ionization process (w =−ms+ p)

�⟨n+Λ+, v+,N+Λ+S+J+M+J | ⟨s,ms |�Tk
p |nΛ, v,NΛSJMJ⟩

=


MN,MS


M+

N
,M+

S

CJMJ
NMNSMS

C
J+M+

J

N+M+
N
S+M+

S

×
�⟨n+Λ+, v+,N+Λ+M+N ,S

+M+S | ⟨s,ms |�

×Tk
p |nΛ, v,NΛMN ,SMS⟩. (8)

Since the tensor operator Tk
p does not operate on the spin

functions, the matrix element on the last and next-to-last line
above can be separated into a rotational-vibronic and a pure
spin factor,

�⟨n+Λ+, v+,N+Λ+M+N ,S
+M+S | ⟨s,ms |�

×Tk
p |nΛ, v,NΛMN ,SMS⟩

= ⟨n+Λ+, v+,N+Λ+M+N |Tk
p |nΛ, v,NΛMN⟩

×
�⟨S+M+S | ⟨s,ms |� |SMS⟩. (9)

In order to calculate the rotational-vibronic factor on the
second last line in Eq. (9), we transform the spherical tensor
operator Tk

p from space-fixed to molecule-fixed coordinates
using Wigner rotation matrix elements

Tk
p =

k
q=−k

[Dk
pq]∗T′kq , (10)

where the ′ denotes operators in molecule-fixed coordinates.
The Wigner rotation matrix elements only act on the

angular coordinates, whereas the tensor T′kq only operates on
the vibronic state. Therefore, we can write

⟨n+Λ+, v+,N+Λ+M+N |Tk
p |nΛ, v,NΛMN⟩

=

k
q=−k

⟨n+Λ+, v+|T′kq |nΛ, v⟩

× ⟨N+Λ+M+N |[Dk
pq]∗|NΛMN⟩. (11)

Upon substituting the rotational states of the neutral
molecule by Wigner rotation matrices

⟨φ θ χ|NΛMN⟩ =


2N + 1
8π2


D(N )

MNΛ
(φ,θ, χ)∗, (12)

and analogously for the ion, we obtain for the last line
in Eq. (11) an integral over a product of three Wigner
rotation matrices over the Euler angles φ,θ, χ which accounts
for27,30,32

⟨N+Λ+M+N |[Dk
pq]∗|NΛMN⟩

=
√

2N+ + 1
√

2N + 1(−1)M+N−Λ+

× *
,

N+ k N
−M+N p MN

+
-
*
,

N+ k N
−Λ+ q Λ

+
-
. (13)

Because of the second Wigner 3j-symbol, this expression
vanishes for all values of q but q = Λ+ − Λ C ∆Λ. Hence,
only this value contributes to the sum in Eq. (11) and we may
write

⟨n+Λ+, v+,N+Λ+M+N |Tk
p |nΛ, v,NΛMN⟩

= ⟨n+Λ+, v+|T′k
∆Λ
|nΛ, v⟩√2N+ + 1

√
2N + 1(−1)M+N−Λ+

× *
,

N+ k N
−M+N p MN

+
-
*
,

N+ k N
−Λ+ ∆Λ Λ

+
-
. (14)

To compute the spin part of Eq. (9), we couple the spin of
the ion and the photoelectron to get the total electronic spin
after ionization,

⟨S+M+S , sms | =
S++s

Stot=|S+−s |

Stot
MStot=−Stot

C
StotMStot
S+M+

S
sms

⟨StotMStot|. (15)

Assuming orthonormal spin states, we thus obtain for the spin
factor in Eq. (9),
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⟨S+M+S , sms |SMS⟩ =
S++s

Stot=|S+−s |

Stot
MStot=−Stot

C
StotMStot
S+M+

S
sms

⟨StotMStot|SMS⟩ = CSMS

S+M+
S
sms

. (16)

Collecting these results and substituting them into Eq. (6), we obtain the matrix element for spin-rotation-resolved
photoionization dipole transitions as (compare also Ref. 33)

�⟨n+Λ+, v+,N+Λ+S+J+M+J | ⟨s,ms | ⟨l,ml |� µ |nΛ, v,NΛSJMJ⟩
=
√

2N+ + 1
√

2N + 1
√

2S + 1
√

2J+ + 1
√

2J + 1(−1)l−1+p+N+N+−Λ+−S−s+M+
J
+MJ

×

k=l±1

√
2k + 1 *

,

l 1 k
−ml µ0 −p

+
-
⟨n+Λ+, v+|T′k

∆Λ
|nΛ, v⟩ *

,

N+ k N
−Λ+ ∆Λ Λ

+
-

×


M+
S
,MS


M+

N
,MN

(−1)M+N+MS *
,

N+ S+ J+

M+N M+S −M+J
+
-
*
,

N S J
MN MS −MJ

+
-
*
,

N+ k N
−M+N p MN

+
-
*
,

S+ s S
M+S ms −MS

+
-
, (17)

where the Clebsch-Gordan coefficients have been replaced by
Wigner 3j-symbols.

In principle, Eq. (17) completely describes the matrix
element for fine-structure-resolved photoionization transitions
and could—when substituted into Eq. (4)—be used for
analyzing measured photoionization and photoelectron spectra
and predicting relative photoionization intensities. However,
the complexity of this expression complicates a deeper insight
into the physics of the photoionization process and the multiple
sums render the evaluation of this expression computationally
expensive.

However, using the properties of the Wigner 3j-symbols,
the terms on the last line in Eq. (17) may be expressed in
the form of a Wigner 9j-symbol30–32 (the expression in curly
brackets below). In this way, the sums over MN , M+N , MS, and
M+S are avoided and the matrix element becomes34

�⟨n+Λ+, v+,N+Λ+S+J+M+J | ⟨s,ms | ⟨l,ml |�

× µ|nΛ, v,NΛSJMJ⟩
=
√

2N+ + 1
√

2N + 1
√

2S + 1
√

2J+ + 1
√

2J + 1

× (−1)l−1−Λ++N+J−s+2MJ+M
+
J


k=l±1

(−1)k√2k + 1

× *
,

l 1 k
−ml µ0 −p

+
-
⟨n+Λ+, v+|T′k

∆Λ
|nΛ, v⟩

× *
,

N+ k N
−Λ+ ∆Λ Λ

+
-

k+s
u=|k−s |

(2u + 1) *
,

J+ u J
−M+J w MJ

+
-

× *
,

u k s
w −p ms

+
-




J+ u J
N+ k N
S+ s S




. (18)

Here, the angular momentum quantum number u with the
associated space-fixed projection w (given by w = −ms + p)
has been introduced. u represents the resultant of the

coupling of k and s. Its physical meaning is described further
below.

Substituting this matrix element into Eq. (4) and
simplifying the result, we obtain the quantity P(J, J+) as

P(J, J+) = (2N+ + 1)(2N + 1)(2S + 1)(2J+ + 1)(2J + 1)

×

l


k=l±1

(2k + 1)*
,

N+ k N
−Λ+ ∆Λ Λ

+
-

2

×
�⟨n+Λ+, v+|T′k

∆Λ
|nΛ, v⟩�2

×
k+s

u=|k−s |
(2u + 1)




J+ u J
N+ k N
S+ s S




2

×

ml

*
,

l 1 k
−ml µ0 −p

+
-

2
ms

*
,

u k s
w −p ms

+
-

2

. (19)

Owing to the orthogonality properties of the Wigner 3j-
symbols,30–32 the cross terms in the above expression vanish
when summed over all possible values for MJ and M+J resulting
in a particularly simple form for Eq. (19).

For linearly polarized radiation, as is used in most
experiments, we have µ0 = 0 in a suitably chosen coordinate
system. The sums over ml and ms then account for
1/(3(2k + 1)) and we get as a final result,

P(J, J+) = 1
3
(2N+ + 1)(2N + 1)(2S + 1)(2J+ + 1)

× (2J + 1)

l


k=l±1

*
,

N+ k N
−Λ+ ∆Λ Λ

+
-

2

×
�⟨n+Λ+, v+|T′k

∆Λ
|nΛ, v⟩�2

×
k+s

u=|k−s |
(2u + 1)




J+ u J
N+ k N
S+ s S




2

. (20)
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The highly symmetrized form of Eq. (20) allows a
detailed and insightful physical interpretation and discussion
of photoionization selection rules. The photoelectron ejected
in the ionization process is described by a partial wave l.
The probability of a transition from a specific neutral to an
ionic state is obtained by summing over all partial waves.
The photoelectron partial waves allowed for a particular
electronic state of the ion and the neutral precursor molecule
are constrained by the parity of these states.12,14,15 If neutral
and ionic states have the same parity (± ↔ ± transitions), only
odd values of l occur: l = 1,3,5, . . .. In the case of unequal
parities of neutral and ionic state (± ↔ ∓), only even l values
are allowed: l = 0,2,4, . . ..

In addition to the angular momentum carried by the
departing photoelectron, the molecule also exchanges angular
momentum with the electromagnetic wave as described by
the electric-dipole operator. The angular momenta associated
with the photoelectron partial wave and the dipole excitation
are connected with k, see Eq. (5). Since the dipole operator is
a spherical tensor of first rank, k is constrained to the values
k = l − 1 or k = l + 1 with k = l forbidden because of parity
selection rules.12,14 We thus have k = 0,2,4, . . . for ± ↔ ±
transitions and k = 1,3,5, . . . for ± ↔ ∓ transitions.12

The interplay between the different angular momenta is
expressed by the 9j-symbol in Eq. (20) in a compact way.
All rows and columns have to fulfill the triangle inequality
for the coupling of angular momenta.30,31 The couplings in
the ionic and the neutral states are expressed by the first and
the last column, respectively. The coupling of the angular
momenta transferred to or from the molecule is described
by the middle column: the spin of the photoelectron s is
coupled to k (the angular momentum associated with the
photoelectron and the interaction with the electromagnetic
field) to form u. The rows of the 9j-symbol represent the
angular momentum transfer during photoionization: according
to the first row, u determines the change in the total angular
momentum (excluding nuclear spin), whereas k decides on the
change in the orbital-rotational angular momentum (second
row). Finally, s accounts for the electron-spin change in the
molecule resulting from the ionization process, as seen from
the last row in the 9j-symbol.

The value of k determines the maximum change of the
orbital-rotational angular momentum in the photoionization
process, i.e., |∆N | = |N+ − N | ≤ k, as may be seen from the
3j-symbol or the middle row of the 9j-symbol in Eq. (20).
Transitions with k = 0 do not allow any change in the orbital-
rotational angular momentum, i.e., N+ = N . For transitions
with k = 2, the values ∆N = 0,±1 and ±2 are possible (with
∆N = ±1 forbidden for Σ-Σ-transitions). The permissible
values of k (and therefore the range of photoelectron partial
waves l) and their weighting factors are determined by
the vibronic coefficients Ck B

�⟨n+Λ+, v+|T′k
∆Λ
|nΛ, v⟩�2. To

calculate these coefficients, the electronic structure of the
molecular ion and its neutral precursor must be known.
Thus, the coefficients Ck may either be obtained from an
ab initio calculation or by fitting Eq. (20) to measured
photoionization intensities.6,12 In many cases, only one or
a few Ck contribute substantially to the total transition
probability. If so, only a few free parameters are needed to

describe the intensities in a rotationally resolved photoelectron
spectrum.

Within the orbital ionization model6,7 which assumes
that the photoelectron is ejected from a single molecular
orbital and that the orbital structure does not change upon
ionization, k assumes the intuitive physical interpretation
as the quantum number of the electronic orbital angular
momentum left behind in the molecule after photoionization.
In this approximation, the permissible values of k and the
vibronic coefficients Ck can be obtained from a single-
center expansion of the molecular orbital from which the
photoelectron is ejected.

Moreover, the photoelectron spin s = 1/2 is coupled to k
to form u. The possible values for u are thus u = |k − 1/2| and
u = k + 1/2. Similar to k determining the change in the orbital-
rotational angular momentum, u determines the change in the
total angular momentum (excluding nuclear spin) according
to the selection rule |∆J | = |J+ − J | ≤ u, as inferred from
the first row of the 9j-symbol in Eq. (20). For k = 0, only
u = 1/2 is possible and thus only transitions with |∆J | = 1/2
are allowed. For k = 2, on the other hand, u = 3/2 and u = 5/2
are possible, allowing values of |∆J | up to 5/2.

Since the values of u are determined by the values of k,
the vibronic coefficients Ck describing the relative intensities
of different rotational lines in a photoelectron spectrum also
determine the relative intensities of transitions connecting
different fine structure components. Hence, the present model
describes the spin-rotational effects in photoionization without
additional free parameters.

Eq. (20) also provides a substantially more efficient
way for numerical calculations of the transition probabilities
as compared to direct evaluation of the transition matrix
element in Eq. (17) and summation over angular momentum
projection quantum numbers (as in Eq. (4)), since the number
of computationally demanding multiple sums is minimized.

Eq. (20) may be compared with the similar result given in
Eq. (6) of Dixit et al.35 The equivalence of the two results can
be seen by taking the squared absolute magnitude of Eq. (6) in
Ref. 35, integrating over the entire unit sphere, and making use
of orthogonality properties of Wigner symbols and spherical
harmonics.

We note that Eq. (20) can also be directly applied to
symmetric top-molecules exhibiting a Hund’s case (b)-type
coupling hierarchy by substituting the quantum numbersΛ,Λ+

by the symmetric-top quantum numbers K,K+. Asymmetric
top molecules can be treated by a suitable substitution of
the rotational wavefunction as shown in Ref. 6. Moreover,
other Hund’s cases can be treated by an appropriate frame
transformation of Eqs. (19) and (20), see, e.g., Ref. 27.

Often, the neutral molecule is in a singlet state, i.e.,
S = 0. In this case, we have J = N and S+ = s = 1/2 and our
result may be simplified further. The 9j-symbol then equals a
6j-symbol,30,31




J+ u N
N+ k N
1/2 1/2 0




2

=
1

2(2N + 1)



J+ u N
k N+ 1/2




2

, (21)

and Eq. (20) becomes
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PS=0(N, J+) = 1
6
(2N + 1)(2N+ + 1)(2J+ + 1)

×

l


k=l±1

*
,

N+ k N
−Λ+ ∆Λ Λ

+
-

2

×
�⟨n+Λ+, v+|T′k

∆Λ
|nΛ, v⟩�2

×
k+1/2

u=|k−1/2|
(2u + 1)




J+ u N
k N+ 1/2




2

. (22)

IV. HYPERFINE-STRUCTURE RESOLVED
PHOTOIONIZATION INTENSITIES

The above treatment is now extended to photoionizing
transitions connecting hyperfine levels. To that end, we need

to consider the role of the nuclear spin in the neutral
and ionic levels. We assume that both of these levels
may be described with the Hund’s case (bβJ) angular
momentum coupling scheme.27,36,37 In this scheme, the total
nuclear spin I is coupled to J yielding the total angular
momentum F: F = J + I. The basis functions are denoted
by |nΛ, v,NΛSJIFMF⟩ and |n+Λ+, v+,N+Λ+S+J+I+F+M+F⟩
for the neutral and ionic states, respectively. Here, I and
F (I+ and F+) denote the nuclear spin and the total
angular momentum quantum number, respectively, of the
neutral (ionic) state. MF and M+F denote the projection
angular momentum quantum numbers with respect to the
space-fixed z-axis associated with F and F+. All other
quantum numbers are defined as before, see Table I. The
photoionization transition probability is then proportional to
the quantity

P(F,F+) =
∞
l=0

l
ml=−l

s
ms=−s

F
MF=−F

F+
M+

F
=−F+

���
�⟨n+Λ+, v+,N+Λ+S+J+I+F+M+F | ⟨s,ms | ⟨l,ml |� µ|nΛ, v,NΛSJIFMF⟩���

2
. (23)

The coupled angular momentum states are expressed
in the decoupled tensor-product basis of the spin-rotational-
vibronic and the nuclear spin states as

|nΛ, v,NΛSJIFMF⟩
=

MI


MJ

CFMF
JMJ IMI

|nΛ, v,NΛSJMJ, I MI⟩, (24)

and equivalently for the ionic state. In this basis, the transition
matrix element appearing in Eq. (23) accounts for

�⟨n+Λ+, v+,N+Λ+S+J+I+F+M+F | ⟨s,ms | ⟨l,ml |�
× µ|nΛ, v,NΛSJIFMF⟩
=


M+
I
,MI


M+

J
,MJ

C
F+M+

F

J+M+
J
I+M+

I

CFMF
JMJ IMI

× (⟨n+Λ+, v+,N+Λ+S+J+M+J , I
+M+I | ⟨s,ms |

× ⟨l,ml |)µ|nΛ, v,NΛSJMJ, I MI⟩. (25)

Since the nuclear spin is neither affected by the absorption
of electromagnetic radiation nor by the ejection of the
photoelectron,15 we may separate the nuclear spin states from
the remaining transition matrix element obtaining

�⟨n+Λ+, v+,N+Λ+S+J+M+J , I
+M+I | ⟨s,ms | ⟨l,ml |�

× µ|nΛ, v,NΛSJMJ, I MI⟩
= δI+IδM+

I
MI

�⟨n+Λ+, v+,N+Λ+S+J+M+J |
× ⟨s,ms |⟨l,ml |�µ|nΛ, v,NΛSJMJ⟩. (26)

The transition matrix element on the last and next-
to-last line of Eq. (26) is the same as in Eq. (18).
Substituting Eq. (18) into (26), replacing Clebsch-Gordan
coefficients by 3j-symbols and simplifying the result34

yield the following expression for the transition proba-
bility:

P(F,F+)
= (2N+ + 1)(2N + 1)(2S + 1)(2J+ + 1)(2J + 1)
× (2F+ + 1)(2F + 1)δI I+


l


k=l±1

(2k + 1)

× ���⟨n+Λ+, v+|T′k∆Λ|nΛ, v⟩
���
2*
,

N+ k N
−Λ+ ∆Λ Λ

+
-

2

×
k+s

u=|k−s |
(2u + 1)




J+ u J
N+ k N
S+ s S




2




u J J+

I F+ F




2

×

ml

*
,

l 1 k
−ml µ0 −p

+
-

2
ms

*
,

u k s
w −p ms

+
-

2

. (27)

The terms on the last line above again account for
1/(3(2k + 1)) for linearly polarized radiation (µ0 = 0),
i.e.,

P(F,F+) = 1
3
(2N+ + 1)(2N + 1)(2S + 1)(2J+ + 1)(2J + 1)(2F+ + 1)(2F + 1)δI I+

×

l


k=l±1

�⟨n+Λ+, v+|T′k
∆Λ
|nΛ, v⟩�2 *

,

N+ k N
−Λ+ ∆Λ Λ

+
-

2 k+s
u=|k−s |

(2u + 1)



J+ u J
N+ k N
S+ s S




2




u J J+

I F+ F




2

. (28)
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In essence, we have reproduced in Eq. (28) the result from
Eq. (20) with an additional Wigner 6j-symbol describing the
influence of the nuclear spin, i.e., the hyperfine structure
effects. Since the photoelectron does not carry nuclear
spin, the same selection rule as for ∆J applies also
for ∆F, namely, |∆F | = |F+ − F | ≤ u. Again due to the
separability of the transition matrix element, the relative
intensities of photoionizing transitions between particular
hyperfine levels are determined by the magnitude of the
vibronic transition matrix elements which also determine
the intensities of different rotational lines in a photoelectron
spectrum. For vanishing nuclear spin, Eq. (28) reduces to
Eq. (20).

V. APPLICATIONS

A. Example 1: Fine-structure resolved photoionization
of molecular oxygen

In order to validate the present results, Eq. (20) is
applied to the analysis of the spin-rotation-resolved photo-
electron spectrum of the X3Σ−g → b4Σ−g photoionizing
transition in molecular oxygen reported by Palm and
Merkt.16

The energy level structure of neutral O2 in the electronic
ground state X3Σ−g and of the O+2 ion in the b4Σ−g state

FIG. 1. Spin-rotational energy-level structure of the b4Σ−g and the X3Σ−g states
of the O+2 ion and of neutral O2, respectively. Levels are labeled by their total
angular momentum quantum numbers J and J+ for the neutral and ionic state,
respectively, as well as their relative term value (adapted from Ref. 16).

is shown in Fig. 1. We are interested in the Q(1) line of
the v = 0 → v+ = 0 band, i.e., in the transition v = 0,N = 1
→ v+ = 0,N+ = 1, which has been measured with the highest
resolution. Neutral O2 exhibits a total electron spin S = 1 in the
X3Σ−g state, such that there are three spin-rotation components
for N = 1: J = 0, 1, and 2. For O+2 in the b4Σ−g state, the total
electronic spin is S+ = 3/2 giving rise to three spin-rotation
components with J+ = 1/2, 3/2, and 5/2. Hence, there are
in total nine different transitions between the fine-structure

FIG. 2. (a) Measured fine-structure-
resolved photoelectron spectrum
of the O2 X3Σ−g (v = 0,N = 1)
→ O+2 b4Σ−g (v+= 0,N+= 1) transition
recorded by Palm and Merkt, digitized
from Fig. 4 of Ref. 16. The assignment
bars indicate transitions between
levels of total angular momentum
quantum number J and J+ in the
neutral and ionic states, respectively.
(b) Stick spectrum showing the
normalized intensities of individual
spin-rotation-resolved transitions.
Blue circles: experimental intensities
extracted from the spectrum in
(a). Green diamonds: fit of our
photoionization model Eq. (22) to
the measured intensities with two
vibronic coefficients C0 and C2 treated
as free parameters. Red squares:
spin-rotation-resolved intensities
calculated with Eq. (22) using the
relative values for the vibronic
coefficients C0= 0.6 and C2= 0.4
determined from a rotationally resolved
photoelectron spectrum in Ref. 38. All
intensities are normalized to unity for
the most intense transition.
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components of the neutral and ionic states involved in the Q(1)
line.

The experimental photoelectron spectrum of the fine-
structure-resolved Q(1) line of Palm and Merkt16 is reproduced
in Fig. 2(a). The spectrum shows three well-separated
peaks spaced by about 2 cm−1 reflecting the spin-rotation
splitting in the X3Σ−g state of neutral O2. Every peak is
composed of three partially overlapping lines which stem
from transitions to different spin-rotation components of
the ionic b4Σ−g state which are spaced by about 0.4 cm−1,
totaling to the nine spin-rotation transitions of the Q(1)
line.

To compare the measured spectrum with our theoretical
predictions, the experimental line intensities have been
extracted from the measured spectrum by fitting Gaussian
functions to the spectral features. The empirical intensities
found this way are shown as blue circles in the stick spectrum
of Fig. 2(b).

From the analysis of rotationally, but not fine-structure-
resolved photoelectron spectra of Hsu et al.,38 it has been
established that the photoionization of O2 mainly involves
the coefficient C0 and to a smaller extent C2. For k > 2, the
vibronic matrix elements essentially vanish.

According to our model, for k = 0 we have u = 1/2 in
Eq. (20), giving rise to transitions with ∆J = ±1/2 with high
intensities. Indeed, the lines with the highest intensity within
each of three peaks for J = 0, 1, and 2 in Fig. 2(a) obey
this criterion. On the contrary, transitions with |∆J | > 1/2
are only possible via the k = 2 vibronic matrix element
with a considerably reduced magnitude. Indeed, such lines
show only low to medium intensities in the experimental
spectrum.

For a quantitative analysis, we fitted the normalized
experimental intensities shown as blue circles in the stick
spectrum of Fig. 2(b) to the relative ionization rates as given
by the transition probabilities from Eq. (20) weighed by the
neutral level populations. The latter were calculated from
a Boltzmann distribution with a rotational temperature of
7 K as reported in Ref. 16. The two vibronic coefficients C0
and C2 were treated as free parameters. The line intensities
obtained from this procedure are shown as green diamonds
in Fig. 2(b). As can be seen, the present model reproduces
the measured photoionization intensities well. The ratio of
the two vibronic coefficients which accounts for the relative
intensities of the k = 0 vs. k = 2 line obtained from the fit
amounts to C2/C0 = 0.3/0.7. This result is in agreement with
the values of C2 = 0.4 ± 0.1, C0 = 0.6 ± 0.1 found in Ref. 38.
For comparison, the red squares in Fig. 2(b) show the predicted
intensities using the values of the vibronic coefficients from
Ref. 38. In this approach, no free parameters except a
global intensity normalization factor enter our modeling.
Also in this case, the agreement with experiment is very
good.

B. Example 2: Hyperfine propensities
in the photoionization of molecular nitrogen

We are not aware of any hyperfine-resolved photoelectron
spectra reported in the literature that could serve as a

FIG. 3. Energy-level structure of the nitrogen molecular ion39 and the neutral
nitrogen molecule. The energetic order of the hyperfine levels in the neutral
N2

1Σ+g state has been estimated using electric-quadrupole coupling constants
extrapolated from spectroscopic data on the neutral N2 A3Σ+u state and from
N2 complexes.40–42

benchmark to test our photoionization model. In order to
illustrate the implications of hyperfine structure in direct
photoionization, we calculated the relative intensities of
hyperfine-resolved photoionization transitions of molecular
nitrogen which govern the hyperfine populations of the
resulting cations.25 As an illustrative example, we studied
the intensities of hyperfine components of the transition
N2 X1Σ+g N = 2 → N+2 X2Σ+g N+ = 4. A level scheme is shown
in Fig. 3. As the electronic ground state of neutral N2 is a
singlet state, the total electron spin vanishes and we have
N = J. The 14N isotope has a nuclear spin of 1. For N2,
a total nuclear spin of I = 0 or 2 is possible for N = 2
according to the Pauli principle. We concentrate on the
case I = 2. The N+2 ion exhibits fine and hyperfine struc-
ture. The rotational levels are split by the spin-rotation
interaction into two spin-rotation components labeled by the
quantum number J, which may take the values J+

= N+ + 1/2 and J+ = N+ − 1/2. The spin-rotation levels are
split further into hyperfine levels associated with the quantum
number F+ with the values F+ = J+ + I+, J+ + I+ − 1, . . . , |J+
− I+|.

Similar to the previous example of O2, the N2 X1Σ+g
→ N+2 X2Σ+g photoionization transition is dominated by the
vibronic coefficients C0 and C2.43,44 Coefficients with k > 2
are considerably smaller and are thus neglected here. For
the N = 2 → N+ = 4 transitions, we have J = N = 2 and
J+ = 9/2 or 7/2. Since for both of these transitions we have
|∆J | > 1/2, they may solely occur via the vibronic transition
matrix element associated with C2.

The intensities of the hyperfine components calculated
from Eq. (28) are shown in Fig. 4. The relative intensities
of the hyperfine transitions are governed by the 6j-symbol
on the last line of Eq. (28). A propensity towards transitions
obeying the relation ∆J = ∆F is observed, similar as has
previously been observed in bound-bound hyperfine-resolved
transitions.39,45



044314-9 M. Germann and S. Willitsch J. Chem. Phys. 145, 044314 (2016)

FIG. 4. Relative intensities of hyper-
fine components of the N2 X1Σ+g N

= J = 2→ N+2X2Σ+g N+= 4, J+= 9/2
(a) and J+= 7/2 (b) photoionization
transition calculated by Eq. (28). The
hyperfine levels in the neutral and ionic
state are labeled by their total angu-
lar momentum quantum number F and
F+, respectively. Transitions with rel-
ative intensities <10−3 have been sup-
pressed.

VI. SUMMARY AND CONCLUSIONS

In the present paper, we have developed a general frame-
work for fine- and hyperfine intensities in the direct photoion-
ization of molecules. We have derived closed, symmetrized
expressions of the relevant squared photoionization-transition
matrix elements which lend themselves to a straightforward
derivation of photoionization selection rules and to an efficient
computational implementation. The present results can be used
in the analysis of fine- and hyperfine resolved photoelectron
spectra and the prediction of cationic level populations upon
photoionization.

The present treatment does not, however, contain the
effects of interactions between different ionization channels.46

Whereas these effects often play only a minor role in
direct photoionization, they may be observed in Rydberg
and pulsed-field-ionization zero-kinetic-energy (PFI-ZEKE)
photoelectron spectra. In this case, a more detailed treatment
of the scattering problem of the photoelectron within the
framework of MQDT is warranted.17,18,20–22
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