
Fine- and hyperfine-structure effects in molecular photoionization. II. Resonance-
enhanced multiphoton ionization and hyperfine-selective generation of molecular
cations
Matthias Germann and Stefan Willitsch

Citation: The Journal of Chemical Physics 145, 044315 (2016); doi: 10.1063/1.4955303
View online: http://dx.doi.org/10.1063/1.4955303
View Table of Contents: http://aip.scitation.org/toc/jcp/145/4
Published by the American Institute of Physics

http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/20939943/x01/AIP-PT/JCP_ArticleDL_0117/PTBG_orange_1640x440.jpg/434f71374e315a556e61414141774c75?x
http://aip.scitation.org/author/Germann%2C+Matthias
http://aip.scitation.org/author/Willitsch%2C+Stefan
/loi/jcp
http://dx.doi.org/10.1063/1.4955303
http://aip.scitation.org/toc/jcp/145/4
http://aip.scitation.org/publisher/


THE JOURNAL OF CHEMICAL PHYSICS 145, 044315 (2016)
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and hyperfine-selective generation of molecular cations
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Resonance-enhanced multiphoton ionization (REMPI) is a widely used technique for studying molec-
ular photoionization and producing molecular cations for spectroscopy and dynamics studies. Here,
we present a model for describing hyperfine-structure effects in the REMPI process and for predicting
hyperfine populations in molecular ions produced by this method. This model is a generalization of
our model for fine- and hyperfine-structure effects in one-photon ionization of molecules presented
in Paper I [M. Germann and S. Willitsch, J. Chem. Phys. 145, 044314 (2016)]. This generalization is
achieved by covering two main aspects: (1) treatment of the neutral bound-bound transition including
the hyperfine structure that makes up the first step of the REMPI process and (2) modification of our
ionization model to account for anisotropic populations resulting from this first excitation step. Our
findings may be used for analyzing results from experiments with molecular ions produced by REMPI
and may serve as a theoretical background for hyperfine-selective ionization experiments. Published
by AIP Publishing. [http://dx.doi.org/10.1063/1.4955303]

I. INTRODUCTION

Resonance-enhanced multiphoton ionization (REMPI)—
ionization of atoms or molecules by several photons
via resonant excitation of the neutral precursor species—
has become a well-established method to study the
photoionization of molecules1,2 and produce molecular cations
for dynamics and spectroscopy experiments3–6 over the last
decades. Multiphoton ionization avoids the need for vacuum-
ultraviolet radiation, while resonant ionization, i.e., ionization
via an excited state of the neutral precursor molecule,
can increase the photoionization yield and improves the
selectivity of the ionization process. In particular, selection
and propensity rules governing the REMPI process may be
exploited for rotational-vibrational state-selective production
of molecular cations.3,4,7–9

In the preceding article,10 cited as Paper I below, we
have presented a model for fine-structure-(fs) and hyperfine-
structure-(hfs)-resolved photoionization intensities in direct,
one-photon ionization of molecules. Here, we extend our
model to cover two-color multiphoton ionization.

We focus on the [2 + 1′] REMPI scheme, i.e., excitation
by a two-photon transition from the neutral-ground to a
neutral-excited state followed by one-photon ionization of
the neutral excited state. The method presented, however,
is general and may be extended to other two-color REMPI
schemes such as [1 + 1′].

II. GENERAL CONSIDERATIONS

The scheme of a [2 + 1′] REMPI process is illustrated
in Fig. 1: A neutral diatomic molecule AB is first excited

a)Electronic mail: stefan.willitsch@unibas.ch

from the electronic ground state to a neutral electronically or
vibrationally excited state (AB*) by absorption of two photons
at the (angular) frequency ω1. Thereafter, the molecule is
ionized by absorption of a third photon at a different frequency
ω2 forming the molecular ion AB+. Following this picture,
we describe the [2 + 1′] REMPI process as a sequence of two
independent steps: a transition from the neutral electronic-
ground-state molecule AB to the neutral excited molecule
AB* and a subsequent ionization of this molecule yielding
the molecular ion AB+.

For the excitation step (AB → AB*), we will develop a
model for hfs-resolved two-photon transitions between bound
states. Using this model, we calculate the excitation rate
R(AB → AB*) and hence the relative rotational and hyperfine
populations ρ′ of excited molecules AB*. The ionization of the
excited molecules is then described by our ionization model
developed in Paper I,10 with the excited state population ρ′

used in lieu of the thermal ground state population.
The excitation of the neutral molecules AB to AB* by

polarized radiation leads to an anisotropic population ρ′,
meaning that the several Zeeman states in the excited state
are unequally populated.11,12 Since for our photoionization
model presented in Paper I,10 isotropic populations have
been implicitly assumed, we need to adapt that model for
anisotropic excited populations of the neutral in REMPI.

Our manuscript is structured as follows: In Sec. III,
we discuss the excitation step, i.e., we develop a model for
hyperfine structure effects in the initial two-photon excitation
transition. Besides the application in our [2 + 1′] REMPI
model, the theory developed in that section is also generally
applicable to hyperfine-structure-resolved two-photon bound-
bound transitions.

In Sec. IV, we discuss the ionization step, i.e., we develop
the above-mentioned adaptations of our ionization model from

0021-9606/2016/145(4)/044315/15/$30.00 145, 044315-1 Published by AIP Publishing.

http://dx.doi.org/10.1063/1.4955303
http://dx.doi.org/10.1063/1.4955303
http://dx.doi.org/10.1063/1.4955303
http://dx.doi.org/10.1063/1.4955303
http://dx.doi.org/10.1063/1.4955303
http://dx.doi.org/10.1063/1.4955303
http://dx.doi.org/10.1063/1.4955303
http://dx.doi.org/10.1063/1.4955303
http://dx.doi.org/10.1063/1.4955303
http://dx.doi.org/10.1063/1.4955303
http://dx.doi.org/10.1063/1.4955303
mailto:stefan.willitsch@unibas.ch
mailto:stefan.willitsch@unibas.ch
mailto:stefan.willitsch@unibas.ch
mailto:stefan.willitsch@unibas.ch
mailto:stefan.willitsch@unibas.ch
mailto:stefan.willitsch@unibas.ch
mailto:stefan.willitsch@unibas.ch
mailto:stefan.willitsch@unibas.ch
mailto:stefan.willitsch@unibas.ch
mailto:stefan.willitsch@unibas.ch
mailto:stefan.willitsch@unibas.ch
mailto:stefan.willitsch@unibas.ch
mailto:stefan.willitsch@unibas.ch
mailto:stefan.willitsch@unibas.ch
mailto:stefan.willitsch@unibas.ch
mailto:stefan.willitsch@unibas.ch
mailto:stefan.willitsch@unibas.ch
mailto:stefan.willitsch@unibas.ch
mailto:stefan.willitsch@unibas.ch
mailto:stefan.willitsch@unibas.ch
mailto:stefan.willitsch@unibas.ch
mailto:stefan.willitsch@unibas.ch
mailto:stefan.willitsch@unibas.ch
mailto:stefan.willitsch@unibas.ch
mailto:stefan.willitsch@unibas.ch
mailto:stefan.willitsch@unibas.ch
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4955303&domain=pdf&date_stamp=2016-07-27


044315-2 M. Germann and S. Willitsch J. Chem. Phys. 145, 044315 (2016)

FIG. 1. Schematic of a [2+1′] resonance-enhanced multiphoton ioniza-
tion process: neutral molecules AB are excited by absorption of two pho-
tons at an angular frequency ω1 yielding excited molecules AB*. These
are then ionized by absorption of a third photon at a different frequency
ω2, resulting in the generation of molecular ions AB+. The populations
associated with AB, AB*, and AB+ are denoted by ρ′′, ρ′, and ρ+,
respectively.

Paper I10 for ionization of an anisotropically populated neutral
state.

In Sec. V, we then combine these results to a complete
model for the [2 + 1′] REMPI process. Moreover, we shortly
indicate how to adapt our model to other REMPI processes
besides the [2 + 1′] scheme discussed here.

The implications of our model are shown in Sec. VI using
the [2 + 1′] REMPI of N2 via the neutral excited a′′ 1Σ+g state
as a representative example.

Finally, we summarize our findings in Sec. VII.

III. EXCITATION STEP: HFS-RESOLVED
NON-RESONANT TWO-PHOTON TRANSITIONS

Two- and multiphoton transitions in diatomic molecules
have been discussed in several previous publications, e.g., by
Bray and Hochstrasser,13 Maïnos,14 Dixit and McKoy,15

Lefebvre-Brion and Field16 as well as Hippler.17 These treat
the “Göppert-Meyer mechanism” first described in Refs. 18
and 19. Here, we will extend these treatments to hyperfine-
structure-resolved transitions.

The transition rate Rg→ e for the excitation of the molecule
from the ground state |g⟩ to the excited state |e⟩ is expressed
as a product of the radiation intensity I0 and the two-photon
line strength Sge,17

Rg→ e ∝ (I0)2Sge. (1)

Note that for two-photon transitions, the radiation intensity
enters squared in the two-photon transition rate.

According to the Göppert-Meyer mechanism, the ground
and excited states are connected by two off-resonant one-
photon transitions via intermediate states. As excitation
is possible via different intermediate states, all possible

virtual transition routes are summed, weighted by the inverse
mismatch between the frequency of the photons absorbed
and the one-photon transition frequencies to the intermediate
states. The two-photon line strength factor Sge is given
therefore as17

Sge =


Me,Mg

�����


i

1
ωig − ω1

⟨e|eσ · µ |i⟩ ⟨i|eσ · µ|g⟩
�����

2

. (2)

Here, |i⟩ is the intermediate state of the virtual one-photon
transition route with the sum over i including all accessible
intermediate states. Mg and Me label the different Zeeman
states in the ground and the excited states, respectively. The
term ωig − ω1 represents the mismatch between the ground-
intermediate-state transition energy ~ωig and the photon
energy ~ω1 (see Fig. 2(a)). Moreover, µ is the electric-
dipole operator and eσ the unit polarization vector of the
radiation with σ = 0 standing for linear, σ = ±1 for circular
polarization.

Assuming that the molecular states may be written as a
product of an electronic-vibrational state (labeled “ev”) and
a nuclear-spin-rotational state (labeled “nsr”), the two-photon
line strength in Eq. (2) takes the form

Sge =


Me,Mg

�����


iev


insr

1
ωievinsrg − ω1

× ⟨eev,ensr|eσ · µ |iev, insr⟩
× ⟨iev, insr|eσ · µ|gev,gnsr⟩

�����

2

. (3)

Here the sum over all intermediate states has been written
as a sum over all electronic-vibrational intermediate states

iev and all nuclear-spin-rotational intermediate states


insr.
Accordingly, ωig has been rewritten as ωievinsrg.

To evaluate Eq. (3), we express the scalar product eσ · µ
in spherical tensor notation, change to the molecule-fixed
frame by the aid of Wigner rotation matrices, and factorize the
transition matrix elements into angular and vibronic terms.
For the ground-to-intermediate-state transition matrix element
we get

⟨eev,ensr|eσ · µ |iev, insr⟩

=

1
τ1=−1

⟨eev,ensr|

D(1)

στ1

∗
T1
τ1
[µ] |iev, insr⟩ (4)

=

1
τ1=−1

⟨eev|T1
τ1
[µ] |iev⟩⟨ensr|


D(1)

στ1

∗|insr⟩. (5)

For the intermediate-to-excited-state transition matrix element,
an analogous expression is obtained.

Thus, the two-photon line strength is

Sge =


Me,Mg

�����


iev


insr

1
ωievinsrg − ω1


τ1,τ2

⟨eev|T1
τ1
[µ] |iev⟩

× ⟨iev|T1
τ2
[µ] |gev⟩ ⟨ensr|


D(1)

στ1

∗|insr⟩

× ⟨insr|

D(1)

στ2

∗|gnsr⟩
�����

2

. (6)

As indicated by the notation, the energy difference between
ground level and intermediate level ~ωievinsrg depends in
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FIG. 2. Mechanism of two-photon transitions: (a) Two-photon transitions are described by virtual one-photon transition routes connecting the ground state
|g⟩ to an excited state |e⟩ via an intermediate state |i⟩. The two-photon line strength is given by a weighted sum of one-photon transition routes via different
intermediate states |i⟩. Their weights—illustrated here by different grey tones—are determined by the inverse of the energy mismatch ~(ωig−ω1) between the
photon energy ~ω1 and the transition energy ~ωig. (b) Two-photon transitions between two Σ-states may occur via Σ or Π intermediate states. Transition routes
are labeled by the effective electric-dipole matrix element (µ∥µ′∥, µ+µ

′
−, µ

′′
−µ
′′
+, see Eq. (25)) and the relevant spherical tensor component of the electric-dipole

operator in the molecule-fixed frame (τ1,2= 0,±1).

principle on both the vibronic and the nuclear-spin-rotational
states of the intermediate level. However, since the nuclear-
spin-rotational contribution to ωievinsrg is small compared
to the vibronic one, we may neglect the latter and
approximate the frequency mismatch for far-off-resonant
excitation20 as ωievinsrg − ω1 ≈ ωievg − ω1. Doing so, the term
1/(ωievinsrg − ω1) ≈ 1/(ωievg − ω1) may be factored out of the
sum over the nuclear-spin-rotational intermediate states (


insr)

and the expression for the line strength separates into a product
of two independent sums,


iev and


insr,

Sge =


Me,Mg

�����


τ1,τ2

(
iev

1
ωievg − ω1

⟨eev|T1
τ1
[µ] |iev⟩

× ⟨iev|T1
τ2
[µ] |gev⟩

) (
insr

⟨ensr|

D(1)

στ1

∗|insr⟩

× ⟨insr|

D(1)

στ2

∗|gnsr⟩
) �����

2

. (7)

Without the energy-mismatch weighting factors, the sum
over the intermediate nuclear-spin-rotational states is a sum
of projection operators |insr⟩⟨insr|. Since this sum includes
all nuclear-spin-rotational states, it is equal to the identity
operator Insr for the nuclear-spin-rotational states, i.e.,

insr

|insr⟩ ⟨insr| = Insr. (8)

Therefore, we arrive at

Sge =


Me,Mg

�����


τ1,τ2

⟨ensr|

D(1)

στ1

∗
D(1)

στ2

∗|gnsr⟩

×

iev

1
ωievg − ω1

⟨eev|T1
τ1
[µ] |iev⟩

× ⟨iev|T1
τ2
[µ] |gev⟩

�����

2

. (9)

To proceed, we need to choose a basis for the molecular
states. We focus on the frequent case of transitions between
1Σ states (and note that the following treatment can be
adapted to other state symmetries and coupling cases, see
Refs. 16 and 17). We chose the Hund’s case (b) notation for
the electronic-vibrational ground, intermediate, and excited
states,

|gev⟩ = |n′′Λ′′, v ′′⟩, (10a)
|iev⟩ = |nievΛiev, viev⟩, (10b)
|eev⟩ = |n′Λ′, v ′⟩. (10c)

Here, n′′, niev, and n′ denote the electronic ground,
intermediate, and excited levels, respectively. v ′′, viev, v

′ stand
for quantum numbers of the corresponding vibrational states
and Λ′′, Λiev, Λ

′ are the projection quantum numbers of the
total electron orbital angular momenta on the internuclear
axis. Refer to Table I for a summary of the symbols used in
the present work.

The angular part of the ground and excited states are
written as

|gnsr⟩ = |N ′′Λ′′I ′′F ′′M ′′F⟩, (11a)
|ensr⟩ = |N ′Λ′I ′F ′M ′F⟩, (11b)

with N ′′ and N ′ the rotational quantum numbers in the
ground and the excited states, I ′′ and I ′ the respective
nuclear spin quantum numbers, F ′′ and F ′ the total
angular momentum quantum numbers as well as M ′′F , M ′F
the corresponding angular momentum projection quantum
numbers.

As we are assuming Σ states for the ground and the excited
state, we have Λ′′ = Λ′ = 0. For the intermediate state, also
states with Λiev , 0 need to be considered (see Fig. 2(b)).

Using this notation, the line strength for the two-photon
transition is

S′′↔′ =


M′
F
,M′′

F

�����


τ1,τ2

⟨N ′Λ′I ′F ′M ′F ���

D(1)

στ1

∗
D(1)

στ2

∗��� N ′′Λ′′I ′′F ′′M ′′F⟩

×

iev

1
ωievg − ω1

⟨n′Λ′, v ′|T1
τ1
[µ] |nievΛiev, viev⟩⟨nievΛiev, viev|T1

τ2
[µ] |n′′Λ′′, v ′′⟩

�����

2

. (12)

Exploiting that the nuclear-spin states are not affected in electric-dipole transitions, we decouple the nuclear spin from the
total angular momentum in the ground state according to
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TABLE I. Symbols used in the model of the [2+1′] REMPI process.

Quantum number (magnitude) Mol.-fixed projection Space-fixed projection Description

n′′ . . . . . . Label for the neutral electronic ground state (AB)
v′′ . . . . . . Vibrational quantum number in the neutral ground state
N ′′ Λ′′ M ′′N Orbital-rotational angular momentum in the neutral ground state
I ′′ . . . M ′′I Nuclear spin in the neutral ground state
F′′ . . . M ′′F Total angular momentum in the neutral ground state
niev . . . . . . Label for the electronic intermediate state of the

two-photon transition of the excitation step (AB→ AB*)
viev . . . . . . Vibrational quantum number in the intermediate state of the

two-photon transition in the excitation step
n′ . . . . . . Label for the neutral excited electronic state (AB*)
v′ . . . . . . Vibrational quantum number in the neutral, excited state
N ′ Λ′ M ′N Orbital-rotational angular momentum in the neutral, excited state
I ′ . . . M ′I Nuclear spin in the neutral, excited state
F′ . . . M ′F Total angular momentum in the neutral, excited state
n+ . . . . . . Label for the electronic state of the molecular ion (AB+)
v+ . . . . . . Vibrational quantum number of the molecular ion
N+ Λ+ M+N Orbital-rotational angular momentum of the molecular ion
S+ . . . M+S Electron spin of the molecular ion
J+ . . . M+J Total angular momentum of the molecular ion excluding nuclear

spin
I+ . . . M+I Nuclear spin of the molecular ion
F+ . . . M+F Total angular momentum of the molecular ion
1 τ1 (=τ) σ Angular momentum of the first photon in the excitation step
1 τ2 σ Angular momentum of the second photon in the excitation step
κ τ1+τ2 2σ Total angular momentum transferred to/from the molecule in the

excitation step
1 . . . µ0 Angular momentum of the photon in the ionization step

(AB*→ AB+)
l . . . ml Orbital angular momentum of the photoelectron
s . . . ms Spin of the photoelectron (s = 1/2)
k q p Total orbital angular momentum transferred to/from the molecule

in the ionization step (p =−ml+ µ0)
u . . . w Total angular momentum transferred to/from the molecule in the

ionization step (w =−ms+ p)

|N ′′Λ′′I ′′F ′′M ′′F⟩
=


M′′
N
,M′′

I

C
F′′M′′

F

N ′′M′′
N
I ′′M′′

I
|N ′′Λ′′M ′′N , I ′′M ′′I ⟩, (13)

with the Clebsch-Gordan coefficients C
F′′M′′

F

N ′′M′′
N
I ′′M′′

I
, and

analogously in the excited state.
The angular matrix element in Eq. (12) thus accounts

for

⟨N ′Λ′I ′F ′M ′F |

D(1)

στ1

∗
D(1)

στ2

∗|N ′′Λ′′I ′′F ′′M ′′F⟩
= δI ′I ′′(−1)N ′−I ′′+M′F(−1)N ′′−I ′′+M′′F√2F ′ + 1

√
2F ′′ + 1

×


M′
N
,M′′

N

⟨N ′Λ′M ′N |

D(1)

στ1

∗
D(1)

στ2

∗|N ′′Λ′′M ′′N⟩

×

M′′

I

*
,

N ′ I ′′ F ′

M ′N M ′′I −M ′F
+
-
*
,

N ′′ I ′′ F ′′

M ′′N M ′′I −M ′′F
+
-
, (14)

where the orthonormality of the nuclear spin states has been
used and the Clebsch-Gordan coefficients have been replaced
by 3j-symbols.

The rotational matrix element on the next-to-last line in
Eq. (14) can be reformulated using the relation21,22

D( j1)
m′1m1
D( j2)

m′2m2
=

j1+ j2
j3=| j1− j2|

(2 j3 + 1) *
,

j1 j2 j3

m′1 m′2 m′3
+
-

× *
,

j1 j2 j3

m1 m2 m3

+
-
[D( j3)

m′3m3
]∗, (15)

as17,23

⟨N ′Λ′M ′N |

D(1)

στ1

∗
D(1)

στ2

∗|N ′′Λ′′M ′′N⟩

=

2
κ=0

(2κ + 1) *
,

1 1 κ

−σ −σ 2σ
+
-
*
,

1 1 κ

−τ2 −τ1 τ1 + τ2

+
-

× ⟨N ′Λ′M ′N |D(κ)
−2σ, −τ1−τ2

|N ′′Λ′′M ′′N⟩. (16)

Inserting appropriately normalized Wigner rotation
matrices for the rotational states (with the three Euler angles
φ, θ, χ),

⟨φ θ χ|NΛMN⟩ =


2N + 1
8π2


D(N )

MNΛ
(φ,θ, χ)∗, (17)
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we obtain for the matrix element in Eq. (16) an integral over
three Wigner rotation matrices that may be expressed in the
form of 3j-symbols as21,22

⟨N ′Λ′M ′N |D(κ)
−2σ, −τ1−τ2

|N ′′Λ′′M ′′N⟩
=
√

2N ′ + 1
√

2N ′′ + 1(−1)M′′N−Λ′′

× *
,

N ′ κ N ′′

M ′N −2σ −M ′′N
+
-
*
,

N ′ κ N ′′

Λ
′ −τ1 − τ2 −Λ′′

+
-
. (18)

Substituting this expression into Eq. (16) yields

⟨N ′Λ′M ′N ���

D(1)

στ1

∗
D(1)

στ2

∗��� N ′′Λ′′M ′′N⟩
=
√

2N ′ + 1
√

2N ′′ + 1(−1)M′′N−Λ′′

×
2

κ=0

(2κ + 1) *
,

1 1 κ

−σ −σ 2σ
+
-
*
,

1 1 κ

−τ2 −τ1 τ1 + τ2

+
-

× *
,

N ′ κ N ′′

M ′N −2σ −M ′′N
+
-
*
,

N ′ κ N ′′

Λ
′ −τ1 − τ2 −Λ′′

+
-
, (19)

and subsequent substitution into Eq. (14) gives

⟨N ′Λ′I ′F ′M ′F ���

D(1)

στ1

∗
D(1)

στ2

∗��� N ′′Λ′′I ′′F ′′M ′′F⟩
= δI ′I ′′(−1)N ′−I ′′+M′F(−1)N ′′−I ′′+M′′F(−1)−Λ′′

×
√

2F ′ + 1
√

2F ′′ + 1
√

2N ′ + 1
√

2N ′′ + 1

×
2

κ=0

(2κ + 1) *
,

1 1 κ

−σ −σ 2σ
+
-
*
,

1 1 κ

−τ2 −τ1 τ1 + τ2

+
-

× *
,

N ′ κ N ′′

Λ
′ −τ1 − τ2 −Λ′′

+
-


M′

N
,M′′

N
,M′′

I

(−1)M′′N

× *
,

N ′ κ N ′′

M ′N −2σ −M ′′N
+
-
*
,

N ′ I ′′ F ′

M ′N M ′′I −M ′F
+
-

× *
,

N ′′ I ′′ F ′′

M ′′N M ′′I −M ′′F
+
-
. (20)

The sum over the last three 3j-symbols in Eq. (20) may
be expressed in terms of a Wigner 6j-symbol21 yielding

⟨N ′Λ′I ′F ′M ′F |

D(1)

στ1

∗
D(1)

στ2

∗|N ′′Λ′′I ′′F ′′M ′′F⟩
= δI ′I ′′(−1)N ′+N ′′−Λ′′−3I ′′−F′−F′′+M′

F
+2M′′

F

×
√

2F ′ + 1
√

2F ′′ + 1
√

2N ′ + 1
√

2N ′′ + 1

×
2

κ=0

(2κ + 1) *
,

1 1 κ

−σ −σ 2σ
+
-
*
,

1 1 κ

−τ2 −τ1 τ1 + τ2

+
-

× *
,

N ′ κ N ′′

Λ
′ −τ1 − τ2 −Λ′′

+
-




κ N ′′ N ′

I ′′ F ′ F ′′



× *
,

F ′ κ F ′′

−M ′F 2σ M ′′F
+
-
. (21)

Because of the third 3j-symbol in Eq. (21), this matrix
element vanishes unless the condition τ1 + τ2 = Λ

′ − Λ′′ (=0
for Σ-Σ transitions) is met. Hence, when substituting this
matrix element into Eq. (12), only terms fulfilling this relation

contribute to the sums over τ1 and τ2. We thus skip the sum
over τ2 in Eq. (12) by means of the substitution τ2 = −τ1 and
drop the index on τ1 by setting τ B τ1. Furthermore, the cross
terms in the sum over κ in Eq. (12) vanish when summing over
M ′F and M ′′F owing to the orthogonality properties of the last
3j-symbol in Eq. (21). As a result we obtain the two-photon
line strength as

S′′↔′ = (2F ′ + 1)(2F ′′ + 1)(2N ′ + 1)(2N ′′ + 1)δI ′I ′′

×

κ=0,2

(2κ + 1)*
,

1 1 κ

−σ −σ 2σ
+
-

2

×



κ N ′′ N ′

I ′′ F ′ F ′′



2

*
,

N ′ κ N ′′

0 0 0
+
-

2

U(κ), (22)

with

U(κ) =
�����

1
τ=−1

*
,

1 1 κ

τ −τ 0
+
-


iev

1
ωievg − ω1

× ⟨n′Λ′ = 0, v ′|T1
τ [µ] |nievΛiev, viev⟩

× ⟨nievΛiev, viev|T1
−τ [µ] |n′′Λ′′ = 0, v ′′⟩

�����

2

. (23)

Since the first 3j-symbol in Eq. (22) vanishes for κ = 1,
we have omitted the κ = 1-term in this equation. We study the
expression U(κ) separately for κ = 0 and κ = 2. For κ = 0,
evaluation of the 3j-symbol in Eq. (23) yields

U(0) = 1
3
���µ∥µ′∥ − µ+µ

′
− − µ′′−µ

′′
+
���
2
=

1
3
µ2

I , (24)

with the abbreviations (see Refs. 13 and 24)25

µ∥µ′∥ =

iev

1
ωievg − ω1

⟨n′Λ′, v ′|T1
0 [µ] |nievΛiev, viev⟩

× ⟨nievΛiev, viev|T1
0 [µ] |n′′Λ′′, v ′′⟩, (25a)

µ+µ
′
− =

iev

1
ωievg − ω1

⟨n′Λ′, v ′|T1
+1 [µ] |nievΛiev, viev⟩

× ⟨nievΛiev, viev|T1
−1 [µ] |n′′Λ′′, v ′′⟩, (25b)

µ′′−µ
′′
+ =

iev

1
ωievg − ω1

⟨n′Λ′, v ′|T1
−1 [µ] |nievΛiev, viev⟩

× ⟨nievΛiev, viev|T1
+1 [µ] |n′′Λ′′, v ′′⟩, (25c)

and

µ2
I =

���µ∥µ′∥ − µ+µ
′
− − µ′′−µ

′′
+
���
2
. (26)

For κ = 2, we obtain similarly

U(2) = 1
30

���2µ∥µ′∥ + µ+µ
′
− + µ′′−µ

′′
+
���
2
=

1
30

µ2
S, (27)

where we have set µ2
S =

���2µ∥µ′∥ + µ+µ
′
− + µ′′−µ

′′
+
���
2
.

The hfs-resolved two-photon line strength between 1Σ-
states is thus
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S′′↔′ = (2F ′ + 1)(2F ′′ + 1)(2N ′ + 1)(2N ′′ + 1)δI ′I ′′


1
3

1
2N ′′ + 1

*
,

1 1 0
−σ −σ 2σ

+
-

2


0 N ′′ N ′

I ′′ F ′ F ′′



2

µ2
I

+
1
6
*
,

N ′ 2 N ′′

0 0 0
+
-

2

*
,

1 1 2
−σ −σ 2σ

+
-

2


2 N ′′ N ′

I ′′ F ′ F ′′



2

µ2
S


. (28)

For circular polarized radiation, we have σ = ±1. As σ denotes the projection associated with κ on the space-fixed z-axis,
we must have κ ≥ σ. Hence, the term with κ = 0 in Eq. (22), i.e., the first summand within brackets in Eq. (28), does not apply
for circular polarization. With the last 3j-symbol in Eq. (28) accounting for 1/5, we thus obtain

S(circ)
′′↔′ =

1
30

(2F ′ + 1)(2F ′′ + 1)(2N ′ + 1)(2N ′′ + 1)δI ′I ′′*
,

N ′ 2 N ′′

0 0 0
+
-

2


2 N ′′ N ′

I ′′ F ′ F ′′



2

µ2
S. (29)

For linear polarization, we have σ = 0 for a suitable
chosen space-fixed frame of reference. The two squared 3j-
symbols involving σ in Eq. (28) then account for 1/3 and
2/15, respectively, and the line strength is

S(lin)
′′↔′ = (2F ′ + 1)(2F ′′ + 1)(2N ′ + 1)(2N ′′ + 1)δI ′I ′′

×


1
9

1
2N ′′ + 1




0 N ′′ N ′

I ′′ F ′ F ′′



2

µ2
I

+
1

45
*
,

N ′ 2 N ′′

0 0 0
+
-

2


2 N ′′ N ′

I ′′ F ′ F ′′



2

µ2
S


. (30)

Summing the above expression over all hyperfine
components corresponding to a specific rotational transition

reproduces the results for the rotationally resolved two-photon
line strength reported in Ref. 13.

So far, the line strength associated with the total
population in a (N ′, I ′,F ′) level has been considered.
This is the quantity usually of interest for transitions
between bound states. For our particular purpose, namely,
to describe the REMPI process, the population in a
certain Zeeman state |N ′, I ′,F ′,M ′F⟩ of the neutral, elec-
tronically excited state is needed. The relevant quantity is
thus26

Sge(Me) =

Mg

������


i

1
ωig − ω1

⟨e|eσ · µ|i⟩⟨i|eσ · µ |g⟩
������

2

. (31)

For hfs-resolved transitions, this quantity is written in our
notation as

S(F ′′,F ′,M ′F) =

M′′

F

�����


τ1,τ2

⟨N ′Λ′I ′F ′M ′F |

D(1)

στ1

∗
D(1)

στ2

∗|N ′′Λ′′I ′′F ′′M ′′F⟩

×

iev

1
ωievg − ω1

⟨n′Λ′, v ′|T1
τ1
[µ] |nievΛiev, viev⟩⟨nievΛiev, viev|T1

τ2
[µ] |n′′Λ′′, v ′′⟩

�����

2

, (32)

where, as before, the nuclear-spin-rotational contribution to the energy mismatch has been neglected.
Substituting the angular transition matrix element from Eq. (21) and applying the above-mentioned restrictions and

substitutions for τ1, τ2 yields (for Σ-Σ-transitions)

S(F ′′,F ′,M ′F) = (2F ′ + 1)(2F ′′ + 1)(2N ′ + 1)(2N ′′ + 1)δI ′I ′′

M′

F

�����


κ=0,2

(2κ + 1) *
,

N ′ κ N ′′

0 0 0
+
-
*
,

1 1 κ

−σ −σ 2σ
+
-

×



κ N ′′ N ′

I ′′ F ′ F ′′


*
,

F ′ κ F ′′

−M ′F 2σ M ′′F
+
-


τ

*
,

1 1 κ

τ −τ 0
+
-


iev

1
ωievg − ω1

× ⟨n′Λ′ = 0, v ′|T1
τ [µ] |nievΛiev, viev⟩

× ⟨nievΛiev, viev|T1
−τ [µ] |n′′Λ′′ = 0, v ′′⟩

�����

2

. (33)

In contrast to the total line strength considered before,
the above expression does not include a sum over the excited-
state projection angular momentum quantum number M ′F.
As a consequence, the orthogonality of the 3j-symbols may
not be used to eliminate the cross terms, as was possible
in the derivation of Eq. (22). Hence, angular terms may not
be separated from vibronic ones. Therefore, calculation of

relative nuclear-spin-rotational intensities is in general only
possible when knowing both the magnitude and the phase
of the vibronic transition matrix elements. If the phases are
unknown, relative intensities may in general not be determined
(see also Sec. IV).

For transitions involving a change in the rotational
angular momentum, i.e., O and S lines (∆N = −2 and +2,
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respectively), however, only the κ = 2 term in Eq. (33) is
relevant. We may thus simplify the above result further arriving
at

SS,O(F ′′,F ′,M ′F)
=

5
6
(2F ′ + 1)(2F ′′ + 1)(2N ′ + 1)(2N ′′ + 1)

× δI ′I ′′*
,

1 1 2
−σ −σ 2σ

+
-

2


2 N ′′ N ′

I ′′ F ′ F ′′



2

×

M′′

F

*
,

F ′ 2 F ′′

−M ′F 2σ M ′′F
+
-

2

*
,

N ′ 2 N ′′

0 0 0
+
-

2

µ2
S, (34)

with µ2
S as in Eq. (27).

In the case of linear polarized radiation (σ = 0), this
results in

S(lin)
S,O (F ′′,F ′,M ′F)
=

1
9
(2F ′ + 1)(2F ′′ + 1)(2N ′ + 1)(2N ′′ + 1)

× δI ′I ′′



2 N ′′ N ′

I ′′ F ′ F ′′



2

*
,

F ′ 2 F ′′

−M ′F 0 M ′F
+
-

2

× *
,

N ′ 2 N ′′

0 0 0
+
-

2

µ2
S. (35)

IV. IONIZATION STEP

A. Effects of anisotropic populations

Having discussed the excitation step (AB → AB*), we
now turn to the ionization step (AB* → AB+).

The population of the neutral, excited molecules AB*
produced in the excitation step is in general anisotropic,
i.e., different Zeeman states are unequally populated. This
effect is illustrated in Fig. 3 with hyperfine structure omitted
for clarity: A diatomic molecule AB in the neutral ground
state is excited by absorption of electromagnetic radiation at
an angular frequency ω1 yielding a population ρ′ of excited
molecules AB*. These excited molecules AB* are then ionized
by electromagnetic radiation at another frequency ω2 forming
the molecular ions AB+. In the case of excitation with linear
z-polarized radiation, only transitions without change in the

FIG. 3. Anisotropic population in the excited neutral state generated in
REMPI: example of the N ′′= 0→ N ′= 2→ N+= 0 REMPI scheme with
linear polarization for excitation. Because of the selection rule M ′N =M

′′
N ,

only the M ′N = 0 Zeeman state of the neutral excited level is populated.
Ionization may thus only occur from this particular Zeeman state.

projection angular momentum quantum number, i.e., with
M ′N = M ′′N , are allowed. Therefore, the entire excited state
population ρ′ is confined to the M ′N = 0 Zeeman state. As a
consequence, ionization may only occur from this particular
Zeeman state and transitions to AB+ from other AB* Zeeman
states do not contribute to the ionization process.

In the following, we develop a model for ionization
of anisotropically populated levels based on weighting of
Zeeman states by their population. First, we only consider
spin-rotational fine structure, thereafter we extend our model
to cover hyperfine structure as well.

B. Fine structure

Denoting the population of excited molecules AB* in a
certain Zeeman state by ρ′(J ′,M ′J), the quantity Pρ′(J ′, J+),
proportional to the photoionization transition probability
between fine-structure levels, is given by

Pρ′(J ′, J+) =

l


ml


ms


M′

J
,M+

J

ρ′(J ′,M ′J)

×���
�⟨n+Λ+, v+,N+Λ+S+J+M+J |
×⟨s,ms |⟨l,ml |�µ|n′Λ′, v ′,N ′Λ′S′J ′M ′J⟩���

2
. (36)

Substituting the matrix element from Eq. (18) in
Paper I,10 we obtain

Pρ′(J ′, J+) = (2N ′ + 1)(2N+ + 1)(2S′ + 1)(2J ′ + 1)(2J+ + 1)

l


ml


ms


M′

J
,M+

J

ρ′(J ′,M ′J)

×
������


k=l±1

(−1)k√2k + 1 *
,

l 1 k
−ml µ0 −p

+
-


n+Λ+, v+|T′k∆Λ|n′Λ′, v ′


*
,

N+ k N ′

−Λ+ ∆Λ Λ
′
+
-

×
k+s

u=|k−s |
(2u + 1) *

,

J+ u J ′

−M+J w MJ

+
-
*
,

u k s
w −p ms

+
-




J+ u J ′

N+ k N ′

S+ s S′




���������

2

. (37)
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As the terms in the sum over M ′J are weighted by
the populations ρ′(J ′,M ′J), the orthogonality properties of
the Wigner 3j-symbols may not be used to eliminate the
cross terms in the above expression as is possible for direct
ionization (see Paper I10). Hence, the vibronic transition matrix
elements ⟨n+Λ+, v+|T′k

∆Λ
|nΛ, v⟩ may not be isolated from the

other terms in Eq. (37) and, since these matrix elements are in
general complex quantities, the transition probability may not
be calculated unless the magnitude and the (relative) phases
of these matrix elements are known. In other words, for
ionization of an anisotropically populated level, interference
effects between different vibronic transition matrix elements
become important.11,12

In order to illustrate this effect, we study the transition
probability for a 1Σ → 2Σ ionization process for the spin-
rotation levels N ′ = J ′ = 2 → N+ = 2, J+ = 3/2 and N ′

= J ′ = 2 → N+ = 2, J+ = 5/2. We assume the population of
the neutral J ′ = 2 level to be confined to the M ′J = 0 Zeeman
state, i.e., ρ′(J ′ = 2,M ′J = 0) = 1 and ρ′(J ′ = 2,M ′J , 0) = 0,
as it results from two-photon excitation from the rovibronic
ground state with linearly polarized radiation. When writing
the vibronic transition matrix elements as complex numbers
in polar form,27

⟨n+Λ+ = 0, v+|T′k=0

0 |n′Λ′ = 0, v ′⟩ = C0 exp(iφ0), (38a)

⟨n+Λ+ = 0, v+|T′k=2

0 |n′Λ′ = 0, v ′⟩ = C2 exp(iφ2), (38b)

with C0,C2 ∈ R,C0,C2 ≥ 0 and φ0, φ2 ∈ [0,2π) and assuming
the matrix elements with k > 2 to vanish, evaluation of
Eq. (37) yields

Pρ′(J ′ = 2, J+ = 3/2) = 0.13 C0 + 0.07 C2

− 0.11


C0C2 cos(φ0 − φ2) (39)

and

Pρ′(J ′ = 2, J+ = 5/2) = 0.20 C0 + 0.10 C2

− 0.16


C0C2 cos(φ0 − φ2). (40)

The transition probability for ionization of an anisotropi-
cally populated level thus depends not only on the magnitude
but also on the relative phase ∆φ = φ0 − φ2 of the vibronic
transition matrix elements. This effect is illustrated in Fig. 4.
The relative strength of the ionization transitions may therefore
in general not be calculated without information about these
phases.28

Owing to the non-vanishing cross terms, Eq. (37) may in
general also not be substantially simplified. Provided the vi-
bronic transition matrix elements are fully specified in terms of

FIG. 4. Interference effects in photoionization of anisotropically populated
states illustrated for the N ′= 2→ N+= 2, J+= 5/2 (solid, brown line) and
the N ′= 2→ N+= 2, J+= 3/2 (dashed, brown line) transitions assuming the
entire neutral population being confined to the N ′= 2,M ′N = 0 Zeeman state.
See text for details.

both their magnitude and phase (e.g., as a result of an ab initio
calculation), calculation of the quantity Pρ′(J ′, J+) is most
conveniently achieved by evaluation of this equation with the
help of a computer algebra system.

In many practically relevant cases, however, further
simplification of Eq. (37) is possible. For photoionization
by ejection of the photoelectron from a molecular orbital with
predominantly s-type character (such as in H2,29 N2,30 or O2

31),
the ionization process is dominated by the vibronic transition
matrix elements with the two lowest possible values for k,
i.e., k = 0 and k = 2 for parity conserving transitions, while
matrix elements with higher values of k essentially vanish and
may be neglected. Under these conditions, ionizing transitions
with a change in the orbital-rotational angular momentum
(∆N , 0, i.e., O (∆N = −2) and S (∆N = +2) lines), may
only occur due to the k = 2 vibronic matrix element. Hence,
only the k = 2 term in Eq. (37) is relevant for these transitions.
As a consequence, there are no cross terms occurring in that
equation and hence also no phase dependencies are observed.
This phase insensitivity is shown in Fig. 4 by the example of
the N ′ = J ′ = 2 → N+ = 0, J+ = 1/2 transition.

Indeed, the S- and O-lines are relevant for the state-
selective production of molecular cations by the method of
threshold REMPI7–9 and we may thus treat these important
cases even in the absence of information on the phases of the
different vibronic matrix elements.

Evaluation of Eq. (37) for S and O lines, when
taking into account the above-mentioned assumptions and
approximations, yields

P(S,O)
ρ′ (J ′, J+) = 5(2N ′ + 1)(2N+ + 1)(2S′ + 1)(2J ′ + 1)(2J+ + 1)


l


ml


ms


M′

J
,M+

J

ρ′(J ′,M ′J)

×
����⟨n
+
Λ
+ = 0, v+|T′k=2

0 |n′Λ′ = 0, v ′⟩����
2 *
,

l 1 2
−ml µ0 −p

+
-

2

*
,

N+ 2 N ′

0 0 0
+
-

2

×

���������

5/2
u=3/2

(2u + 1) *
,

J+ u J ′

−M+J w MJ

+
-
*
,

u 2 1/2
w −p ms

+
-




J+ u J ′

N+ 2 N ′

S+ 1/2 S′




���������

2

, (41)
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where we have also used that Λ+ = Λ = 0 for Σ states.

C. Hyperfine structure

The effects discussed so far for ionizing transitions connecting spin-rotational levels are analogously found for hfs-resolved
lines. The transition probability for photoionization of excited molecules with populations ρ′(F ′,M ′F) for the different Zeeman
states is given by

Pρ′(J ′,F ′, J+,F+) =

l


ml


ms


M′

F
,M+

F

ρ′(F ′,M ′F)���
�⟨n+Λ+, v+,N+Λ+S+J+I+F+M+F |⟨s,ms |⟨l,ml |�

× µ|n′Λ′, v ′,N ′Λ′S′J ′I ′F ′M ′F⟩���
2
. (42)

In a similar way as shown for Eq. (37) above, we obtain

Pρ′(J ′,F ′, J+,F+) = (2N ′ + 1)(2N+ + 1)(2S′ + 1)(2J ′ + 1)(2J+ + 1)(2F ′ + 1)(2F+ + 1)δI ′I+

×

l


ml


ms


M′

F
,M+

F

ρ′(F ′,M ′F)
������


k=l±1

(−1)k√2k + 1 *
,

l 1 k
−ml µ0 −p

+
-
⟨n+Λ+, v+|T′k∆Λ|n′Λ′, v ′⟩

× *
,

N+ k N ′

−Λ+ ∆Λ Λ
′
+
-

k+s
u=|k−s |

(−1)−u(2u + 1) *
,

u k s
w −p ms

+
-




J+ u J ′

N+ k N ′

S+ s S′







u J ′ J+

I ′ F+ F ′



× *
,

F+ u F ′

−M+F w M ′F
+
-

������

2

, (43)

upon substituting the results from Eqs. (29), (30), and (22) of Paper I.10 As before, evaluation of Eq. (43) requires in general both
the magnitudes and the phases of the vibronic transition matrix elements. Hence, a significant “paper-and-pencil” simplification
of Eq. (43) is not possible.

Once more, however, the experimentally interesting case of ionization out of predominantly s-type orbitals via S and
O transitions can be treated even without concrete knowledge of the vibronic transition matrix elements. According to the
reasoning above, Eq. (43) becomes for these transitions

P(S,O)
ρ′ (J ′,F ′, J+,F+) = 5(2N ′ + 1)(2N+ + 1)(2S′ + 1)(2J ′ + 1)(2J+ + 1)(2F ′ + 1)(2F+ + 1)δI ′I+

×
����⟨n
+
Λ
+ = 0, v+|T′k=2

0 |n′Λ′ = 0, v ′⟩����
2 *
,

N+ 2 N ′

0 0 0
+
-

2 
l=1,3


ml


ms


M′

F
,M+

F

ρ′(F ′,M ′F)

× *
,

l 1 2
−ml µ0 −p

+
-

2
���������

5/2
u=3/2

(−1)−u(2u + 1) *
,

u 2 1/2
w −p ms

+
-




J+ u J ′

N+ 2 N ′

S+ 1/2 S′







u J ′ J+

I ′ F+ F ′



× *
,

F+ u F ′

−M+F w M ′F
+
-

������

2

. (44)

Further simplification for a singlet neutral excited state (S′ = 0) and for linear polarized radiation (µ0 = 0) yields

P(S,O, S′=0,lin.)
ρ′ (N ′,F ′, J+,F+) = 5

2
(2N+ + 1)(2N ′ + 1)(2J+ + 1)(2F+ + 1)(2F ′ + 1)δI ′I+*

,

N+ 2 N ′

0 0 0
+
-

2

×
����⟨n
+
Λ
+ = 0, v+

����T
′k=2

0
���� n
′
Λ
′ = 0, v ′⟩����

2 
l=1,3


ml


ms


M′

F
,M+

F

ρ′(F ′,M ′F)

× *
,

l 1 2
−ml 0 ml

+
-

2�����

5/2
u=3/2

(2u + 1) *
,

u 2 1/2
−ml − ms ml ms

+
-




J+ u N ′

2 N+ 1/2




×



u N ′ J+

I ′ F+ F ′


*
,

F+ u F ′

−M+F −ml − ms M ′F
+
-

�����

2

. (45)
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V. THE [2 + 1′] REMPI PROCESS

Having discussed both the excitation as well as the
ionization step, we may now combine the results from Secs. III
and IV to a model for the [2 + 1′] REMPI process.

The populations ρ′(F ′,M ′F) of the hfs levels in the neutral
excited state generated in the REMPI process are proportional
to the excitation rates RF′′→F′,M′

F
of the transitions populating

these levels multiplied with the population in the relevant
levels of the neutral vibronic ground state ρ′′(F ′′),

ρ′(F ′,M ′F) ∝
J′′+I ′′

F′′=|J′′−I ′′|
RF′′→F′,M′

F
ρ′′(F ′′). (46)

Here, the sum over all the ground-state hfs levels has been
included since hyperfine structure is supposed to be unresolved
in the two-photon excitation step. The relative hfs populations
of the electronic-ground-state molecules AB are given by a
Boltzmann distribution,

ρ′′(F ′′) = gF′′ exp(−EF′′/kBT), (47)

with EF′′ the energy of the level F ′′ and gF′′ its degeneracy,
kB the Boltzmann constant, and the temperature T . Since
the hfs splittings are usually small compared to the thermal
energies (∆Ehfs ≪ kBT), the energies EF′′ are essentially equal
for all hfs levels of one rotational level and the exponential
factor in Eq. (47) is nearly identical for them. The relative
hfs populations within the same rotational level are thus
approximately given by the degeneracy of the hfs levels:
ρ′′(F ′′) ∝ gF′′. The excitation rate RF′′→F′,M′

F
, on the other

hand, is proportional to the two-photon line strength worked
out in Sec. III normalized by the respective ground-state
degeneracy gF′′,

RF′′→F′,M′
F
∝ 1/gF′′ × S(lin)

S,O (F ′′,F ′,M ′F), (48)

where S(lin)
S,O (F ′′,F ′,M ′F) is given by Eq. (35) (without loss

of generality, we restrict ourselves to S,O transitions here).
Combining the results of Eqs. (46)–(48), we thus obtain the
relative hfs populations of the neutral, excited molecules AB*
as

ρ′(F ′,M ′F) ∝
J′′+I ′′

F′′=|J′′−I ′′|
S(lin)

S,O (F ′′,F ′,M ′F). (49)

To obtain the relative populations ρ+(J+,F+) of the
molecular ions AB+, we substitute the neutral excited state
populations ρ′(F ′,M ′F) in Eq. (44) (or Eq. (45) for a singlet
neutral state) by the expression of Eq. (49), i.e.,

ρ+F′(J+,F+) ∝ P(S,O)
ρ′(F′,M′

F
)′(J ′,F ′, J+,F+). (50)

Here, the subscript F′ has been added indicating that this
quantity refers to the ionic population generated via ionization
from a particular F ′ hyperfine level of the neutral excited state.
If the hyperfine structure is not resolved in the ionization step,
the total ionic population in a particular ionic hyperfine level
F+ is given by the sum over all neutral, excited AB* hfs

levels F ′,

ρ+tot(J+,F+) =

F′

ρ+F′(J+,F+). (51)

In REMPI experiments, often the two planes of polarization
of the excitation and the ionization laser are not parallel,
but tilted by some angle α relative to each other (e.g., as a
consequence of the geometry of frequency multiplication
stages used for UV generation). If so, the expressions
given above for the excitation and the ionization step
are referring to two different space-fixed frames.32 Such
a tilting between the two polarization vectors may be
taken into account by multiplication of the populations
calculated in the excitation frame (labeled below by projection
quantum numbers M

′
F as arguments) with a squared Wigner

rotation matrix element DF′

M
′
FM′

F

(0,α,0) and summing over

the projection quantum numbers in the excitation frame
M
′
F

11,12

ρ′α(F ′,M ′F) =
F′

M
′
F=−F′


DF′

M
′
FM′

F

(0,α,0)
2
ρ′(F ′,M ′F)

(52)

∝
F′

M
′
F=−F′


DF′

M
′
FM′

F

(0,α,0)
2

×
J′′+I ′′

F′′=|J′′−I ′′|
S(lin. pol.)

S,O (F ′′,F ′,M ′F). (53)

The populations ρ′α(F ′,M ′F) are then substituted into Eq. (50)
instead of those obtained from Eq. (49) yielding

ρ+F′, α(J+,F+) ∝ P(S,O)
ρ′α(F′,M′F)(J ′,F ′, J+,F+) (54)

and

ρ+tot, α(J+,F+) =

F′

ρ+F′, α(J+,F+). (55)

Although we have concentrated here on the [2 + 1′]
REMPI scheme, our calculations may be adapted for other
two-color REMPI schemes as well. In the case of [1 + 1′]
REMPI, the formulae for the excitation step derived in
Sec. III and then employed in Sec. V must be replaced
by the corresponding well-known expressions for one-photon
transitions (see, e.g., Refs. 33 and 34 and references therein),
for [n + 1′] REMPI (with n > 2) the excitation step may be
treated according to the theory of multiphoton transitions
in diatomic molecules discussed in Refs. 14, 35, and 36,
where also the corresponding formulae for the Hund’s case
(a) angular momentum coupling scheme as well as for
intermediate Hund’s case (a)-(b) coupling situations are found.
Similarly, the expressions given here for the ionization step
may be adapted for other angular momentum coupling cases
by means of a suitable basis transformations as, e.g., outlined
in Ref. 33.
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VI. APPLICATION: HYPERFINE POPULATIONS
OF MOLECULAR NITROGEN IONS PRODUCED
BY [2 + 1′] REMPI

A. Non-hfs-resolved photoionization
of molecular nitrogen

1. S(0)-O(2) REMPI scheme

As a first application of our model, we study the REMPI
scheme previously used for the rotationally state-selective
production of N+2 ions via excitation of the N2 a′′ 1Σ+g state.5,6,8,9

Here, we are interested in the relative hfs populations of
N+2 ions produced in the rovibrational ground state by the
REMPI sequence N ′′ = 0 → N ′ = 2 → N+ = 0 for the I = 2
nuclear spin manifold of N2/N+2 . The energy levels and
corresponding Zeeman states involved are shown in Fig. 5.
The hyperfine structure is supposed to be unresolved in both
the excitation and the ionization step. Hence, we calculate the
ionic populations using Eqs. (51) and (55). As an example
of a corresponding calculation without treatment of hfs, see,
e.g., Ref. 37.

The relative populations in the neutral, excited N2 a′′ 1Σ+g
state are shown in Fig. 6. In the left column of the figure,
the populations are shown with reference to the excitation
frame. In the right column, the corresponding values after
transformation to the ionization frame are given. The effect
that only a subset of the Zeeman states may be populated by
excitation with linear polarized radiation is clearly visible in
the left-hand column of Fig. 6: Zeeman states with M

′
F > 2

are not populated due to the selection rule M
′
F = M ′′F for

excitation with linear polarized radiation (polarization vector
parallel to quantization axis).

For the right column of Fig. 6, an angle of α = 90◦

between the two polarization vectors of excitation and
ionization has been assumed. The frame transformation
described by Eq. (52) leads to a redistribution of the population
such that Zeeman states not populated in the excitation
frame, are populated with respect to the ionization frame of
reference.

FIG. 5. Level diagram for the S(0)-O(2) REMPI of N2 showing the relevant
fs and hfs levels as well as the Zeeman states for the REMPI sequence
N ′′= 0→ N ′= 2→ N+= 0 of the I = 2 nuclear spin manifold of N2/N+2 . (As
the exact hyperfine structure of the a′′ 1Σ+g state is unknown, levels of this state
are ordered by their degeneracy.)

FIG. 6. S(0)-O(2) REMPI scheme of N2: bar charts of the relative pop-
ulations in the a′′ 1Σ+g neutral excited state for the REMPI sequence
N ′′= 0→ N ′= 2→ N+= 0. The charts in the left column show the rela-
tive populations in the Zeeman states of the hfs levels with F′= 4 to 0
(top to bottom) with respect to the excitation frame of reference. In the
right column, the same populations are shown in the ionization frame of
reference, when assuming an angle of α = 90◦ between the polarization
vectors of the excitation and ionization laser beams. The bars are labeled
by the projection angular momentum quantum numbers below the horizontal
axis.

The relative ionic populations of the different N+2 hfs
levels produced in this REMPI scheme are shown in Fig. 7
as blue and red bars for parallel (α = 0◦) and perpendicular
(α = 90◦) polarization vectors, respectively.

For reference, the white, dashed-edged bars show the
relative populations when assuming them to be proportional
to the degeneracy of the levels. We refer to them as the
“pseudo-thermal” populations, as these are the relative hfs
populations of a thermal ensemble in the limit of the thermal
energy kBT being large compared to the hfs splittings.

FIG. 7. Populations in the rovibrational ground state of N+2 produced by
S(0)-O(2) REMPI: relative populations of the two hfs levels of N+2 ions
produced by the REMPI sequence N ′′= 0→ N ′= 2→ N+= 0. The blue
bars show the populations as obtained for parallel polarization vectors for
excitation and ionization (α = 0◦), for the red ones an angle of α = 90◦

between the two polarization vectors is assumed. For reference, the popu-
lations expected from the “pseudo-thermal” model (see text) are indicated
by the white, dashed-edged bars. (Values are normalized to yield equal
total populations for parallel and perpendicular polarization, as well as
for the “pseudo-thermal” model, then normalized to unity for the highest
value.)



044315-12 M. Germann and S. Willitsch J. Chem. Phys. 145, 044315 (2016)

FIG. 8. Level diagram for the S(2)-O(4) REMPI scheme of N2 showing the
relevant fs and hfs levels as well as the Zeeman states for the REMPI sequence
N ′′= 2→ N ′= 4→ N+= 2 of the I = 2 nuclear spin manifold of N2/N+2 . (The
energetic order of the hfs levels in the neutral N2

1Σ+g state has been estimated
using electric-quadrupole coupling constants extrapolated from spectroscopic
data on the neutral N2 A3Σ+u state and from N2 complexes.38–40 The hfs levels
of the N2 a′′ 1Σ+g are ordered by their degeneracies.)

In this particular case, the naïve pseudo-thermal model
yields the same relative populations as our ionization model
does. Moreover, the relative populations predicted by our
model are identical for parallel and perpendicular polarization
vectors. As shown below, these coincidences are particular
for the S(0)-O(2) ionization sequence and do in general not
occur.

FIG. 9. S(2)-O(4) REMPI scheme of N+2 : bar charts of the relative popu-
lations in the a′′ 1Σ+g neutral excited state for the REMPI sequence N ′′= 2
→ N ′= 4→ N+= 2. The charts in the left column show the relative popula-
tions in the Zeeman states of the hfs levels with F′= 6 to 2 (top to bottom)
with respect to the excitation frame of reference. In the right column, the same
populations are shown in the ionization frame of reference, when assuming an
angle of α = 90◦ between the polarization vectors of excitation and ionization.
The bars are labeled by the projection angular momentum quantum numbers
below the horizontal axis.

2. S(2)-O(4) REMPI scheme

As a more complex example, we analyze the REMPI of
N2 via the a′′ 1Σ+g state through the sequence N ′′ = 2 → N ′

= 4 → N+ = 2. The relevant energy levels and Zeeman states
are depicted in Fig. 8.

The populations in the neutral excited a′′ 1Σ+g and the
ionic X2Σ+g state are shown in Figs. 9 and 10, respectively.
Like in the previous example, the left column of Fig. 9
shows the populations in the Zeeman states belonging to the
hfs levels of the a′′ 1Σ+g state with respect to the excitation
frame of reference, whereas the right column shows them
with respect to the ionization frame. As before, an angle of
α = 90◦ is assumed between the two polarization vectors.
Once more, the effect of diminished populations in Zeeman
states with high absolute values for the projection angular
momentum quantum number due to the selection rules for
the excitation step is observed. Also, the redistribution of

FIG. 10. Ionic populations due to S(2)-O(4) REMPI of N+2 : relative populations of the fs and hfs levels of the N+= 2 rotational state of N+2 produced by the
REMPI sequence N ′′= 2→ N ′= 4→ N+= 2. (a) values for the J+= 3/2 fine structure level, (b) corresponding values for the J+= 5/2 spin-rotation component.
The blue bars show the populations obtained for parallel polarization vectors for excitation and ionization (α = 0◦), for the red ones an angle of α = 90◦ between
the two polarization vectors has been assumed. For reference, the populations expected from the pseudo-thermal model (see text) are indicated by the white,
dashed-edged bars.
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FIG. 11. Populations in the rovibrational ground state of N+2 due to S(0)-O(2) REMPI for specific ionizing hfs transitions: relative contributions to the two ionic
hfs populations F+= 3/2 and F+= 5/2 from individual hfs levels of the neutral a′′ 1Σ+g state (F′= 0, . . .,4) for parallel (a) and perpendicular (b) polarization
vectors. Ionization from all neutral hfs levels populates both ionic hfs states, no clear propensity is observed.

population in course of the frame transformation described
by Eq. (52) is seen again. The relative hfs populations in
the J+ = 3/2 and J+ = 5/2 spin-rotational levels of the N+2
ion are shown in Figs. 10(a) and 10(b), respectively. The
populations are shown for both parallel (blue bars) and
perpendicular (red bars) polarization vectors for ionization
and excitation. For comparison, also the pseudo-thermal
populations are indicated (white, dashed-edged bars). In
contrast to the previous example, the relative hfs populations
obtained by our REMPI model now deviate from the pseudo-
thermal populations. As these deviations are small, however,
they might only have a minor effect on experiments with
molecular N+2 ions produced by this and similar REMPI
schemes. We note that the Hund’s case (bβJ) basis states in
rotational excited states of N+2 are mixed by off-diagonal

terms in the hfs Hamiltonian leading to a mixing of
the two fine structure components.6,23,41 Since we have
found this mixing to only have a minor effect on the hfs
populations predicted by our model,23 we have neglected it
here.

B. Hfs-resolved photoionization of molecular nitrogen

So far, we have analyzed hfs-state populations of N+2 ions
generated by hfs-unresolved photoionization. This means, ions
were assumed to have been produced in a REMPI process,
in which the hyperfine structure is not resolved, but the ionic
populations were then supposed to be probed in a hfs-resolved
manner, such as by hfs-resolved vibrational spectroscopy of
the cation.6

FIG. 12. Ionic populations due to S(2)-
O(4) REMPI of N+2 for specific ioniza-
tion hfs transitions. Upper row: contri-
butions to the relative hfs populations
of N+2 ions for the J+= 3/2 (panel (a))
and J+= 5/2 (panel (b)) spin-rotation
components from individual hfs levels
of the neutral a′′ 1Σ+g state assuming
parallel polarization vectors of excita-
tion and ionization (α = 0◦). Lower row:
corresponding values for perpendicu-
lar polarization vectors (α = 90◦). For
most transitions, a distinct propensity is
observed: Ionization from a particular
neutral hfs level (F′= 2, . . .,4) prefer-
entially results in a population in only
one, eventually two, ionic hfs level.
(Values <10−2 have been suppressed
for clarity.)
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Since selectivity over the vibronic and spin-rotational
degrees of freedom in the REMPI process has already
been achieved,8,9 extending this selectivity to the hfs
domain, i.e., producing molecular ions also in a hfs-
state-selective manner, is appealing—particularly in view
of emerging non-destructive and coherent techniques in
molecular spectroscopy.23,42,43

Here, we study the implications of our REMPI model
for such a hfs-state-selective preparation scheme by analyzing
the relative populations of N+2 ions for hfs-resolved ionization
transitions. This means, we suppose the same neutral, excited
populations as before (Figs. 6 and 9), but calculate the relative
ionic populations for particular F ′ → F+ transitions using
Eqs. (50) and (54). We are interested in possible propensities
for these hfs-resolved ionization transitions, as these could
enable achieving state-selectivity.

The results obtained for the S(0)-O(2) REMPI sequence
are shown in Fig. 11. As seen from this figure, ionization
from all hfs levels of the neutral excited N2 a′′ 1Σ+g state
leads to ionic populations in both hfs levels of the rovibronic
ground state of N+2 . In other words, no clear propensity is
observed.

Hence, hfs-state-selective production of N+2 in the
rovibronic ground state would have to be achieved almost
entirely by spectroscopic addressing, e.g., by spectroscop-
ically resolving all accessible ionization thresholds and
ionizing selectively above the lowest one.8,9 Whether this
is possible, depends on the bandwidth of the radiation used
for ionization and the hfs splitting in the N2 a′′ 1Σ+g state.
The latter is unknown at present, since the spectroscopic
investigation of this state44–47 has not yet achieved hyperfine
resolution.

The hfs-resolved results from our model for the S(2)-O(4)
REMPI scheme are shown in Fig. 12.48 For the N+2 ions with
N+ = 2 produced in this scheme, the relative populations
exhibit a pattern remarkably different from that seen in
the previous example. Ionization via certain hfs levels of
the neutral excited a′′ 1Σ+g state populate almost exclusively
particular hfs levels in the N+2 ion. In other words, clear
propensities are observed. For the majority of the transitions,
these characteristics are summarized by the propensity rule
∆J = ∆F (with ∆J = J+ − N ′ and ∆F = F+ − F ′). Deviations
from this rule are observed for J+ = 3/2 at low values of F ′.
We note that the effects of changing the polarization geometry
are only slight in this case.

As a consequence of this propensity, hfs-state-selectivity
can be achieved even without full spectroscopic resolution of
individual hfs transitions in the ionization step.

VII. SUMMARY AND CONCLUSIONS

In this paper, we have presented a model for the
calculation of the relative populations of fine and hyperfine
levels of molecular cations produced by resonance-enhanced
multiphoton ionization (REMPI). Our model is based
on understanding the REMPI process as two separate
steps, a bound-bound neutral-ground-to-neutral-excited-state
transition followed by the ionizing transition generating the
cation.

Compared to the model for fine- and hyperfine structure
effects in one-photon ionization presented in Paper I,10

description of the REMPI process requires considering two
additional effects: hyperfine effects in the neutral bound-bound
multiphoton transition and ionization of an anisotropic sample
of neutral molecules.

Anisotropy complicates the calculation of transition
probabilities and—in general—leads to interference effects
between different vibronic transition matrix elements,
resulting in a dependence of the observed ionization intensities
not only on the magnitudes but also on the phases of
these matrix elements. Hence, the prediction of transition
intensities is in general only possible with vibronic transition
matrix elements fully characterized by both their magnitude
and their phase. However, in the practically relevant cases
of S and O ionization transitions with the photoelectron
ejected from a molecular orbital with predominantly s-type
character, calculation of the relative populations of fine and
hyperfine levels in the cation is possible without such detailed
information.

We have shown the implications of our model using
the REMPI of molecular nitrogen via the a′′ 1Σ+g excited
state as a representative example. Our results may be used
to rationalize relative fs and hfs populations in molecular
cations produced by REMPI in subsequent spectroscopy or
dynamics experiments and may thus assist the interpretation of
experimental data. Moreover, they may serve as a theoretical
background to develop future fine- and hyperfine-state-
selective production schemes for molecular cations.
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