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Abstract
We report on imaging ofmicrowave (MW)magneticfields using amagnetometer based on the
electron spin of a nitrogen vacancy (NV) center in diamond.We quantitatively image themagnetic
field generated by high frequency (GHz)MWcurrent with nanoscale resolution using a scanning
probe technique. Together with a shot noise limitedMWmagnetic field sensitivity of 680 nTHz−1/2

our room temperature experiments establish theNV center as a versatile and high performance tool
forMW imaging, which furthermore offers polarization selectivity and broadband capabilities. As a
first application of this scanningMWdetector, we image theMWstrayfield around a stripline
structure and thereby locally determine theMWcurrent density with aMWcurrent sensitivity of a few
nAHz−1/2.

1. Introduction

Imaging and detectingmicrowave (MW)fields constitutes a highly relevant element for engineering of future
MWdevices as well as for applications in atomic and solid state physics. For instance cavity quantum
electrodynamics experiments with atoms [1, 2] and superconducting qubits [3, 4] or the coherent control of
quantummagnets [5] and quantumdots [6] are based onmanipulating quantum systemswithMWelectric or
magnetic fields. Precise control and knowledge of the spatial distribution of theMWnearfield is thereby
essential to achieve optimal device performance. Also,magnetic systems are known to exhibit a large variety of
collectivemagnetic excitations, including spinwaves [7] or excitations in frustratedmagnets [8, 9]. Imaging such
magnetic excitations on the nanoscale is a crucial step towards their fundamental understanding and the
development of new spintronics devices, such asmagnonic waveguides [10] or domainwall racetrackmemories
[11]. As a consequence, various techniques have been designed to imageMWelectric andmagnetic fields,
including scanning near fieldmicroscopy [12–14], micro-Brillouin light scattering [15], superconducting
quantum interference devices [16] or imagingwith atomic vapor cells [17–19] or ultracold atoms [20].With only
a few exceptions [15], most of these techniques however lack a nanoscale spatial resolution or are restricted to
operation in cryogenic or vacuum environments.

MWmagnetic field imaging using the electronic spin of a single nitrogen vacancy (NV) center in diamond
offers a promising alternative. TheNV center is an optically active lattice point defect in diamondwith a S= 1
ground statemanifold. Its atomic size, exceptionally long coherence times, optical initialization and readout of
the spin statemake theNV center an ideal sensor forDCmagnetic fields under ambient conditions [21–25].
Recently,magnetometry ofMWmagnetic fields has been demonstrated using aNV spin in bulk diamond [26],
with a resultingMWmagnetic field sensitivity of oneμT Hz−1/2. However, the bulkNV centers employed in
[26] severely restricted spatial resolution in imaging, and in particular do not allow for nanoscale imaging ofMW
nearfields, which remains an outstanding challenge forNV-basedMW imaging. In this letter, we address this
issue and demonstrate thefirst nanoscaleMW imaging using a scanningNVmagnetometer [27]. Our proof-of-
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concept imaging experiments were performed on a prototypicalMWcircuit—amicron-scaleMWstripline—
and yield nanoscale resolution combinedwith shot noise limitedMWmagnetic field sensitivites in the range of a
fewhundred nT Hz−1/2.

2.MWmagneticfield imagingwithNV centers in diamond

2.1.Detection principle
OurMWmagnetic field detection is based on the ability of theMWfield to drive coherent Rabi oscillations
between the 0∣ ñand 1∣  ñ spin-states of theNV center (figures 1(a)–(c)). Selection rules impose that within the
rotatingwave approximation (RWA), the transition 0 1∣ ∣ñ   ñ is only excited by a circularly polarizedMW
field .s Due to the largeNV spin splitting and the comparably weakmicrowave field amplitudes, the RWA
holds to an extremely good extent in the experiments described here. An arbitrarily polarizedMWfield resonant
with either the 0 1∣ ∣ñ  + ñor 0 1∣ ∣ñ  - ñ transition therefore leads to an oscillation of the population between
the two involved spin states, at a frequency B2 ,NV ,MWp gW = ¢  where B ,MW¢ is the (right-) left-handed
circularly polarized component of theMWfield in a plane perpendicular to theNV axis and NVg = 28 kHz μT−1

theNVgyromagnetic ratio.Measuring W by an appropriate experimental sequence (figure 1(b)) thus allows
one to directly determine the amplitude of the drivingMWmagnetic field in a circularly polarized basis
(figure 1(c)).

TheNV spinwe employ forMW imaging is located at the apex of an all diamond scanning probe
(figure 1(d)), obtained in a series of fabrication steps, including low energy ion implantation, electron beam
lithography and inductively coupled reactive ion etching [27]. In order to performMWmagnetic field imaging,
the diamond scanning probe is integrated in a homebuilt combined confocal (CFM) and atomic force
microscope (AFM) [27]. TheAFMallows scanning of theNV spin in close proximity to a samplewhile theCFM
is employed to optically read out theNV center spin state (figure 1(d)).

We demonstrate the performance of ourMWmagnetic field imaging on theMWstripline structure
illustrated infigure 1(d). The 2.5 μmwideMWstripline is patterned onto an undoped Si substrate coveredwith

Figure 1. (a)Energy levels of theNV spin in a staticmagnetic field B .z The 0∣ ñ state exhibits a higherfluorescence than the 1∣  ñ states
(bright and dark lightbulbs). (b)Experimental pulse sequence employed for themeasurement of NVRabi oscillation. Thefirst
(second) readout pulsemeasures thefluorescence F B ,MW( )¢- (barefluorescence F0) as described in the text. (c)Optically detected
Rabi oscillations of theNV spin, driven by a circular polarizedMWmagnetic field B ,MW¢- in a staticmagneticfield of 1.6mT
( 2 2.825MWw p = GHz). The black dots are experimental data and the blue solid line corresponds to afit with
F B F C CF B1 2 2 cos 2 e ,NV ,MW 0 0 NV ,MW

R( )( ) ( ) · ·g t pg t¢ = - + ¢ t t
- -

- where F0 is thefluorescence in the 0∣ ñ state,CF0 is the
amplitude and Rt the decay time of the Rabi oscillations. (d) Schematic representation of the combined confocal and atomic force
microscope. The all-diamond scanning probe containing theNV spin is scanned at a height d over the Pd stripline (yellow). The
magnetic field generated by the current IMW which passes through the stripline is detected by theNVmagnetometer. TheNV spin is
optically addressed using a homebuilt confocalmicroscope.
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300 nmof SiO2 by electron beam lithography and evaporation of 60 nmof Pd. AMWsource (Rhode&Schwarz
SMB100A) is used to drive aMWcurrent IMW with a frequency in theGHz range through the stripline. The
right-angled striplinewe employ thereby generates a highly inhomogeneousMWmagnetic fieldwith a
nontrivialfield distributionwhich is largely linearly polarized4. This arrangement is therefore ideal to
demonstrate spatial resolution andMWmagnetic field sensitivity of our imager.

In the following, we demonstrate imaging of the s--component of theMWmagnetic field
( 2 2.825MWw p = GHz) generated by the stripline. To that end, we tune the sensing frequency

2 2.87 GHzw p =- BNV zg- of the 0 1∣ ∣ñ  - ñ transition via a staticmagnetic fieldBz to the frequency
2MWw p of theMWfield (see figure 1(a)). In analogy, the s+-component of theMWmagnetic field can in

principle be adressed by changing the externalmagnetic field Bz such that the 0 1∣ ∣ñ  + ñ transition of theNV
center is resonant with the frequency of theMWfield to be imaged.However, we did not perform such an
experiment, as for the device under test theMWmagnetic field contains equal contributions of circular
polarizations andwould therefore not provide any polarization contrast in imaging (see footnote 4).

2.2. Isofield imagingmode
In thefirst imagingmode, we perform imaging of equi-magnetic field lines of constant amplitude B .,MW¢- For a
fixedMWpulse length ,0t the accumulated phase (pulse area) in the Rabi oscillation and thus the population
difference between 0∣ ñand 1∣- ñdepends on the localMWmagnetic field B MW,¢- (figure 1(b)–(c)).While
scanning theNV spin at a distance d over the stripline, one can thereforemonitor variations of theMWmagnetic
field via changes in theNV fluorescence F (figure 2).

In order to correct for fluorescence changes arising frompotential near field effects [27–29]while scanning,
we simultaneously record the bare fluorescence rate F0 of the 0∣ ñ state to yield the normalized differential
fluorescence, F F B F F .,MW 0 0[ ( ) ]D = ¢ --

Figure 2(a) shows FD recorded in the xy-plane inAFMcontact (corresponding to a height d of theNV spin
above the stripline)with 3000t = ns. Each bright fringe corresponds to an integermultiple of 2p of
accumulated phase of theNVRabi oscillations. Consequently, the bright fringes represent isofield lines of
B ,,MW¢- which are spaced by 2 120 TNV 0p g t m= . To avoid ambiguities in assigning the correct value of
B ,MW¢- to eachmeasured field line, we separatelymeasured B ,MW¢- for several reference lines. The references
for B 360, 600,MW¢ =- and 840 Tm are highlighted in yellow, orange and red, respectively infigure 2(a).

The versatility and stability of ourmicroscope allows us to further imageMWmagnetic fields in all three-
dimensions and in particular as a function of distance to the sample. To that end, we release AFM force feedback
and record theMWmagnetic field image by scanning the sample in a plane orthogonal to theMWcurrent
(figure 2(b)). In analogy tofigure 2(a), we attribute aMWmagnetic field amplitude to each isofield line as shown
infigure 2(b).

2.3. Fullfield imagingmode
While providing a fast and straightforwardmethod for nanoscale imaging ofMWmagnetic fields, ourmethod
for iso-field imaging suffers from limitations in regions of highmagnetic field gradients. This is particularly
appreciable near the edges of our stripline (figure 2(a)), where individualfield lines are hard to distinguish and

Figure 2.Three-dimensional isofield imaging of aMWmagneticfield in 3D: normalized differential fluorescence FD (see text)was
acquired (a) in the xy plane, at a distance d above the sample and the stripline and (b) in the zy-planewhich is indicated by the blue line
in a). Themeasurements were performed at a frequency 2 2.825 GHzMWw p = with an input power at the stripline of 7.5 dBm and
12.5 dBm, respectively. Thewhite dashed lines outline the stripline, whereas the dashed yellow, orange and red lines highlight
reference isofield lines for B 360, 600,MW¢ =- and 840 Tm , respectively. The scanning probe is outlined in light blue (with the
projection of theNVorientation into the respective plane depicted by the black arrow) and theMWcurrent direction is labeled by a
red arrow.

4
See supplementarymaterial for further details.
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identification of themeasured isofield lines becomes intractable. In order to overcome this limitation, we
extended our imaging capabilities to directly determine B ,MW¢- at each point throughout the scan (figure 3). For
this, wemeasuredNVRabi oscillations at each pixel in the scan range and determined B ,MW¢- by a sinusodial fit
to each of these traces. Figure 3(a) depicts the resulting image of B ,MW¢- measured above the corner of the
stripline imaged infigure 2(a). From this data, we also extract iso-field lines as highlighted by gray solid lines in
figure 3(a). For the quantitative analysis of our results, whichwe provide below,we further used this imaging
method to record linecuts of B ,MW¢- as depicted infigures 3(b) and (c).

Themeasured distributions of B ,MW¢- depends on the orientation ,( )j q and the position r x y z, ,( )=


of
theNV spinwith respect to theMWcurrent4 (see alsofigure 1). Assuming an infinitely thin stripline (t w ) in
vacuumwith a homogeneousMWcurrent density J oriented parallel to the stripline, theMWmagnetic field
profiles infigures 3(b) and (c) can be described by an analytical function B d J, , ,,MW ( )j q¢- , with d J, , ,j q as
free parameters.We note that our assumption of a homogenous current4 distribution is justified by the fact that
the skin-depth of Pd at 2.825GHz is larger than the stripline-width and is further corroborated by our numerical
simulations4. The resulting fits (blue lines infigures 3(b) and (c)) are in excellent agreement with the
experimental data (dark gray dots infigures 3(b) and (c)). In addition, we have numerically computed in afinite
element simulation theMWmagnetic field amplitude, assuming aMWcurrent in a stripline (width
w 2.5 mm= , thickness t= 60 nm) on 300 nmof SiO2

4. The bestfit to the experimental data (green lines in
figure 3(b) and (c)) is achievedwith parameters d J, , ,j q (green insets) that are almost identical to the analytical
fit parameters (blue insets). Finally, we also numerically determined the full two-dimensional distribution of the
MWmagnetic field in afinite element simulation (figure 3(d)), using the distance and orientation of theNV spin
determined infigure 3(b)4. Formost of the scanned area, the experimental data (figure 3(a)) are in excellent
agreementwith the simulation (figure 3(d)), which further establishes the reliability of ourmethod.

3. Spatial resolution andMWfield sensitivity

The accurate determination of theNV-to-sample distance d= 25± 5 nm that ourmethod provides is relevant
for various aspects of ourwork andNV-based sensing in general. First and foremost, d determines the spatial
resolution in imaging the sources ofmagnetic fields [27, 30], whichwe thus estimate to be 25 nm~ .Moreover,

Figure 3. Full, quantitative fieldmapping: (a)measured 2D spatial distribution of theMWmagneticfield amplitude B .,MW¢- (b), (c)
MWmagnetic field B ,MW¢- (dark gray dots) and topography (red solid line) recorded during two different linescans. The inset shows
the stripline outlined by the grey dashed line and the blue line depicts the direction of the respective linescan. Dark gray dots are the
experimental data obtained fromRabifits (see text) and the error bars correspond to the error of the Rabifits. The blue lines
correspond to thefit with the analytical function B d J, , ,,MW ( )j q¢- (see text), with thefit parameters and uncertainties4 being
indicated in blue. The green lines are thefits with a finite element simulation (see text), with thefit parameters shown accordingly. The
orientation of the scanning probe is the same as in figure 2(b) and is identical for both linescans, resulting in a difference of 90° for
the azimuthal anglej. Themeasurements have been performed at a frequency 2 2.825 GHzMWw p = with aMWpower of 7.5 dBm
at the stripline input. (d) Simulated 2D spatial distribution of theMWmagnetic field amplitude B ,MW¢- obtained by finite element
computation of a 50Ω stripline.
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the distance links theMWcurrent in the stripline to theMWmagnetic field seen by theNV spin and therefore
sets the sensitivity withwhich one can detect aMWcurrent in the sample.With d∼25 nmand themagnetic field
sensitivity determined below, wefind aMWcurrent sensitivity of ourNVmagnetometer of∼300 nA Hz−1/2 for
an infinitely thin, current-carryingwire. Note that for the data set presented infigure 3(c), wefind d= 64
± 5 nm, significantly larger than the value of d= 25± 5 nm,whichwe determine for all the other data presented
in this work.We attribute this discrepancy to contaminations on the diamond tip that has accumulated
throughout the course of our experiments4—removing these contaminants orworkingwith a fresh tip should
restore d to itʼs original value.

We now estimate the photon shot noise limited sensitivity of theNV spin determined by photonh =

C F2e ,NV 0 R( )pg t with F0,C and Rt as defined earlier (see figure 1 and 4). For theNV spin used in our

experiments, we find 680photonh = nT Hz−1/2 at 2.825 GHz4. It should be noted that in general the decay time

of the Rabi oscillation Rt is itself a function of the Rabi frequency (and thus of B MW¢ ) [31].While a general
expression for photonh is therefore difficult to obtain, it is instructive to consider the two limits of low and high

Rabi frequencies with respect to T1 ,2* where the decay time is given by TR 2*t = andT1, respectively. For typical
values ofNV centers in ultrapure diamond (T 1 s2* m~ andT 11 ~ ms) one thenfinds 1.4 Tphotonh m~ Hz−1/2

and 40photonh ~ nT Hz−1/2 respectively. Additionally, we note that while coherent detection ofMW fields

throughRabi oscillations is limited by ,Rt incoherent detection of thesefields is limited byT1 only. Performing
such incoherentMW imaging (also referred to as relaxation-imaging [32, 33])would thus allow us to reach the
highest sensitivities also in the limit of lowRabi frequencies. The sensitivity could be further enhanced by
improving the Rabi decay time Rt using isotopically enriched diamond [21, 34] and by optimizing the photon
collection efficiency using alternative tip geometries [35] or scanning probesmade from [111] oriented diamond
material [36]. In addition, theMWmagnetic field sensitivity can be estimated from the full, quantitative field
measurement (figure 3) and is given by B T ,meas ,MWh d= ¢- where B ,MWd ¢- is the smallestmeasurableMW
magnetic field, i.e. the fitting error to the Rabi fits, andT themeasurement time for each data point. For the
values extracted from figure 3we obtain a sensitivity of 15 Tmeash m= Hz−1/2,4 which is larger than the shot-
noise limited sensitivity quoted above. This discrepancy is explained by the fact that for themeasurement shown
infigure 3, we recorded full Rabi oscillations for each point of the scan, i.e.most of the data was taken for
evolution times τ, which do not yield optimalmeasurement sensitivities4.

4. Conclusion and outlook

In conclusion, we have established scanningNV center spins as a valuable resource to sensitively detect and
imageMWmagnetic fields on the nanoscale. Our results indicate an imaging resolution of 25 nm~ together
with a shot noise limitedMWmagnetic field sensitivity of 680 nT Hz−1/2, resulting in a sensitivity to the
generating currents of fewnAHz−1/2 all at frequencies∼3 GHz. Extending the bandwidth of detection to the
range above 20 GHz can be achieved by placing ourmicroscope in a sufficiently strongmagnetic field [37] and
would have profound impact for applications inMWdevice characterization, as currently available field imaging
techniques cannot operate in this frequency range [38]. It should be noted that detection ofmicrowave fields
throughRabi oscillations has also been implemented for 87Rb vapor cells [17–20]. Such devices operate with tens
ofμmspatial resolution over amm to cmdetectionwindow [39], compared to our nanoscale spatial resolution
over a tens ofμmdetectionwindow, and thus provide a complementary wide field imaging tool to ourNV
scanningmagnetometers. Finally, recent experiments have demonstrated that spinwave excitations in
nanomagnetic systems can be adressed viaMWNVmagnetometry [40]. There external DCmagnetic fields are
used to bring the spinwave excitation frequency into resonancewith theNV spin transition and thus enables a
detection of the spinwave amplitude via theNVRabi frequency. Combining this detection schemewith our
ability to imageMWmagnetic fields at nanoscale resolutionwould therefore form an exciting avenue that could
allow for real space imaging of spinwave excitation in nanomagnets [41] or skyrmion core dynamics [42].
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