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We investigate numerically the possibility to detect the spatial profile of Majorana fermions (MFs) by using
STM tips that are made of either normal or superconducting material. In both cases, we are able to resolve the
localization length and the oscillation period of the MF wave function. We show that the tunneling between
the substrate and the tip, necessary to get the information on the wave-function oscillations, has to be weaker
in the case of a superconducting probe. In the strong tunneling regime, the differential conductance saturates
making it more difficult to observe the exponential decay of MFs. The temperature broadening of the profile is
strongly suppressed in the case of the superconducting tip resulting, generally, in better resolution.
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I. INTRODUCTION

Majorana fermions (MFs) have been intensively studied
in different condensed matter systems during the last decade
[1-18]. In partial, these states are interesting due to their
exotic properties such as non-Abelian statistics, which open
the perspective of using them for quantum computing [19-24].
Experimental evidences of such states have been reported
in semiconducting nanowires with strong Rashba spin-orbit
interaction (SOI) brought in the proximity to an s-wave
superconductor (SC) [25-28] and in magnetic atomic chains
on SC substrates [29-31]. In contrast to transport experi-
ments [25-28], where one can only confirm the presence
of zero-energy states but not its localized character in real
space, the more recent scanning tunneling microscopy (STM)
experiments accessed the MF wave function showing that the
observed zero-energy states are localized at the chain ends
[29-31]. However, a systematic numerical study of the full
tomography of the MF wave function using STM techniques
is still missing. In this paper we focus on the tomography of
the MF wave function by modeling STM tips made either
of normal or superconducting materials and compare both
approaches.

We find that the differential conductance is always po-
sition dependent. Generally, in the weak coupling regime,
maximums (minimums) in the conductance correspond to
maximums (minimums) in the local density of states (LDOS),
which allows us to access the MF wavefunction properties such
as the localization length and the spatial oscillation period.
In the strong coupling regime, the differential conductance
saturates and never exceeds the quantized values Gy, =
(4 — m)2e?/ h[G, = 2¢*/h]for the superconducting (normal)
tip at low temperatures [32-34]. If temperature is high, the
thermal broadening becomes important, and the maximum
conductance is much lower than G, or G,, as well as in the
case when the coupling between the STM tip and the substrate
is weak. We also find two important advantages in using a
superconducting over a normal tip. First, the tunneling rate
necessary to get the information on the wave function has to
be smaller than for a normal STM tip. Second, the temperature
broadening is strongly suppressed. We finally discuss several
effects such as the resolution of the tip compared to the period
of the oscillations, and also various model regimes allowing
us to control and detect the properties of MF wave functions
in the most optimal regime.
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Our calculations are based on the nonequilibrium Green
function technique involving the Keldysh formalism. We
calculate the bare Green function of our substrate which is
dressed by the self energy of the tip via a nonperturbative
tunneling term [35,36]. Next we get the full Green function
of the system which allows us to derive a general formula for
the current and the higher cumulants. Importantly, this model
is quite general and could be used to take into account, for
instance, the Coulomb interaction in the nanowire [36,37].

The paper is organized as follows. In Sec. II, we present our
model. In Secs. IIl and IV, we study the detection using a STM
tip made of, respectively, normal metal and superconducting
metal. Finally, we discuss some additional aspects of the
detection in Sec. V.

II. MODEL

Our setup consists of two parts, namely, the substrate host-
ing MFs and the STM tip (either in normal or superconducting
state) that allows one to probe the LDOS of the substrate. As
a substrate we consider a one-dimensional Rashba nanowire
aligned along the x axis brought into contact with an s-wave
superconductor in the presence of an external magnetic field
applied in the x direction (see Fig. 1). Numerically, we describe
the nanowire in the tight-binding model framework. The
corresponding Bogoliubov-de-Gennes Hamiltonian is written
in the Nambu basis as
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where 1% = (¢;,¢’W;,¢"pj,w —¥j+),N is the number of
lattice sites, and the Pauli matrices o; (t;) act on spin (particle-
hole) space. The operator W;,a creates a particle of spin o at

site j. Here, u is the chemical potential, 7 the hopping strength,
A the s-wave superconducting paring amplitude assumed to
be induced by proximity effect,! « the strength of SOI, and

! Alternatively, one can take into account the bulk s-wave supercon-
ductor directly in the self-energy and, as a result, in the nanowire
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s-wave superconductor

FIG. 1. Schematics of the setup: One-dimensional Rashba
nanowire is aligned along the x axis and placed on top of an s-wave
superconductor. An external magnetic field V, is applied in the x
direction. A current via the STM tip, which is weakly coupled to the
substrate with the tunneling strength I', allows one to confirm the
presence of MF states and, in addition, to get information about their
spatial profile.

V, is Zeeman energy. In the topological regime, such chains
support zero-energy modes localized at the end of the nanowire
[3,4]. In our formalism we can confirm the presence of MFs
by calculating the LDOS at zero energy at a given position j
along the nanowire (see inset of Fig. 2 and the Appendix A)
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where the Green function of the substrate alone is defined as
Gg,;(a)) = +i8 — H, with § being an infinitesimal which
allows us to invert this matrix. Generally, the localization
length of a MF is inverse proportional to the gap in the spectrum
and depends on system parameters [20,38]. Importantly, we
choose the length of the nanowire such that two MFs do not
overlap with each other to avoid any possible splitting [39,40].

The Hamiltonian for the superconducting STM tip is written
as

Hip =Y &V Wio + Y (AW Wl +He), )
k,o k

with & = k?/2m — s and ¥, , being the annihilation opera-
tor of an electron in the tip with spin o and momentum k. The
normal metal STM tip is obtained by setting A, = 0. The tun-
neling Hamiltonian between the tip and the nanowire is written
as Hr =, \Ilgfj Ve’ + H.c., where ‘i’,j corresponds to the
Nambu spinor composed of electron operators of the STM tip.
In what follows, we consider that the tunneling occurs between
the tip and the site j of the nanowire for which 7; > 0. The
voltage difference between the tip and the substrate is included
in the tunneling parameter via a Peierls transformation 7; =

Green function [39]. This will allow one to introduce the proximity-
induced gap straightforwardly. For simplicity, in our simulations, we
work with the effective superconducting Hamiltonian. Of course, if
the coupling between the nanowire and the substrate is strong, the
MF wave function will leak into the bulk superconductor, and, thus,
the STM signal will be finite also over the substrate.

PHYSICAL REVIEW B 94, 035417 (2016)

§ — =0.2
o — =01
— =0.02

0 10 20 30 40 50 60
Site

FIG. 2. Differential conductance (normalized to G, in what
follows) obtained with the normal tip at zero bias as a function
of position for three values of the transmission I' at 1/kzT = 200
and when the substrate is a N = 60 sites length in the following
configuration: & = 0.2, = 2,V, = 2,A = 1 (in units of f = 1). The
spatial conductance maps allow one to resolve both MF localization
lengths and the oscillation period of MF wave functions. For
comparison, in the inset, we show the zero energy LDOS as a function
of the position for two values of . The stronger the SOl is, the more
localized are the MFs.

7;7.'=V" with ¢ denoting the time.” Since the total Hamiltonian

is quadratic in the tip degrees of freedom, we can integrate
out these modes, such that the effect of the tip is taken into
account in the self-energy ¥ z(w) that dresses the bare Green’s
function of the nanowire G3'(®) = Goz(w) — Eg(w). The
total retarded self-energy can be written in the space of sites
as [Zr(@)]ii = f)i, gr(w) where the components are nonzero
only at the site i = j. The on-site retarded self-energy of the
tip is given by ¥; z(w) = I';7.8r(w)7,, Where gg(w) is its
retarded Green function and I'; = 7'[1)(0)|fj|2 the tunneling
rate. Using the total Green function and the self-energy of the
tip, we calculate the current using the Keldysh formalism (see
Appendix B and Ref. [36]),

e T dw . - N .
Iye = ﬁTr{rz/ Z_[GR(CU)EK(C‘)) + GK(U))EA(CU)]}~
oo 2m
4)

The corresponding differential conductance is computed as
G =01, /9V.

III. NORMAL METALLIC STM TIP

First, we explore how the spatial profile of the differential
conductance at zero bias depends on the tunneling rate I" in the
case of a normal metallic STM probe, see Fig. 2. Importantly,
the general feature of the Majorana wave function is clearly
captured for all values of I'. Generally, the stronger I', the
larger is the conductance, see Fig. 3. Atlower temperatures, the
maximum of conductance comes close to G,, [33,34] if the tip
is connected at the end of the wire where the amplitude of the

2We checked that applying a symmetric bias, namely +V /2 on the
tip and —V/2 on the substrate does not affect the results for the
differential conductance.
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FIG. 3. Differential conductance at zero bias obtained with the
normal tip as a function of the coupling for the first maximum of
the wave function for various temperatures (colored points) and
for the second maximum at low temperature (crosses). At a given
temperature, d1/dV exponentially approaches the quantized value
as the I' is increased. The G, is reached faster at lower temperatures.
Inset: Differential conductance at zero bias for the tip connected at
the end of the nanowire and as a function of the temperature for two
values of the coupling strength. At a given I', dI/dV exponentially
approaches the quantized value as the temperature is decreased. The
G, is reached faster at large I' values. The substrate is in the same
configuration as in Fig. 2.

wave function is maximal and, thus, the coupling between the
MF and the tip is the strongest. However, we note that the value
G, predicted for transport via MFs is never reached even if we
work with wires that are much longer than the MF localization
length such that the MFs do not hybridize [41]. To observe
the quantized values, the tunneling should be of the order of
the superconducting gap, which is not the regime of a STM
spectroscopy experiment, where the tip should not perturb
the system to be measured. The differential conductance also
crucially depends on the temperature 7. If I" is small compared
to T, there is a strong effect due to temperature broadening. By
decreasing T, we get exponentially close to the value G, for
the same set of parameters, see Fig. 3. Generally, the smaller
the tunneling rate I is, the higher is the saturation temperature,
see the inset in Fig. 3. It is also more difficult to reach G, if
the tip probes one of the next maximums, where the weight
of the MF is smaller. Along the same lines, the saturation is
achieved faster when the wave function is more localized and
each of the maximums has more weight.

For small values of I", the conductance maps could be used
to extract the localization lengths by direct fitting [31] (see
Appendix C). In contrast to that, in the strong coupling regime,
G saturates at the quantized value G, and the conductance
profile does not replicate the LDOS profile anymore. For
example, the decay is no longer purely exponential. However,
the main features are still well captured. For example, in Fig. 2,
there is a characteristic feature at the site j = 54 resulting
from the interplay of two exponential decays, which can be
identified both in the LDOS and in the differential conductance
maps. At the same time, the period of the MF wave function
oscillations, determined by the Fermi wavelength, is perfectly
captured at all I' values and in excellent agreement with the
period extracted from the LDOS.
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FIG. 4. The same as in Fig. 2 only for the superconducting tip
and at a bias Vijos = Agp. Again, the differential conductance spatial
maps provide information about the MF localization length and the
period of oscillations. In contrast to the normal tip data, for large
values of I, the signal flattens at the wire ends.

IV. SUPERCONDUCTING STM TIP

Next, we look at the differential conductance maps obtained
with the superconducting tips. Our formalism is valid only
around and above Agp and not in the middle of the gap where
the Andreev reflection plays an important role. In what follows,
for numerical convenience, we put Ay, = A /10, however, we
checked that using larger values of Ay, does not affect the
results discussed below.

Similarly to the normal tip, the superconducting tip mea-
surements (at Vyias = Ayp) give access to the localization
length of MFs and the period of their oscillations in the
weak tunneling regime (small I'), see Fig. 4. However, if I is
increased the amplitudes of oscillations tend to be smoothened
and the maximum of conductance G,;. = (4 — 7)G,, is about
to be reached [32]. In other words, a spatial profile of
the differential conductance, corresponding to the MF wave
function, first stays almost constant and then drops abruptly.
We note that even if the tip is connected to the first site,
the conductance is only slightly smaller than G, for the
same reasons as was discussed for the normal lead (i.e.,
finite-size effects, finite temperature, and large tunneling
rate). Generally, the differential conductance is still position
dependent with the largest signal detected at the MF wave
function maximums, see Fig. 5. Importantly, the quantized
value for the superconducting tip is reached at much smaller
values of I' than the case for normal tips. For example, if the
tip is placed above the first maximum, one needs a coupling
strength of the order of 2—3% of the gap size instead of the 20%
of the normal metal tip. As the tunneling strength is increased
further, the differential conductance maps start to develop the
plateau in the signal at the wire end, so it gets more difficult
to read out the oscillation period, see Fig. 4. Obviously, the
competition between the period of the oscillations and the
tip resolution plays an important role here. Indeed, we would
still observe the oscillations if their period is larger than the
tip size (one atom in our case). For example, a differential
conductance could approach G, for all the maximums but
still be zero in between, which was never the case for a normal
probe, see Appendix D. The MF localization length and period
of oscillations depend on system parameters and can be tuned
by changing, for example, magnetic field or chemical potential.
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FIG. 5. The differential conductance as a function of I' for the
first three maximums obtained at Vi, = Agp for 1/kpT = 200.
In contrast to the normal tip, the quantized value is reached for
smaller I', compare with Fig. 3. Again, the saturation level is
reached faster at the first maximum. As shown in the inset, where
we plot differential conductance for the tip connected to the first
site, the quantized conductance could be reached only at much
lower temperatures. The substrate is in the same configuration as
in Fig. 2.

We also note that the quantized value G, is reached only at low
temperatures, see the inset of Fig. 5. At higher temperature, the
conductance also saturates at some value which depends on T
as shown in Fig. 6. Importantly, we find that the differential
conductance always gets exponentially close to this value and
this behavior is independent of the transmission coefficient. It
can be explained by the fact that the temperature broadening
is suppressed in a superconducting STM tip in stark contrast
to the normal STM tip, where the signal was always strongly
affected by temperature effects. Here this is no longer the
case; a quantized peak develops even in a weak tunneling
regime.

In addition, unlike the detection with a normal tip where
the MF is detected symmetrically around zero bias with a
certain width depending on parameters of the system such
as the tunneling or disorder for instance, the detection with
a superconducting tip occurs at Vpjas = Agp as mentioned
previously, but the shape of the peaks is no longer symmetric.
As we can see in Fig. 7, if the voltage is below Ay, there is
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FIG. 6. Differential conductance for the superconducting tip
probing the first site at Vi, = Agp as a function of temperature 7.
The smaller I' is, the smaller is the achieved saturation value. All
parameters are the same as in Fig. 4.
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FIG. 7. The same as in Fig. 4 for the superconducting tip
probing at the end of the nanowire. The maximum of the differential
conductance at the bias equal to Ay, is close to G [32,42].

no current. When the bias reaches Agp, a current starts to flow
between the substrate and the tip resulting in a peak. If Vi,
is increased further, the differential conductance decreases
smoothly until it reaches small negatives value [32]. For further
comparison between the two kinds of detection we refer to
Appendix A.

V. DISCUSSIONS AND CONCLUSIONS

We note that our model based on Rashba SOI and
uniform magnetic field is equivalent to the model without
any SOI but with a spatially rotating magnetic field [43]
produced either externally by local nanomagnets or intrin-
sically due to RKKY interaction between localized magnetic
moments[10,12-14,44,45]. Thus, our results can be directly
applied to the latter systems, for example, to magnetic atom
chains on superconducting surfaces [29-31]. We have checked
numerically that using such a model does not change any of
the results for the differential conductance discussed above.
In Appendix E, we provide additional simulations of strong
and weak SOI regimes. We also note that the STM tips can
also be used in a similar way to extract the information
about the spatial profile of other than MFs types of bound
states, such as fractional fermion states or Andreev bound
states [46—49].

It is important to point out that the LDOS of the substrate
is generally affected by the tip. In the case of the normal STM
tip and weak tunneling limit, the LDOS is unchanged but the
amplitude of the MF wave function gets slightly suppressed
as the MF tends to leak out into the normal metal [8,38]. For a
large value of the tunneling amplitude, the tip becomes a part
of the substrate. As a result, one MF effectively disappears
by extending into the tip, but the MF at the opposite end
remains unchanged. In the case of a superconducting probe,
the behavior is essentially the same if the bias between the tip
and the substrate is equal to or larger than Agp,.
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APPENDIX A: 3D PLOTS AS A COMPARISON BETWEEN
DENSITY OF STATES AND DIFFERENTIAL
CONDUCTANCE

In Fig. 8, we have summarized the main results of our
paper where we plot (a) the LDOS as a function of energy
and position as well as the differential conductance as a
function of the bias voltage and the position obtained with

(a) 10

Energy

Vbias/A ¢.15

(c) 05

allav
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FIG. 8. (a) LDOS as a function of the position and energy for u© =
2,V, =2,A = 1,a = 0.2. Two zero-energy modes rise at the end of
the nanowire. (b) Corresponding differential conductance obtained
with the normal STM tip as a function of the bias and the position
along the nanowire forI' = 0.1and 1/ kg T = 200. (c) Corresponding
differential conductance obtained with the superconducting STM tip
as a function of bias voltage and position for I' = 0.1 and 1/k3T =
200.
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(b) the normal STM tip and (c) the superconducting STM tip.
Both measurements can be used to reconstruct the MF wave
function. The important difference concerns the heights of the
peak in the differential conductance, which are generally more
pronounced in the case of the superconducting case for several
reasons, as was discussed in the main text.

APPENDIX B: GREEN’S FUNCTION METHOD TO
CALCULATE THE CURRENT AND THE CONDUCTANCE

In this Appendix, we calculate the current flowing between
the tip and the substrate using the Keldysh formalism. To do
so, we need to write down all components of the total Green
function of the system and the self energy of the tip in the
Keldysh space. In order to obtain the Keldysh components of
the self-energy, we need to know all the components of the tip
Green function in this space. The retarded Green function of
the tip is already well known in the literature [50]. Then, it is
pretty straightforward to get the advanced one g4(w) and the
Keldysh one gk (w) using the following expressions:

ga(w) = (Gr(®@)) (B1)

gx(w) =1 =2f,)(gr(®) — ga(w)), (B2)
where f,, is the standard Fermi-Dirac distribution function
(note that the temperature dependence enters only here). Using
the expression of the self energy of the main text combined
with Egs. (B1) and (B2), we are able to get all the components
of the self-energy tip in the Keldysh space in the case of normal
metal

=N ] 1 0
SN (@) =M1 (0 1) (B3)
E¥(w) = —2iT;1
2 <tanh(,8(a) - V)/2) 0 )
0 tanh(B(w + V)/2))’
(B4)

where 1 is the unity matrix in the spin space. The case
of superconducting tip is a bit more tricky because of the
off-diagonal terms. However, we are not interested in the
Andreev reflection processes which can occur inside the gap
of the tip but more specifically on what happens close to
the gap when V ~ Ay;,. We can thus set these off-diagonal
terms corresponding to the Andreev processes to zero [32].
Hence, we can write down the Keldysh components of the
superconducting self energy

- Xgialw—V) 0

Z1S'e/A(“’) =I1e® < " 0 Xpalw+ V))
(BS)

. Xx(w—V 0
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X5 (w) = —2i%tanh(ﬁw/z). (B8)

Finally, we can get the components of the total Green
function using the following expressions

GE/IA(“’) = GSI;/OA(w) — Zr/a(w) (B9)

Gk (@) = Gog (@) + Gr(w) Xk (@)G a(w), (B10)

where Gox(w) = 0 because of the properties of the rotated
Keldysh basis. Now that we have all the components of the
total Green function and the self energy of the tip in the Keldysh
space, we can calculate the current flowing from the tip into
the substrate. The density of charge reads

ap 1 -
— = —[p,H], B11
” i[’O ] (B11)
and thus the current can be written as
10
[=—_-2° (B12)
2 0t

Due to the fact that we use the extended Nambu spinor, we
add a one half in front of the current density in order to count
only once each contribution. So, in our case, the current from
the tip into the lead is equal to

I(l) = %[Z \I’]]:Tz‘i’k,ljl]‘(l‘)] = lz Z \I}Zeikjtzt}(t)lpj_
k k
(B13)

By calculating the partition function of the total system, adding
acounting field and taking derivative of it, we are able to extract
the current in terms of the total Green function of the system
and the self energy of the tip (this model is well known and
has been used in Refs. [35,36] for instance). The final answer
for the current reads

+o0
(I(t)) = %Tr{tzf dr'[Grt,HE 1)

oo

+ GK(t,t’)iA(t’,t)]}. (B14)
In the stationary regime, we can write down immediately the dc
current flowing between the tip and the substrate by taking the
Fourier transform of Eq. (B14) and returning to the physical
units

e T dw . - ~ -
L = —Tr{‘l.'z/ E[GR(w)EK(w) + GK(CU)EA((U)]}.

2h oo
(B15)
The differential conductance reads
G(vy = e (B16)
=5y
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FIG. 9. LDOS (red line) and corresponding differential conduc-
tance at zero bias (black line) obtained using a normal metal STM
tip as a function of position for I' = 0.05 and 1/kzT = 200. The
substrate is in the following configuration: u = 2,V, = 2,A = 1,and
a=0.2.

APPENDIX C: MATCHING LDOS AND THE
DIFFERENTIAL CONDUCTANCE IN THE
TUNNELING LIMIT

In Fig. 9, we have plotted the LDOS and the corresponding
differential conductance in the tunneling limit (I" = 0.05).
For such values of I', the conductance maps exactly the MF
wave-function density profile and could be used to extract the
localization lengths. As noted in the main text, this is not the
case in the strong tunneling limit.

APPENDIX D: EFFECT OF THE PERIOD OF THE
OSCILLATIONS ON THE DIFFERENTIAL
CONDUCTANCE

To manipulate the period of the oscillations, we can change
the Fermi wave vector k¢ by tuning i (another way would be to
tune the magnetic field for instance). In Fig. 10, we have plotted
the LDOS and the differential conductance obtained with
normal metal and superconducting probes for the chemical
potential u = 1/2.
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FIG. 10. Differential conductance at zero bias (Vyias = Agip)
obtained with a normal metal (superconducting) STM tip as a function
of position in the strong coupling regime I' = 0.2 and 1/ kT = 200.
The substrate is in the following configuration: u = 1/2,V, = 2,A =
1, and ¢ = 0.2. The inset shows the LDOS.
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FIG. 11. Differential conductance at Vyias = 0 (Vyias = Ayip) Ob-
tained with a normal metal (superconducting) STM tip as a function
of position in the strong coupling regime I' = 0.2 and 1/kzT = 200.
The substrate is in the strong SOI configuration: t = 5,4 = 10,V, =
2,A =1, and o = 3.5. The inset shows the LDOS.

The differential conductance in the case of a normal metal
probe, as expected, is in good agreement with the LDOS.
Generally, the differential conductance catches perfectly the
oscillation period. In the case of a superconducting tip, the
saturation plateau is absent, as the signal periodically drops
almost to zero. What is important is the size of the tip compared
to the oscillations period. Experimentally, MF wave functions
have a large period of oscillations because the SOI in InAs or
InSb is believed to be weak, thus, the saturation level should
not be achieved. Alternatively, one can use a nanowire without
SOI butin the presence of rotating magnetic field. In that case it
is possible to tune the strength and the period of oscillations in
order to have such a substrate with large localization length and
large oscillation period, corresponding to the distance between
magnets [43,51-53].
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FIG. 12. Differential conductance at Vyips = 0 (Vyias = Ayip) Ob-
tained with a normal metal (superconducting) STM tip as a function
of position in the strong coupling regime I' = 0.2 and 1/kzT = 200.
The substrate is in the weak SOI configuration: r = 5,4 = 10,V, =
2,A =1, and ¢ = 1.2. The inset shows the LDOS.

APPENDIX E: STRONG AND WEAK SPIN-ORBIT
REGIME CONFIGURATIONS

In this section, we perform the simulations for the param-
eters in the weak (o = 1.2, Egp = «?/t ~ 0.3A) and strong
(¢ =3.5,E50 = a*/t ~2.5A) SOI regimes with ratios be-
tween key parameters close to the experimental settings: ¢ =
5,0 =10,V, =2,A = 1. In both configurations, A/t = 0.2
and the temperature is 1/kg7T ~ 200 (in units of A). From
results represented in Figs. 11 and 12, we conclude that the
presence of spatial oscillations, temperature dependence, and
saturation of conductance is a general feature of MF nanowires
and can be observed with both metallic and superconducting
STM tips.
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