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Z, parafermions are exotic non-Abelian quasiparticles generalizing Majorana fermions, which correspond to
the case d = 2. In contrast to Majorana fermions, braiding of parafermions with d > 2 allows one to perform an
entangling gate. This has spurred interest in parafermions, and a variety of condensed matter systems have been
proposed as potential hosts for them. In this work, we study the computational power of braiding parafermions

more systematically. We make no assumptions on the underlying physical model but derive all our results from
the algebraical relations that define parafermions. We find a family of 2d representations of the braid group that
are compatible with these relations. The braiding operators derived this way reproduce those derived previously
from physical grounds as special cases. We show that if a d-level qudit is encoded in the fusion space of four
parafermions, braiding of these four parafermions allows one to generate the entire single-qudit Clifford group
(up to phases), for any d. If d is odd, then we show that in fact the entire many-qudit Clifford group can be

generated.
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I. INTRODUCTION

Quasiparticles that live in two-dimensional space are de-
scribed by the abstract theory of anyons [1,2]. Of particular in-
terest are non-Abelian anyons, those whose exchange statistics
are noncommutative. These exchange statistics only depend on
homological properties of the trajectory of a particle, but are
insensitive to small deformations. This led to the idea of using
them to perform topological quantum computations [3-5].

Quasiparticle modes in one- or two-dimensional condensed
matter systems can carry (projective) non-Abelian statistics,
too, allowing one to identify them with non-Abelian anyon
models. Most prominently, the braiding statistics of localized
Majorana zero modes are described by the Ising anyon model.
Parafermion modes are generalizations of Majorana fermions
whose braiding behavior is more complex.

The interest that parafermions have attracted in the con-
densed matter community in recent years [6—26] is due in part
to the fact that they are computationally more powerful than
Majorana fermions—they allow one to perform an entangling
gate through quasiparticle braiding [10]. While the obvious
encodings of a qubit using two or four Majorana fermions
do not allow one to perform an entangling gate, there is a
proposal to encode two qubits in six Majorana fermions that
indeed allows one to perform a CNOT gate [27]. However, this
proposal is not known to be scalable to more than two qubits.

Proposals to physically realize parafermions typically
require strong electron-electron interactions and thus often
invoke edge states of fractional quantum Hall systems. In
this work, we are completely agnostic about the underlying
physical system and derive all our results from the algebraic
relations that define parafermions. We want to study more
systematically what quantum operations can be performed
by braiding parafermions. To this end, we first study what
representations of the braid group are compatible with these
algebraic relations. For Z, parafermions, we find a family of
2d representations. The braiding behavior described by these
2d representations reproduces and generalizes that which has
previously been derived from physical grounds for particular
realizations of parafermions.
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We then show that these 2d representations allow one to
generate the single-qudit Clifford group (up to global phases)
through parafermion braiding (for any ), and the many-qudit
Clifford group if d is odd. Finally, we briefly discuss the
extension of the Clifford group to universality.

Metaplectic anyons are a generalization of Majo-
rana fermions that is different from, but related to
parafermions [28]. Their computational power has already
been studied in-depth and some of them allow for universal
quantum computation [28-31].

The rest of this work is ordered as follows. In Sec. II
we introduce parafermions and their commutation relations,
as well as the parity operator for a pair of parafermions.
Representations of the braid group that are compatible with
these commutation relations are studied in Sec. III, and the
phases that can be obtained by braiding of two parafermions
under these representations are derived in Sec. IV. In Sec. V
we consider encoding a logical qudit into the fusion space of
four parafermions and study the gates that can be performed on
a single logical qudit. Two-qudit entangling gates are studied
in Sec. VI. Finally, we discuss our results in Sec. VII and
briefly discuss the extension of the Clifford group to universal
quantum computing.

II. PARAFERMION AND PARITY OPERATORS

For a totally ordered set {i}, Z, parafermion operators y;
are defined through the relations

S4‘%11(16—]‘)7/](]/], , (D

¥ =1, ynn=0
with @ = ¢*"/4 (the dependence of w on d will be implicit
henceforth).

The nonlocal commutation relations of parafermions can
be obtained from the local commutation relations of d-
dimensional generalizations of the Pauli matrices X and Z
and a nonlocal transformation. Indeed, let X and Z be defined
over the relations X =29=1 and ZX = wXZ, and let
X; and Z; denote the corresponding operators acting on the
ith of n d-dimensional qudits. Then, the operators of 2n
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parafermions can be obtained from the Jordan-Wigner-like
transformation [6,32]

i =|T]Xi |2, va=""|T]X;|2. @

J<i J<i

In order to assess the potential of parafermions for topolog-
ical quantum computing, we need to find the set of unitaries
that can be performed by braiding them. That is, for 2n
parafermions we need to find a unitary representation of the
braid-group Bj,. The braid group

- 02,—1) (3)

is generated by the 2n — 1 counterclockwise transpositions
o;. Here, 0; exchanges elements i and i + 1. These satisfy
“far-commutativity”

By, = (01,02, ..

0,0; = 0,0; 1f|l — ]| > 1 (4)
and the Yang-Baxter equation
ifli —jl=1. 5)

O'iO’jO’,' = O'jO'iCTj

Note that (y;)*(yi41)' commutes with vi € {vi,Vip1}iff k +
! = 0 (mod d). Let us thus define the parity operators

Ai = o Pyl ©)

The prefactor ensures that (A;)? = 1 for any d. The parity
operators satisfy

A,‘Aj = AjA,‘
AN = TONA i i —jl=1. (7

ifli—jl>1

So the parity operators A; are local operators. The phases of
their eigenvalues can be interpreted in terms of local physical
quantities, such as fractional charge, where the interpretation
will depend on the specific model.

III. BRAID GROUP REPRESENTATIONS

Let U; denote the unitary representation of o;, referred to
as the braid operator. Since U; exchanges y; and y;;, we
want it to commute with all y; ¢ {y;,¥i41}. Given the defining

relations Eq. (1), only powers of y; yitrl commute with all
v;j ¢ {vi,vi+1}. Up to prefactors, these are equivalent to powers
of A;. Since (A;)? = 1, there are only d different powers of
A;. The unitary

1
U =— mAim 8
\/EZC( ) 3

is thus the most general ansatz for the braid operator. Note that
this ansatz automatically satisfies far-commutativity.

Evidently, we have [A;,U;] = 0. From Egs. (7) and (8), it
is also obvious that

meZd

[AiAiy2,Uit1] =0. 9

This means that for 2n parafermions {1,...,2n}, the
overall parity AjAsz---Aj,—1 is conserved by all braids
{Ui,...,Up—1}.
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While far-commutativity is automatically satisfied by our
ansatz, unitarity U; U;r = 1 imposes the constraint

Vr€Zy: Y Cmlmir =5r0d, (10)
I‘nEZd
while the Yang-Baxter equation
UiUin U = Ui Ui Ui (1)
leads to the constraint
Vk,m € Zg : Z CrCh—rCp@™ = Z CrCrCmyr @ . (12)
reZq relq

Similar equations have been derived in Ref. [33].
We note that the mappings

cn > ey, (13)
cn > @"cy, (14)

and
Cn > Cy (15)

all leave conditions (10) and (12) invariant. Each solution to
Egs. (10) and (12) thus implies an entire family of solutions.
In order to fix the overall phase, we set ¢y > O.

A. Small values of d

In the following, we want to find solutions to Egs. (10)
and (12) for different values of d. For d = 2, it is easy to
see that there are exactly two solutions (cy = 1, ¢; = %i),
leading to the well-known braiding operators U; for Majorana
fermions [34,35]. When d = 3, we show in Subsec. 1 of the
Appendix that there are exactly six solutions. For d = 4, we
give an extensive set of solutions in Subsec. 2 of the Appendix.
This set is continuous, even when fixing the overall phase
through the requirement ¢y > 0. A discrete subset of these
solutions was found in Ref. [33].

B. Arbitrary values of d
A solution for arbitrary d is given by

Cn = wm(tn+d)/2 . (16)

It is straightforward to verify Eqgs. (10) and (12). Note that the
exponent can become half-integer if d is even. We also note
that this solution satisfies ¢, -4 = ¢y, S0 using elements of Z,
as indices is unproblematic.

The transformations Eq. (14) and Eq. (15) map the solution
in Eq. (16) to the 2d solutions

Cn = Cl):i:m(erZFer)/Z , (17)
with r € Z,. The 2d solutions are specified through different
choices of r and . By comparing the values of ¢; and c;, one
can easily show that these 2d solutions are indeed all distinct,
except for d =2, where there are only the two solutions
discussed in Sec. III A. For d = 3, these 2d solutions are all
possible solutions, while for d = 4, they form a discrete subset
of a continuous set of solutions.

For the rest of this work, we choose the sign =+ in Eq. (17)
to be 4. From Eq. (8), we see that choosing a different sign
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merely corresponds to exchanging U; and Uf, i.e., exchanging
clockwise and anticlockwise braids. When studying how the
braiding operator U; in Eq. (8) with the solution in Eq. (17)
acts on the parafermion operators y; and y;;, by conjugation
(it commutes with all other parafermion operators), we find
the simple transformation law

Vi > 0 Vit
Tyl (18)

For even d, this transformation law was previously derived
from physical grounds in Refs. [10,11].

1
YVi+1 > @

IV. BRAIDING OPERATORS
From Egs. (2) and (6) we find

Ay =X, Ay=27Zl,. (19)

l

Since the spectrum of the generalized Pauli operators is given

by {1,w, ...,0%"!}, so is the spectrum of the parity operators.
For the parity operator A;, we can thus find an eigenbasis
{10);,11);, ...,ld — 1);}, where

Ailm); = " |m); . (20)

Since the braiding operator U; commutes with A;, it is also
diagonal in this basis. We find

Ui = 7 D en(A)"

meZy

Z chm o | 1K) (kl;

Z meZd
= > &l (K], . @1
keZy

So the phases we obtain through counterclockwise braiding of
the two parafermions are given by the inverse discrete Fourier
transform (DFT) of the coefficients c¢,,. We have introduced
the notation ¢ = \/LE > ez, Cm "™ to denote the inverse DFT,
while we use ¢, = «/LZ Zmezd ¢mw ¥ to denote the DFT.

The sequences c¢,, in Eq. (17) are so-called Frank-Zadoff-
Chu (FZC) sequences [36-38], used in modern cellular mobile
communication systems for their favorable autocorrelation
properties. They are preserved under the DFT up to a prefactor
and taking the complex conjugate. Indeed, we find

Ck f Z CUm(m+2k+2r+d)/2

WLEZA

(m—k)(m+k+2r+d)/2
f Z

WLEZJ

_k(k+2r+d)/2f Z wm(m+21+d)/2

meZy
= CiCo , (22)

where 50 — wfr(r+d)/2+d(17d)/8.
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The braid operator U; is thus given by

Uy =& Y alk)ik

kEZt/

— EO Z w*k(k+2r+d)/2|k) (k|1
kGZd

~ Z w—(k+r+d/2)2/2|k) (kl, . (23)
keZqy

Braiding operators of this form have been derived from
different physical models [7,10,11,13,25].

V. LOGICAL QUDITS

The d states {|k);} defined through Eq. (20) form a basis
of the fusion space of the two parafermions y; and y;41,
corresponding to different eigenvalues of their parity operator
A;. A d-dimensional qudit is thus naturally associated with
each pair of parafermions. Each parafermion asymptotically
adds a factor +/d to the ground-state degeneracy, which by
definition gives its quantum dimension.

However, powers of the the braid operator U; given in
Eq. (23) are the only gates that can be performed locally on
this qudit. In particular, it is not possible to evolve from a state
|k); to |I); with k £ [. Following the standard procedure for
Majorana fermions [5,39], we thus encode one qudit into the
fusion space of four parafermions.

For concreteness, let us consider the set of parafermions
{1,2,3,4}. Their joint fusion space has dimension d?. For
computational purposes, we restrict to the d-dimensional
subspace for which AjA3; =1, i.e., the states of the four
parafermions with neutral parity. We can act on this space
by the group of unitaries generated by U, U,, and Us. Recall
that all of these commute with A; A3 and hence preserve the
computational subspace.

The computational subspace of states with AjAsz =1 is
spanned by the logical states {|0);,...,|d —1);}, where
k), = |k); ® |d — k);. We can introduce generalized Pauli
operators X and Z acting on this subspace which are defined
over their matrix elements

(kLX) = Skie1,

(kILZID, = 8- (24)
(We denote addition modulo d by é.) Let us introduce the
superoperator 7 to denote the restriction to the computa-
tional subspace. Then we have 7 (Ay) = Z, T(A,) = X, and
T(A;) = ZT.

The operators 7 (U;) and 7 (U;) are both diagonal in the

computational basis with

(kI U1lk)p = (k| Urlk), = & (25)
and
(k| Uslk)p = (d — kI3Usld — k)3 = ¢ = & (26)

(recall that &, = c_,,). However, 7(U,) is not diagonal. The
operators 7 (U;) and 7 (U,) are isospectral and diagonal in
the eigenbasis of Z and X, respectively. These eigenbases are
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related by a DFT. Formally, let

F=— kv, 27
ﬂk’mZEZdw k), 27)

The DFT F generalizes the qubit Hadamard gate and satisfies
FXF'=Zand FZF' = X'. Thus,

(kI Uall)y = (kI FTUFIl),
=Y &KILF I L (rILF D),

rGZd

1 T
— _ % o —rk=1)
= E érw

rEZd

= %Ck[ . (28)
The gates 7 (U,) and 7 (U,U,U,;) generate all operations
that can be performed on the logical subspace of a single
logical qudit through braiding of the four parafermions. Let us
study how they act on the generalized Pauli operators X and
Z by conjugation.
Recall from Egs. (21) and (22) that

Uy =& Yy alk)(kl; (29)
keZy
and hence
TWU) =& Y alk) ikl . (30)
kGZd

Clearly, 7 (U,) and Z commute. For the action of 7(U;) on
X, we find, making use of our general solution Eq. (17),

TWUOXTW) = > k& 1)kl Cesick
kéZd

— Z |k ey 1><k|Lw—(2r+d+l)/2w—k
kEZd

— w7(2r+d+l)/2Xzf . (31)
Now let us compute

(kl U U UL 1), = Eilkl L Ua|l) G

1
= —5ka_ZE] . (32)

Vd

At this point, we make use of Eq. (22) to find
1
(kILULUUL) = ﬁ(éo)szckflélo (33)

After inserting the general form of our 2d solutions, Eq. (17),
we finally arrive at

1
(k| U\ UxUL 1), = (&) —=a . (34)

NZi

We can thus make the identification

T (U U2Uy) = (Go)°F . (35)
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To summarize, the action of the braiding operator U; on the
logical operators X and Z by conjugation is given by

X XZ1,
(36)
Z— Z,
up to phases, while the action of U, U, U, is given by
X Z,
Z— X', 37)

These braids thus map products of Pauli operators to other
products of Pauli operators under conjugation. Such gates are
known as Clifford gates, and the Clifford group on a given
number of qudits is defined as the group of unitaries that
map any product of Pauli operators on these qudits to another
such product. Farinholt has shown that the transformations in
Egs. (36) and (37) are a necessary and sufficient set of gates
for generating the single-qudit Clifford group (up to phases),
for arbitrary d [40]. We can thus conclude the following.

Theorem 1. Braiding of Z, parafermions allows one to
generate the entire single-qudit Clifford group (up to phases),
for any qudit dimension d.

This theorem applies to all 2d representations of the braid
group given by Eq. (17).

VI. ENTANGLING GATES

Now let us consider two qudits encoded in the parafermion
quadruplets A = {1,2,3,4} and B = {5,6,7,8}, respectively.
Consider the braids V = UyU;, W = UsU4UgUs, and S =
VW2V, An illustration of this braid is given in Fig. 1.

It is a tedious but straightforward task to show that S acts
as follows by conjugation,

A] = A],
Ay > Ax(Ae) 2,

A3 [ A3,
(38)
As — (A3)As,

A6 = A6,

A7 (A3)*A7.
In particular, it follows that SA 1A3ST = AjA; and
SAsA7ST = AsA-, and hence that S preserves the compu-

tational subspace.
Recall that

T(A)=Za, T(A)=Xa, T(A3)=Z,
T(As)=Zp, T(A)=Xp, T(AD=Zp. (39)
The braid S thus acts as follows on the computational subspace,
Zp > Zy,
Xa> XaXp2,

. (40)
ZB (e ZAZB,

XBHXB.
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/

3 4 | 5 6 7

FIG. 1. Ilustration of the braid S which acts like (Cx)~2 on the
computational subspace. Time flows upwards. The small dashed line
shows the separation between logical qudits A and B.

For two d-dimensional qudits A and B, the entangling gate
Cy is defined over

Cxli)alj)p =10)ali @ J)p - 41
It acts by conjugation as

ZA (d ZA,
Xa = XsX3,
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Zp > Z\Zs,

Xp+> Xp. (42)
We can thus make the identification

T(Sh = (Cx)*. 43)

Similarly, one can show that the simpler braid T =
(U4U3UsU,)? performs the square of the controlled phase-gate
on the computational subspace. That is, 7(T) = (Cz)?, where
Cli)ali)p = @1} 4l ) .

Clearly, (C v)? = 1.If d is odd, we thus have

T(S™H/%) = ¢y (44)

Applying the braid ST % times thus allows one to apply the
gate Cx to the computational subspace of two logical qudits.
Together with the single-qudit gates that transform the logical
operators X and Z as in Eqs. (36) and (37), the entangling gate
Cx generates the entire many-qudit Clifford group [40]. This
allows us to conclude the following.

Theorem 2. If d is odd, braiding of Z, parafermions allows
one to generate the entire many-qudit Clifford group (up to
phases).

VII. DISCUSSION

Here, we have shown that if d is odd, then the braiding of
Z 4 parafermions allows one to generate the full Clifford group,
up to phases. While even values of d > 2 allow one to perform
nontrivial entangling gates, we were not able to show the same
for these parafermions, and suspect that only a nontrivial subset
of the Clifford group can be generated. The Clifford group
by itself is not universal for quantum computing. In fact, the
operations that can be obtained from Clifford unitaries and
preparation and measurement in the computational basis are
known as stabilizer operations, and these can be efficiently
simulated on a classical computer [41,42].

However, if d is prime, it is known that Clifford unitaries
together with an arbitrary non-Clifford gate are sufficient for
universal quantum computing [43, Appendix D]. Letting two
parafermion modes interact with each other (e.g., by bringing
them close to each other) will allow one to perform a unitary
that generically is not a Clifford gate. A natural interaction

between parafermions 1 and 2 such as aylyg + H.c. will
commute with the parity operator A; and thus preserve the
computational subspace. Indeed, the computational subspace
is preserved as long as the quantity measured by the phases of
the parity operator is conserved.

A non-Clifford gate that is performed by nontopological
means will not be fault tolerant. Fault tolerance can be
restored using only stabilizer operations through magic state
distillation [44], which has been studied in-depth for prime-
dimensional qudits [43,45,46].

Given our results and the work on magic state distillation,
Z 4 parafermions where d is an odd prime seem most attractive
from a quantum information processing perspective. Unfor-
tunately, many proposals to physically realize parafermions
concern the case where d is even [7,10-12,23,25]. On the other
hand, Z3 parafermions can, for example, emerge in interacting
nanowires [17,19,20]; see also Ref. [47].
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Finally, we note that that when Z, parafermions arise as
ends of defect lines in D(Z;) quantum double models [9,13],
the entire Clifford group can be generated through quasiparti-
cle braiding for any d by making use of the Abelian excitations
of the underlying state. This includes the case d =2, i.e.,
Majorana fermions in a qubit toric code. Reference [25]
describes in detail how this can be achieved for d = 4, and
the generalization to arbitrary d is straightforward.
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APPENDIX: BRAIDING OPERATORS
1. Solutions ford =3

From Egs. (10) and (12), we get the following set of
nonequivalent equations,

lcol® + le1|* + |2l = 3,
coC1 + €162 + 9 = 0,
coC2 4 ¢1Co + 261 = 0,
(co)’c1 + (c1)*ca + (c2)*co = O,
(co)’c2 + (c1)’co + (c2)*ct = 0,

(1) = ().

(AD)

In order to satisfy the last equation, we set ¢, = cj@” with
r € Z3. With this identification, the third and fourth equation
become equivalent, and we are left with three equations,

2 2
lcol” + 2ler|” = 3,
coC1 +ciciw” + c1¢p” = 0,

(co)’c1 + (c1)’0” + (e1)*cow™ = 0.

(A2)

Defining ¢; = se'?, and recalling that we assume ¢y > 0, we
find the three equations,

(co)* + 2s* = 3,
col@ e + w7 e?)+5 =0, (A3)

cose'? + (co)’w” + 52w =0,
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for the three real unknowns cop, s, and ¢. Solving the last
equation for e'?, we find

. Co .
ez¢ — _a)re:tzZﬂ/?a .

N

(A4)
Since ¢y and s are non-negative, we conclude that ¢y = s = 1
and are left with a single nontrivial equation

e = o, (A5)

The three possible values r € Z3 lead to the following six
solutions,

co=1. =1, ¢ =w,
Cco =1, Cl=5), C2=(Z),
co=1, caq=w, =1, (A6)
C():], 1 =, C2=],
co=1, c=1, c=0a,
co=1, cg=w, =w.

Note that the first and the last three solutions are related to
each other through transformation Eq. (14), while the two sets
are related to each other through transformation Eq. (15).

2. Solutions for d = 4

For d = 4, we get from Egs. (10) and (12) the following
nonequivalent equations:

2 2 2 2
lcol” + [e1]” + |2 + le3|” = 4,
coC1 + ¢1Cy + €283 + 38 = 0,

coC2 + 103 + 2o + 361 =0,

cil(co)® + (c2)*1+ 2cocac; = 0, (A7)
c3l(co)® + (c2)’] + 2cocica = 0,
col(c1)® + (€3)"1 + (co)’cr — (€2)’ + 2¢12¢3 = 0,
(@) = (c3).
From the last line, we have c¢; = £c¢3. For ¢; =c3, we
straightforwardly find cp = —c;, and for ¢; = —c3, we find
co = ¢. In either case, we find |co| = |c1] = |c2| = |c3]. Up

to an overall phase, an extensive set of solutions is thus given
by

=1, =%, a==£1, =7F%, (A8

where ¢ € [0,27) is arbitrary. We note that in contrast to the
case d = 3, the set of solutions is continuous for d = 4 (even
when ignoring an overall phase).
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