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We theoretically propose a set of universal quantum gates acting on a hybrid qubit formed by coupling a
quantum-dot spin qubit and Majorana fermion qubit. First, we consider a quantum dot that is tunnel coupled
to two topological superconductors. The effective spin-Majorana exchange facilitates a hybrid CNOT gate for
which either qubit can be the control or target. The second setup is a modular scalable network of topological
superconductors and quantum dots. As a result of the exchange interaction between adjacent spin qubits, a CNOT
gate is implemented that acts on neighboring Majorana qubits and eliminates the necessity of interqubit braiding.
In both setups, the spin-Majorana exchange interaction allows for a phase gate, acting on either the spin or
the Majorana qubit, and for a SWAP or hybrid SWAP gate which is sufficient for universal quantum computation

without projective measurements.
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I. INTRODUCTION

Quantum dots are promising scalable settings to store and
manipulate quantum information using spin states [1,2]. How-
ever, the quantum data stored are susceptible to decoherence
by the environment wherein quantum information is lost [3].

An alternative proposal to such traditional quantum bits
is topological quantum computers [4], which make use of
degenerate ground states of topological matter, whose edge
states obey non-Abelian statistics upon exchange [5], to encode
qubits. The information stored in these nonlocal degrees
of freedom is tolerant to local system noise and can be
manipulated by braiding [6-9]. There are several proposed
realizations of such topological qubits [4], the most successful
one to date being those composed of Majorana fermions (MFs)
due to their immediate experimental accessibility [10-17].
Several theoretical setups to realize MFs have been proposed:
semiconducting-superconducting nanowires [18,19], topolog-
ical insulators [20], topological superconductors (TSCs) [21],
and magnetic adatoms on top of s-wave superconductors
[22-26]. However, MFs do not generate a universal set of
topological gate operations necessary for quantum computa-
tion [27,28].

The additional nontopological gates needed to achieve
universality with MF qubits can be implemented by fusing
anyons [27], using magnetic flux [31], or quantum information
transfer with spins in quantum dots [30,32]. The principal
drawback of these schemes is twofold: (1) after preparing the
system state, a projective measurement must be made, which
should be perfect [27] and which is typically time intensive
[2]; (2) braiding between two topological qubits is required to
perform universal quantum computation, which necessitates
a long-distance topologically nontrivial interaction between
them. Scalable networks of qubits have been proposed by using
MFs as elements of plaquettes for surface codes [33-35]; such
schemes, however, do not take advantage of the MF braid
statistics. In this work, using a hybrid qubit composed of a
coupled spin and MF qubit [Fig. 1(a)], we can coherently
transfer information between the qubit components, thereby
keeping the gate operation time on MF qubits potentially
as short as possible. Furthermore, when the spins on two
such hybrid qubits are allowed to interact, universal quantum
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computation can be achieved by applying gate operations
directly to MF qubits using fixed spin qubits as a control for
the interaction, thus eliminating the need for large tunnel-
connected wire networks. Making use of such a coupling, we
propose a scalable modular network of Majorana and spin
hybrid (MaSH) qubits [Fig. 1(b)].

In the following, we derive the effective coupling between
the spin and MF qubits which is used to perform a phase
gate on the MF qubit and a SWAP gate between the spin
and MF qubits. Extending the system to a network of MaSH
qubits, long-distance coupled by the spins, we demonstrate the
necessary operations to obtain universal quantum computing.
Because MFs can be realized in many different setups, we
have considered a rather general coupling between spin and
MF qubits which provides a proof of principle for a wide class
of physical systems.

II. SETUP

We consider a single-level quantum dot placed between
two TSCs [Fig. 1(a)], which can be realized as any of the
previously mentioned setups. The chemical potential and
Coulomb repulsion, U, on the dot are assumed to be tuned
to favor single occupancy (or, more generally, a spin-1/2
ground state). The two opposite spin levels of the dot €4
are nondegenerate in the presence of a magnetic field. The
Hamiltonian of the quantum dot is

Hp = Y (6dld, + Ungns/2). (1
o=t}

where d; (d,) creates (annihilates) an electron with spin o and
ng = d; d,. Theright (r) and left (/) TSCs, modeled as a Kitaev
chain [36], are tuned to the topological regime, furnishing
MFs at opposite ends. As the separation between MFs can
be comparable with the MF localization length, we include a
phenomenological splitting of § between MFs in the same TSC
but neglect splitting between MFs on opposite TSCs [37,38].
Neglecting quasiparticle excitations also [39-41], we consider
the MF states on the TSC, which is a good approximation
when the tunneling is much smaller than the superconducting
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FIG. 1. (a) Setup of two TSCs (red bars) furnishing two MFs
(X’s) on the left TSC, y/ and y;, and two MFs on the right TSC,
y, and y,, in contact with a nontopological SC (gray); the MFs on
each TSC can overlap, causing a splitting 5. Between the two TSCs
is a quantum dot (blue disk) with two single-electron levels of up,
€4, and down, €, spin. The MFs are coupled to the dot through the
tunneling elements 7, and #/, where v labels the right () and left (/)
TSCs. (b) MaSH network of TSCs where a grid of hybrid qubits (red
and gray crosses) are long-distance coupled by tunably connecting
the spin-1/2 quantum dots, with strength 7, via floating gates (solid
yellow lines), e.g., hybrid qubit (1) is coupled to hybrid qubit (2).
Braiding of MFs utilizes the T junctions of the TSCs on each hybrid
qubit, for instance, hybrid qubit (3). Note that the T junctions are
isolated units without tunnel connection to each other.

gap; the Hamiltonian of the TSC is

Hy = Z i3y, v, (2)

v=r,l

where y, (y,) is the MF at the left (right) end of the vth TSC
and we have set the chemical potential of the superconductors
to zero.

The overlap of the electron wave functions on the dot and
MF wave functions in the TSC is described by the tunneling
Hamiltonian [36,42],

r =Y di(it,y, + )+ He., 3)

o,V

where 1, (1,) is the matrix element for an electron on the
dot tunneling into the left (right) MF in the vth TSC. We
assume our Kitaev chains to have a single spin species oriented
perpendicular to the axis of quantization on the dot and the
tunneling elements to be spin independent. A spin-dependent
tunneling or, equivalently, choosing a different axis of spin
polarization on the TSC changes the direction of the effective
magnetic field on the dot [43], which should not qualitatively
affect our results.

Each pair of MFs in the TSCs is conveniently described as a
single Dirac fermion f, = (y, + iy,)/2; the MF and tunneling
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Hamiltonians are rewritten as

Hy =Y 8Qflf =),
r=Y it} flds

respectively, where t,+ = t, £1¢/. The value of fj fr=0,1
determines the parity of the vth TSC, which can be even
or odd, respectively. The total parity of the MF qubit is
defined as the sum of the parities of the TSCs modulo two.
The terms proportional to #,, (#;,) correspond to removing
(adding) a Cooper pair from the condensate and adding
(removing) one electron to the dot and one to the vth
TSC; the terms proportional to #,_ or #;_ correspond to the
transfer of electrons between the dot and the vth TSC [42].
The full model Hamiltonian of our hybrid qubit system is
H = Hp + Hy + Hry.

—it¥, fud, + He, )

III. EFFECTIVE HAMILTONIAN

If the coupling between the dot and the TSCs is weak
compared to the difference in energies of the dot electrons and
MFs, we obtain an effective Hamiltonian Hr = H, + H, +
‘H. by applying a Schrieffer-Wolff transformation [44-47] to
H (see also Appendix A),

M, = Z('t”‘ fl+ 22 g1

p—"V— v+ Lo+
Z(EG Il + ey 34 fv> - )

o,V

H,o

AT
=— f H.
He Zt tv-‘r( —23+Eg—‘r28)f fv+ C.

We have taken U the largest energy scale, i.e., U — o0, and
defined the operators A, = n, +did, and B, = A, + Al
In this limit, the dot is always singly occupied, which fixes
the MF qubit to be in an even-parity [Fig. 2(a)] or odd-parity
[Fig. 2(b)] subspace of the full Hilbert space. Here, H, results
from hopping between the dot and a single TSC. The term
proportional to |£,_|? corresponds to the process of the electron
on the dot hopping to the vth TSC, then back to the dot
[Fig. 2(c)], while the term proportional to |#,|> corresponds
to the process of the electron on the dot combining with the
electron on the vth TSC into a Cooper pair, and breaking a
Cooper pair adding one electron to the dot and one to the same
TSC [Fig. 2(d)]; both processes can happen in either parity
subspace. The Hamiltonian H, (H,) results from hopping
between the dot and both TSCs, which couple states in the odd-
(even)-parity subspace exclusively. The term proportional to
t;_t,_ corresponds to transferring an electron from the dot
to the even-parity TSC, then from the odd-parity TSC to the
quantum dot [Fig. 2(e)]. The condensing of the electron on
the dot and with the electron from the odd-parity TSC into a
Cooper pair and then breaking apart a Cooper pair, putting one
electron on the opposite TSC and the other electron on the dot
[Fig. 2(f)], is described by ), ¢, . The term proportional to
17_t,4+ acts on the zero total electron state by transferring the
dot electron to the vth TSC, then taking two electrons from the
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(a)

FIG. 2. Schematic of the MF qubit formed by a left and right TSC
(red bars) tunnel coupled by a quantum dot (blue disk) with spin-1/2
ground state and some of the processes that result from the coupling
between spin and MF qubit dictated by Hr. The odd parity of the
TSCs is indicated by a straight line (white) between the MFs (white
crosses), i.e., fI f, = 1. The four MF states give rise to two types of
MF qubits: (a) the degenerate odd-parity states of the MF qubit (even
total system parity) with one fermion on the left TSC (left panel) and
one on the right TSC (right panel); (b) the degenerate even-parity
states of the MF qubit (odd total system parity) with no fermions
on either TSC (left panel) and with one fermion on each TSC (right
panel). (c),(d) The virtual processes described by H; the remaining
undepicted processes are similar but take place on the one, three, and
four total electron state. (e),(f) The transfer of an electron from one
TSC to the other due to H,. (g),(h) The processes determined by H,
that map the system between the two states in the even-parity sector
of the MF qubit. The other processes resulting from H, and H, are
obtained by exchanging the right and left TSCs (or initial and final
states) in (c)—(h).

condensate, filling the state in the latter TSC, and transferring
the other onto the dot [Fig. 2(g)]. The latter term, 7 #,, acting
on the three total electron state, condenses the dot electron with
one of the TSC electrons while the other TSC electron tunnels
onto the dot [Fig. 2(h)].

In order to create a MF qubit, one must have a superposition
of same parity states. In the two TSC system, we restrict to
the even total parity or odd MF qubit parity subspace, i.e., one
electron on the dot and one electron on either the right (|r) =
£110)) or left (1) = £0)) TSC with |0) being the vacuum. In
the first quantized notation, the effective Hamiltonian is

Jer 0, (6)

where o, (17,) act on the spin of the dot (odd-parity sector
of TCSs defined such that ns|r) = +|r) and n3|l) = —|I)).
For «(A) € {1,2,3}, these are the standard Pauli matrices,
while op(np) is the identity matrix. The anisotropic exchange
constant J, is a function of é,¢,, and ¢, (Appendix B).

IV. QUANTUM GATES

In general, when the interaction between qubits is entan-
gling, i.e., Jex # 0 for « ,A # 0, a SWAP gate between the
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1-31L.

FIG. 3. Schematic of the hybrid SWAP (hSWAP) gate obtained as
follows: apply the hCNOT gate using, say, the spin qubit (SQ) as
the control and the MF qubit (MQ) as the target qubit; apply the
hCNOT gate, reversing the roles of the qubits; apply the hCNOTgate
with the control and target qubits as in the first operation. Starting
with the initial state |x,y) such that x,y € {0, 1}, where we identify
0 (1) with the | ) (| 1)) and |/) (|r)) state of the spin and MF qubit,
respectively, by applying the pictured gate sequence, one obtains
x,y) = (=D|x,y & x) = (=1)|y,y ® x) — |y,x); thisresultsin
a coherent swap of states between the spin and MF qubit.

qubits can be implemented. However, a simple setup that
yields a so-called hybrid SWAP (hSWAP) gate (Fig. 3) consists
of two semi-infinite TSCs with no magnetic field on the dot.
The first condition implies that the outer MF wave functions
do not overlap with that of the inner MFs (§ = 0) or the
quantum dot (#/ = #, = 0), while the second implies the spin
states on the dot are degenerate, €, = €| = €y, for which
Hr becomes (1 + o)[(|2/ > + |#|*) + 2Re(t/#)n11/€o. When
t; = t. = t, Hy further reduces to [1,48] (see Appendix B)

Hice = 21t1*(1 + o1)(1 + n1)/eo, (7

which can be used to perform a hybrid controlled phase
(hCP) gate [49]. Although in the following we focus on the
manipulation of the MF qubit using the spin qubit, owing to the
symmetry of the Hamiltonian between spin and MF operations,
i.e., under the exchange o < 1y, one could equally use the
MF qubit to manipulate the spin qubit.

After a single-qubit unitary rotation by a Hadamard gate,
which can be implemented by applying a magnetic field to
the spin qubit and by braiding [27] MFs [Fig. 4(a)], Hucp

(a)
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FIG. 4. Implementation of the necessary gates for universal
quantum computation: (a) Hadamard and 7 /4-phase gate as aresult of
braiding, (b) r/8-phase gate obtained by coupling the MF qubit and
the fixed spin qubit, and (c) CNOT gate obtained through an effective

coupling of two MF qubits facilitated by a long-range interaction
between the corresponding spin qubits.
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transforms into
Hilor = 21t + 01 + 1))/ e, ®)

where (i,j) = (1,3) or (3,1). Pulsing the coupljng t between
the dot and TSCs for the duration t so that f ’ H;’CNOT =+
0;)(1 + n;)/4, one obtains the hybrid CNOT (hCNOT) gate,

=0 —o0; —n;—o0oin;)/2 ©)

(see Appendix C), from which an hSWAP gate can be coded
as Unswar = Upd orUpvorUitvor- APplying the hSWAP gate to
the two qubits exchanges the relative weights of the up- and
down-spin states of the spin qubit with the right- and left-parity
states of the MF qubit (Fig. 3), respectively. To implement a
/8 gate, one may hSWAP the quantum state of the MF qubit
onto the spin qubit, perform a 7 /8 gate on the spin qubit,
and hSWAP the states back; this requires no preparation or
projective measurement. Alternatively, one can fix the spin
qubit by a magnetic field along the z axis and pulse HE3 ;.
This generates a phase gate for any value of phase according
to the duration of the pulse [Fig. 4(b)]. These three gates are
sufficient for universal quantum computation of the hybrid
qubit. We note that according to Eq. (7), the lower bound on
operation time of this gate is of the order of hey/|¢|?, which
can be quite small even within the limits of validity of our
Schrieffer-Wolff transformation.

Uyl

hcNoTt

V. MaSH NETWORK

We consider a network of MaSH qubits formed by crossing
one TSC in the topological phase with one in the trivial phase
and defining the spin-1/2 quantum dots at their intersection
[Fig. 1(b)]. The MaSH qubit elements are connected via
floating gates [50] whose ends are placed off center from
quantum dots. One can perform braiding of MFs by first
moving the quantum dot to an unused topologically trivial arm
of the hybrid qubit so it does not participate in the operation,
then performing braiding as usual [51]: move (as a concrete
example) the left TSC to the other topologically trivially arm,
shifting the right (left) TSC to where the left (right) was, and
finally returning the quantum dot to the position between the
two. Because the coupling of quantum dots through floating
gates is very sensitive to the relative position of the two [50],
the hybrid qubits are engaged when the spin-qubit components
are near the respective edges of the connective floating gate.
This induces an isotropic interaction given by Jo@ .G\,
where (i, j) refers to two neighboring hybrid qubits, say i = 1
and j = 2.If J > [t], there is an effective interaction between
the MF qubits modulated by the relative direction of the spin
qubits,

4
Hg = oot + o[ =P 10
€T
Fixing the direction of the spin qubits along the z axis
and applying H? for a specified time (see Appendix D),
one obtains the gate Uﬁé) =explinr(l — nil)n(lz))/4], which
directly couples the two MF qubits. A CNOT gate [Fig. 4(c)],
using MF qubit (1) as the target and qubit (2) as the control,
can be implemented using the sequence

UC(II\I%}T — H(Z)U&é)H(I)HQ)R(I)RQ)H(]), a1
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where H") and R®) are the Hadamard and (—7 /4)-phase gates,
respectively, acting on the ith MF qubit (see Appendix C).
Therefore, using this CNOT gate, the Hadamard, and /8 gate
in the MaSH setup, one can implement the necessary gates
to realize universal quantum computation by fixing the spin
qubits as a control and storing all quantum information in
the MF qubits. As noted before, owing to the symmetry of
the setup, the role of the spin and the MF qubits can be
interchanged and the MF qubits can be used as control qubits.

One may also use the spin qubit to read out parity of the
MF qubit by applying the hSWAP gate and measuring the
spin on the dot. Alternatively, one can prepare the system
so the initial state of the spin qubit is spin up and the
MF qubit is in a superposition of eigenvalues of n,|i) =
| 1)(al+) + Bl—)), where n|£) = %[+) = (Ir) £ [1)/v/2.
Rewriting the effective exchange Hamiltonian in terms of
projection operators, Py = (1 £ 1,)/2, we find that Eq. (1)
becomes

L+ oDl * + 141%) + 2Ret/t} (P4 — P)l/e0,  (12)

after taking § =1/ =1, =0 and €; =€ = ¢y. The time-
evolved initial state is

i(1)) = [ae'*" cos(wyT)|+) + Be™ " cos(w—_1)|—)1I1)
+ifae' T sin(woT)|+)+Be' T sin(w_1)|—)]| 1),
(13)

where wi = |t/ £ 1;|>/hep. In the simplest case when ¢/ =
t; = t, the probability to find the spin in the down state is
P(| |)) = |a|? sin?(4|t]*>T/hep) and the probability to find the
spin in the up state is (| 1)) = 1 — P(| {)). Coupling the spin
and MF qubit for a time 7 hey/8]t|?, the probability for the
quantum dot to be in a spin-up (-down) state is equal to the
probability of finding the initial system in the |—) (|+)) state,
from which one can deduce the superposition of MF parity
states.

Finally, this network can serve as a platform for the surface
code with the well-known error threshold of 1.1% [52,53].
For this, we assess the fidelities of our gates and show that
they can be made to satisfy this threshold by tuning the
tunneling amplitude ¢ and dot level energy € appropriately.
Indeed, since Hy in Eq. (6) differs from the exact H$*' by
a term of the order of |t|4/63, to leading order in our small
expansion parameter ¢ /€y, the hCNOT gate constructed from
the full Hamiltonian, Ul;lCJNOT = expli r(’Hf{CNOT + &)/h], is not
an exact hCNOT gate, where & ~ |t|*/ eg is the leading-order
correction term. Because T is of the order of fiey/|t]?, we

may expand in & to find Uyiyor ~ Uplor[1 i [ dT'8(x')/h),

hcNor
where &(t) = U/l _&U/7 . The fidelity of an hcNOT gate is
[50]
F(Updyor) = min |00 [U o Upchon Vo)

v,0

2 T .s
~ 11— 5 max {/ dT/Im(VolUliéLOTé(T/)lvo—>}’
0
(14)

where the minimum (maximum) is taken over v = r,/ and
o =1, |.Thus, the increase in infidelity 1 — F is of the order
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of té&/h ~ |t|*/ 63, which can be made controllably small as to
satisfy the surface-code error threshold, i.e., 1 — F < 1.1%.
Similarly, we can bound the infidelity for the 7 /8 and Uéll\,%))T
gates below 1.1% by tuning the ratio |¢|?/ eg sufficiently small.

VI. OUTLOOK AND CONCLUSIONS

Although there are several systems in which our setup
could be implemented, perhaps the most natural scenario is
in nanowires because (1) signatures of MFs in nanowires
with proximity-induced superconductivity were identified
experimentally [10-15,54], and (2) single-electron quantum
dots and electrical implementation of single-qubit quantum
gates were realized in semiconducting nanowires [55-57] also
on top of superconductors [54,58,59].

For a single hybrid qubit setup, we envision one nanowire
on top of a conventional s-wave superconductor in which one
electrically tunes the left and right ends of the wire into the
topological regime, while a quantum dot is electrically defined
between them. The length of the topological section in the
wires can be changed, thereby independently controlling the
overlap between the MFs (). Similarly, one may set the size of
the quantum dot so that the Coulomb repulsion is large as well
as applying a gate voltage to ensure the dot is in a spin-1/2
ground state and fix the dot energy level (&) relative to the
chemical potential of the wires. One can likewise control the

J
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tunneling between quantum dot and wire (z, and ¢) by either
adjusting the distance between the two or tuning the barrier
height that separates them. To assemble a MaSH network,
one composes individual hybrid qubits from two crossed
nanowires, then connects them with floating gates. Voltage
controls, in addition to the previously mentioned tunneling
elements, braiding operations and the position of the quantum
dot, and thus the effective coupling between spin qubits (7).
By coupling spin and Majorana qubits, we have constructed
the necessary gates for universal quantum computation of
spin-Majorana hybrid qubits. Forming a MaSH network, a
universal set of gates can be implemented directly on the MF
qubits, while using the spin qubits only as a control. Thanks
to the modular nature of this setup and the construction of the
CNOT gate, it is unnecessary to engineer a large-scale coherent
network of TSCs. The necessary experimental techniques to
realize a single spin-MF hybrid qubit or a network of such
qubits are available. Our results demonstrate that one can
harness universal quantum computation from both single- and
multiple-element spin-MF hybrid qubit systems.
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APPENDIX A: EFFECTIVE HAMILTONIAN

In this section, we perform a Schrieffer-Wolff transformation on the tunneling Hamiltonian beginning with a Hamiltonian that

couples two Kitaev chains to a quantum dot,

H=Hy+Hp+Hr, Hy=i) 8.

v

Hp =Y édld, + Ungns /2, Hr =Y di(it)y, +ty) + (65 vy — it y))ds,

(AD)

where v labels the left (/) and right (r) chains. We rewrite the Majorana fermions as f, = (y, +iy,)/2 so that fj fr=
(I +iy,p)/2 and id,y)yry = 6,2 fj fv — 1). The logical values of the qubit are written in terms of the parity of the left and

right TSCs.

Writing y, = f, + fj and y, = (f), — fj )/ 1, the tunneling Hamiltonian is transformed into

Hy =" dllin(fu + ) = it)(fy = D1+ (=it (fy = £ = it (s + £D)ds

=ity — ) fldy — i) + 1) fudo + ity — t))d] fo + it + 1,)d] £

=ity fldy —it], fody —ity_d} f, + ity d] f],
ov

(A2)

where t,. =t £ t,. Using a Schrieffer-Wolff transformation, one may show that the operators A, — A]T, and B, — BE eliminate
the tunneling Hamiltonian, Hy = —[A, — AI + B, — BI,HM + Hp], to first order in 7,4, where

1 Ui’l(y

1 Ungs
sz' t*_t/* - z Tda = —it} - Tdo's
o ”);[eo—zav (ea—zau)(egw—zau)}f” l”‘;[ea—zav <eg—26v>(ea+U—26v>}f”

1 Uns
B, :i(z:+t;*)2[ "

. 1 Uns
- Srds = lt:Jr Z -
€ +28, (€ +28,)(ex + U +26,) ~ L& +20, (&5 +28,)(&x +U +25,)

i|fvda-
(A3)
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We must now calculate [A,, Hr] and [B,,, Hy]. The following commutation relations will be useful:

[fidy Hrl =i ) [fldpt*, fids — 7, fude — t_pd] fu + tend] f]

ou

=i Sut?dpde — 1y Bpo £ fu — Suudldp) + tiu8pe 1 £

on
[fod, Hr] =i Z[fvdp,r,ﬂf dy =15, fuds — 1-yd] f + 11} ]
=i Z *Suvdpds = 13805 fo fu + 1y Bpo fo £ = Sundid,). (Ad)
Note that [Un, fld,,Hr] = Unﬁ[fjdp,HT] + [Unz,Hrlfld, and
[np Hrl =iy (st flde — 17, fuds — tu_d] f, + turd] f]
=iy 1 Seds f — 15 850ds fu — tu_80d] f + trs850d] £ (A5)

Taking the large on-site charging limit, U — oo, we find

o n, [ns, Hrlfld,
Z[AV’HT]_ thV{<6p_28 —28 > fdvaT] 6,0_261) }

v

. f-
= —i pZ 6p_—mv{n,c,[fjar,,,HT] — [n;. Hrlf}d,)

*

— (tiuéﬁad—ff — % 850ds fu — t-uSpad) fu + tiwdsod) £ fld,},

213y Hrl = ZZ”+{<6/}+28 ep+25 )[fvdp’HT] € + 20, }

*

. L,
R ﬁ{”p[ﬂdﬂﬂﬂ = lng. Hrlfudy)

P

= - Z Gp + 28 {np[ tfﬂa;wd d t*,U,SpO'foM + t+u(8p6fvfli - Suvdj—dp)]

opUY
— (1% 850ds | — 15 ,850ds fu — t-185ad) fu + tinsod) £1) fod,}. (A6)

Notice that for O = fj , fu.n p[édp,HT] = —n,Hr Odp. The only term that survives from Hy is proportional to d[T) so that this
term has no spin-flip processes:

—n, Hy fid, = i(t_yn,d) fo — to,d] f1) fld, = i fu £} — teu £ fDn,
—n,Hy f,d, = —i(—tw”pdlfi + Ludlfu)fvdp = _i(_tﬂtf,jfv oy fufong. (A7)

Therefore, these terms do not involve spin flips and

- n; : [ns, Hrlf/}d,
Z[A”’HT] lZlv{<€ ~25, ¢, -2, > [f)d, Hr] — —ep ~ s,

v

- Z {np[f 'd,, Hr] — [n,,Hrlfld,)

" |
=) 5 (tf,tf,tf — tau fL FDapny — (0 850ds £ — 11,850d5 fu — 1850 d) fu + tiubped) £ fld,]
= p [t, O’pnpf}l.fj - tJru(Scrpnpf;ifuT - (_tfﬂ(sﬁﬂdifll« + t+ﬂ8ﬁ0dlf;i)fjdp]’
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ns [ns,Hrlfud,
Z[B”’HT]_th”K +26, €, +25, )[f”d"’HT] 6p+25v}

-
=10 oy, e Hr) = Unp Hr o)
*

t % r % &
= - p+—28[ t+u Jpnpf fv + l‘, apnpfufv - (tfu8,6adﬁfur - t+u8,6(rdﬁfu - t*/LSﬁUdJ,flL
opuY

+ t+u8,5zrdg- fﬂ)fvdp]
%

) ,
= - Z 6—{-—25[ t+u apnpf fv + l‘, apnpfufv - (_tfuaﬁad;[fu + t+u8ﬁad;f,j)fvdp]- (A8)
P

oppY

Let us consider processes when only one TSC is involved in the tunneling, u = v [Figs. 2(a) and 2(b)],

Y A H 1= ZG 5l Sophp Sk = (850 s [ — 15,850 d5 fu = 14850 d] fu + 1448750d] £ fld)]

opuv P

t* " i
B ; ep_—zgu[hnpfufuT = (~tidy fy = t-dy f,) fldy]

=D - _28[r np fo i+ -dl fu fld,),
" (A9)
Z[BV,HTJ - W[ trudaptip [ fo = (2850 dp [} — 15,850 dp fo = 11850} fiu + LeuSpodl £1) frdy]

oppuy €p

t*
==Y —[—tyn, fl fo — W ds £} + 1ed] £ fod,]
€0t 26

=) - +28 [tin, £ fo + ted) £ o),
o P

where the final inequalities for each term are due to the single occupancy of the dot. Summing these together, with their Hermitian
conjugate, we get

_ |tv+| T |tv| t t 1
Hx—;(p+28ffu —fvf)(2n0+dd +d}dp). (A10)

Processes involving multiple TSCs, u = v, are calculated from

Z[AvaT] Z 28 [l‘, Sopnpfufj - t+/480pnpf,:rfj - ([ilﬁsﬁadﬁfg - tiuaﬁadﬁfu - tfuaﬁodlfu

apuY €p

+ t1850d] £ f1d)]

= Z E;[Luaap”pfufj - t+u509”pf;jfj - (_tfu‘sﬁadj;fu + t+uaﬁadgf;i)fjdp]’
o v

*

1, .
Z[BVvHT] =- Z W[ Lip Up”pf Jo+1-pybopnp fufo — —M‘Sﬁadﬁfi - tiu‘gﬁodﬁfu —tu850dy fu
v opuY €p
+ 1u8ped) f1) fod,]

1, .
=-> e et Soptp [ fo + 1oy fufo = (=850 d] fu + 1418504} £1) fod,). (A1)
o

opuY
Because we will have to add the Hermitian conjugates of these terms, notice that

b

*

$
tr t ‘
P— i D— T
ty_np fvfp = ——<h-"o vl

€5 — 285 ”ff} %:ep—zav oIt

P
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qf
e .
> entin] =T i
€p €p

pv pv
t_ 7' t*

—=y,dld, f, =N =y dld, f. £l

[; 69—28* V— ffv Zeﬁ—ZSU P Pf fv

iy T i T T
§ — - h+dsd v E ——t,yd;d 5
|:pv €, + 285 +dpdptu Jo pn ep+28 +dpdy Ju f

so that the contribution from the transfer of the fermions [Figs. 2(c) and 2(d)] is

1 1 1 1
H, = E tv_tik v ‘—j t, tx T 5
|:<6ﬂ_28‘7 +EP—251;) w-Iof, +(Ep+25\7 +6p+23v> +U+fvf "o

pv

+ 1 ! o fofl 4 1 1 ot ala
6,,—28]—) 5[5_23‘) p—tv—JvJp €p+2517 6,5+25v v+tv+Jy Jo |d58p

,+did, " +did; . (n,+dld, n,+did;
§ L it fufs + e f§+tv+fjfv-
—\ e, =28 €, —25,

€, + 285 €, + 24,

Next notice that

€; — 28,

i
;Ltv tv v—
(‘Z o a5 i fid ) -y g
pv pv
¥ e na) =X sl
pv €P+28 e - pv ,0+28 ’ v

so that terms acting on the even-parity sector [Figs. 2(e) and 2(f)] are

n,+did, n,+dd; n,+dd, n,+dd,
=—Zt§+rv( i )fufum +( et p)fJf*
pv

€, +25; €, — 26, €, — 28 €, + 26,
Summing up the results, we have the tunneling Hamiltonian to second order in ¢, :

Hr =Hs +He +Ho,

Iy t,—
HFZ( |++|25 AN | | p— AT )(an—i—de +dlds),

O'

ng +dld, ng+d;d5 . o (ne+did,  ne+dids\
H Z( —287 —25 )tr)tvaffj"f_ < + lﬂ+tv+fJfﬁ’

s + 265 s + 26,

€; — 26,

av

. ne +did, n,+dids ne +did, ny+dids
He:_ztg+tu< € + 26, + )fva V? v+( + fjffj

€5 — 285 € + 26,
When the splitting is equal in both TSCs, §, = §, we obtain Eq. (1) in the main text,
Hr = Hs +H, + He,

Hs Z( -l Sl + 't“*' f*fv)<2na+d dy +d}dy),

o +28
H0=Z(

fi+ “1”;8 fou>(2ng +did, +dldy).

€, + 26

. ne +did, n,+dids\ .. . ne +did, ny+dids
He:_zlatv+< 6(7—25 + )fij+ta+tv( + fvf\')-

€ + 26 € — 26

o,V
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APPENDIX B: FULL EXCHANGE HAMILTONIAN

The full interaction between the MF qubit and the spin qubit can be written down as the exchange Hamiltonian,

Hr= Y Jaoum, (B1)
x,1=0,...,3
in which
By B, B3 By
B B, By B
‘IKA,_ 0 O O 0 5 (BZ)
Bs Bs B; Bs
where

By =Cyy +C_ )T, +Ty) + (Co +C_ N, +Ty),
By =(Ciy +C_)Tpr + T — (Com +C_)T -, + T,
By =i[(Cir +C_ )Ty =T+ Com +C_)(T . =T )],
By=Cyr +C_ )Ty, —Ty) —(Cy +C_ YT, =Ty,

Bs=Cyy —C_p)T 4 +T )+ Com —C_H)T -, + T, ®3)
Bs = (Ciy —C_ )Ty +T4) = (Co— —C_)(T—, + T,
B =i[(Ciy —C_ )Ty =T+ Com — C_)(T—, =T )],
By =(Ciy —C )Ty = Ty) = (C— = C_ )T, = T).
Here, 'y, = |ty2|% Ty = tistvt, and Cyp = 1/(€5 + 2p08) or, with a - and p-independent denominator,
c,, = (€0 — 2,08)(63 + A - 482) — 260A% + UA[260(60 —2p6) — (eg + A2 — 482)] ’ (B4)

[(e0 — A)* — 48%][(0 + A)* — 452

where we have written €, = €y + g A.

We consider the limit that the length of the TSCs is infinite and the dot is placed between them, so that#/ = ¢, = 0and§ = 0, thus
ty, = =%t/ and ty; = ;. When the difference in phase between ¢, and ¢ is ¢, we find that 'y, = |tr/|2,Fi1 = |43y, = +t/1e'?,
and I'y; = +1/1e'?. The exchange interaction becomes

B =Dt/ +1}), By=2D"t'ticos¢, B3 =0, B,=0,

Bs=D ([t/|*+1}), Bs=2D t'ticos¢, B; =0, By=0, (B5)
where
€0
D+ = C++ +C+_ +C_+ +C_+ == GZ——AZ’
0
D =Cyy+C C C_, = A (B6)
= L4t +— —+ —+ = 65 A2

When A = 0 and 7] = #; = ¢, this reduces to Eq. (2) in the main text.

APPENDIX C: HYBRID cNOT GATE

Let us introduce the hCP gate Uy = explim (1 — 03)(1 — 13)/4] = (1 + 03 + 13 — 0313)/2 and relate it to the one used
in the main text, Upcp = explim (1l + 03)(1 + n3)/4] = (1 — 03 — 13 — 0313)/2. Note that U,-p reduces to the “canonical
form” of the conditional phase gate for identical qubit types. Next, we note that Ujcp = UncpRsq(—7)Rmo(—7), where
Rsq(¢) = expligpoz/2] and Ryq(¢) = expli¢ns/2] are the phase gates on the spin and MF qubit, respectively. Then, we get the
corresponding hybrid CNOT gate U};?:LOT = (1 + 03+ — o31m1)/2 from U, p by a Hadamard operation Hwg = (11 + 13)/ V2
(which takes n3 into 1), Ui, = HwqUjcpHumo, and thus

Uptnor = HyqUicp Rso(=) Rnig(=70) Hig = Upyor Rso(—=70) Hyig Rua(—7) Hyrg., €
where U3l = (1 — o3 — 1y — 0311)/2 (used in the main text). Thus, we can get the “canonical form” of the CNOT gate, U2\ .,

from U}?CNOT by simple single-qubit unitary operations. And similarly for U}}SNOT. Note that the phase gate Ryq(—7) can be
obtained by braiding since it is the square of the & /4-phase gate.
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APPENDIX D: EFFECTIVE INTERACTION BETWEEN MAJORANA FERMION QUBITS

In this section, we derive an effective Hamiltonian for the interaction of neighboring hybrid qubits, labeled (1) and (2), in a
MaSH network [Fig. 1(b)]. We assume that adjacent spin qubits couple via an isotropic exchange interaction of the form

H(IZ) j[ 1(1)01(2)_|_ [¢3) (2)~|—U(l) (2)] (D1)
and that the MF qubits couple to the spin qubits via
2J¢)?
Hycp = o []1+ (1)+’7(1)+0|(1)77(11)+01(2)+77(12)+01(2)’7§2)]’ (D2)

according to Eq. (2) in the main text. When 7 > 2|t|?/€,, we can make a Schrieffer-Wolff transformation on HSQ , using Hycp
as a perturbation, which gives an effective coupling between two hybrid qubits up to second order in |¢|? /e,

(12) (12) (12)
Hyug = Hsq + Hug- (D3)
where
(12) i
Hyo = — lim — dt e *" [Hucr(t), Hncpl. D4
MO Y A [Hncp(T), Hicpl (D4)
Here, Hpcp(7) is the time evolution of Hy,cp under the unperturbed Hamiltonian HSQ ,
HhCP(T) — engg>t/hHhCPe—iH(sg)r/h — [eledl(])UI(Z)felw’](f(])Uz( >Telw_7(f(l)d3(2) ]HhCP[ —zwyx{l)nl( )re leU(])UZ(2> e leU(])U( ’t]
2 t b W, @,
|€0| S R R PPN CICINC 1) D5)

with w7 = J/h. Evaluating the commutator in Eq. (D4),

2
[Hucp(T), Hucpl = 41( Ie | ) cosCwyT) sin(ZwJT)[az(l)oz(z) + ;1)0(2)][1 — n(ll)n(lz)], (D6)
0
and using the integral,
o0 1
lim dt e " sinQw 1) cosRwsT) = —, (D7)
e—0% Jo 8wj
we find
|t]*
HD = _ezj[ Vo + o Va®[1 = n'n'?], (D8)
0

which is an effective exchange coupling between adjacent MF qubits that is modulated by the corresponding spin qubits. Applying
this interaction for a time typ = wheoJ /|t]|*, we obtain the gate Uﬁ,}é) =explin(l — 77(1')77 12) )/4].

APPENDIX E: INNER-OUTER MAJORANA BASIS

Instead of forming Dirac fermions in the same TSC, one can instead form a full fermion from the MFs closest together (inner
fermion) and a fermion from the MFs furthest apart (outer fermion),

=W +iv)/2, = +iv)/2 (ED
respectively. The MFs are, in turn, written as

v=gvtgh w=(g —gh/i. (E2)
The tunneling Hamiltonian can then be written as

Ay =" ind} (g, + gh) — it)dl (g0 — g1) — it} (g5 — gDy — it} (g, + g)d,

o,V

=Y id}[(ty — tro)gv + (tu + 1)e]] — i1(t] + t7)gy + (& — 18 1d,

o,V
=Y —ify_dlg, +if} gld, +if,sdlgl — if}, guds. (E3)
o,V

where welhave defined t]: = t; —t, and f,; = 1, + #}. Furthermore, we redefine the MF coupling in the TSC so that Hy =
>, 6u(2gl gy — 1), where 8, (8;) now parameterizes the overlap between the inner (outer) MFs. With this redefinition, we see that
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the transformed Hamiltonian is, term by term, identical to Eq. (2). Upon performing the same Schrieffer-Wolff transformation,
we find

HT Zﬂx +7:[e+7_z()7

~ |U+| t |v|2 i
HV_E ' +—,, 2n, +dsd, +dd
| (ea+2s 8+ g s |2 »

§ ne +did, n,+dids\. . + (ne+did, n,+dids)\., .
Hn (r~ + a~ f*_tv v8r + (;~ + a~ [* 7, i 5,
; ( € =25 e, —25, )TN T h0s, T e, a5, )

s . ng +did, n,+dids — (n, +did, n,+did,
H, = — 7* i 670 o’ gvgs + t* 7 o0 o” i :_E E4
Z "+ ( e +23, e, —25, )58 e, 225, e, 123, )¢ E4)

When the outer MFs are totally uncoupled to the system, 7. =t/ = 0, then £, = 0 so that

e e
<ﬁgjgr + l_—|26grg,>(2na +did, + dldy). (ES)
One can immediately see that the effective magnetic field is, in general, different when the state is occupied versus unoccupied.

One can use this basis as more transparent construction of parity. When the MFs on the same TSC are well separated,
8§ =1t =t =0, the tunneling Hamiltonian in the new basis is 2(|fr+|2gI g + |t~,,|2g,gj)(1l + 01)/€9o. When the parity of the
junction between the TSCs is one (zero), i.e., the complex fermion state formed by the inner MFs is occupied (unoccupied),
there is an effective magnetic field on the dot proportional to |7._|? /€y (|74 |>/€o). The Rabi oscillations between the spin-up and
-down eigenstates, which can be detected, are therefore sensitive to the parity of the junction between two TSCs. The parity can
be measured because the MF qubit is in a fixed parity subspace, i.e., if the fermion is not shared by the nearest MFs, then it must
be shared between the outer MFs. If the parity is unrestricted, one must measure both MFs on both the left and right TSCs to
determine the state of the MF qubit.
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