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1 Introduction

Grand Unified Theories (GUTs) offer one of the most attractive extensions of the Standard

Model of particle physics (SM), unifying three of the four fundamental forces of nature.

Towards a more fundamental theory of nature it would, however, be desirable to also

explain the pattern of fermion masses and mixing with its plenty of parameters. Hence,

successful models of flavour in GUTs need to address two main issues, firstly, they have to
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achieve a working mechanism for GUT symmetry breaking, including sufficient suppression

of proton decay without unacceptably large fine-tuning, and secondly, they should provide

correct predictions for the flavour observables, such as the Yukawa coupling ratios and

mixing angles.

Existing models which manage to naturally suppress proton decay either predict the

unrealistic quark-lepton Yukawa relation Ye = Y T
d (e.g. [1]), which may only be viable

in the presence of extensive uncontrolled higher order corrections (e.g. [2]) rendering the

model non-predictive, or the experimentally disfavoured combination of the Georgi-Jarlskog

relations yµ = −3ys and ye = 1
3yd [3] (as e.g. in [4]), or rely on linear combinations of GUT

Yukawa operators (e.g. [5]), which again implies the loss of predictivity. Furthermore, there

exists a large number of GUT models which focus on the flavour sector, but do not include

the Higgs potential. So while there are several existing models focusing on one of these two

concerns, we are not aware of any work to date capable of resolving the two challenges in

full detail (and without invoking extra space-time dimensions) in a predictive setup, also

given the present rather precise experimental data.

In this paper we employ the framework of supersymmetric (SUSY) GUTs, as in the

minimal supersymmetric extension of the SM (MSSM) the gauge couplings unify to a

surprising precision. The scale where they unify (about 1016 GeV) is also large enough

to sufficiently suppress proton decay from dimension six GUT operators [6]. However, in

addition to proton decay mediated by additional heavy gauge bosons, in a GUT model

the minimal embedding of the Higgs fields contains additional colour triplets which also

lead to baryon number violating operators. Therefore the colour triplets have to be very

heavy to suppress proton decay sufficiently or their couplings to the MSSM fields should

be very strongly suppressed. Keeping the doublets of the SU(5) Higgs fields light, while

generating a high enough mass for the colour triplets constitutes the so-called “Doublet-

Triplet Splitting (DTS) Problem”.

In SU(5) in four dimensions, a proposed solution to the DTS problem is the “missing

partner mechanism” (MPM) [7, 8] or its improved version, the “Double Missing Partner

Mechanism” (DMPM) [9] which we will review briefly in the next section. In the existing

models referred to above, either the MPM or the DMPM is applied.

Since GUTs not only unify the forces of the SM into a single GUT force, but also

the fermions into joint GUT representations, they are indeed a promising starting point

for addressing the flavour puzzle. More specifically, GUTs are capable of predicting the

ratios between the Yukawa couplings of quarks and leptons at the GUT scale. After

their renormalization group evolution to low energies (including supersymmetric 1-loop

threshold corrections), these predictions can be compared to the experimental data for

quark and lepton masses. As well known, the prediction of minimal SU(5) for the charged

lepton and down-type quark Yukawa matrix, the relation Ye = Y T
d already mentioned

above, is strongly disfavoured by the experimental results on the fermion masses. But

also the ubiquitous proposal for more realistic ratios, the above mentioned Georgi-Jarlskog

relations, obtained from the introduction of a 45-dimensional Higgs representation of SU(5)

and certain assumptions about the Yukawa textures [3], are disfavoured by the recently

improved data [10].
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To arrive at experimentally favoured predictions for GUT scale Yukawa coupling ra-

tios, we employ an alternative approach [11] involving higher-dimensional operators which

contain a GUT breaking Higgs field. Due to this, new Clebsch-Gordan (CG) factors ap-

pear as Yukawa coupling ratios, with interesting associated implications for the masses and

mixing of the fermions, cf. [12, 13] and [14–17]. The main goal of this paper is to show

how GUT flavour models featuring these promising quark-lepton mass relations can be

combined with a version of the DMPM for solving the DTS problem.

As explicit examples, we will present two models with these properties that are “UV

complete” in terms of messenger fields and employ sets of discrete Abelian symmetries

(referred to as shaping symmetries) such that only the desired effective GUT operators are

generated when the heavy degrees of freedom are integrated out. The two models predict

the GUT scale quark lepton Yukawa ratios but are not yet predictive for the fermion

mixing parameters (although the experimentally observed values can be fitted by both of

the models), so we only view them as existence proofs which show that DTS and predictive

Yukawa coupling ratios can indeed be combined. The strategies discussed here, however,

provide the tools for the construction of more ambitious GUT models of flavour, which

should finally also predict the quark and lepton mixings and CP phases (and include the

observed neutrino masses).

The paper is organised as follows: we will start with a brief review of the MPM and

DMPM and the recently proposed alternative Yukawa coupling ratios. We will also dis-

cuss the implications of replacing the 75-dimensional representation used in the MPM and

DMPM with an adjoint 24-dimensional representation of SU(5). This choice is particu-

larly well suited towards combining the DMPM with the novel CG factors. In section 3

we discuss the impact of the additional fields on gauge coupling unification and on their

implications for the colour triplet masses. We will especially focus here on the case of

superpotentials with two adjoint Higgs representations. We then address the Yukawa sec-

tor in section 4, where we describe the above-mentioned two predictive example models.

Before we summarise and conclude in section 6, in section 5 we briefly comment on proton

decay, showing it is under control in the proposed class of models. We present additional

helpful material for model building in the appendices.

2 Strategy

In this section we present the general strategy that will be implemented in two example

models. We begin our presentation with the review of the MPM and DMPM and the origin

of the CG coefficients (coming from higher dimensional operators) used in our models.

Afterwards we discuss a modification of the DMPM with a GUT Higgs field in the adjoint

representation and follow that with the actual DMPM realization implemented in our

models, where a second Higgs field in the adjoint representation is added.

Throughout this section, for illustrative purposes, we consider that the bounds on

proton decay rate require the effective mass of the colour triplets to be of at least

Mdim=5
T ≈ 1017 GeV [18], while the effective mass suppressing dimension six proton de-

cay mediated by the colour triplets is required to be Mdim=6
T & 1012 GeV [19].
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2.1 The missing partner mechanism

The basic idea of the missing partner mechanism (MPM) is the introduction of two new

superfields Z50 and Z̄50 in 50 and 50 representations of SU(5). The decomposition of a

50 of SU(5) under the SM gauge group does not contain an SU(2) doublet, but it includes

an SU(3) triplet. Thus, using the 50-plets to generate an effective mass term keeps the

electroweak doublets massless, while the colour triplets acquire masses of the order of the

GUT scale. The superpotential for the MPM is given by1

WMPM = H̄5H75Z50 + Z̄50H75H5 +M50Z50Z̄50 , (2.1)

where H75 is a superfield transforming in the 75 representation of SU(5), which contains

a SM singlet. When H75 gets a vacuum expectation value (VEV) SU(5) is broken to the

SM gauge group.2 With the triplet mass contribution from 〈H75〉 denoted by V , the mass

matrices of the Higgs fields H5, H̄5 and Z50, Z̄50 are given by

mD = 0 , mT =

(
0 V

V M50

)
, (2.2)

for the doublet and triplet components D and T of H5 and Z50, respectively. The dangerous

terms for dimension five proton decay are obtained from the Yukawa couplings

WYuk = TiFjH̄5 + TiTjH5 , (2.3)

where the families of the MSSM matter superfields are embedded in the standard way

in Ti and Fj , transforming as 10 and 5̄ of SU(5), respectively. To calculate the effec-

tive dimension five proton decay operators all Higgs triplets from 5- and 50-dimensional

representations have to be integrated out, but only the triplets in the 5-dimensional repre-

sentations dominantly couple to matter. We denote the triplet mass eigenvalues with M̃1

and M̃2, and the corresponding mass eigenstates as T̃1 and T̃2, respectively. The triplets

that couple to matter are given by the combinations

T (5) =
∑
i

U∗1iT̃i , T̄ (5) =
∑
i

V1i
¯̃Ti , (2.4)

where U and V are unitary matrices defined by mT = Umdiag
T V †. Integrating out the

triplet mass eigenstates T̃i leads to the effective dimension five operator for proton decay,

which is proportional to the inverse of the “effective triplet mass”(
Mdim=5
T

)−1
:= U∗1i

(
mdiag
T

)−1

ij
V1j = U∗1i

(
mdiag
T

)−1

ij
V T
j1 = (m−1

T )11 . (2.5)

Integrating out the heavy colour triplet mass eigenstates also in the Kähler potential

KT = T (5)T (5)† + T̄ (5)T̄ (5)† + T (50)T (50)† + T̄ (50)T̄ (50)†, (2.6)

1For simplicity we omit most order one coefficients in the superpotentials, except where they are relevant

to the discussion.
2H75 can be replaced by the effective combination H2

24/Λ, where H24 is the usual GUT-breaking Higgs

field in the 24 representation of SU(5) [1], see also section 2.5.
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effective dimension six Kähler operators emerge from inserting their equations of motion.

The Lagrangian obtained from the D-terms of KT contains baryon number violating four

fermion operators. These are proportional to(
Mdim=6
T

)−2
:= V1i

(
mdiag
T

)−1

ij
U †jkUkm

(
mdiag
T

)−1

ml
V †l1 =

(
m−1
T m†−1

T

)
11

(2.7)

from T (r)T (r)† and to (Mdim=6
T̄

)−2 = (m†−1
T m−1

T )11 from T̄ (r)T̄ (r)†. With the mass matrix

mT given in eq. (2.2), the effective triplet mass is thus3

Mdim=5
T = (m−1

T )−1
11 = − V 2

M50
, (2.8)

while the suppression of dimension six proton decay is given by

(
Mdim=6
T

)2
=
(
Mdim=6
T̄

)2
=
(
m−1
T m†−1

T

)−1

11
=

|V |4

|M50|2 + |V |2
. (2.9)

Note that with a GUT scale value of V ≈ 1016 GeV and M50 below the Planck scale,

the dimension six proton decay is suppressed sufficiently with values of Mdim=6
T between

1013 and 1016 GeV. Since the doublets obtain no mass terms, the splitting of doublet

mass and effective triplet mass is achieved. Using Mdim=5
T & 1017 GeV one obtains an

upper bound for M50 . 1015 GeV. Having the large representations 50 and 50 enter the

Renormalization Group Equations (RGEs) at this low mass scale, however, leads to the

break down of perturbativity just above the GUT scale. Thus, the MPM solves the DTS

problem — but trades it for SU(5) becoming non-perturbative much below the Planck

scale MPl.

2.2 The double missing partner mechanism

This trade-off can be avoided in the double missing partner mechanism (DMPM), where

the number of Higgs fields in 5, 5̄, 50 and 50 representations gets doubled [9]. The

fields H5 and H̄5 couple to the matter fields Fi and Ti, whereas H ′5 and H̄ ′5 do not. The

superpotential for the DMPM is given by

WDMPM = H̄5H75Z50 + Z̄50H75H
′
5 + H̄ ′5H75Z

′
50 + Z̄ ′50H75H5

+M50Z50Z̄50 +M ′50Z
′
50Z̄

′
50

+ µ′H ′5H̄
′
5 . (2.10)

The mass matrices of the doublet and triplet components of the Higgs fields H5, H ′5, Z50,

Z ′50 and their corresponding barred fields after H75 gets a VEV V are given by

mD =

(
0 0

0 µ′

)
, mT =


0 0 0 V

0 µ′ V 0

V 0 M50 0

0 V 0 M ′50

 . (2.11)

3In the text when we quote numbers for Mdim=5
T , Mdim=6

T and Mdim=6
T̄ we will always refer to their

absolute values.
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While the Higgs doublets coupling to matter remain massless, the second pair of Higgs

doublets contained in H ′5 and H̄ ′5 has mass µ′. The improvement of the DMPM compared

to the MPM can be seen from the effective triplet mass Mdim=5
T

Mdim=5
T = (m−1

T )−1
11 = − V 4

µ′M50M ′50

. (2.12)

The same effective triplet mass of Mdim=5
T ≈ 1017 GeV can now be obtained while keeping

high masses M50 ≈ M ′50 ≈ 1018 GeV, provided the heavier doublet pair has a (relatively)

small mass µ′ ≈ 1011 GeV. With the large representations of SU(5) having high masses, the

perturbativity of the model can be preserved up to (almost) the Planck scale. Dimension

six proton decay is suppressed by(
Mdim=6
T

)2
=
(
m−1
T m†−1

T

)−1

11
=

|V |8

|V |6 + |M50|2
(
|V |4+|M ′50µ

′|2+|V µ′|2
) ≈ (1014 GeV)2,

(2.13)(
Mdim=6
T̄

)2
=
(
m†−1
T m−1

T

)−1

11
=

|V |8

|V |6 + |M ′50|2
(
|V |4+|M50µ′|2+|V µ′|2

) ≈ (1014 GeV)2,

(2.14)

in agreement with the bounds on proton decay.

2.3 Planck-scale suppressed operators

The philosophy we follow in this paper is to consider all Planck-scale suppressed operators

allowed by the symmetries.

The superpotentials in eq. (2.1) and eq. (2.10) include mass terms for the 50-dimension-

al messengers. As such, one cannot use symmetries to forbid non-renormalizable Planck-

scale suppressed operators such as H5H
2
75H̄5/MPl (for the MPM, and H5H

2
75H̄

′
5/MPl and

H ′5H
2
75H̄5/MPl for the DMPM). These Planck-scale suppressed operators do not involve the

50-dimensional messengers and therefore generate dangerously large contributions to the

masses of the doublets contained in the 5-dimensional representations, effectively spoiling

the mechanism.

Given our philosophy, we must forbid these operators through a shaping symmetry.

The MPM and the DMPM can then be restored by adding a singlet field S, responsible

for giving mass to the 50-dimensional superfields through couplings of the form SZ50Z̄50,

SZ ′50Z̄
′
50 and a VEV 〈S〉 6= 0, as seen in the diagram in figure 1 (note S is not acting as an

external field but generating the mass term). The non-trivial charge of S under a shaping

symmetry forbids the dangerous Planck-suppressed operators.

We will generalise this strategy of generating masses for the messenger fields through

an additional singlet field in sections 2.5 and 4, to avoid similarly Planck-scale suppressed

operators spoiling the DMPM or the predictions for the Yukawa coupling ratios.

2.4 Yukawa coupling ratios

The problem of non-viable GUT predictions for the fermion masses in the minimal SU(5)

model, such as Ye = Y T
d , can be solved through effective Yukawa couplings generated from

– 6 –
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H̄5

H75

H5

H75

Z50 Z̄50

〈S〉

Figure 1. MPM diagram with an external S field generating the mass term for the 50-dimensional

messengers after getting a VEV.

A

B

C

D

R̄ R

Figure 2. Supergraphs generating effectively

Yukawa couplings upon integrating out the pair

of messengers fields R and R̄.

AB C D R (Ye)ji/(Yd)ij

H24F T H̄45 45 −1
2

H24F T H̄5 5̄ −3
2

H24 T F H̄5 10 6

Table 1. CG factors for the dimension five

effective operators W ⊃ (AB)R(CD)R̄. See

the main text, figure 2 and [11, 22] for more

details.

higher dimensional operators. When the higher dimensional operators contain a GUT

breaking Higgs field, new ratios between the Yukawa couplings of down-type quarks and

charged leptons can emerge once the GUT symmetry gets spontaneously broken [11].

Due to the introduction of extra SU(5) non-singlet fields, which participate in higher

dimensional operators, there are in general several ways to construct invariants, namely

multiple ways to contract the SU(5) indices. In the general case, such effective operators

are not predictive and introduce an arbitrary, linear combination of several CG factors.

This issue is generic in flavour models and can be resolved by constructing a specific UV

completion of the effective operators, see [20, 21] for mixing in lepton models, [11, 22] for

GUT relations, and for applications in (GUT) flavour models, e.g. [15–17]. By introducing

pairs of heavy messengers in the SU(5) representations R and R̄, the renormalizable cou-

plings associated with the effective operators are specified and a unique contraction of SU(5)

indices of the effective operator is obtained simply by integrating out the messenger fields.

In figure 2 and table 1, we briefly review the topology of the diagram and field combi-

nations that lead to the CG factors (Ye)ji/(Yd)ij = −1
2 , −3

2 and 6 for SU(5) GUTs, which

have been shown to be useful for flavour model building [11–13]. To generate these rela-

tions we use a GUT breaking Higgs field H24 in the adjoint representation of SU(5), and

Higgs fields H̄5 and H̄45 in the 5̄ and 45 representation. The factor −1
2 is, for instance,

generated by the coupling of H24 and F to a messenger field transforming as 45, while its

partner 45 couples to T and H̄45. In our models in section 4 the same CG factor −1
2 is

obtained from a dimension six operator where H̄45 acts as heavy messenger field coupling

to H24 and H̄5.

– 7 –
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H̄5

H24

X45 X̄45

〈S〉 〈S〉 〈S〉
H ′

5

H24

H24H24

Z50 Z̄50 Y45 Ȳ45

H̄ ′
5

H24

X ′
45 X̄ ′

45

〈S〉 〈S〉 〈S〉
H5

H24

H24H24

Z ′
50 Z̄ ′

50 Y ′
45 Ȳ ′

45

Figure 3. Supergraphs generating the non-diagonal entries of the triplet mass matrix.

So far we have discussed CG factors between the MSSM Yukawa couplings. For an

analysis of proton decay, the CG factors to the Yukawa couplings of the colour Higgs

triplets also play an important role. In appendix A we present an extensive discussion of

CG factors in SU(5), including those.

2.5 The double missing partner mechanism with an adjoint

As we discussed in the previous subsection, the CG factors we want to combine with

the DMPM require the GUT breaking Higgs field to be in the adjoint representation of

SU(5), 24. This motivates us to replace the Higgs field H75 needed for the DMPM with

the effective combination H2
24/Λ [1], which at the renormalizable level can be obtained by

integrating out heavy messenger fields in the 45 and 45 representations of SU(5) [5]. To

replace the H75 in the MPM, we have to introduce a set of messenger fields X45, X̄45, Y45

and Ȳ45. For the DMPM, we also need to add a second set X ′45, X̄ ′45, Y ′45 and Ȳ ′45. In

figure 3 we show the supergraphs generating the non-diagonal entries of the triplet mass

matrix in the DMPM with an adjoint H24.

In analogy with the discussion in section 2.3, we avoid direct mass terms in order

to forbid dangerous Planck-suppressed operators that would generate universal mass con-

tributions for Higgs doublets and triplets. The messenger pairs X45X̄45, Y45Ȳ45, Z50Z̄50

and their corresponding primed versions obtain masses from the VEV of a singlet field

S, charged under an additional shaping symmetry. We specify these symmetries for two

example models in section 4.

One may wonder if some of these heavy 45-dimensional messengers could be the same,

so that the number of fields in the spectrum would be reduced while preserving the structure

of the mechanism. But if either X45 ≡ Y45 or X ′45 ≡ Y ′45, it can be seen from figure 3 that

– 8 –
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supergraphs without the Z50Z̄50 mass insertion would be allowed, spoiling the splitting of

doublets and triplets and generating large non-diagonal entries in mD. In turn, if either

X45 ≡ X ′45, Y45 ≡ Y ′45 or Z50 ≡ Z ′50, the DMPM is reduced to the MPM, reintroducing

the issue of perturbativity. Finally, an identification of X45 ≡ Y ′45 would allow diagrams

bypassing the 50-dimensional fields, generating unwanted mass term for both doublet and

triplet components of H5, H̄5, and thus a too large µ-term.

With this messenger superfield content, we carefully checked that no dangerous Planck-

suppressed operators spoil the mechanism. The renormalizable superpotential is:

WDMPM24 = H̄5H24X45 + X̄45H24Z50 + Z̄50H24Y45 + Ȳ45H24H
′
5

+ H̄ ′5H24X
′
45 + X̄ ′45H24Z

′
50 + Z̄ ′50H24Y

′
45 + Ȳ ′45H24H5

+ SX45X̄45 + SY45Ȳ45 + SZ50Z̄50 + SX ′45X̄
′
45 + SY ′45Ȳ

′
45 + SZ ′50Z̄

′
50

+ µ′H ′5H̄
′
5 . (2.15)

After H24 and S obtain their VEVs and integrating out the 45-dimensional messenger

fields, we find the mass matrices for the Higgs doublets and triplets to be

mD =

(
0 0

0 µ′

)
, mT =


0 0 0 − V 2

〈S〉
0 µ′ − V 2

〈S〉 0

− V 2

〈S〉 0 〈S〉 0

0 − V 2

〈S〉 0 〈S〉

 , (2.16)

which one can easily compare to the ones of eq. (2.11) in section 2.5. Here V is defined by

〈H24〉 ≡ V diag
(
1, 1, 1,−3

2 ,−3
2

)
. Integrating out the heavy 50-dimensional fields in a next

step, the mass matrices become

mD =

(
0 0

0 µ′

)
, mT =

(
0 − V 4

〈S〉3

− V 4

〈S〉3 µ′

)
. (2.17)

Thus, the doublets in the pair H5H̄5 stay massless, while the doublet pair in H ′5H̄
′
5 is heavy.

Using only H5 and H̄5 for the Yukawa couplings of the SM fermions, the effective triplet

component mass relevant for dimension 5 proton decay is given by

Mdim=5
T = (m−1

T )−1
11 = − V 8

〈S〉6µ′ . (2.18)

The effective masses suppressing dimension six proton decay mediated by colour triplets

are given by (
Mdim=6
T

)2
=
(
Mdim=6
T̄

)2 ≈ |V |8
|〈S〉|6

, (2.19)

where we used the fact that |〈S〉| � |V | and
∣∣〈S〉3µ′∣∣ � |V |4. Now the requirement of

Mdim=6
T & 1012 GeV can only be obtained with 〈S〉 ≈ 1018 GeV if the GUT scale value

is larger than V & 1016 GeV. In this case one needs µ′ ≈ 107 GeV to obtain an effective

triplet mass Mdim=5
T ≈ 1017 GeV for dimension five proton decay operators. Therefore, if
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the GUT scale is high enough, the effective triplet mass can be large enough to stabilize

the proton, while the large SU(5) representations used in the DMPM can be heavy enough

to keep the theory perturbative up to the Planck scale.

When H24 is uncharged under additional symmetries, having µ′ several orders of mag-

nitude smaller than V requires µ′ to arise from the spontaneous breakdown of a shaping

symmetry, to avoid the term 〈H24〉H ′5H̄ ′5, which would give rise to a much too small ef-

fective triplet mass. Note that the effective triplet masses entering dimension five proton

decay can be expressed in terms of the mass eigenstates of doublet and triplet components

as Mdim=5
T = −M̃1M̃2

µ′ . The effective triplet mass of dimension six proton decay is then

excellently approximated by Mdim=6
T̄

= Mdim=6
T ≈

√
Mdim=5
T µ′.

2.6 Introducing a second adjoint field

We have seen that the DMPM with an adjoint GUT breaking Higgs instead of a 75 already

solves the DTS problem while providing the necessary building block for the desirable CG

factors for flavour model building, if the GUT scale is high enough. To conclude this

section, we will argue why it is compelling to further introduce a second adjoint Higgs

field:

• In the minimal SUSY SU(5) model [23], the single GUT breaking 24 contains an

SU(2) triplet component and an SU(3) octet component with equal masses. Demand-

ing gauge coupling unification, the mass of the Higgs colour triplets is required to be

about 1015 GeV [6], ruling out this model due to proton decay. Non-renormalizable

operators in the GUT breaking superpotential can split the 24 component masses,

allowing a higher effective triplet mass [24] (see also section 3). An additional 24 can

be used to realize this non-renormalizable superpotential in a renormalizable way.

• It turns out that the introduction of an additional 24 is not just a UV-completion

of the non-renormalizable superpotential of [24]. When both adjoints have approxi-

mately the same mass and therefore the second 24 is not integrated out, the additional

colour octet and electroweak triplet in the spectrum lead to more freedom for the

GUT scale and effective triplet mass. In the following section we discuss all possi-

ble renormalizable superpotentials with two adjoints and their impact on MGUT and

Mdim=5
T from a gauge coupling unification analysis.

• A renormalizable superpotential for one 24 requires it to be uncharged under shaping

symmetries in order for it to obtain a VEV. However, such a shaping symmetry charge

is vital in the type of flavour models considered here, to avoid unwanted admixtures of

additional CG factors involving less insertions of H24. With a second 24, the adjoint

fields can acquire non-vanishing VEVs even when charged under shaping symmetries.

These features of renormalizable superpotentials for two adjoints are presented in detail

in the next section.

– 10 –



J
H
E
P
0
9
(
2
0
1
4
)
1
4
1

3 Grand unification and the effective triplet mass

In GUT extensions of the SM it is quite common to have additional fields below the GUT

scale that modify the RGE running, as it is the case for the class of models in this paper.

Therefore one has to study the impact of the additional fields on the running of the gauge

couplings and especially study their unification. The modified unification condition for the

gauge couplings at one-loop reads

1

αu
=

1

αi
− 1

2π

(
b
(SM)
i log

MSUSY

MZ
+ b

(MSSM)
i log

MGUT

MSUSY
+
∑
f

b
(f)
i log

MGUT

Mf

)
, (3.1)

where i = 1, 2, 3 labels the SM gauge interaction and f labels the additional superfields

(compared to the MSSM), with masses Mf and β coefficients b
(f)
i . The one-loop β-function

coefficients for the SM are b
(SM)
i = (41/10,−19/6,−7) and for the MSSM b

(MSSM)
i =

(33/5, 1,−3). The SUSY scale MSUSY is defined here as the scale where we make the

transition from the SM β coefficients to the MSSM ones. The αi are defined at low energies

αi ≡ αi(MZ) while αu is the unified gauge coupling at the GUT scale αu ≡ αi(MGUT). The

GUT scale MGUT is defined here as the scale where the last SU(5) multiplet is completed,

in other words the scale where all three one-loop β coefficients for the SM gauge couplings

become equal.

From now on, we assume that the heaviest incomplete SU(5) multiplets to enter the

RGE running are the leptoquark vector bosons, such that the GUT scale corresponds to

their mass MGUT = MV . While other cases can certainly arise, we focus on this option

because it is quite common in our setup to have heavy leptoquark vector bosons, and

furthermore we verified that in this case the triplet mass can be made very heavy as well.

In addition to the MSSM field content, the DMPM introduces one additional pair of

SU(2)-doublets, D(5) and D̄(5) and two additional pairs of SU(3)-triplets, T
(5)
i and T̄

(5)
i ,

i = 1, 2. They enter the β-functions with the coefficients b
(5,D)
i = (3/5, 1, 0) for the Dirac

pair of doublets and b
(5,T )
i = (2/5, 0, 1) per Dirac pair of triplet and anti-triplet.

Furthermore, we use two SU(5) breaking GUT Higgs fields H24 and H ′24 in the adjoint

representation. They contain one SM-singlet component each, one SU(2)-triplet, T (24),

with b
(24,T )
i = (0, 2, 0), an SU(3)-octet, O(24) with b

(24,O)
i = (0, 0, 3) and a leptoquark

superfield pair, L(24) with b
(24,L)
i = (5, 3, 2). Since one leptoquark superfield pair is eaten

up during the breaking of SU(5), we are left with two triplets with masses M
T

(24)
1

and

M
T

(24)
2

, two octets with masses M
O

(24)
1

and M
O

(24)
2

and one leptoquark superfield pair with

mass ML(24) .

For convenience we define the geometric means of the masses M2
T (5) = M

T
(5)
1

M
T

(5)
2

for

the colour triplets and analogously M2
T (24) = M

T
(24)
1

M
T

(24)
2

, M2
O(24) = M

O
(24)
1

M
O

(24)
2

for the

components of H24 and H ′24.
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Having this at hand, we can solve eq. (3.1) for MD(5) , MT (5) and MGUT,4

logMD(5) =
15π

4α1
− 17π

4α2
− 3π

2α3
+

59

3
logMZ (3.2)

+
2π

αu
+

3

2
logML(24) − 17

2
logMT (24) − 9

2
logMO(24) − 43

6
logMSUSY ,

logMT (5) =
35π

24α1
− 7π

8α2
− 19π

12α3
+

119

12
logMZ (3.3)

+
π

αu
+

3

4
logML(24) − 7

4
logMT (24) − 19

4
logMO(24) − 19

6
logMSUSY ,

logMGUT =
5π

12α1
− π

4α2
− π

6α3
+

11

6
logMZ (3.4)

+
1

2
logML(24) − 1

2
logMT (24) − 1

2
logMO(24) − 1

3
logMSUSY .

For the study of proton decay, it is more convenient to instead solve eq. (3.1) for

the GUT scale gauge coupling αu and the effective triplet mass Mdim=5
T = M2

T (5)/MD(5) ,

which gives the suppression of the dimension 5 proton decay operators (cf. the discussion

in section 2.5). Then we get the relations

π

αu
= − 43π

24α1
+

15π

8α2
+

11π

12α3
− 197

20
logMZ +

3

5
logMDT (3.5)

− 3

4
logML(24) +

15

4
logMT (24) +

11

4
logMO(24) +

7

2
logMSUSY ,

logMdim=5
T = − 5π

6α1
+

5π

2α2
− 5π

3α3
+

1

6
logMZ (3.6)

+ 5 logMT (24) − 5 logMO(24) +
5

6
logMSUSY ,

logMGUT =
5π

12α1
− π

4α2
− π

6α3
+

11

6
logMZ (3.7)

+
1

2
logML(24) − 1

2
logMT (24) − 1

2
logMO(24) − 1

3
logMSUSY ,

where we have introduced the mass M3
DT = M2

D(5)MT (5) . As one can see only αu depends

on MDT , which is due to the fact that doublets and colour triplets together form a complete

representation of SU(5). Thus, following eq. (3.1), one can see that a simultaneous rescaling

MD(5) → q2MD(5) and MT (5) → qMT (5) leaves the GUT scale invariant and only shifts

αu, while Mdim=5
T ∝ q0 remains unchanged and MDT ∝ q parametrises this rescaling.

Further interdependencies between αu, Mdim=5
T andMGUT are then implicit via their shared

dependence on the other masses.

Thus, unification implies that the effective triplet mass follows the relation

Mdim=5
T = exp

(
5

6
π

(
3

α2
− 2

α3
− 1

α1

))
M

1/6
Z M

5
6

SUSY

(
MT (24)

MO(24)

)5

= 2.5+0.6
−0.8 · 1017 GeV

(
MSUSY

1 TeV

)5
6
(
MT (24)

MO(24)

)5

, (3.8)

4In the following, “log” of a mass is to be understood as the natural logarithm of the mass divided by

one common mass scale, e.g. logm ≡ log(m/GeV).
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while the GUT scale is given by

MGUT = 1.37+0.05
−0.05 · 1016 GeV

(
MSUSY

1 TeV

)− 1
3
(

ML(24)

1016 GeV

)1
2
(
MT (24)MO(24)

(1016 GeV)2

)− 1
2

. (3.9)

For completeness, the unified gauge coupling is given by

1

αu
= 24.58± 0.06 +

7

2π
ln
MSUSY

1 TeV
+

3

5π
ln

MDT

1014 GeV
(3.10)

− 3

4π
ln

ML(24)

1016 GeV
+

15

4π
ln

MT (24)

1016 GeV
+

11

4π
ln

MO(24)

1016 GeV
.

For these numbers, we have used the experimental values and uncertainties for the gauge

couplings found in [10]. Note that for all three quantities the resulting uncertainty is

dominated by the experimental error on αs. In the following we will not quote any errors on

the masses anymore since the relative uncertainty changes only negligibly for the different

superpotentials and for two-loop running. The reference scale 1014 GeV is chosen due to

the fact that MDT = 1014 GeV and MT (5) = 1016 GeV implies Mdim=5
T = 1019 GeV.

Since the effective triplet mass Mdim=5
T receives significant two-loop contributions (cf.,

for instance, [6]), we have also implemented a numerical two-loop RGE analysis using the

following procedure. We start with SM values for the gauge and Yukawa couplings [25]

at MZ , run up to to a scale of 1 TeV with the full two-loop SM RGEs and match the SM

to the MSSM (including MS to DR scheme conversion). From there we run and match

using full two-loop MSSM RGEs and one-loop gauge coupling threshold corrections5 while

step-by-step including all additional multiplets at their mass scale via their contributions

to the one- and two-loop gauge coupling RGEs, see appendix B. The Yukawa couplings

of the Higgs colour triplets are well approximated by using the Yukawa couplings of the

corresponding doublets. We do not take into account any other Yukawa couplings. We

verified this approximation numerically and the results for the colour triplet masses are

barely affected.

3.1 Superpotentials with two adjoints of SU(5)

In this section, we systematically study all superpotentials with two adjoints that can break

SU(5) to the SM gauge group. We find only four possibilities with non-vanishing VEVs

and masses. Classified based on their symmetry, they are:

(a) W = M24 trH2
24 +M ′24 trH ′224 + κ′ trH24H

′2
24 + λ trH3

24,

Z2 symmetry where H24 is uncharged and H ′24 charged.

(b) W = M̃24 trH24H
′
24 + λ trH3

24 + λ′ trH ′324,

Z3 symmetry, where H24 has charge 2 and H ′24 charge 1.

(c) W = M̃24 trH24H
′
24 + λ trH3

24 + κ′ trH24H
′2
24,

ZR4 symmetry where H24 has a charge of 2 (with qθ = 1) and H ′24 is uncharged.

5When one integrates out particles at a threshold scale equal to their mass, these threshold corrections

vanish, as can be seen in [26].
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(d) The trivial case with both fields only charged under SU(5) and all (non-linear) terms

allowed. We will not consider this case any further.

Since we are dealing with two adjoint Higgs fields, it is convenient to define a quantity

tanβV similar to tanβ of the MSSM, so that

〈H24〉 = V1 eiφ1 diag(1, 1, 1,−3/2,−3/2) , (3.11)

〈H ′24〉 = V2 eiφ2 diag(1, 1, 1,−3/2,−3/2) , (3.12)

with V1, V2 > 0 and tanβV = V1/V2.

3.1.1 Superpotential (a)

We will begin our discussion with superpotential (a) which turns out to be the most com-

plicated case since it has the most parameters. As it contains two mass parameters, we

introduce a second angle βM and mean mass M > 0 such that M24 = Meiα1 sinβM and

M ′24 = Meiα2 cosβM . The vacuum expectation values are given by

V1eiφ1 =
4M ′24

κ′
and V 2

2 e2iφ2 = 4M ′24

2M24κ
′ − 3M ′24λ

κ′3
, (3.13)

which can as well be expressed in terms of a ratio of the coupling constants involved,

3λ/κ′ = 2ei(α1−α2) tanβM − e−2i(φ1−φ2) cot2 βV . For the geometric means of the masses of

the additional fields compared to the MSSM, we find

M2
T (24) = 5M2 cosβM

√
(2 cosβM − 3 sinβM tan2 βV )2 + ∆ , (3.14a)

M2
O(24) = 5M2 cosβM

√
(3 cosβM − 2 sinβM tan2 βV )2 + ∆ , (3.14b)

M2
L(24) =

1

4
M2 cos2 βM

sin4 βV
, (3.14c)

with ∆ = 12 sin(2βM ) cot2(βV ) sin2 φ̄ and φ̄ = (α1 − α2)/2 + φ1 − φ2. Note that not only

the geometric mean masses, but also the mass eigenvalues themselves only depend on this

phase combination φ̄ and are invariant under φ̄→ φ̄+ π.

The effective triplet mass as of eq. (3.8) is heaviest if the phase φ̄ is 0, π or 2π, since

then the ratio MT (24)/MO(24) is not bounded from above (or below), which allows for the

maximal range for Mdim=5
T . Thus, in the following, we choose φ̄ and thus ∆ to vanish.

The resulting plots for Mdim=5
T and for MGUT are shown in figure 4 for MSUSY = 1 TeV,

M = 1015 GeV, MD(5) = 1000 TeV and φ̄ = 0, including a comparison between one- and

two-loop results. Note however, that gauge coupling unification depends only weakly on

MD(5) . Mdim=6
T and Mdim=6

T̄
are again approximately given by

√
Mdim=5
T MD(5) .

3.1.2 Superpotential (b) and (c)

These two superpotentials have only one massive parameter M̃24 = Meiα and hence the

analytic results become much less cumbersome. The vacuum solutions are given by

V1eiφ1 =
2

3

Meiα

3
√
λ2λ′

and V2eiφ2 =
2

3

Meiα

3
√
λλ′2

, (3.15)
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Mdim=5
T MGUT

Figure 4. The effective colour triplet mass Mdim=5
T (left) and GUT scale MGUT (right) in GeV at

one-loop (upper) and two-loop (lower) order as resulting from superpotential (a) forMSUSY = 1 TeV,

M = 1015 GeV, MD(5) = 1000 TeV and φ̄ = 0. Note the different colour coding between left and

right. For illustration, the white strips denote areas with light MT (24) or MO(24) (< 1013 GeV).

Such relatively low values for these components can arise either from cancellation between terms,

or from a generic suppression due to small parameters, cf. eqs. (3.14).

up to a Z3 symmetry transformation for superpotential (b) and

V1eiφ1 =
1√
3

Meiα

√
λκ′

and V2eiφ2 =
Meiα

κ′
, (3.16)
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up to a minus sign in V1 for superpotential (c). In other words, the couplings fulfill the

relation λ′/λ = e3i(φ2−φ1) tan3 βV for superpotential (b) and κ′/λ = 3e2i(φ1−φ2) tan2 βV for

superpotential (c).

For the geometric means of the masses of the colour triplets, octets and the mass of

the left-over leptoquark superfield in H24 and H ′24, we find

M2
T (24) =

35

4
M2, M2

O(24) =
15

4
M2 and M2

L(24) =
1

sin2(2βV )
M2, (3.17)

for superpotential (b) and

M2
T (24) =

5

4
M2, M2

O(24) =
5

4
M2 and M2

L(24) =
1

4 sin2(2βV )
M2, (3.18)

for superpotential (c). Note that in both cases also all mass eigenvalues turn out to be

phase independent. Therefore, applying eq. (3.8) unification of the gauge couplings on

one-loop implies

Mdim=5, 1-loop
T = 2.5 · 1017 GeV

(
MSUSY

1 TeV

)5
6

×


(

7
3

) 5
2 ≈ 8.3 (b)

1 (c) ,
(3.19)

and

M1-loop
GUT =

1.37 · 1016 GeV√
| sin 2βV |

(
MSUSY

1 TeV

)− 1
3
(

M

1015 GeV

)− 1
2

×


√

8√
21
≈ 1.32 (b)

2 (c) .
(3.20)

Assuming the same parameters, we find an almost ten times heavier effective triplet mass

in superpotential (b) than in (c) and hence we focus on this case in our second example

model later.

At two-loop, we find the following approximate behaviour for the masses

Mdim=5, 2-loop
T =

(
MSUSY

1 TeV

)0.74

·
{

5.2 · 1016 GeV
(

M
1015 GeV

)−0.15
(b)

6.8 · 1015 GeV
(

M
1015 GeV

)−0.18
(c) ,

(3.21)

and

M2-loop
GUT = | sin 2βV |−0.48

(
MSUSY

1 TeV

)−0.4

·
{

2.89 · 1016 GeV
(

M
1015 GeV

)−0.61
(b)

4.78 · 1016 GeV
(

M
1015 GeV

)−0.63
(c) .

(3.22)

The dependence on other parameters is very small. As we can see, at two-loop, having

Mdim=5
T & 1017 GeV requires MSUSY & 2.3 TeV and 35 TeV for superpotential (b) and (c)

respectively. Again, MD(5) = 1000 TeV has been fixed and the values of Mdim=6, 1-loop
T

and Mdim=6, 2-loop
T can be approximated by the square root of the product of MD(5) and

Mdim=5, 1-loop
T or Mdim=5, 2-loop

T respectively.

There are a few more comments in order. There is a claim [27] that the MSSM with an

additional unbroken R-symmetry can not be obtained from the spontaneous breaking of a

– 16 –



J
H
E
P
0
9
(
2
0
1
4
)
1
4
1

four-dimensional (SUSY) GUT. Note that this is not in conflict with our superpotentials,

because the R-symmetry is either absent (a, b, d) or spontaneously broken at the GUT

scale (c). Superpotential (c) is particularly interesting for model building purposes because

R-symmetries are very popular in flavour models with non-Abelian family symmetries (and

spontaneous CP violation). We will discuss this in more detail in appendix D.

4 Flavour models with DMPM

In this section we combine the DMPM (featuring two adjoints of SU(5)) with a predictive

GUT flavour model for the quark-lepton Yukawa ratios at the GUT scale. In particular,

we implement CG factors as given in [11]. Two examples with different Yukawa matrix

structures are presented: in the first model we construct diagonal down-type quark and

charged lepton Yukawa matrices Yd and Ye, with all mixing originating from the up-type

quark Yukawa matrix Yu. The second model realizes the attractive feature of the Cabibbo

mixing angle θC originating from Yd. Both models are providing existence proofs that

successful DTS and experimentally viable predictions for the GUT scale Yukawa coupling

ratios can indeed be realised simultaneously in one model.

Let us be more specific on the predictions made by the two models: due to the CG

factors in the down-type quark and charged lepton sector, yτ
yb

,
yµ
ys

and ye
yd

are predicted

at the GUT scale. To confront them with the experimental data, the RG running to

low energies has to be performed, including in particular supersymmetric 1-loop threshold

corrections [28–31] when the MSSM is matched to the SM. These threshold corrections

can have a sizeable impact on the low energy values of the Yukawa couplings (and thus the

fermion masses), depending on the sparticle spectrum and tanβ. So the predictions here are

two-fold: firstly, the predictions for the Yukawa ratios at the GUT scale imply constraints

on the SUSY breaking parameters, which may be tested at future collider searches if SUSY

is found.6 Secondly, the ratios yd
ys

and ye
yµ

are not affected by RG running and by the SUSY

threshold corrections (as long as the first two families of sfermions are almost degenerate

in mass as commonly assumed). They can be directly used to constrain GUT models. A

particularly useful quantity in this context is indeed the double ratio∣∣∣∣yµys ydye
∣∣∣∣ = 10.7+1.8

−0.8 , (4.1)

which can be checked directly at the GUT scale [25]. In our models we will use the

CG factors yτ
yb

= −3
2 ,

yµ
ys

= 6 and ye
yd

= −1
2 . This leads to

∣∣yµ
ys
yd
ye

∣∣ = 12, which is in good

agreement with the phenomenological value. On the other hand, the ubiquitous CG factors

yµ = −3ys and ye = 1
3yd, known as Georgi-Jarlskog relations [3], would give

∣∣yµ
ys
yd
ye

∣∣ = 9

and deviate from the central value 10.7 by more than two sigma.

In this section we explicitly construct only the Yukawa matrices of the up- and down-

type quarks and charged leptons. Adding one of the ubiquitous mechanisms to generate

6To make explicit statements about the constraints on the SUSY parameters one would have to specify

the model of SUSY breaking, which is beyond the scope of this paper. A discussion and an explicit example

where such constraints are worked out can be found, e.g. in [32].
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neutrino masses and lepton mixing angles would be straightforward. However, we do not

consider neutrinos in this paper, since they are not directly relevant for the discussion of

proton decay, doublet-triplet splitting and the CG factors between Yd and Ye.

4.1 A model with diagonal Yd and Ye Yukawa matrices

We now turn to our first model featuring diagonal down-type quark and charged lepton

Yukawa matrices Yd and Ye.
7 In this case all the mixing in the quark sector has to come

exclusively from the up-type quark Yukawa matrix Yu. Explicitly, we have the following

structure for the Yukawa matrices

Yd =

yd 0 0

0 ys 0

0 0 yb

 , Ye =

−1
2yd 0 0

0 6ys 0

0 0 −3
2yb

 , Yu =

y11 y12 y13

y12 y22 y23

y13 y23 y33

 . (4.2)

An approach to flavour (GUT) model building with diagonal Ye (and Yd) has been discussed

recently in [33, 34].

We introduce flavon fields θ1, θ2, θ3 and θ4 that obtain a VEV and generate the hi-

erarchical structure of the Yukawa matrices. After the flavon fields, H24 and H ′24 obtain

their VEVs, the Yukawa matrices of eq. (4.2) originate from the following effective super-

potentials

Wu =
1

Λ4
H5T1T1θ

2
1θ

2
2 +

1

Λ3
H5T1T2θ

2
1θ2 +

1

Λ2
H5T1T3θ1θ2 +

1

Λ2
H5T2T2θ

2
1

+
1

Λ
H5T2T3θ1 +H5T3T3 , (4.3)

Wd =
1

〈S′〉(H
′
24F3)5̄(H̄5T3)5 +

θ3

〈S′〉2 (H ′24T2)10(H̄5F2)10

+
θ4

〈S′〉2〈S〉(H
′
24F1)45(T1H24H̄5)45 , (4.4)

where we do not show order one coefficients, and denote the different messenger masses

generating Wu by a generic Λ. However, keep in mind that this is just for the sake of

simplicity and different entries in the Yukawa matrix should be understood as independent

parameters. The ratios of flavon VEVs and messenger masses is small of about 0.01–

0.1. For a list of all fields including their charges under the additional discrete shaping

symmetries, see tables 2, 3, 4, and 5.

The adjoint H ′24 required to construct the desired CG factors must be charged under

shaping symmetries. We will therefore implement superpotential (a). Note that it leaves

the second adjoint H24 uncharged, which could in principle lead to a problem. A direct

mass term of messenger fields MiZiZ̄i would in this case always show a up with a term of

the form H24ZiZ̄i. Such a contribution would inevitably spoil the desired CG factors [22]

between Yd and Y T
e as long as the mass and the adjoint VEV are not very hierarchical. To

avoid this and still generate the desired operators the masses of the messenger fields that

7The matrices are diagonal in the preferred basis where the different fermion generations have well

defined symmetry assignments, cf. table 2.
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1
4
1

SU(5) Z2 Z4 Z4 Z4 Z7 Z7 Z9 Z2

H5 5 . . . . . . . .

H̄5 5̄ . 2 . . . 1 2 .

T1 10 . . 3 . 6 . . 1

T2 10 . . . . 6 . . 1

T3 10 . . . . . . . 1

F1 5̄ 1 1 1 2 1 1 2 1

F2 5̄ 1 . . 2 1 . 2 1

F3 5̄ 1 2 . 1 . 6 7 1

Table 2. SU(5) representations and charges under discrete shaping symmetries of the MSSM fields

and colour triplets of the model presented in subsection 4.1. A dot denotes charge zero.

SU(5) Z2 Z4 Z4 Z4 Z7 Z7 Z9 Z2

H24 24 . . . . . . . .

H ′24 24 1 . . . . . . .

S 1 . 3 . . . 2 . .

S′ 1 . . . 1 . . . .

θ1 1 . . . . 1 . . .

θ2 1 . . 1 . . . . .

θ3 1 . 2 . . . 6 5 .

θ4 1 . . . . . . 5 .

Table 3. SU(5) representations and charges under discrete shaping symmetries of the superfields

obtaining VEVs at around the GUT scale of the model presented in subsection 4.1. A dot denotes

charge zero.

give rise to Wd in eq. (4.4) originate from the VEVs of the fields S and S′ charged under

the shaping symmetry (but with different charges than H ′24).8

The full messenger sector can be read off from the supergraphs presented in figures 5

and 6, see also table 5. After the heavy messenger fields get integrated out, the effective

superpotentials Wd and Wu are obtained.

The predictivity of the down-type quarks and charged lepton Yukawa couplings has

already been discussed above. Note that the hierarchical structure is enforced due to the

use of higher order effective operators in Wd. In a small angle approximation the leading

order estimates for the eigenvalues of Yu and the mixing angles are given as

yu ≈ y11−
y2

12

y22
, yc ≈ y22 , yt ≈ y33 , θC ≈

y12

y22
, θ23 ≈

y23

y33
, θ13 ≈

y13

y33
. (4.5)

Phenomenology requires that all parameters yij of Yu are independent, which needs to be

carefully considered in the construction of the messenger sector, as discussed in appendix C.

8The VEV of the charged singlet S gives masses to the heavy messengers of the DMPM (see section 2.5).
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SU(5) Z2 Z4 Z4 Z4 Z7 Z7 Z9 Z2

H ′5 5 . 3 . . . 5 7 .

H̄ ′5 5̄ . 1 . . . 6 . .

X45 45 . 2 . . . 6 7 .

X̄45 45 . 3 . . . 6 2 .

Y45 45 . . . . . 3 7 .

Ȳ45 45 . 1 . . . 2 2 .

Z50 50 . 1 . . . 1 7 .

Z̄50 50 . . . . . 4 2 .

X ′45 45 . 3 . . . 1 . .

X̄ ′45 45 . 2 . . . 4 . .

Y ′45 45 . 1 . . . 5 . .

Ȳ ′45 45 . . . . . . . .

Z ′50 50 . 2 . . . 3 . .

Z̄ ′50 50 . 3 . . . 2 . .

Table 4. SU(5) representations and charges under discrete shaping symmetries of the fields in the

DMPM sector of the model presented in subsection 4.1. A dot denotes charge zero.

SU(5) Z2 Z4 Z4 Z4 Z7 Z7 Z9 Z2

Z5,1 5 . 2 . 3 . 1 2 1

Z̄5,1 5̄ . 2 . . . 6 7 1

Z10,1 10 1 . . 3 6 . . 1

Z̄10,1 10 1 . . . 1 . . 1

Z10,2 10 1 2 . 2 6 6 5 1

Z̄10,2 10 1 2 . 1 1 1 4 1

Z45,1 45 . 3 3 2 6 6 7 1

Z̄45,1 45 . 1 1 1 1 1 2 1

Z45,2 45 . 3 3 3 6 6 2 1

Z̄45,2 45 . 1 1 . 1 1 7 1

Z10,3 10 . . . . 1 . . 1

Z10,4 10 . . 1 . 1 . . 1

Z1 1 . . . . 5 . . .

Z2 1 . . 3 . 5 . . .

Table 5. SU(5) representations and charges under discrete shaping symmetries of the flavon

and flavour messenger fields of the model presented in subsection 4.1. Note that the messengers

Z5,1Z̄5,1, Z10,1Z̄10,1, Z10,2Z̄10,2, Z45,1Z̄45,1 and Z45,2Z̄45,2 have no direct mass term, but get their

masses through the VEVs of S and S′. The other messenger fields have direct mass terms, so their

corresponding barred field is omitted in this table. A dot denotes charge zero.
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H ′
24

T3

H̄5

Z̄5,1Z5,1

F3

〈S′〉

H ′
24H̄5

F2

Z̄10,1Z10,1

T2

Z10,2 Z̄10,2

θ3

〈S′〉〈S′〉

H ′
24

H24

H̄5

Z̄45,1Z45,1

F1

Z45,2 Z̄45,2

θ4

X45X̄45

T1

〈S〉〈S′〉 〈S′〉

Figure 5. Supergraphs leading to the effective superpotential Wd of eq. (4.4) when the heavy

messenger fields get integrated out in the model presented in subsection 4.1.

In section 2.5 we argued that for the case of an uncharged H24, as it appears in the

selected superpotential (a), the mass term for the additional, five-dimensional Higgs fields

must come from the VEV of some singlet field. In our model an effective µ′ term is

generated from a higher-dimensional operator and with an even higher suppression, there

is also a µ-term for the Higgs fields coupling to matter,

W eff
5 = µH5H̄5 + µ′H ′5H̄

′
5 , (4.6)

where µ′ ≡ 〈θ3〉4/M3
Pl and µ ≡ 〈θ3〉〈θ4〉4/M4

Pl.
9 The mass matrices for the doublet and

triplet components are then given by

mD =

(
µ 0

0 µ′

)
, mT =


µ 0 0 − V 2

1
〈S〉

0 µ′ − V 2
1
〈S〉 0

− V 2
1
〈S〉 0 〈S〉 0

0 − V 2
1
〈S〉 0 〈S〉

 , (4.7)

where V1 is defined in eq. (3.11). After the heavy 50-dimensional fields are integrated

out and SU(5) gets spontaneously broken, the mass matrices for the doublet and triplet

components of the Higgs fields H5, H ′5 and their corresponding barred fields are given by

mD =

(
µ 0

0 µ′

)
, mT =

 µ − V 4
1
〈S〉3

− V 4
1
〈S〉3 µ′

 . (4.8)

The effective triplet mass for dimension five proton decay is then given by

Mdim=5
T = (m−1

T )−1
11 = µ− V 8

1

〈S〉6µ′ ≈ −
V 8

1 M
3
Pl

〈S〉6〈θ3〉4
. (4.9)

9Alternatively, we checked that a UV-complete generation of these µ and µ′ operators via messenger

fields would be possible. However, the necessary messenger fields are not included in the model and it turns

out that the masses are already generated by Planck-scale suppressed effective operators.
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H5 T3

θ1

Z̄10,3Z10,3

T2

H5 T3

θ1

Z̄10,4Z10,4

T1

Z10,3 Z̄10,3

θ2

H5 θ1

θ1

Z̄10,3Z10,3

T2

Z̄1 Z1

T2

H5

θ1

θ1

Z̄10,4Z10,4

T1

Z10,3 Z̄10,3

θ2

Z1Z̄1

T2

H5

θ1

θ1

Z̄10,3Z10,3

T2

Z̄2 Z2

T1

Z1Z̄1

θ2

H5

θ1

θ1

Z̄10,4Z10,4

T1

Z̄2 Z2

θ2

Z1Z̄1

T2

H5

θ1

θ1

Z̄10,4Z10,4

T1

Z10,3 Z̄10,3

θ2

Z2Z̄2

T1 θ2

Z̄1 Z1

Figure 6. Supergraphs leading to the effective superpotential Wu of eq. (4.3) when the heavy

messenger fields are integrated out in the model presented in subsection 4.1. Note that there are

three supergraphs contributing to the superpotential term generating y12. A detailed discussion of

the messenger sector is presented in the appendix C.

and the effective triplet masses suppressing dimension six proton decay are given by

(
Mdim=6
T

)2
=
(
Mdim=6
T̄

)2 ≈ |V1|8

|〈S〉|6
. (4.10)

Let us give an explicit example for the scales involved in the model: because of pertur-

bativity the mass of the 50-dimensional Higgs fields has to be almost at the Planck scale.
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We therefore assume 〈S〉 ∼ 10−1MPl. Using the known values of the Yukawa couplings,

we can estimate the values of the relevant masses of our model. At the GUT scale with

tanβ = 30 the Yukawa couplings are approximately given by [25]

yd ≈ 1.6 · 10−4, ys ≈ 3 · 10−3, and yb ≈ 0.18 . (4.11)

In our example model these Yukawa couplings are (up to order one couplings) given by the

operators

yd ∼
〈H24〉〈H ′24〉〈θ4〉
〈S′〉2〈S〉 , ys ∼

〈H ′24〉〈θ3〉
〈S′〉2 and yb ∼

〈H ′24〉
〈S′〉 . (4.12)

Then we find from eqs. (4.9)–(4.12) for the effective triplet masses, the µ-term and the

mass of the additional heavy doublet the following values

Mdim=5
T ≈ 1.4 · 1019 GeV, Mdim=6

T ≈ 1.4 · 1012 GeV, µ ≈ 225 GeV, µ′ ≈ 130 TeV.

(4.13)

Recalling from section 3.1.1 the parameters governing superpotential (a) and using here

SUSY scale of MSUSY = 1 TeV, λ ∼ 0.19, κ′ ∼ 0.08, M ′24 = M24 = 1015 GeV and V2/V1 =

1.2 the GUT scale is given by

MGUT ≈ 6.4 · 1016 GeV. (4.14)

Although these numbers are only estimates, which neglect order one couplings, they illus-

trate the model’s features: the DTS problem is solved with large effective triplet masses,

therefore the proton decay rate is suppressed and the fermion mass ratios are realistic.

The µ-term emerges from a Planck-scale suppressed operator. We remark that the DMPM

does not suffer from any dangerous Planck-scale suppressed operators, due to the charge

assignment of the singlet field S.

4.2 A model with θC from Yd

We now turn to our second example model, which realises the attractive feature of θC
emerging dominantly from the down-type quark mixing θC ≈ θd12. The Yukawa matrices

are given by the following structure

Yd =

 0 yd,12 0

yd,21 ys 0

0 0 yb

 , Ye =

 0 6yd,21 0

−1
2yd,12 6ys 0

0 0 −3
2yb

 , Yu =

y11 y12 0

y12 y22 y23

0 y23 y33

 . (4.15)

A similar structure [16, 17] has been used to explain the relation θPMNS
13 = θC/

√
2 via

charged lepton corrections, and a right-handed quark unitarity triangle [35]. From the

matrices we can see that we want to couple both F1 and F2 to T2 but still distinguish

both fields from each other to forbid (Yd)11. This suggests to use at least a Z3 symmetry

and hence we will use superpotential (b) from section 3.1 where both adjoints are charged.

The effective superpotentials that lead to the desired Yukawa matrices after integrating
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T3

H̄5

Z̄5,1Z5,1

F3

〈S′〉

F1 H24

T2

Z10,1 Z̄10,1

H̄5

Z̄10,2Z10,2

θ3

〈S′〉〈S′〉

H ′
24

H̄5

F2

Z̄10,3Z10,3

T2

Z10,4 Z̄10,4

θ4

〈S′〉〈S′〉

H24

H24

H̄5

Z̄45,1Z45,1

F2

X45X̄45

T1

〈S〉〈S〉

Figure 7. Supergraphs leading to the effective superpotential Wd of eq. (4.17) when the heavy

messenger fields get integrated out in the model presented in subsection 4.2.

out heavy messenger fields and breaking of the GUT gauge group are

Wu =
1

Λ2
H5T1T1θ

2
5 +

1

Λ2
H5T1T2θ

2
2 +

1

Λ2
H5T2T2θ

2
1 +

1

Λ
H5T2T3θ1 +H5T3T3 , (4.16)

Wd =
1

〈S′〉(H
′
24F3)5̄(H̄5T3)5 +

θ3

〈S′〉2 (H24T2)10(H̄5F1)10 +
θ4

〈S′〉2 (H ′24T2)10(H̄5F2)10

+
1

〈S〉2 (H24F2)45(T1H24H̄5)45 , (4.17)

where again VEVs of singlet fields appear in the denominators by virtue of messenger

masses generated by them. Note that in comparison to Yu of the previous example model

of eq. (4.2), the vanishing (Yu)13 element requires to introduce an additional flavon field

θ5. The supergraphs that generate these effective operators are shown in figure 7 and 8. A

complete list of all fields including their charges and representations is given in tables 6, 7, 8

and 9.

In a small angle approximation the mixing angles and Yukawa couplings are given by

yd ≈
yd,12yd,21

ys
, θC ≈ θd12 ≈

yd,12

ys
,

yu ≈ y11 −
y2

12

y22
, yc ≈ y22 , yt ≈ y33 , θ23 ≈

y23

y33
, θ13 ≈

y12

y22
θ23 , (4.18)

with ys and yb given as parameters of Yd in eq. (4.15). Thus the Yukawa matrices can fit

the experimental values without tension.
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H5 T3

θ1

Z̄10,5Z10,5

T2

H5 θ1

θ1

Z̄10,5Z10,5

T2

Z̄1 Z1

T2

H5 θ2

θ2

Z̄10,5Z10,5

T2

Z̄2 Z2

T1

H5 θ2

θ2

Z̄10,6Z10,6

T1

Z̄2 Z2

T2

H5 θ5

θ5

Z̄10,6Z10,6

T1

Z̄3 Z3

T1

Figure 8. Supergraphs leading to the effective superpotential Wu of eq. (4.16) when the heavy

messenger fields get integrated out.

SU(5) Z2 Z3 Z4 Z5 Z6 Z7 Z7 Z2

H5 5 . . . . . . . .

H̄5 5̄ . 2 . 1 4 6 6 .

T1 10 . . . . . 6 5 1

T2 10 . . . . . 1 . 1

T3 10 . . . . . . . 1

F1 5̄ . . . 3 2 5 6 1

F2 5̄ . 2 . 3 . 2 3 1

F3 5̄ . 1 3 4 . 1 1 1

Table 6. SU(5) representations and charges under discrete shaping symmetries of the MSSM fields

and colour triplets of the model presented in subsection 4.2. A dot denotes charge zero.

We continue now by discussing additional details concerning the use of the DMPM in

this model. Like in the previous model, Planck-scale suppressed operators generate mass

terms for the five-dimensional Higgs representations

W eff
5 = µH5H̄5 + µ′H ′5H̄

′
5 , (4.19)
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SU(5) Z2 Z3 Z4 Z5 Z6 Z7 Z7 Z2

H24 24 . . . . 4 . . .

H ′24 24 . . . . 2 . . .

S 1 1 2 . 2 . . . .

S′ 1 . . 3 . . . . .

θ1 1 . . . . . 6 . .

θ2 1 . . . . . . 1 .

θ3 1 . 1 2 1 2 2 2 .

θ4 1 . 2 2 1 . 5 5 .

θ5 1 . . . . 3 1 2 .

Table 7. SU(5) representations and charges under discrete shaping symmetries of the superfields

obtaining VEVs at around the GUT scale of the model presented in subsection 4.2. A dot denotes

charge zero.

SU(5) Z2 Z3 Z4 Z5 Z6 Z7 Z7 Z2

H ′5 5 1 1 . . 4 1 1 .

H̄ ′5 5̄ 1 . . 1 2 . . .

X45 45 . 1 . 4 4 1 1 .

X̄45 45 1 . . 4 2 6 6 .

Y45 45 . 2 . 3 2 1 1 .

Ȳ45 45 1 2 . . 4 6 6 .

Z50 50 1 . . 1 . 1 1 .

Z̄50 50 . 1 . 2 . 6 6 .

X ′45 45 1 . . 4 . . . .

X̄ ′45 45 . 1 . 4 . . . .

Y ′45 45 1 1 . 3 4 . . .

Ȳ ′45 45 . . . . 2 . . .

Z ′50 50 . 2 . 1 2 . . .

Z̄ ′50 50 1 2 . 2 4 . . .

Table 8. SU(5) representations and charges under discrete shaping symmetries of the fields in the

DMPM sector of the model presented in subsection 4.2. A dot denotes charge zero.

where µ = 〈θ3〉4/M3
Pl and µ′ = 〈θ4〉4/M3

Pl. Note that although they appear at the same

order, a modest hierarchy 〈θ3〉 < 〈θ4〉, as we have in our model, will sufficiently split

their masses. Furthermore, after integrating out the 45-dimensional messengers of the

DMPM, the mass matrices for doublet and triplet components of the 5- and 50-dimensional
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SU(5) Z2 Z3 Z4 Z5 Z6 Z7 Z7 Z2

Z5 5 . 2 1 1 4 6 6 1

Z̄5 5̄ . 1 . 4 2 1 1 1

Z10,1 10 . 1 . 1 . 3 2 1

Z̄10,1 10 . 2 1 4 . 4 5 1

Z10,2 10 . . 1 . 4 1 . 1

Z̄10,2 10 . . . . 2 6 . 1

Z10,3 10 . 2 . 1 2 6 5 1

Z̄10,3 10 . 1 1 4 4 1 2 1

Z10,4 10 . . 1 . 2 1 . 1

Z̄10,4 10 . . . . 4 6 . 1

Z45,1 45 . 1 . 2 2 5 4 1

Z̄45,1 45 1 . . 1 4 2 3 1

Z10,5 10 . . . . . 6 . 1

Z10,6 10 . . . . . 1 2 1

Z1 1 . . . . . 2 . .

Z2 1 . . . . . . 5 .

Z3 1 . . . . . 5 3 .

Table 9. SU(5) representations and charges under discrete shaping symmetries of the flavon and

flavour messenger fields of the model presented in subsection 4.2. Note that the messengers Z5,1Z̄5,1,

Z10,1Z̄10,1, Z10,2Z̄10,2, Z10,3Z̄10,3, Z10,4Z̄10,4 and Z45,1Z̄45,1 have no direct mass term, but get their

masses through VEVs of S and S′. The other messenger fields have direct mass terms, so their

corresponding barred field is not shown in the table. A dot denotes charge zero.

superfields are given by

mD =

(
µ 0

0 µ′

)
, mT =


µ 0 0 − V 2

1
〈S〉

0 µ′ − V 2
1
〈S〉 0

− V 2
1
〈S〉 0 〈S〉 0

0 − V 2
1
〈S〉 0 〈S〉

 , (4.20)

where V1 is defined in eq. (3.11). After the heavy 50-dimensional fields get integrated out

the mass matrices become

mD =

(
µ 0

0 µ′

)
, mT =

 µ − V 4
1
〈S〉3

− V 4
1
〈S〉3 µ′

 . (4.21)

This leads to an effective triplet mass for dimension five proton decay of

Mdim=5
T = (m−1

T )−1
11 = µ− V 8

1

〈S〉6µ′ ≈ −
V 8

1 M
3
Pl

〈S〉6〈θ4〉4
, (4.22)
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and the effective triplet masses suppressing dimension six proton decay are given by

(
Mdim=6
T

)2
=
(
Mdim=6
T̄

)2
=
(
m−1
T m†−1

T

)−1

11
≈ |V1|8

|〈S〉|6
. (4.23)

As for the first example model we can estimate the values of the relevant masses in an

explicit example from the known Yukawa couplings. In a small angle approximation the

down-type Yukawa couplings are given by

yd ∼
〈H24〉2
〈S〉2

〈H24〉〈θ3〉
〈S′〉2

1

ys
≈ 1.6 · 10−4 with ys ∼

〈H ′24〉〈θ4〉
〈S′〉2 ≈ 3 · 10−3 (4.24)

and

yb ∼
〈H ′24〉
〈S′〉 ≈ 0.18 , (4.25)

where the numerical values for the Yukawa couplings taken from [25] are valid for tanβ = 30

and order one coefficients have been neglected. For the effective triplet masses of dimension

five and six proton decay, respectively, the µ-term and the mass of the additional, heavier

Higgs doublets the following estimates emerge

Mdim=5
T ≈ 1.4·1018,GeV, Mdim=6

T ≈ 1012 GeV, µ ≈ 7 TeV, µ′ ≈ 800 TeV. (4.26)

The parameters of superpotential (b) from section 3.1.2 have been chosen to be real with

values tanβV = 0.5, λ = 10−4 and M = 2.4·1012 GeV. The mass of the 45-dimensional and

50-dimensional superfields has been set to 〈S〉 = 1018 GeV. With the numbers of eq. (4.26)

we find

MSUSY ≈ 24 TeV, MGUT ≈ 4 · 1017 GeV. (4.27)

Thus, also in this model, proton decay can be suppressed by large effective triplet masses.

DTS is achieved through the DMPM and the light doublet gets its mass from a Planck-

scale suppressed operator. The Yukawa sector of the model features viable fermion masses

and quark mixing angles.

5 Proton decay

We have split our discussion of proton decay into two parts. In the first part we comment on

proton decay induced by dimension five operators in the superpotential. These operators

are usually considered to be more dangerous for the validity of any SUSY GUT model.

We will argue why we are more predictive than ordinary models and still should be able

to evade current experimental bounds. In the second part we will comment on dimension

six proton decay operators, which appear also in non-SUSY GUTs. The dimension six

proton decay operator emerging from the exchange of heavy gauge bosons are considered

to be not as dangerous in SUSY GUTs due to the usually higher unification scale [6]. The

dimension six proton decay mediated by colour triplets, however, has to be suppressed by

a high enough effective triplet mass, as for the case of dimension five proton decay.
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5.1 Proton decay from dimension five operators

We will adopt for this section a notation similar to the SLHA convention [36], for more

details see appendix A. The superpotential describing the couplings of the matter fields to

the heavy colour triplet reads

WT = εαβ

(
− 1

2
(Yqq)ijεabcT

aQαbi Q
βc
j + (Yql)ij T̄

aQαai Lβj

)
+ (Yue)ijT

aŪai Ēj − (Yud)ijεabcT̄
aŪ bi D̄

c
j +MTT

aT̄ a.

(5.1)

In many SU(5) models at least for the first two generations it was assumed that the

Yukawa couplings are generated or significantly corrected by some set of higher-dimensional

operators, see for instance, [24, 37, 38]. But, usually, there is no control over which operator

is the dominant one and hence it is not possible to calculate how strong exactly the heavy

triplets couple to the MSSM fields. In our setup this is not the case. For every entry

of the Yukawa matrix we have specified the operator with only very small corrections, if

any. Therefore we know how strong the MSSM fields couple to the heavy triplets if we

know the MSSM Yukawa couplings at the GUT scale. To be more precise the new Yukawa

couplings are related to the MSSM ones only via CG coefficients which are fixed by the

gauge structure of the underlying operator. We find for our first example model

Yd = Diag(yd, ys, yb) , Ye = Diag

(
− 1

2
yd, 6ys,−

3

2
yb

)
, (5.2)

Yql = Diag

(
yd, ys,−

3

2
yb

)
, Yud = Diag

(
2

3
yd,−4ys, yb

)
, (5.3)

Yqq = Yu , Yue = Yu , (5.4)

where the structure of Yu can be read off from eq. (4.2). For the second model we find

Yd =

 0 yd,12 0

yd,21 ys 0

0 0 yb

 , Y T
e =

 0 −1
2yd,12 0

6yd,21 6ys 0

0 0 −3
2yb

 , (5.5)

Yql =

 0 yd,12 0

yd,21 ys 0

0 0 −3
2yb

 , Yud =

 0 2
3yd,12 0

−4yd,21 −4ys 0

0 0 yb

 , (5.6)

Yqq = Yu , Yue = Yu , (5.7)

where the structure of Yu can be read off from eq. (4.15).10

The dimension five operators which violate baryon number after integrating out the

triplets read

W�B =
1

M eff
T

[
1

2
Y ij
qqY

mn
ql QiQjQmLn + Y ij

ueY
mn
ud ŪiĒjŪmD̄n

]
, (5.8)

10GUT textures for proton decay, without fully constructed models, have been considered, for example,

in [38, 39].
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where we have suppressed ε-tensors. The first operator is called the LLLL operator and

the second one the RRRR operator. To make definite predictions for the proton decay

rate one would have to take the RGE evolution of these operators to low energies into

account and dress the operators with a closed loop including MSSM particles to calculate

the decay rate of the proton, see e.g. [19] and references therein. This goes clearly beyond

the scope of this paper. Before we give some more qualitative statements about what we

expect for the proton decay rate in comparison to other models we want to argue first that

the operators in eq. (5.8) together with M eff
T from eq. (2.18) give the dominant dimension

five contribution.

Inside the additional higher dimensional representations used in the DMPM there are

additional colour triplets which could in principle give the same operators like in eq. (5.8)

but with a weaker suppression. We have explicitly checked that the DMPM by itself is

safe: the additional colour triplets from 5-, 45- and 50-dimensional representations can

only mediate operators that are suppressed compared to the leading contribution by one

or more powers of H24/MPl and H ′24/MPl.

We have also checked for each of our models that no other Yukawa matrix entries

(through components in the messengers) lead to a lower Mdim=5
T . This is, of course, model

dependent and has to be checked for any specific model.

We now turn to a qualitative discussion of dimension five proton decay in the consid-

ered class of models. Firstly, we want to point out that especially in the first model one

could expect some decay modes of the proton to be suppressed because Yql and Yud are di-

agonal in flavour space. Therefore, decays which need a flavour transition in these matrices

would be suppressed. This reinforces the statement that our setup is more predictive than

conventional ones, due to the better control over the flavour structure of all the Yukawa

matrices governing proton decay.

Secondly, introducing a second adjoint in a renormalizable way gives us enough freedom

to enhance the effective triplet mass Mdim=5
T to comfortable levels, cf. section 3. In the case

of superpotential (b), we get a mass of roughly 5 ·1016 GeV for a SUSY scale of 1 TeV which

increases with increasing MSUSY, see section 3.1.2. For superpotential (a) the situation is

more involved and depends on the specific GUT scale, and the effective triplet mass can

be easily above 1018 GeV.

To conclude the discussion of the dimension five operators mediating proton decay we

also want to stress that in our setup we need only a moderate value of tanβ ≈ 25. As it was

pointed out by Lucas and Raby [40] especially the contribution from the RRRR operator is

enhanced by tan2 β for large tanβ which poses a challenge for many GUT scenarios which

rely on tanβ ≈ 50. Our setup with yτ/yb = 3
2 and tanβ ≈ 25 has therefore a suppression

of proton decay via the RRRR operator by a factor of four compared to these models.

In summary, together with the large effective triplet mass in the double missing partner

mechanism we hence expect the proton decay rate to be sufficiently small but possibly in

the reach of the next generation of proton decay experiments.
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5.2 Proton decay from dimension six operators

We now turn to the discussion of dimension six proton decay. As discussed in section 2, the

dimension six proton decay mediated by colour triplets originates from the Kähler potential

KT = T aT †a + T̄ aT̄ †a. (5.9)

When the colour triplets are integrated out, the dimension six baryon number violating

Kähler operators emerge as

K�B = − 1

(Mdim=6
T̄

)2

1

2
Y ij
qqY

∗mn
ue QiQjŪ

†
mĒ
†
n −

1

(Mdim=6
T )2

Y ij
ql Y

∗mn
ud QiLjŪ

†
mD̄

†
n + h.c. ,

(5.10)

where the Yukawa coupling matrices are defined by WT of eq. (5.8). As for the dimension

five proton decay, these operators need to be subject to a RGE evolution from the GUT

scale to the proton mass scale. Note however, that these operators do not need to be

dressed with superparticles and therefore the proton decay rates obtained from dimension

six operators are independent of the details of the SUSY spectrum.

For completeness, we will now briefly discuss as well proton decay from exchange of

heavy gauge bosons. There is no substantial difference in our models compared to other

SUSY SU(5) models since the gauge structure is exactly the same.

To make the discussion a little bit more analogous to the previous discussion we define

an effective GUT scale

M eff
GUT =

MGUT√
αu

, (5.11)

where αu is the unified gauge coupling at the GUT scale and MGUT ≡MV is the mass of the

leptoquark vector bosons, cf. the discussion in section 3. Just integrating out the heavy

gauge bosons in the tree-level diagrams governing proton decay, and from dimensional

analysis, we can estimate the lifetime of the proton to be

Γp ≈ α2
u

m5
p

M4
V

=
m5
p

(M eff
GUT)4

, (5.12)

where mp is the proton mass and we have neglected RGE effects and order one coefficients

from nuclear matrix elements and such. The most stringent bound on the proton lifetime

is τ(p→ π0e+) > 8.2 ·1033 years [10] which yields an effective GUT scale of about M eff
GUT &

2 · 1016 GeV. In section 3 we have seen that the GUT scale can be easily above 1016 GeV

and
√
αu ≈ 1/5 such that the proton decay rate from dimension six operators is sufficiently

small but possibly in the reach of the next generation of proton decay experiments.

6 Summary and conclusions

In this work we have discussed how the double missing partner mechanism solution to the

doublet-triplet splitting problem in four-dimensional supersymmetric SU(5) Grand Unified

Theories can be combined with predictive models featuring novel predictions for the quark-

lepton Yukawa coupling ratios at the GUT scale.
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We have argued that towards this goal a second SU(5) breaking Higgs field in the

adjoint representation is very useful. We systematically discussed all possible renormal-

izable superpotentials with two adjoint Higgs fields, also calculating the corresponding

constraints on the GUT scale and effective triplet mass from a two-loop gauge coupling

unification analysis. We found that the effective masses of the colour triplet, which enter

dimension five and six proton decay, can easily be raised enough to avoid problems with

proton decay (more than feasible with standard non-renormalizable Higgs potentials with

only one adjoint GUT Higgs field).

We have constructed two explicit flavour models with different predictions for the GUT

scale Yukawa sector. A set of shaping symmetries and a renormalizable messenger sector

for the models is presented, which guarantees that only the desired effective GUT operators

are generated when the heavy degrees of freedom are integrated out. In addition, we also

include all possible effective Planck-scale suppressed operators consistent with our symme-

tries, and make sure that they do not spoil our results. The models stay perturbative until

close to the Planck scale, such that our predictions do not suffer from large uncertainties

due to these Planck-scale suppressed operators. They serve as existence proofs that pre-

dictive models for the GUT scale quark-lepton mass relations can be combined successfully

with the DMPM solution for solving the DTS problem.

We also provide several useful appendices for GUT flavour model building: for in-

stance, one appendix contains the Clebsch-Gordan coefficients for the couplings of the

colour triplets, which are required for calculating the rates for proton decay induced by

their exchange. We provide detailed tables with the Clebsch-Gordan coefficients for the

possible dimension five and six GUT Yukawa operators. We also discuss there how one

can use GUT Higgs potentials for flavour model building, where a (discrete) R-symmetry

is broken spontaneously around the GUT scale. R-symmetries are a helpful ingredient of

many flavour models, especially when they include non-Abelian family symmetries.

In summary, we have demonstrated that four-dimensional supersymmetric SU(5)

GUTs with successful doublet-triplet splitting can be combined with predictive models

featuring promising predictions for the quark-lepton Yukawa coupling ratios at the GUT

scale. We have provided the tools for the construction of even more ambitious GUT models

of flavour with additional non-Abelian family symmetries, as well as towards the calcula-

tion of the predictions for the rates of the various nucleon decay channels in such models

by systematically providing the required Clebsch-Gordan coefficients.
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A Yukawa coupling ratios including colour triplets

The MSSM superpotential is given by

W = εαβ
(
(Ye)

ijHα
d L

β
i Ēj + (Yd)

ijHα
dQ

βa
i D̄

a
j + (Yu)ijHβ

uQ
αa
i Ūaj + µHα

uH
β
d

)
, (A.1)

– 32 –



J
H
E
P
0
9
(
2
0
1
4
)
1
4
1

where i, j are generation indices, εαβ the Levi-Civita tensor (ε12 = 1), α, β are SU(2)

indices and a, b and c are SU(3) indices.11 Adding a pair of colour triplets T and T̄ , we

get the additional terms

WT = εαβ

(
− 1

2
(Yqq)ijεabcT

aQαbi Q
βc
j + (Yql)ij T̄

aQαai Lβj

)
+ (Yue)ijT

aŪai Ēj − (Yud)ijεabcT̄
aŪ bi D̄

c
j +MTT

aT̄ a, (A.2)

where εabc is the three indices Levi-Civita tensor (with ε123 = 1).

Extending the SM gauge group to SU(5), we embed the MSSM superfields in a 5-plet

H5, 5̄-plets H̄5 and Fi, and 10-plets Ti as in

H5 =
(
T r T g T b H+

u H0
u

)
, (A.3)

H̄5 =
(
T̄ r T̄ g T̄ b H−d −H0

d

)
, (A.4)

Fi =
(
D̄r
i D̄

g
i D̄

b
i Ei −νi

)
, (A.5)

Ti =
1√
2


0 −Ū bi Ūgi −U ri −Dr

i

Ū bi 0 −Ū ri −Ugi −D
g
i

−Ūgi Ū ri 0 −U bi −Db
i

U ri Ugi U bi 0 −Ēi
Dr
i Dg

i Db
i Ēi 0

 , (A.6)

where r, g, b are the SU(3) colours and U , D and ν, E are the components of SU(2)-doublets

Q and L.12 We can write down the renormalizable superpotential terms

W = (YTF )ijT abi (Fj)a(H̄5)b +
1

2
(YTT )ijεabcdeT abi T cdj He

5 + µ5H
a
5 (H̄5)a , (A.7)

where now a, b, c, d, e are SU(5)-indices and εabcde is the respective Levi-Civita tensor. From

the embedding of the MSSM fields, one obtains the minimal SU(5) GUT scale relations

µ = MT = µ5 , (A.8)

Yd = Y T
e = Yql = Yud =

1√
2
YTF , (A.9)

Yu = Y T
u = Yqq = Yue = 2YTT . (A.10)

The relation Yd = Y T
e is highly disfavoured as was already discussed in section 2.4. The

conventional approach is to add a 45-dimensional Higgs representation which generates

a relative factor of −3 between the Yukawa couplings of the charged leptons and down-

type quarks [3]. In this work we instead focus on an approach where the ratios between

Yukawa couplings are fixed by the CG coefficients of higher-dimensional operators where

in addition an adjoint Higgs representation of SU(5) is added [11, 22]. This approach was

11This definition coincides with the definitions of [36].

12Likewise Hd =
(
H0
d H−d

)T
and Hu =

(
H+
u H0

u

)T
.
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AB C D R (Yd)ij : (Ye)ji : (Yql)ij : (Yud)ij

Fj Ti H̄5 — 1 : 1 : 1 : 1

→ H24 Ti Fj H̄5 10 1 : 6 : 1 : −4

H24 Ti Fj H̄5 15 1 : 0 : −1 : 0

H24 H̄5 Fj Ti 5̄ 1 : 1 : −2
3 : −2

3

H24 H̄5 Fj Ti 45 1 : −3 : −2 : 2

→ H24Fj Ti H̄5 5̄ 1 : −3
2 : −3

2 : 1

H24Fj Ti H̄5 45 1 : 3
2 : −1

2 : −1

Fj Ti H̄45 — 1 : −3 :
√

3 : −
√

3

H24 Ti Fj H̄45 10 1 : −18 :
√

3 : 4
√

3

H24 Ti Fj H̄45 40 1 : 0 : −
√

3
2 : −

√
3

2

H24 Ti Fj H̄45 175 1 : 36
23 : −19

√
3

23 : −16
√

3
23

H24 H̄45 Fj Ti 5̄ 1 : 1 : − 2√
3

: − 2√
3

H24 H̄45 Fj Ti 45 1 : −3 : x : −x
H24Fj Ti H̄45 5̄ 1 : 9

2 : −3
√

3
2 : −

√
3

H24Fj Ti H̄45 45 1 : −1
2 : −

√
3

2 : − 1√
3

H24Fj Ti H̄45 70 1 : 9
4 : −3

√
3

4 : −
√

3

Table 10. YTF -like CG ratios for the dimension 4 operator and effective dimension 5 operators

W ⊃ (AB)R(CD)R̄ (involving 5- and 45-dimensional Higgs fields) corresponding to the the left

diagram in figure 9. Note that one combination has a free parameter x due to the ambiguity of the

index contraction. See main text for more details.

A

B

C

D

R̄ R

A

B

C
D

E

R̄2R2R1R̄1

Figure 9. Supergraphs generating Yukawa couplings upon integrating out messengers fields in

representation R, R̄, etc.

briefly reviewed in section 2.4 and for a thorough discussion we refer the interested reader

to the original papers, see also [41].

In this appendix we will extend the previous discussions to include also the relative CG

coefficents to the triplets. In [11, 22] only Yd, Ye and Yu were discussed while here we will

also discuss in detail the implications of this approach for Yql, Yud, Yqq, Yue. The list of the

resulting ratios for dimension 4 and 5 operators with Higgs fields in a 5- and 45-dimensional

representation can be found in tables 10 and 11, where the labels for the representations

is defined by figure 9. The corresponding results for dimension six operators are given in

tables 12–15. The ones used in the example models are marked with a “→” in the tables.
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AB C D R (Yu)ij : (Yu)ji : (Yqq)ij : (Yue)ij : (Yue)ji

→ TiTjH5 — 1 : 1 : 1 : 1 : 1

H24H5 TiTj 5 1 : 1 : −2
3 : −2

3 : −2
3

H24H5 TiTj 45 1 : −1 : 0 : −2 : 2

H24Ti TjH5 10 1 : −4 : 1 : −4 : 6

H24Ti TjH5 40 1 : 1
2 : −1

2 : −1 : 0

TiTjH45 — 1 : −1 : 0 :
√

3 : −
√

3

H24Ti TjH45 10 1 : 4 : 0 : −4
√

3 : −6
√

3

H24Ti TjH45 15 1 : 0 : −
√

3
2 : 0 : 0

H24Ti TjH45 40 1 : −7
2 : 3

√
3

2 : −
√

3 : 0

H24Ti TjH45 175 1 : 16
19 : −21

√
3

38 : −16
√

3
19 : −12

√
3

19

H24H45 TiTj 5 1 : 1 : − 2√
3

: − 2√
3

: − 2√
3

H24H45 TiTj 45 1 : −1 : 0 : x : −x
H24H45 TiTj 50 0 : 0 : 1 : −2 : −2

Table 11. YTT -like CG ratios for the dimension 4 operator and effective dimension 5 operators

W ⊃ (AB)R(CD)R̄ (involving 5- and 45-dimensional Higgs fields) corresponding to the the left

diagram in figure 9. Note that one combination has a free parameter x due to the ambiguity of the

index contraction. See main text for more details.

There are a few comments in order. First, note that several topologies involving a 45-

dimensional messenger field exhibit a free parameter, simply because the tensor product

45 ⊗ 24 contains two 45-dimensional representations. Hence, there are two operators

possibly giving two different ratios so that any ratio is possible depending on the coefficients

of the two operators. For these cases we write x in the tables.

We want to mention as well that, unlike at the renormalizable level, the up-type quark

Yukawa and related matrices do not have to be symmetric or antisymmetric. Consider, for

example, the operator (H24T1)10(H5T2)10. Due to the symmetries and messenger content

the operator (H24T2)10(H5T1)10 could be forbidden. In this case we find (Yu)12/(Yu)21 =

−4. Hence we have adopted the following notation for the ratios in the tables for the

Yukawa couplings related to Yu

(Yu)ij : (Yu)ji : (Yqq)ij : (Yue)ij : (Yue)ji = a : b : c : d : e , (A.11)

which reduces for the diagonal entries of the Yukawa matrices to

(Yu)ii : (Yqq)ii : (Yue)ii = (a+ b) : c : (d+ e) . (A.12)

The ratios related to Yd do not have this extra complication since none of them could be

expected to be symmetric or anti-symmetric in the first place.
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AB C DE R1, R2 (Yd)ij : (Ye)ji : (Yql)ij : (Yud)ij

Ti H̄5 Fj H24H24 5, 1 1 : 1 : 1 : 1

Ti H̄5 Fj H24H24 5, 24 1 : −3
2 : −3

2 : 1

Ti H̄5 Fj H24H24 45, 24 1 : 3
2 : −1

2 : −1

Ti H̄5 Fj H24H24 45, 75 1 : −3 : 1 : −1

H24 H̄5 H24 Fj Ti 5̄, 5 1 : 1 : 4
9 : 4

9

H24 H̄5 H24 Fj Ti 5̄, 45 1 : −3 : 4
3 : −4

3

H24 H̄5 H24 Fj Ti 45, 5 1 : 1 : 4
3 : 4

3

H24 H̄5 H24 Fj Ti 45, 45 1 : −3 : x : −x
H24 H̄5 H24 Fj Ti 70, 5 1 : 1 : 8

9 : 8
9

H24 H̄5 H24 Fj Ti 70, 45 1 : −3 : 8
3 : −8

3

Fj Ti H̄5 H24H24 5, 1 1 : 1 : 1 : 1

Fj Ti H̄5 H24H24 5, 24 1 : 1 : −2
3 : −2

3

Fj Ti H̄5 H24H24 45, 24 1 : −3 : −2 : 2

Fj Ti H̄5 H24H24 45, 75 1 : −3 : 1 : −1

H24 H̄5 Ti H24Fj 5̄, 5̄ 1 : −3
2 : 1 : −2

3

H24 H̄5 Ti H24Fj 5̄, 45 1 : 3
2 : 1

3 : 2
3

H24 H̄5 Ti H24Fj 45, 5̄ 1 : 9
2 : 3 : 2

→ H24 H̄5 Ti H24Fj 45, 45 1 : −1
2 : 1 : 2

3

H24 H̄5 Ti H24Fj 45, 70 1 : 9
4 : 3

2 : 2

H24 H̄5 Ti H24Fj 70, 45 1 : 3
2 : 2

3 : 4
3

H24 H̄5 Ti H24Fj 70, 70 1 : 3
4 : 1 : 2

3

Fj H̄5 H24 H24 Ti 10, 10 1 : 36 : 1 : 16

Fj H̄5 H24 H24 Ti 10, 15 1 : 0 : 1 : 0

Fj H̄5 H24 H24 Ti 10, 40 1 : 0 : 1 : 1

Fj H̄5 H24 H24 Ti 10, 175 1 : 72
61 : 1 : 64

61

Fj H̄5 H24 H24 Ti 15, 10 1 : 0 : −1 : 0

Fj H̄5 H24 H24 Ti 15, 15 1 : 0 : −1 : 0

Fj H̄5 H24 H24 Ti 15, 175 1 : 0 : −1 : 0

Table 12. YTF -like CG ratios for the effective dimension 6 operators W ⊃ (AB)R1
C(DE)R2

corresponding to the the right diagram in figure 9. Note one combination has a free parameter x.

See main text for more details.

If the considered model contains Higgs fields in 5- and 45-dimensional representations,13

there are two Higgs doublet pairs in the spectrum and care should be taken that unification

13One could also imagine using 45-dimensional Higgs fields exclusively. However, this severely exacerbates

the doublet-triplet splitting problem as now one has to split the doublets from even more component fields

that can generate proton decay operators.
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AB C DE R1, R2 (Yd)ij : (Ye)ji : (Yql)ij : (Yud)ij

H24Fj H24 Ti H̄5 5̄, 5 1 : 9
4 : 9

4 : 1

H24Fj H24 Ti H̄5 5̄, 45 1 : −9
4 : 3

4 : −1

H24Fj H24 Ti H̄5 45, 5 1 : 3
4 : 3

4 : 1

H24Fj H24 Ti H̄5 45, 45 1 : x : −x
3 : −1

H24Fj H24 Ti H̄5 70, 5 1 : 9
8 : 9

8 : 1

H24Fj H24 Ti H̄5 70, 45 1 : −9
8 : 3

8 : −1

H24Fj H̄5 H24 Ti 5̄, 10 1 : −9 : −3
2 : −4

H24Fj H̄5 H24 Ti 5̄, 15 1 : 0 : 3
2 : 0

H24Fj H̄5 H24 Ti 45, 10 1 : 9 : −1
2 : 4

H24Fj H̄5 H24 Ti 45, 40 1 : 0 : 1 : 1

H24Fj H̄5 H24 Ti 45, 175 1 : 18
19 : 23

38 : 16
19

H24Fj H̄5 H24 Ti 70, 15 1 : 0 : 3
4 : 0

H24Fj H̄5 H24 Ti 70, 175 1 : 9
7 : 33

28 : 8
7

H24 H̄5 Fj H24 Ti 5̄, 10 1 : 6 : −2
3 : 8

3

H24 H̄5 Fj H24 Ti 5̄, 15 1 : 0 : 2
3 : 0

H24 H̄5 Fj H24 Ti 45, 10 1 : −18 : −2 : −8

H24 H̄5 Fj H24 Ti 45, 40 1 : 0 : 1 : 1

H24 H̄5 Fj H24 Ti 45, 175 1 : 36
23 : 38

23 : 32
23

H24 H̄5 Fj H24 Ti 70, 15 1 : 0 : 4
3 : 0

H24 H̄5 Fj H24 Ti 70, 175 1 : 12
11 : 28

33 : 32
33

Fj H̄5 Ti H24H24 10, 1 1 : 1 : 1 : 1

Fj H̄5 Ti H24H24 10, 24 1 : 6 : 1 : −4

Fj H̄5 Ti H24H24 10, 75 1 : −3 : 1 : −1

Fj H̄5 Ti H24H24 15, 24 1 : 0 : −1 : 0

Table 13. Continuation of table 12: YTF -like CG ratios for the effective dimension 6 operators W ⊃
(AB)R1

C(DE)R2
corresponding to the the right diagram in figure 9. Note another combination

with a free parameter x. See main text for more details.

is still possible. One solution is mixing both and making one linear combination heavy while

one stays at the electroweak scale. The simplest term generating such a mixing is

W ⊃ H24H5H̄45 ∝ HuH
45
d −

2√
3
T T̄ 45, (A.13)

where we suppressed any additional MSSM multiplets in H̄45. Since a 45 contains more

potentially dangerous MSSM multiplets, it is natural to have the heavy linear combi-

nation be predominantly in the 45. Then it is possible to treat H̄45 like a messenger

field and the renormalizable operator FT H̄45 turns into the non-renormalizable operator

(FT )45(H24H̄5)45, cf. table 10. Analogous limits can be deduced trivially. If the approxi-
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AB C DE R1, R2 (Yu)ij : (Yu)ji : (Yqq)ij : (Yue)ij : (Yue)ji

H24Ti H5 H24Tj 10, 10 1 : 1 : −1
4 : 6 : 6

H24Ti H5 H24Tj 10, 40 1 : −8 : −1 : 0 : −12

H24Ti H5 H24Tj 15, 40 1 : 0 : 1 : 0 : 0

H24Ti H5 H24Tj 40, 10 1 : −1
8 : 1

8 : 3
2 : 0

H24Ti H5 H24Tj 40, 15 0 : 1 : 1 : 0 : 0

H24Ti H5 H24Tj 40, 175 1 : 23
32 : 19

32 : 3
4 : 0

H24Ti H5 H24Tj 175, 40 1 : 32
23 : 19

23 : 0 : 24
23

H24Ti H5 H24Tj 175, 175 1 : 1 : 41
40 : 6

5 : 6
5

TiTj H5 H24H24 5̄, 1 1 : 1 : 1 : 1 : 1

TiTj H5 H24H24 5̄, 24 1 : 1 : −2
3 : −2

3 : −2
3

TiTj H5 H24H24 45, 24 1 : −1 : 0 : −2 : 2

TiTj H5 H24H24 45, 75 1 : −1 : 0 : 1 : −1

TiTj H5 H24H24 50, 75 0 : 0 : 1 : −2 : −2

TiH5 Tj H24H24 10, 1 1 : 1 : 1 : 1 : 1

TiH5 Tj H24H24 10, 24 1 : −1
4 : −1

4 : −3
2 : 1

TiH5 Tj H24H24 10, 75 1 : −1 : −1 : 3 : 1

TiH5 Tj H24H24 40, 24 1 : 2 : −1 : 0 : −2

TiH5 Tj H24H24 40, 75 1 : −1 : 1
2 : 0 : −2

Table 14. YTT -like CG ratios for the effective dimension 6 operators W ⊃ (AB)R1
C(DE)R2

corresponding to the the right diagram in figure 9.

mation m45 � 〈H24〉 does not hold, one has to take into account the full mass matrix for

the Higgs doublets including the term in eq. (A.13).

B Two-loop RGEs in extensions to the MSSM

The renormalization group equations for gauge couplings at two-loop are given by [42, 43]

µ
d

dµ
ga =

g3
a

16π2
ba +

g3
a

(16π2)2

( 3∑
b=1

Babg
2
b −

∑
f

Cfa tr(Y †f Yf )

)
, (B.1)

in the DR renormalization scheme, where µ is the renormalization scale and f runs over

all Yukawa coupling matrices. In the MSSM, the beta function coefficients are given by (in

GUT normalisation for g1)

ba =

 33
5

1

−3

 , Bab =

199
25

27
5

88
5

9
5 25 24
11
5 9 14

 , (B.2)
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AB C DE R1, R2 (Yu)ij : (Yu)ji : (Yqq)ij : (Yue)ij : (Yue)ji

H24Ti Tj H24H5 10, 5 1 : −4 : −2
3 : 8

3 : −4

H24Ti Tj H24H5 10, 45 1 : 4 : 0 : 8 : 12

H24Ti Tj H24H5 15, 45 1 : 0 : 1 : 0 : 0

H24Ti Tj H24H5 40, 5 1 : 1
2 : 1

3 : 2
3 : 0

H24Ti Tj H24H5 40, 45 1 : −7
2 : −3 : 2 : 0

H24Ti Tj H24H5 40, 70 1 : 1
2 : 2

3 : 4
3 : 0

H24Ti Tj H24H5 175, 45 1 : 16
19 : 21

19 : 32
19 : 24

19

H24Ti Tj H24H5 175, 70 1 : 8
7 : 20

21 : 16
21 : 8

7

TiTj H24 H24H5 5̄, 5 1 : 1 : 4
9 : 4

9 : 4
9

TiTj H24 H24H5 5̄, 45 1 : 1 : 4
3 : 4

3 : 4
3

TiTj H24 H24H5 5̄, 70 1 : 1 : 8
9 : 8

9 : 8
9

TiTj H24 H24H5 45, 5 1 : −1 : 0 : 4
3 : −4

3

TiTj H24 H24H5 45, 45 1 : −1 : 0 : x : −x
TiTj H24 H24H5 45, 70 1 : −1 : 0 : 8

3 : −8
3

TiTj H24 H24H5 50, 45 0 : 0 : 1 : −2 : −2

H24Ti H24 TjH5 10, 10 1 : 16 : 1 : 16 : 36

H24Ti H24 TjH5 10, 40 1 : −2 : −1
2 : 4 : 0

H24Ti H24 TjH5 15, 10 1 : 0 : 1 : 0 : 0

H24Ti H24 TjH5 40, 10 1 : 1 : 1 : 1 : 0

H24Ti H24 TjH5 40, 40 1 : x : −1
2 : −2x : 0

H24Ti H24 TjH5 175, 10 1 : 64
61 : 1 : 64

61 : 72
61

H24Ti H24 TjH5 175, 40 1 : 4 : −1
2 : −8 : 0

Table 15. Continuation of table 14: YTT -like CG ratios for the effective dimension 6 operators

W ⊃ (AB)R1C(DE)R2 corresponding to the the right diagram in figure 9. Note two combinations

have a free parameter x. See main text for more details.

and

Cu,d,ea =

26
5

14
5

18
5

6 6 2

4 4 0

 , (B.3)

where the first column stands for u, the second column for d and the third for e. Additional

colour triplet and weak doublet pairs, as those contained in 5, 5̄ representations, contribute

(per pair) at one-loop with

b(5,T )
a =

2
5

0

1

 , b(5,D)
a =

3
5

1

0

 , (B.4)
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and at two-loop with

B
(5,T )
ab =

 8
75 0 32

15

0 0 0
4
15 0 34

3

 , B
(5,D)
ab =

 9
25

9
5 0

3
5 7 0

0 0 0

 , (B.5)

SU(2) triplets, SU(3) octets and leptoquark superfields14 from an adjoint contribute (per

chiral superfield) at one-loop with

b(24,T )
a =

0

2

0

 , b(24,O)
a =

0

0

3

 , b(24,L)
a =

5
2
3
2

1

 , (B.6)

and at two-loop with

B
(24,T )
ab =

0 0 0

0 24 0

0 0 0

 , B
(24,O)
ab =

0 0 0

0 0 0

0 0 54

 , B
(24,L)
ab =

25
6

15
2

40
3

5
2

21
2 8

5
3 3 34

3

 . (B.7)

Additional Yukawa couplings between SM fermion superfields and a pair of colour

triplet/anti-triplet contribute with

Cqq,ue,ql,uda =

6
5

28
5

14
5

24
5

6 0 6 0

6 2 4 6

 . (B.8)

In our numerical analysis we have assumed that Yqq = Yue = Yu and Yql = Yud = Yd
(as motivated by minimal SU(5)). We have checked that this approximation changes our

results only negligibly.

C Discussion of messenger fields

We discuss now the messenger fields appearing in figure 6 of the model presented in sec-

tion 4.1. There are three supergraphs generating the superpotential term y12. The renor-

malizable superpotential corresponding to figure 6 is

W ⊃ γ1H5T1Z10,4 + γ2H5T2Z10,3 + γ3 T3θ1Z̄10,3 + γθ θ
2
1Z1

+ λ1 θ2Z2Z̄1 + λ10 θ2Z10,3Z̄10,4

+ η1 T1Z̄10,3Z̄2 + η2 T2Z̄10,4Z̄2 + η′2 T2Z̄10,3Z̄1

+M1 Z1Z̄1 +M2 Z2Z̄2 +M10,3 Z10,3Z̄10,3 +M10,4 Z10,4Z̄10,4 , (C.1)

where we explicitly denote the coupling constants at the ends of a diagram with γx, coupling

constants in the middle of the diagrams with λx if they involve θj and ηi if they involve

14Note that leptoquark superfields can only appear in Dirac pairs due to their charges.
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Ti and messenger masses with Mx. After Zx and Z̄x are integrated out and the flavons θi
obtain VEVs, the elements of the up-type Yukawa matrix Yu of eq. (4.2) are given by

y11 = γ1 λ10 η1 λ1 γθ
〈θ1〉2〈θ2〉2

M1M2M10,3M10,4
,

y12 = γ2 η1 λ1 γθ
〈θ1〉2〈θ2〉

M1M2M10,3
+ γ1 η2 λ1 γθ

〈θ1〉2〈θ2〉
M1M2M10,4

+ γ1 λ10 η
′
2 γθ

〈θ1〉2〈θ2〉
M1M10,3M10,4

,

y22 = γ2 η
′
2 γθ

〈θ1〉2
M1M10,3

,

y13 = γ1 λ10 γ3
〈θ1〉〈θ2〉

M10,3M10,4
,

y23 = γ2 γ3
〈θ1〉
M10,3

, (C.2)

and y33 is a renormalizable Yukawa coupling coefficient.

Removing the messenger pair Z2, Z̄2 from the spectrum eliminates two supergraphs

and thus the first two terms contributing to y12.15 However, without Z2Z̄2, evaluating y12

yields

y12 = γ1 λ10 η
′
2 γθ

〈θ1〉2〈θ2〉
M1M10,3M10,4

= y13
〈θ1〉
M1

η′2 γθ
γ3

= y13 y22
M10,3

〈θ1〉
1

γ2γ3
=
y13y22

y23
. (C.3)

This relation is not phenomenologically viable as it would imply θC = θ13/θ23. To fit Yu to

the observed data an additional degree of freedom is needed. In our model this is realised

through Z2Z̄2 enabling additional diagrams contributing to y12.

D Simultaneous R-symmetry and GUT breaking

It was shown in the literature that the MSSM with an additional R-symmetry cannot be

obtained from the spontaneous breaking of a four-dimensional (SUSY) GUT [27]. On the

other hand, in flavour models, R-symmetries are often used in superpotentials that generate

the required VEVs for the family symmetry breaking Higgs fields (i.e. the flavons) as well

as for spontaneous breaking of CP. In the following we present some simple examples that

show that it is possible — in particular with discrete R-symmetries — to simultaneously

break the GUT gauge group and the R-symmetry. Without an R-symmetry below the

Planck scale, there is no conflict to the statement of [27]. We will also illustrate that GUT

flavour models can rely on such a discrete R-symmetry for the flavon VEV alignment, such

that our setup can be used to construct flavour models with non-Abelian family symmetries

and spontaneous CP violation.

15A different pair of fields Z′2, Z̄′2 would need to be introduced anyway (using different charge assignment

than Z2, Z̄2) in order to generate y11. The charges can be assigned such that no extra contributions to y12

appear.
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Simple example. Consider as example a discrete ZR4 R-symmetry under which the su-

perfield S is charged and the superfield H is uncharged (for the beginning we assume them

to be SU(5) singlets). The fields are also charged under an additional conventional Z4

symmetry with charges 1 and 3 respectively. We consider only the required lowest order

superpotential terms:

WR = µ1SH + λ1S
3H3/M3

Pl + λ2SH
5/M3

Pl + λ3S
5H/M3

Pl . (D.1)

The F-terms for this simple example lead to the conditions

µ1H + 3λ1S
2H3/M3

Pl + λ2H
5/M3

Pl + 5λ3S
4H/M3

Pl = 0 (D.2)

µ1S + 3λ1S
3H2/M3

Pl + 5λ2SH
4/M3

Pl + λ3S
5/M3

Pl = 0 . (D.3)

These equations have several solutions but here we are only interested in the non-trivial

solution 〈S〉4 = (λ2/λ3)〈H〉4 and 〈H〉4 = −µ1M
3
Pl/(3λ1

√
λ2/λ3 + 6λ2). If we assign S

and H under SU(5) as adjoints (similarly to superpotential (c) where we had the two

fields H24 and H ′24) WR is SU(5) invariant (by taking the appropriate contractions) and

importantly, the R-symmetry and SU(5) are simultaneously broken by the non-trivial VEV

configuration. We can achieve a phenomenological viable model by breaking a discrete R-

symmetry at the GUT scale.

In general, leaving additional symmetry (or symmetries) unspecified, S may be a singlet

of the GUT symmetry group and we denote the (polynomial) functions of the superfield

H that make the respective terms invariant as A(H), C(H) (which include the associated

couplings and MPl suppressions). We write

WR = SA(H) + S3C(H) , (D.4)

leading to the F-term equations

A(H) + 3C(H)S2 = 0 , (D.5)

dA(H)

dH
S +

dC(H)

dH
S3 = 0 . (D.6)

The generalised solution breaking the R-symmetry and the GUT gauge group is then

〈S〉2 = −
〈
A(H)

3C(H)

〉
, (D.7)〈

dA(H)

dH

〉
=

〈
A(H)

3C(H)

dC(H)

dH

〉
. (D.8)

Note the second equation, dA
A = dC

3C , constrains the allowed functions A(H) and C(H)

which indirectly imposes conditions on the unspecified additional symmetries.

Generalisations. While the R-symmetry must be discrete for the crucial interplay be-

tween two terms, it needs not be a ZR4 and generalising to other ZRN symmetries is straight-

forward

WN
R = SA(H) + SN−1C(H) . (D.9)
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This can be further generalised to multiple fields. Consider, for instance, S, R and T

charged under a ZR4 , some unspecified symmetries with fields H, I, J , and generalized

functions AS,R,T (H, I, J) as well as C(H, I, J), such that keeping only the necessary lowest

order terms in S, R, T we write

WR = S AS(H, I, J) +RAR(H, I, J) + T AT (H, I, J) + S RT C(H, I, J) . (D.10)

After some manipulation we find again a non-trivial solution breaking ZR4 and the GUT

symmetry
AS
〈RT 〉 =

AR
〈TS〉 =

AT
〈SR〉 = −C , (D.11)

provided the derivatives with respect to each of the GUT superfields H, I, J fulfill

∂AS
AS

+
∂AR
AR

+
∂AT
AT

+
∂C

C
= 0 . (D.12)

The simple examples above illustrate that a simultaneous breaking of R- and GUT symme-

try is possible. VEV alignments required by flavour models can therefore still be obtained

within GUTs by having additional superfields charged under the R-symmetry.

Flavour alignment. As a very simple example we discuss the “alignment” of a GUT

singlet flavon φ charged under a non-Abelian family symmetry via a driving field P . As

additional symmetries we impose ZR4 and a conventional Zn. The allowed renormalizable

superpotential is

W = P

(
φn

Λn−2
+M2

)
+ κP 3, (D.13)

where Λ is a generic messenger scale and M a mass parameter. Minimising the F-term

conditions we find two possible solutions:

solution A: 〈P 〉 = 0 and 〈φ〉n = −M2Λn−2, (D.14)

solution B: 〈P 〉2 = −M
2

3κ
and 〈φ〉 = 0 . (D.15)

In a flavour model we want the flavon to get a non-vanishing VEV so that we would

adopt solution A there. Furthermore solution A shows how the discrete vacuum alignment

method [44] can be generalised to models with discrete R-symmetries. This method was

invented in the context of spontaneous CP violation. If CP is promoted to be fundamental

all the phases of the parameters in eq. (D.13) are fixed and hence the phase of the flavon

VEV is fixed as well (up to a discrete choice).
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