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1 Introduction

The origin of neutrino masses is one of the great open puzzles in particle physics. One of

the best motivated mechanisms for generating the observed masses is the type I seesaw

mechanism [1], where nG right-handed neutrinos are added to the particle content of the

Standard Model (SM). When the masses of the right-handed neutrinos are much larger

than the electroweak scale (EW), this can explain the smallness of the masses of the

light neutrinos (after EW symmetry breaking). The type I seesaw mechanism can also be

embedded in extensions of the SM such as e.g. in Two-Higgs-Doublet Models or in the

Minimal Supersymmetric Standard Model (MSSM).

In order to compare the prediction of neutrino models, which are defined at high

energy, with the experimental data obtained at low energies, one has to calculate the

renormalization group (RG) running of the relevant quantities. Above the mass threshold of

the heaviest of the right-handed neutrinos, these include in particular the neutrino Yukawa

couplings and the mass matrix of the right-handed neutrinos. Below the mass threshold

of the lightest of the right-handed neutrinos, the heavy particles are integrated out of the

theory generating the effective dimension five neutrino mass operator, and its running has

to be computed. Between the mass thresholds, one has to deal with the effective theories

where the neutrino Yukawa matrix, the right-handed neutrino mass matrix as well as the

neutrino mass operator are present. At the thresholds, the effective theories are matched.

The renormalization group equations (RGEs) for the running of the neutrino mass

operator have been calculated at one-loop in the SM [2], in Two-Higgs-Doublet Models [3]
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and in the MSSM [3–5]. For one-loop running tree-level matching is sufficient, and the

formalism and RGEs for the intermediate effective theories have been described in [6]. In

the MSSM extended by nG right-handed neutrinos, the RGE for the running of the neutrino

mass operator has been calculated at the two-loop level in [7]. However, for consistent two-

loop running one also needs to compute the matching of the effective theories at one-loop

level, also referred to as the one-loop threshold corrections.

In this work, we calculate the one-loop matching formulae in the MSSM extended by

nG right-handed neutrinos using supergraph techniques. Moreover we present a general

formula for one-loop matching of superpotential operators which can be applied to any

supersymmetric theory where chiral superfields are integrated and the effective theories

are matched at the mass thresholds. We also comment on other choices of the matching

scale, which may simplify the matching procedure in some cases.

The paper is organized as follows: in section 2 we review neutrino mass generation in

the MSSM extended by nG right-handed neutrinos, and the effective theories which arise

from integrating out the heavy particles at their mass thresholds. Section 3 contains a brief

review of the method for calculating RGEs using supergraph techniques (following [7]).

The general formula for one-loop matching of superpotential operators in supersymmetric

theories, when integrating out chiral superfields, is derived in section 4 and applied to the

MSSM extended by nG right-handed neutrinos in section 5. Section 6 contains a summary

and our conclusions.

2 MSSM with right-handed neutrinos: integrating out and effective the-

ories

In order to take into account the observed neutrino masses in the Minimal Supersymmetric

Standard Model (MSSM), we consider the MSSM extended by nG singlet superfields νCj

(j = 1, . . . , nG), which contain right-handed neutrinos as fermionic components. When they

have large (Majorana) masses, this provides an explanation for the smallness of the neutrino

masses after electroweak (EW) symmetry breaking via the (type I) seesaw mechanism [1].

The Yukawa part of the superpotential which includes the additional term with the

neutrino Yukawa matrix Yν , and the part of the superpotential with the mass matrix M

of the right-handed neutrino superfields, are given by

W = (Ye)gfe
Cgh(1)

a εab`fb + (Yd)gfd
Cgh(1)

a εabqfb + (Yu)gfu
Cgh(2)

a (εT )abqfb

+(Yν)ifν
Cih(2)

a (εT )ab`fb +
1

2
νCi(M)ijν

Cj , (2.1)

where ε is the totally antisymmetric tensor in two dimensions, a, b ∈ {1, 2} are SU(2)

indices, f, g ∈ {1, 2, 3} are flavour indices and the indices i, j ∈ {1, . . . , nG} run over

the number of right-handed neutrino superfields. The eigenstates of the mass matrix M ,

{νC1, . . . , νCnG}, are labelled in such a way that M1 < M2 < · · · < MnG .1

1We assume here that the mass spectrum is not degenerate. The generalization to a (partially) degenerate

spectrum is straightforward.
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Matching Matching Matching

Full Theory

Figure 1. Illustration of the effective theories for the RG evolution in seesaw models with non-

degenerate masses Mn of the right-handed neutrinos. At the threshold µ = Mn, the right-handed

neutrino νCn is integrated out of the theory and the “EFT (n+1)” and “EFT n” are matched.

In the following, we will consider an effective theory (EFT) description (see figure 1),

using the same notation as in [6]: Above the highest mass threshold MnG , the “Full Theory”

refers to the MSSM with all nG sterile neutrino superfields, which is described by the

superpotential of eq. (2.1). At the threshold MnG , the heaviest of the right-handed neutrino

superfields is integrated out, leading to the effective theory labelled “EFT nG” which

contains the effective dimension five neutrino mass operator and a reduced Yukawa matrix.

We continue with this procedure and integrate out each sterile neutrino superfield νCn at

the corresponding mass threshold Mn.

Explicitly, for every intermediate region between the (n−1)th and the nth threshold,

corresponding to “EFT n”, the right-handed superfields {νCn, . . . , νCnG} are integrated

out, leading to the dimension five neutrino mass operator

W EFT n
κ = −1

4

(n)
κgf `

g
cε
cdh

(2)
d `fb ε

bah(2)
a , (2.2)

with
(n)
κ as the effective coupling matrix. In the region of the “EFT n”, the Yukawa matrix

for the remaining n−1 sterile neutrino superfields is reduced to a (n−1)× 3 matrix which

is referred to as
(n)

Yν , i.e.

Yν −→



(Yν)1,1 (Yν)1,2 (Yν)1,3

...
...

...

(Yν)n−1,1 (Yν)n−1,2 (Yν)n−1,3

0 0 0
...

...
...

0 0 0



 =:
(n)

Yν ,


nG−n+1 heavy, sterile

neutrinos integrated out.

(2.3)

For each EFT it is convenient to denote the quark and charged lepton Yukawa matrices

by
(n)

Yd,
(n)

Yu and
(n)

Ye. It is also useful to introduce
(n)

M as the (n−1) × (n−1) matrix of the

right-handed mass matrix below the nth threshold. The superpotential of the “EFT n”
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now includes

W EFT n = (
(n)

Ye)gfe
Cgh(1)

a εab`fb + (
(n)

Yd)gfd
Cgh(1)

a εabqfb + (
(n)

Yu)gfu
Cgh(2)

a (εT )abqfb

+(
(n)

Yν)ifν
Cih(2)

a (εT )ab`fb +
1

2
νCi(

(n)

M)ijν
Cj + W EFT n

κ , (2.4)

where the indices i, j range from 1 to n−1. Compared to the superpotential of the “Full

Theory” the parameters of the effective superpotential now have a label “(n)”, and the

superpotential in addition contains the effective neutrino mass operator of eq. (2.2).

At the nth threshold the tree-level matching condition for the the effective coupling

constant reads

(n)
κgf

∣∣∣
Mn

=
(n+1)
κ gf

∣∣∣
Mn

+ 2
(n+1)

(Y T
ν )

gn
M−1
n

(n+1)

(Yν)
nf

∣∣∣
Mn

(no sum over n) , (2.5)

where Mn corresponds to the largest eigenvalue of the
(n+1)

M matrix.

The Yukawa matrices do not receive a threshold correction at tree-level

(
(n)

Yx)
∣∣∣
Mn

=
(n+1)

(Yx)
∣∣∣
Mn

, (2.6)

where x ∈ {d, u, e, ν}. However, as we are going to discuss in section 5, this will change

at the one-loop level.

After successively integrating out all the right-handed neutrino superfields one arrives

at the “EFT 1”, corresponding to the MSSM with the dimension five neutrino mass operator

W MSSM
κ = −1

4
κgf `

g
cε
cdh

(2)
d `fb ε

bah(2)
a , (2.7)

where one might drop the label (1) in
(1)
κ and simply write κ. After EW symmetry breaking,

κ is related to the light neutrinos’ mass matrix mν via

(mν)gf =
1

4
κgfv

2
EW , (2.8)

where vEW ≈ 246 GeV.

3 RGEs from wave function renormalization constants

In this section, we review a formalism for computing β-functions for tensorial quantities of

the superpotential from wave function renormalization constants, following [3, 7]. We will

apply this formalism to establish a connection between the β-functions and the one-loop

threshold corrections in section 4. We use modified dimensional reduction (DR) [8, 9] in

d = 4− ε dimensions.

3.1 Derivation of the RGEs

In order to compare high energy predictions for a (renormalized) quantity Q with exper-

imental results at low energies, one must evolve the predictions to low energies with the

renormalization group equations (RGEs),

µ
d

dµ
Q = βQ , (3.1)

where µ is the renormalization scale and βQ the β-function.
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We consider a general term of the superpotential expressed in bare quantities

(QB)i1 i2 ... in(ΦB)i1(ΦB)i2 . . . (ΦB)in , (3.2)

where the indices ix each specify a particular chiral superfield. Here, n is the number of

chiral superfields involved in the operator. For n > 3, the superpotential operator is an

effective operator.

The superpotential term of eq. (3.2) can be recast in terms of renormalized quantities:

(QB)i1 i2 ... in

n∏
x=1

(ΦB)ix = Qi1 i2 ... in µ
DQε

n∏
x=1

Φix . (3.3)

DQ is related to the mass dimension of Q. The bare superfields are related to the renor-

malized ones by

(ΦB)ix = Z
1/2
ix i′x

Φi′x , (3.4)

where Z is the wave function renormalization constant,

Zix i′x = 1ix i′x + δZix i′x . (3.5)

Thus, inserting eq. (3.4) into eq. (3.3), one obtains the relation of the bare quantity QB to

its renormalized counterpart Q:

(QB)i′1 i′2 ... i′n = Qi1 i2 ... in µ
DQε Z

− 1
2

i1 i′1
Z
− 1

2

i2 i′2
. . . Z

− 1
2

in i′n
= Qi1 i2 ... in µ

DQε

[
n∏
x=1

Z
− 1

2
ix i′x

]
. (3.6)

Note the absence of vertex renormalization constants due to the non-renormalization the-

orem for supersymmetric theories [10], which also holds for non-renormalizable opera-

tors [11].

The wave function renormalization constants depend on the renormalized variables of

the theory, which we label as {vabc...}. For complex quantities vabc... the complex conjugate

variables v∗abc... are treated as additional independent variables. The set {vabc...} contains

in particular the coupling Qi1 ... in (and Q∗i1 ... in), but also the other couplings of the theory

including e.g. the gauge couplings.

In the DR scheme, the wave function renormalization constants can be expanded as

Z({vabc...}) = 1 + δZ({vabc...}) = 1 +
∑
k≥1

δZ,k({vabc...})
ε̂k

, (3.7)

where ε̂ is defined via

2

ε̂
=

2

ε
+ ln(4π)− γE , (3.8)

with d = 4 − ε and where γE is the Euler-Mascheroni constant. In the following we will

also use the notation

∆DR :=
2

ε̂
=

2

ε
+ ln(4π)− γE . (3.9)
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Notice that vabc...(µ) are functions of the renormalization scale µ, whereas the bare quanti-

ties are per definition independent of µ, and that the renormalization constants of eq. (3.7)

do not depend explicitly on µ (only implicitly via the vabc...(µ)).

A detailed derivation for the calculation of the β-function from the wave function

renormalization constants can be found in [3, 7]. There, the derivation was performed for

minimal subtraction, however it also holds for DR, with ε replaced by ε̂. The β-function

for a quantity Q (in N = 1 supersymmetry) is given by

βQ({vabc...})i′1 ... i′n = −1

2
Qi1 ... in

n∑
x=1

( ∑
v

(∗)
abc...

D
v

(∗)
abc...

d(δZ)ix i′x ,1

dv
(∗)
abc...

v
(∗)
abc...

)∏
y 6=x

δiyi′y . (3.10)

We note that at the one- and two-loop level, the coefficients δZ,k({vabc...}) of the wave

function renormalization constants are identical in the DR and DR schemes (in fact in all

mass independent schemes), as one can easily verify using e.g. the results of [12]. This

also implies that in supersymmetric theories the two-loop β functions for superpotential

operators are the same in the DR and DR schemes. In particular, the results of [7] also

hold in the DR scheme.

3.2 Two-loop RGEs in the MSSM with right-handed neutrinos

The one-loop β-functions for the quantities
(n)
κ,

(n)

Yν and
(n)

M of the EFTs in the MSSM with

right-handed neutrinos can be found in [6]. The complete results for the one and two-loop

β-functions for the EFTs can be obtained using the wave function renormalization constants

given in [7], by adding the label “(n)” above each coupling to match our notation.2

The one-loop β-function for
(n)
κ (with the number in square brackets indicating the loop

order) is given by:

16π2
(n)

β [1]
κ =

(
(n)

Y †
e

(n)

Ye

)T
(n)
κ+

(n)
κ

(
(n)

Y †
e

(n)

Ye

)
+

(
(n)

Y †
ν

(n)

Yν

)T
(n)
κ+

(n)
κ

(
(n)

Y †
ν

(n)

Yν

)
+ 2 Tr

(
(n)

Y †
ν

(n)

Yν

)
(n)
κ+ 6 Tr

(
(n)

Y †
u

(n)

Yu

)
(n)
κ− 6

5

(n)
g1

2 (n)
κ− 6

(n)
g2

2 (n)
κ . (3.11)

For the Yukawa matrices below the nth threshold, the β-functions are

16π2
(n)

β [1]

Yd
=

(n)

Yd

[
3

(n)

Y †
d

(n)

Yd +
(n)

Y †
u

(n)

Yu + Tr

(
(n)

Y †
e

(n)

Ye

)
+ 3 Tr

(
(n)

Y †
d

(n)

Yd

)
− 7

15

(n)
g1

2 − 3
(n)
g2

2 − 16
3

(n)
g3

2

]
, (3.12)

16π2
(n)

β [1]

Yu
=

(n)

Yu

[
3

(n)

Y †
u

(n)

Yu +
(n)

Y †
d

(n)

Yd + Tr

(
(n)

Y †
ν

(n)

Yν

)
+ 3 Tr

(
(n)

Y †
u

(n)

Yu

)
− 13

15

(n)
g1

2 − 3
(n)
g2

2 − 16
3

(n)
g3

2

]
, (3.13)

16π2
(n)

β [1]

Ye
=

(n)

Ye

[
3

(n)

Y †
e

(n)

Ye +
(n)

Y †
ν

(n)

Yν + Tr

(
(n)

Y †
u

(n)

Yu

)
+ 3 Tr

(
(n)

Y †
d

(n)

Yd

)
− 9

5

(n)
g1

2 − 3
(n)
g2

2

]
, (3.14)

16π2
(n)

β [1]

Yν
=

(n)

Yν

[
3

(n)

Y †
ν

(n)

Yν +
(n)

Y †
e

(n)

Ye + Tr

(
(n)

Y †
ν

(n)

Yν

)
+ 3 Tr

(
(n)

Y †
u

(n)

Yu

)
− 3

5

(n)
g1

2 − 3
(n)
g2

2

]
, (3.15)

2The two-loop RGEs for the gauge couplings including right-handed neutrinos, and a discussion of the

effects of the right-handed neutrinos on gauge coupling unification, can be found e.g. in [13, 14]. We note

that integrating out the right-handed neutrino superfield does not induce one-loop threshold corrections for

the gauge couplings.
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Matching

Full Theory

Figure 2. Illustration of the matching between full and effective theory when a chiral superfield Ψ

with mass M is integrated out at its mass threshold. Γ(Φi,Ψ) is the effective action superfunctional

of the full theory and Γ′(Φ′
i) the effective action superfunctional of the EFT. The superfunctionals

are matched at µ = M . The matching includes the canonical normalization of the fields Φi, which

are then called Φ′
i (as explained in the main text).

and for the Majorana mass matrix of the right-handed neutrinos the one-loop β-function

reads

16π2
(n)

β [1]

M = 2

(
(n)

Yν
(n)

Y †
ν

)
(n)

M + 2
(n)

M

(
(n)

Yν
(n)

Y †
ν

)T
. (3.16)

Note that we used the GUT charge normalization for the U(1)Y charge. We list the results

for the one-loop RGEs here explicitly since we will use them for the one-loop threshold

corrections.

4 One-loop threshold corrections for superpotential operators

For consistent two-loop running within mass-independent renormalization schemes, one

has to take into account one-loop threshold corrections from decoupling of heavy particles.

The aim of this section is to derive a formalism for computing these one-loop threshold

corrections using supergraphs. For our analysis we use again DR as renormalization scheme

and choose to integrate out the heavy particles at their mass thresholds.3 We will focus

on the case of integrating out heavy chiral superfields, since we later want to apply the

formalism to the right-handed neutrinos.

4.1 General framework

The general scenario we consider in this section is illustrated in figure 2. Φi represent light

chiral superfields with masses mi and Ψ stands for a heavy chiral superfield with mass M

(where M � mi) which is integrated out at its mass threshold (i.e. at µ = M). Above M ,

we refer to the theory as the “Full Theory” and below M as the effective theory (EFT).

3We will also comment on other choices of the matching scale.
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λ{0} , λ{1} , λ{2} , λ{3} .

Figure 3. Diagrammatic representation of the trilinear couplings.

With NΦ light chiral superfields Φi (i ∈ {1, . . . , NΦ}) the general trilinear superpoten-

tial couplings (of the full theory) can be written as:

Wλ =
λ
{0}
ijk

3!
ΦiΦjΦk +

λ
{1}
ij

2!
ΨΦiΦj +

λ
{2}
i

2!
ΨΨΦi +

λ{3}

3!
ΨΨΨ , (4.1)

where the the label in curly brackets specifies the number of heavy particles Ψ coupling

to each λ. Diagrammatically, we represent the heavy chiral superfield Ψ by a straight

double line while the light chiral superfields Φi are represented by straight single lines.

The supergraph diagrams corresponding to the trilinear couplings of eq. (4.1) are shown

in figure 3.

4.2 One-loop threshold correction for a quantity Q

We now consider the one-loop threshold correction for a general quantity Q corresponding

to a superpotential operator

WQ = Qi1 ... in

n∏
x=1

Φix . (4.2)

Note that for n = 3, this is just the term corresponding to λ
{0}
ijkΦiΦjΦk. And for n > 3, Q

is understood as an effective operator of the superpotential.

Strategy. Due to the non-renormalization theorem such superpotential operators will

not receive any loop corrections, however they will in general be modified indirectly via the

loop corrections to the two-point vertex functions proportional to Φ†
iΦj . These corrections

change the normalization of the superfields. Canonically normalizing them involves super-

field transformations Φi → Φ′i which then implies a modification of the operator coefficient

Q→ Q′. This is exactly the one-loop threshold correction which we want to compute.

Let’s look at the matching of the two-point vertex function explicitly, when a heavy

chiral superfield with mass M is integrated out at its mass threshold. Including supergraph

one-particle irreducible (OPI) diagrams up to one-loop order, we obtain in both theories,

the full theory (figure 4(a)) and the EFT (figure 4(b)).4

Note that in the EFT we use the fields Φ′i, which are understood to be canonically

normalized. The condition for this canonical normalization, as well as the effective operator

content of the EFT, are calculated from the matching condition

Γ
′
(Φ′i)

µ=M
= Γ(Φi,��@@Ψ) . (4.3)

The crossed Ψ indicates that the heavy field is integrated out of the theory.

4Note that effective operators, which may be present in the superpotential, do not contribute to the

one-loop matching of the two-point vertex function.
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Γ ⊃ Φi Φ†
i +

Φj Φ†
i +

Φj Φ†
i +

Φj Φ†
i +

Φj Φ†
i

(a) Relevant OPI diagrams of the one-loop effective action of the full theory.

Γ′ ⊃ Φ′
i Φ′†

i +
Φ′
j Φ′†

i
+

Φ′
j Φ′†

i

(b) Relevant OPI diagrams of the one-loop effective action of the EFT.

Figure 4. Part of the one-loop effective action which contains the two-point function for the chiral

superfields. The crosses are the one-loop counterterms.

Integrating out heavy chiral superfields at one-loop. Let us now explicitly consider

the integrating out of a heavy chiral superfield Ψ at the one-loop level. As discussed above,

we can focus on the two-point vertex function and integrate out the heavy internal particles

from the loop diagrams in figure 4(a).

Considering the one-loop supergraph of figure 4(a) with one internal heavy field in the

limit p2,m2 �M2 gives:

λ{1} ∗{1}λ

M

m

p p

=

∫
d4θ

∫
d4p

(2π)4
Φ†
i (−p, θ̄)Φj(p, θ)

1

16π2
λ
∗{1}
ik λ

{1}
kj B0(p2,m2,M2)

p2,m2�M2

−−−−−−−→
∫

d4θ

∫
d4p

(2π)4
Φ†
i (−p, θ̄)Φj(p, θ)

1

16π2
λ
∗{1}
ik λ

{1}
kj

(
∆DR − ln

(
M2

µ2

)
+ 1

)
µ=M

=

∫
d4θ

∫
d4p

(2π)4
Φ†
i (−p, θ̄)Φj(p, θ)

1

16π2
λ
∗{1}
ik λ

{1}
kj

(
∆DR + 1

)
. (4.4)

B0 is one of the Passarino-Veltman functions. In the last line we inserted µ = M , which

corresponds to performing the matching at the mass threshold of the heavy field.

The analogous steps are done for the second one-loop supergraph diagram with two

internal heavy fields:

λ{2} ∗{2}λ

M

M

p p

=

∫
d4θ

∫
d4p

(2π)4
Φ†
i (−p, θ̄)Φj(p, θ)

1

16π2
λ
∗{2}
i λ

{2}
j B0(p2,M2,M2)

p2�M2

−−−−−→
∫

d4θ

∫
d4p

(2π)4
Φ†
i (−p, θ̄)Φj(p, θ)

1

16π2
λ
∗{2}
i λ

{2}
j

(
∆DR − ln

(
M2

µ2

))
µ=M

=

∫
d4θ

∫
d4p

(2π)4
Φ†
i (−p, θ̄)Φj(p, θ)

1

16π2
λ
∗{2}
i λ

{2}
j

(
∆DR + 0

)
. (4.5)

Note that for µ = M the whole expression from this diagram is cancelled by the counterterm

(in the DR scheme), leaving no finite part which contributes to the matching.
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Comment on the choice of the matching scale. So far, we have focused on µ = M ,

however it may sometimes be desirable to choose a different matching scale, in particular

when this leads to a simplification of the matching procedure. For instance, for the choice

µ = M/
√
e, the expression from the diagram in eq. (4.4) is completely cancelled by the

counterterm. Then, however, the diagram of eq. (4.5) contributes to the matching propor-

tional to − ln
(
M2/µ2

)
= −1. The generalisation of our treatment to different choices of

the matching scale is straightforward. We will come back to this possibility after eq. (4.16)

and in section 5. For the remainder of this section, we will again focus on the case µ = M .

Matching and canonical normalization. We now perform the matching according to

eq. (4.3) (cf. figure 4). This will require a field redefinition (i.e. a canonical renormalization)

for which we can make the following general ansatz:

Φ′i =
(
δij + 1

2(∆Φ)ij
)
Φj −→ Φj =

(
δji − 1

2(∆Φ)ji
)
Φ′i , (4.6a)

Φ′†i = Φ†
j

(
δji + 1

2(∆Φ†)ji
)

−→ Φ†
j = Φ′†i

(
δij − 1

2(∆Φ†)ij
)
, (4.6b)

where ∆Φ and ∆Φ† are regarded as small quantities. Comparing the diagrams above and

below the threshold, we obtain (at the given one-loop order):∫
d8z Φ′†i δij Φ′j

!
=

∫
d8z Φ†

i

(
δij +

1

16π2
λ
∗{1}
ik λ

{1}
kj

)
Φj . (4.7)

Note that in figure 4 there are loop diagrams with light internal fields which exist both

above and below the thresholds. However since the diagrams are loop-suppressed and since

∆Φ is a small quantity they differ only at the level of small quantities squared, and thus

drop out at the considered order.

Inserting the ansatz for the field redefinition into eq. (4.7), and expanding up to first

order in the small quantities, we obtain

Φ′†i δij Φ′j
!

= Φ†
i

(
δij +

1

16π2
λ
∗{1}
ik λ

{1}
kj

)
Φj

= Φ′†i′
(
δi′i − 1

2(∆Φ†)i′i
)(
δij +

1

16π2
λ
∗{1}
ik λ

{1}
kj

)(
δjj′ − 1

2(∆Φ)jj′
)
Φ′j′

= Φ′†i′

(
δi′j′ − 1

2(∆Φ†)i′j′ − 1
2(∆Φ)i′j′ +

1

16π2
λ
∗{1}
i′k λ

{1}
kj′ + . . .

)
Φ′j′ . (4.8)

The dots in the last line represent second and higher order terms. From eq. (4.8) we can

conclude

(∆Φ)ij =
1

16π2
λ
∗{1}
ik λ

{1}
kj . (4.9)

∆Φ is solely determined by the one-loop supergraph of eq. (4.4).

One-loop matching for a quantity Q. Let us now turn to the matching of a quantity

Q which corresponds to a superpotential operator as defined in eq. (4.2). Due to the

non-renormalization theorem the matching condition (at µ = M) reads

Q′i1 ... in

n∏
x=1

Φ′ix
!

= (Q+ ∆Qtree)i1 ... in

n∏
x=1

Φix . (4.10)
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∆Qtree stands for a contribution to the n-point vertex function with heavy internal fields

which contributes to the (effective) operator below the the mass threshold when the heavy

fields get integrated out. For example, when Q corresponds to the neutrino mass operator,

then ∆Qtree is a contribution to it from integrating out a heavy right-handed neutrino with

mass M at µ = M , as discussed in section 2. Q′ is the quantity of the effective theory below

the threshold. The one-loop corrections enter via the canonical normalization Φi → Φ′i.

Inserting eq. (4.6) and expanding to first order in ∆Φ, one finds

Q′i1 ... in

n∏
x=1

Φ′ix
!

= (Q+ ∆Qtree)i1 ... in

n∏
x=1

Φix

(4.6)
= (Q+ ∆Qtree)i1 ... in

n∏
x=1

(
δixi′x − 1

2(∆Φ)ix i′x
)
Φ′i′x (4.11)

= (Q+ ∆Qtree)i1 ... in

( n∏
x=1

δixi′xΦ′i′x −
1

2

n∑
x=1

(∆Φ)ix i′xΦ′i′x

∏
y 6=x

δiyi′yΦ
′
i′y

+ . . .

)
.

From this relation, we can extract the one-loop threshold correction to Q (at µ = M):

Q′i′1 ... i′n
= (Q+ ∆Qtree)i′1 ... i′n −

1

2
(Q+ ∆Qtree)i1 ... in

n∑
x=1

(∆Φ)ix i′x

∏
y 6=x

δiyi′y . (4.12)

Relation to the β function. As shown above, ∆Φ is solely determined by the one-loop

supergraph diagram of eq. (4.4). Since the 1/ε̂ part and the finite part are related (in the

DR scheme) we can express ∆Φ in terms of the corresponding part of δZ, which we label

δZλ{1},[1]. The couplings of type λ{1} are defined in eq. (4.1) and “one” in square brackets

indicates the loop order. We obtain

(δZλ{1},[1])ij = − 1

16π2
λ
∗{1}
ik λ

{1}
kj ∆DR

eq. (3.9)
=====⇒ (δZλ{1},[1]

,1 )ij = − 2

16π2
λ
∗{1}
ik λ

{1}
kj ,

(4.13)

which implies that ∆Φ is related to δZλ{1},[1] via

(∆Φ)ij =
1

16π2
λ
∗{1}
ik λ

{1}
kj = −1

2
(δZλ{1},[1]

,1 )ij . (4.14)

The part of βQ which is solely determined by δZλ
{1},[1] can now be written as (in the DR

scheme):

(βλ
{1},[1]

Q )i′1 ... i′n
(3.10)

= −1

2
Qi1 ... in

n∑
x=1

( ∑
v

(∗)
abc...

D
v

(∗)
abc...

d(δZλ{1},[1]

,1 )ix i′x

dv
(∗)
abc...

v
(∗)
abc...

)∏
y 6=x

δiyi′y

= −1

2
Qi1 ... in

n∑
x=1

(δZλ{1},[1]

,1 )ix i′x

∏
y 6=x

δiyi′y

(4.14)
= Qi1 ... in

n∑
x=1

(∆Φ)ix i′x

∏
y 6=x

δiyi′y . (4.15)
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In the first line, the derivative is taken with respect to all quantities of the theory vabc...,

and we inserted Dλ{1} = 1
2 for the ε-dependence of the trilinear couplings. Note that as

usual vabc... and v∗abc... are treated as independent variables.

Using eq. (4.15), we can relate the second term on the r.h.s. of eq. (4.12) to the part

of βQ from δZλ{1},[1] and thus rewrite the one-loop threshold correction to Q at µ = M as:

Q′i′1 ... i′n
= (Q+ ∆Qtree)i′1 ... i′n −

1

2
(βλ

{1},[1]

Q→Q+∆Qtree)i′1 ... i′n . (4.16)

Notice that in the β-function the Q is replaced by Q + ∆Qtree, which is indicated by the

label Q→ Q+ ∆Qtree.5

5 Application to right-handed neutrino thresholds

In this section we apply the above-derived formalism to the model described in section 2,

i.e. to the MSSM extended by nG right-handed neutrino superfields. We compute the one-

loop threshold corrections for the running of the effective coupling matrix κ of the neutrino

mass operator, the Yukawa coupling matrices and the right-handed neutrino mass matrix.

One-loop matching of the neutrino mass operator. As described in section 2, the

threshold corrections are applied at µ = Mn, when the corresponding right-handed neutrino

with mass Mn is integrated out and the “EFT n + 1” and “EFT n” are matched.6 The

one-loop matching condition reads (using eq. (4.16))

(n)
κgf

∣∣∣
Mn

=
(n+1)
κ gf

∣∣∣
Mn

+ (∆κtree
νn

)gf

∣∣∣
Mn

+ (∆κloop
νn

)gf

∣∣∣
Mn

, (5.1)

where ∆κtree
νn

is the tree-level correction and ∆κloop
νn

the one-loop correction, given by

(∆κtree
νn

)gf

∣∣∣
Mn

= 2
(n+1)

(Y T
ν )

gn
M−1
n

(n+1)

(Yν)
nf

∣∣∣
Mn

(no sum over n) , (5.2)

(∆κloop
νn

)gf

∣∣∣
Mn

= −1

2
(
(n+1)

β heavy=νn,[1]

κ→κ+∆κtree )gf

∣∣∣
Mn

. (5.3)

On the left side of the equations, the subscript νn indicates that the right-handed neutrino

superfield with mass eigenvalue Mn is integrated out of the theory. Similarly, on the right

side of the second equation, “heavy=νn” indicates that νn is the heavy superfield which

gets integrated out at µ = Mn.

5We note that for the alternative choice µ = M/
√
e mentioned above, the diagram in eq. (4.5) contributes

instead of the diagram in eq. (4.4). This implies that in eq. (4.16) the expression (βλ
{1},[1]
Q→Q+∆Qtree)i′1 ... i′n has

to be replaced by −(βλ
{2},[1]
Q→Q+∆Qtree)i′1 ... i′n .

6We note that, as discussed in section 4, other choices of the matching scale are possible as well. In the

specific case of right-handed neutrino thresholds, since there are no trilinear vertices with two right-handed

neutrino superfields, one may choose to match at µ = Mn/
√
e. Then, the contribution from the diagram

in eq. (4.4) is cancelled by the counterterm, and there is no contribution as in eq. (4.5) due to the absence

of the corresponding vertex. This means that for the specific choice µ = Mn/
√
e, instead of a shift in the

quantities Q, the one-loop threshold correction is accounted for by the rescaling of the matching scale. For

the remainder of this section, we will discuss the case µ = Mn.
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In the MSSM extended by nG right-handed neutrino superfields, the coupling λ{1},

introduced in the previous section, can be identified with the nth row of the neutrino

Yukawa matrix contained in
(n+1)

Yν , i.e. with
(n+1)

(Yν)
ng

(n fixed, g runs from 1 to 3). From the

one-loop β-function in eq. (3.11), we thus obtain:

−1

2
(
(n+1)

β heavy=νn,[1]

κ→κ+∆κtree )gf

∣∣∣
Mn

=− 1

32π2

[
3∑

h=1

((n+1)
κ + ∆κtree

νn

)
gh

(n+1)

(Y †
ν )

hn

(n+1)

(Yν)
nf

+
3∑

h=1

( (n+1)

(Y †
ν )

hn

(n+1)

(Yν)
ng

)T ((n+1)
κ + ∆κtree

νn

)
hf

+2 Tr

( (n+1)

(Y †
ν )

hn

(n+1)

(Yν)
nl

)((n+1)
κ + ∆κtree

νn

)
gf

]
Mn

. (5.4)

One-loop matching of the neutrino Yukawa matrix. The neutrino Yukawa matrix

does not receive a threshold correction at tree-level, i.e.

(
(n)

Yν)ig

∣∣∣
Mn

=
(n+1)

(Yν)
ig

∣∣∣
Mn

, (5.5)

where the index i runs from 1 to n− 1 and g from 1 to 3. Extending the matching to the

one-loop order, we get

(
(n)

Yν)ig

∣∣∣
Mn

=
(n+1)

(Yν)
ig

∣∣∣
Mn

− 1

2

(n+1)

(βYν
heavy=νn,[1])ig

∣∣∣
Mn

, (5.6)

with the one-loop threshold correction given by (no sum over n)

−1

2

(n+1)

(βYν
heavy=νn,[1])ig

∣∣∣
Mn

= − 1

32π2

[
3

3∑
f=1

(n+1)

(Yν)
if

(n+1)

(Y †
ν )

fn

(n+1)

(Yν)
ng

+
(n+1)

(Yν)
ig

Tr

( (n+1)

(Y †
ν )

fn

(n+1)

(Yν)
nh

)]
Mn

.

(5.7)

One-loop matching of the right-handed neutrino mass matrix. The one-loop

matching condition of the right-handed neutrino mass matrix at µ = Mn is given by

(n)

(M)
ij

∣∣∣
Mn

=
(n+1)

(M)
ij

∣∣∣
Mn

− 1

2

(n+1)

(βM
heavy=νn,[1])ij

∣∣∣
Mn

, (5.8)

with the one-loop threshold correction equal to (no sum over n)

−1

2

(n+1)

(βM
heavy=νn,[1])ij

∣∣∣
Mn

= − 1

16π2

[
3∑

f=1

(n+1)

(Yν)
if

(n+1)

(Y †
ν )

fn

(n+1)

(M)
nj

+
3∑

f=1

(n+1)

(M)
in

(n+1)

(Y ∗ν )
nf

(n+1)

(Y T
ν )

fj

]
Mn

.

(5.9)

We note that at the threshold µ = Mn, in order to integrate out a mass eigenstate, we

go to the mass eigenbasis of the right-handed neutrinos, i.e. we diagonalize the matrix
(n+1)

M . However, the matrix
(n)

M is not necessarily diagonal at µ = Mn due to the threshold

correction.
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One-loop matching of the quark and charged lepton Yukawa matrices. The

one-loop matching condition for the Yukawa matrices of the quarks and charged leptons is

given by

(
(n)

Yx)gf

∣∣∣
Mn

=
(n+1)

(Yx)
gf

∣∣∣
Mn

− 1

2

(n+1)

(βYx
heavy=νn,[1])gf

∣∣∣
Mn

, (5.10)

where x ∈ {d, u, e}. The one-loop threshold corrections are given by

−1

2

(n+1)

(βYd
heavy=νn,[1])gf

∣∣∣
Mn

= 0 , (5.11)

−1

2

(n+1)

(βYu
heavy=νn,[1])gf

∣∣∣
Mn

=− 1

32π2

[
(
(n+1)

Yu)gf Tr

( (n+1)

(Y †
ν )

hn

(n+1)

(Yν)
nl

)]
Mn

(no sum over n), (5.12)

−1

2

(n+1)

(βYe
heavy=νn,[1])gf

∣∣∣
Mn

=− 1

32π2

[
3∑

h=1

(
(n+1)

Ye)gh

(n+1)

(Y †
ν )

hn

(n+1)

(Yν)
nf

]
Mn

(no sum over n). (5.13)

6 Summary and conclusions

In this paper, we have derived a general formula (cf. eq. (4.16)) for the one-loop matching of

superpotential operators using supergraph techniques, which can readily be applied to any

supersymmetric theory where chiral superfields are integrated out and the effective theories

are matched at the mass thresholds.7 We have applied our formula to calculate the one-

loop threshold corrections in the MSSM extended by nG right-handed neutrinos. These

results (cf. section 5) can now be used to study the running in a type I seesaw extension

of the MSSM consistently at two-loop. The procedure can be summarized as follows:

• From a “Full Theory” at high energies, the quantities are evolved using the relevant

two-loop RGEs (cf. section 3.2) down to the first mass threshold, corresponding to

the heaviest sterile neutrino superfield with the largest eigenvalue MnG of the mass

matrix M .

• At the threshold µ = MnG the heaviest sterile neutrino superfield is integrated out

and the one-loop matching conditions are imposed according to eq. (5.1), (5.6), (5.8)

and (5.10). To integrate out νnG it is necessary to diagonalize the right-handed

neutrino mass matrix by an unitary transformation U , M → UT M U , which

corresponds to transforming the right-handed neutrino superfields by νC → U † νC.

This also implies that the neutrino Yukawa matrix is transformed to Yν → UT Yν .

• Below the threshold, at µ < MnG , we are in the effective theory referred to as “EFT

nG”, where nG−1 right-handed neutrino superfields are left. Within this effective

theory, the parameters (including
(nG)

Yν ,
(nG)

M ,
(nG)

Yd,
(nG)

Yu,
(nG)

Ye and the new effective coupling
(nG)

κ ) are evolved according to their RGEs down to the next threshold, corresponding

to the largest eigenvalue of the (nG−1)× (nG−1) matrix
(nG)

M , i.e. to µ = MnG−1.

7We also discussed other choices of the matching scale (cf. subsection below eq. (4.5) and footnote 5),

which can lead to a simplification of the matching procedure (cf. footnote 6).
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• At the threshold µ = MnG−1, we repeat the steps of the second bullet point and

integrate out νnG−1 at the one-loop level, leading to the “EFT nG − 1”. This proce-

dure is repeated up to the “EFT 1” where all right-handed neutrino superfields are

integrated out.

This procedure yields in particular the low energy values of the superpotential couplings

at the two-loop level. The one-loop threshold corrections from integrating out the heavy

right-handed neutrinos affect directly the low energy values of the light neutrino mass

matrix mν as well as of the up-type quark Yukawa matrix Yu and the charged lepton Yukawa

matrix Ye (and various other quantities indirectly via the coupled RGEs). These corrections

are, for instance, relevant for testing more precisely the predictions of supersymmetric

Grand Unified Theories and flavour models.
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