
Nuclear Physics B 850 (2011) 477–504

www.elsevier.com/locate/nuclphysb

Right unitarity triangles and tri-bimaximal mixing from
discrete symmetries and unification

S. Antusch a, Stephen F. King b, Christoph Luhn b,∗, M. Spinrath c

a Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Föhringer Ring 6, D-80805 München, Germany
b School of Physics and Astronomy, University of Southampton, SO17 1BJ Southampton, United Kingdom

c SISSA/ISAS and INFN, Via Bonomea 265, I-34136 Trieste, Italy

Received 7 April 2011; received in revised form 10 May 2011; accepted 11 May 2011

Available online 14 May 2011

Abstract

We propose new classes of models which predict both tri-bimaximal lepton mixing and a right-angled
Cabibbo–Kobayashi–Maskawa (CKM) unitarity triangle, α ≈ 90◦. The ingredients of the models include
a supersymmetric (SUSY) unified gauge group such as SU(5), a discrete family symmetry such as A4 or S4,
a shaping symmetry including products of Z2 and Z4 groups as well as spontaneous CP violation. We show
how the vacuum alignment in such models allows a simple explanation of α ≈ 90◦ by a combination of
purely real or purely imaginary vacuum expectation values (vevs) of the flavons responsible for family
symmetry breaking. This leads to quark mass matrices with 1–3 texture zeros that satisfy the “phase sum
rule” and lepton mass matrices that satisfy the “lepton mixing sum rule” together with a new prediction
that the leptonic CP violating oscillation phase is close to either 0◦, 90◦, 180◦, or 270◦ depending on the
model, with neutrino masses being purely real (no complex Majorana phases). This leads to the possibility
of having right-angled unitarity triangles in both the quark and lepton sectors.
© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The flavour puzzle, i.e. the origin of the observed pattern of fermion masses, mixing angles
and CP violating phases is one of the most challenging puzzles in particle physics. There are
various aspects of the flavour puzzle, such as the hierarchy among the quark masses, the origin
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of CP violation, and the largeness of the leptonic mixing angles, which have turned out to be
close to “tri-bimaximal” [1]. In particular this latter observation has led to increasing interest in
non-Abelian discrete family symmetries for flavour model building [2].

Recently it has become increasingly clear that current data is indeed consistent with the hy-
pothesis of a right-angled CKM unitarity triangle, with the best fits giving α = (89.0+4.4

−4.2)
◦ [3].

Such a right unitarity triangle was suggested long ago, when the error bar on α was much larger,
by Fritzsch and collaborators as a natural consequence of having quark mass matrices with zeros
in the 1–3 element [4]. In the light of recent data, this observation has gained increased momen-
tum, and there have been several papers that attempt to predict α ≈ 90◦ by postulating up-type
and down-type quark mass matrices with the elements M

u,d
ij being either purely real or purely

imaginary, with texture zeros in the 1–3 elements, M
u,d
13 = 0 [5–7] (see also [8]). Under these

assumptions, it has been shown that the prediction α ≈ 90◦ can be understood from a simple
analytic “phase sum rule” relation [7] which relates the angle α to phases arising from the quark
mass matrices. To be precise, the “phase sum rule” can be expressed as α ≈ δd

12 − δu
12 [7], where

the phases δd
12 and δu

12 are the arguments of the complex 1–2 rotation angles in the up-type and
down-type quark mass matrices, as defined in [7]. To explain α ≈ 90◦ one might therefore sim-
ply try to realise δd

12 = 90◦, δu
12 = 0 or alternatively δd

12 = 0, δu
12 = −90◦ in a model of flavour.

For hierarchical mass matrices, this corresponds to the 1–2 and the 2–2 elements of the mass
matrix being either purely real or imaginary. Such textures have also been considered previously
in [5–7], and in [5] a SUSY Grand Unified Theory (GUT) with a continuous family symmetry
SU(3) × SU(3) responsible for such textures has been proposed, however the vacuum alignment
responsible for the spontaneous breaking of the family symmetry was not studied.

In this paper we show that large classes of models involving discrete family symmetry and su-
persymmetric unification (so called SUSY GUTs of Flavour) that have previously been proposed
to account for tri-bimaximal lepton mixing are quite capable of providing an explanation of the
right-angled unitarity triangle, subject to a constraint on the “shaping symmetry” that helps to
shape the vacuum alignment superpotential. Such a “shaping symmetry” is always necessary in
realistic models, but here we constrain the nature of the symmetry to be a discrete symmetry of
a particular type. The main technical accomplishment in this paper is to propose a mechanism
for vacuum alignment based on discrete symmetries, which can give rise to purely real or purely
imaginary vacuum alignments for the flavon fields responsible for spontaneously breaking the
discrete family symmetry.1 There are four different aspects to these models which are important
for our approach, as follows.

(i) Supersymmetric unification. We impose gauge coupling unification, which severely re-
stricts the choice of available models in the literature, since many of the existing models are not
unified. The role of unification is to relate the lepton sector to the quark sector, since we want to
make the connection between tri-bimaximal mixing and quark mixing and CP violation. Here we
shall consider the minimal SUSY SU(5) gauge group. It is, however, worth emphasising that our
method of obtaining a right-angled CKM unitarity triangle can also be applied to models without
grand unification.

(ii) Discrete family symmetry. As already stated we are also concerned with discrete family
symmetries that have been proposed to account for tri-bimaximal lepton mixing. The approach
is applicable for all types of discrete family symmetries and does not depend on whether the

1 In the context of continuous family symmetries, flavon alignments with real or imaginary values in the multiplet
components have been discussed in [9].
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neutrino flavour (Klein) symmetry associated with tri-bimaximal mixing is identified as a sub-
group of the family symmetry (as in the so called direct models) or as an accidental symmetry
which results from having flavons aligned along the columns of the tri-bimaximal mixing matrix
(as in the so called indirect models). Recall that in the latter case, the flavons break the Klein
symmetry only due to an overall minus sign, and bilinears of flavons appearing in the neutrino
sector respect the Klein symmetry (for a full discussion of this see [10]). We shall consider an
example model of both the direct and the indirect kind.

(iii) Discrete shaping symmetry. We assume an extra shaping symmetry based on products
of Zn symmetries, where n is an even number. All realistic models involve some extra shaping
symmetry that can help to control the presence of operators in the sectors responsible for Yukawa
couplings and vacuum alignment, so the idea of an extra shaping symmetry is not new. What is
new is that our mechanism restricts the shaping symmetries to be strings of discrete symmetries
such as Z2 and Z4 symmetries in order that the vevs of the flavon fields be forced to be purely
real or purely imaginary. In particular, this prohibits the use of continuous shaping symmetries
such as for example a U(1) symmetry; discrete symmetries like, e.g. Z3 or Z5 symmetries are
also not suitable as they would not lead to purely real or purely imaginary vevs. This means that
many of the existing models which have been proposed to describe tri-bimaximal lepton mixing
are not viable for explaining the right-angled unitarity triangle, and we are forced to invent new
models.

(iv) Spontaneous CP violation. Another requirement of our mechanism is that CP is conserved
in the theory at the high energy scale, and is only broken spontaneously by the (complex) vevs
of flavons. Such a scenario has been proposed previously in order to account for the smallness
of CP violation in the soft SUSY sector [11]. Here it will be an essential ingredient in obtaining
the prediction of α ≈ 90◦. Thus we envisage models with family symmetries and spontaneous
CP violation, in which the flavour structure as well as CP violation are generated from family
symmetry breaking.

In Section 2 we explain our mechanism in general terms. In Sections 3 and 4 we then turn to
two realistic examples of SU(5) GUT models with A4 and S4 family symmetries, respectively,
plus extra Zn shaping symmetries. The A4 × SU(5) model in Section 3 is an example of an
indirect model, similar in nature to the model proposed in [12], while the S4 × SU(5) model
in Section 4 is an example of a direct model, similar in nature to the model proposed in [13].
The models are modified here to take account of the restriction on the shaping symmetry in (iii).
Both models illustrate that the right-angled CKM unitarity triangle can indeed be understood
from an underlying flavour model with discrete symmetries which were introduced previously
for the purpose of providing an explanation of tri-bimaximal lepton mixing. In both models the
quark mass matrices have 1–3 texture zeros and satisfy the “phase sum rule” derived in [7],
while the lepton mass matrices lead to the “lepton mixing sum rule” [14,15] together with a new
prediction that the leptonic CP violating oscillation phase is close to either 0◦, 90◦, 180◦, or 270◦
depending on the model, with neutrino masses being purely real (no complex Majorana phases).
We summarise and conclude the paper in Section 5, providing appendices on the more technical
aspects of the models including their ultraviolet completion.

2. The real/imaginary vacuum alignment mechanism

The goal of this paper is to show how the nearly right-angled CKM unitarity triangle (i.e.
α ≈ 90◦) can be explained in flavour models. In this section we describe in general terms how
this can be achieved in theories with spontaneous CP violation via purely real or imaginary
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alignments for the flavon fields. The flavon fields break the family symmetry, give rise to the
flavour structure, and have to induce the observed CP violation via their vevs.

2.1. Motivation: The phase sum rule

The motivation for this approach is provided by the phase sum rule of [7], which states that
if the 1–3 mixing in both, the up-type quark mass matrix as well as the down-type mass matrix
vanish (approximately), then there holds the following relation for the angle α of the CKM
unitarity triangle:

α ≈ δd
12 − δu

12. (2.1)

The phases δd
12 and δu

12 are the arguments of the complex 1–2 rotation angles in the up-type and
down-type quark mass matrices, as defined in [7].

To explain α ≈ 90◦ one might therefore simply try to realise δd
12 = 90◦, δu

12 = 0 or alternatively
δd

12 = 0, δu
12 = −90◦ in a model of flavour. For hierarchical mass matrices, this corresponds to

the 1–2 and the 2–2 elements of the mass matrix being either purely real or imaginary. When the
Yukawa matrices are generated after the breaking of some (non-Abelian) family symmetry, we
thus need vevs of the flavons which have either purely real or purely imaginary components.

We now discuss in general terms how this might be achieved in scenarios with discrete sym-
metries in addition to non-Abelian family symmetries and later on we will also give two concrete
examples.

2.2. Method: Discrete vacuum alignment

As mentioned above, we assume spontaneous CP violation, i.e. that CP violation is induced
via the vevs of the flavons only, whereas the fundamental theory conserves CP. More specifically,
we will assume that in the phase of unbroken family symmetry, there exists a basis where all
parameters are real.

Furthermore, we will consider the case that in addition to a non-Abelian discrete family sym-
metry, the flavour model features extra Zn shaping symmetries. When a flavon φ carries single
charge under the Zn symmetry (n � 2), then typical terms in the flavon superpotential, which
“drive” the flavon vev non-zero, have the form

P

(
φn

Λn−2
∓ M2

)
. (2.2)

The field P is the so-called “driving superfield”, meaning that the F -term |FP |2 generates the
potential for the scalar component of φ which enforces a non-zero vev. Here and in the following
we will use the same letters for the superfields and its component fields. Λ is the (real and
positive) suppression scale of the effective operator, typically associated with the mass(es) of the
messenger field(s) involved in its generation, and M here is simply a (real) mass scale. From the
potential for φ,

|FP |2 =
∣∣∣∣ φn

Λn−2
∓ M2

∣∣∣∣2

, (2.3)

we see that the vev of φ has to satisfy

φn = ±Λn−2M2. (2.4)
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The final step to explain our method is to argue that, whenever the flavon vev depends on just
one single parameter, Eq. (2.2) forces the phase of the flavon vev to take only certain discrete
values. For instance, in the simplest case where φ is a singlet under the non-Abelian family
symmetry, it is clear that the phase is determined to be:

arg
(〈φ〉) =

{
2π
n

q, q = 1, . . . , n, for “ − ” in Eq. (2.2),
2π
n

q + π
n
, q = 1, . . . , n, for “ + ” in Eq. (2.2).

(2.5)

For example with a Z2 symmetry and a “−”-sign in Eq. (2.2) the phase satisfies arg(〈φ〉) ∈
{0,π} and thus the vev is real. For the “+”-sign we have arg(〈φ〉) ∈ {π/2,3π/2} and the vev
is purely imaginary. Similarly, with a Z4 symmetry, we see that for the “−”-sign the phase can
take the possible values arg(〈φ〉) ∈ {0,π/2,π,3π/2} and for the “+”-sign it can take the values
arg(〈φ〉) ∈ {π/4,3π/4,5π/4,7π/4}. So only for the “−”-sign the flavon vev is either purely
real or purely imaginary.2 As we argued in the previous subsection, such either purely real or
purely imaginary aligned flavons will be the building blocks for the proposed explanation of the
right-angled CKM unitarity triangle.

The above arguments continue to hold true if the flavons are, for example, triplets of the
non-Abelian family symmetry. In fact, typically, in explicit models we will deal with flavons
which (by means of other terms in the flavon potential) are forced to point in specific directions
in flavour space and thus depend only on one continuous parameter, say x. Examples for such
flavons may be

φ3 ∝
( 0

0
x

)
, φ23 ∝

( 0
x

−x

)
or φ123 ∝

(
x

x

x

)
. (2.6)

When the vevs of such flavons are driven by terms as in Eq. (2.2), the phases are again forced to
take only values as specified in Eq. (2.5).

We have argued in this section that flavons which have either purely real or purely imaginary
vevs could be the building blocks for flavour models capable of explaining the nearly right-angled
CKM unitarity triangle (i.e. α ≈ 90◦). A model-independent discussion and a derivation of the
phase sum rule can be found in [7]. We have outlined a possible method of how such purely real
or purely imaginary flavons can be realised in models. The next step will be to apply the method
to construct two example models featuring α ≈ 90◦.

3. A4 × SU(5)

As a first example we will now discuss a model based on an SU(5) GUT with A4 family
symmetry (plus extra discrete symmetries and an R-symmetry), broken by the vevs of five flavon
fields φ1, φ2, φ3, φ23 and φ123. This may be regarded as a variation of the indirect A4 × SU(5)

model in [12]. We start with the discussion of the flavon potential. Following the method de-
scribed in the previous section, we use as discrete symmetries only Z2 and Z4 symmetries, such
that the vevs will be either purely real or imaginary. The field content and the symmetries are
listed in Tables 1 and 2 for the flavon sector and the matter sector, respectively. The complete
messenger sector of the model will be presented in Appendix B.

2 We note that with Zn symmetries other than Z2 or Z4 one obtains different discrete possibilities for the phases which
may also be interesting for model building. In this paper, however, we will focus on Z2 and Z4 symmetries since we are
interested in purely real or purely imaginary flavon vevs.
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Table 1
Flavon and driving fields of the A4 model. Note that depending on which option for the alignment of φ123 is chosen, the

fields ξ and A123 are present or not, as described in the main text. The Z
(2)
2 symmetry is not necessary for the alignment

itself, but it will be required for the matter (cf. Table 2) and the messenger sectors (cf. Appendix B).

SU(5) A4 Z
(1)
4 Z

(2)
4 Z

(3)
4 Z

(4)
4 Z

(1)
2 Z

(2)
2 U(1)R

Flavons
φ1 1 3 3 0 0 0 0 0 0
φ2 1 3 3 3 0 0 0 0 0
φ3 1 3 0 0 0 0 1 0 0
φ123 1 3 0 0 3 0 0 0 0
φ23 1 3 0 0 3 3 0 0 0
ξ 1 1 0 0 1 0 0 0 0

Driving fields
Pi 1 1 0 0 0 0 0 0 2
A1 1 3 2 0 0 0 0 0 2
A2 1 3 2 2 0 0 0 0 2
A3 1 3 0 0 0 0 0 0 2
A123 1 3 0 0 2 0 0 0 2
O1;2 1 1 2 1 0 0 0 0 2
O1;3 1 1 1 0 0 0 1 0 2
O2;3 1 1 1 1 0 0 1 0 2
O1;23 1 1 1 0 1 1 0 0 2
O123;23 1 1 0 0 2 1 0 0 2

3.1. Flavon sector

In Section 2 we have discussed in general terms how the phases of flavon vevs may be pre-
dicted from the flavon potential. In this section we will apply this method to construct a simple
A4 model capable of predicting a CKM unitarity triangle with α ≈ 90◦. As we will see, the align-
ment we produce here enables us to predict the CKM phase correctly and also give predictions
for all the phases in the lepton sector which are not yet experimentally determined. The flavons
and driving fields and their charges under the imposed symmetries are given in Table 1.

In addition to the flavons φ1, φ2, φ3, φ23 and φ123 responsible for the flavour structure, the
table also contains the “auxiliary flavon” ξ , which will be used to align the vev of φ123. The
“driving fields” will be called Pi , Ai and Oi;j , and we use a notation that via their F -term con-
tributions to the flavon potential, the A4 singlet fields Pi fix the phase as discussed in Section 2,
the triplets Ai force flavons to point into certain specific directions in flavour space, and the sin-
glet fields Oi;j align the vev of the flavon φi to be orthogonal to the one of φj . Notice that the
driving fields Ai and Oi;j are all distinguished from one another by their charge assignments,
whereas the driving fields Pi are completely neutral under all shaping symmetries. Hence, in a
generic basis, each of these Pi fields couples to the same set of terms with different coupling
constants. In order to apply the method outlined in Section 2 it is necessary to disentangle the
equations by a suitable basis transformation, the details of which are presented in Appendix A.
For the sake of simplicity we will sometimes suppress (real and positive) order one coupling
constants where they are not relevant for the model predictions. In dealing with A4 we will use
the standard “SO(3) basis” for which the singlet of 3 ⊗ 3 is given by the SO(3)-type inner prod-
uct. The two triplets of 3 ⊗ 3 are constructed from the usual (antisymmetric) cross product ‘×’
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and the symmetric star product ‘�’ (see, for example, [16]). The symmetric product is defined
analogous to the cross product but with a relative plus sign instead of a minus sign.

Let us now start our discussion of the alignment by specifying the required form of the vevs
of φ1, φ2, φ3, φ23, φ123 for the construction of the A4 model with α = 90◦:

〈φ1〉 ∝
(1

0
0

)
, 〈φ2〉 ∝

( 0
−i
0

)
, 〈φ3〉 ∝

(0
0
1

)
,

〈φ23〉 ∝
( 0

1
−1

)
, 〈φ123〉 ∝

(1
1
1

)
. (3.1)

For predicting α ≈ 90◦, one possibility will be to have an imaginary φ2 and real φ1, φ3, φ23,
φ123. This is explicitly incorporated in Eq. (3.1) by assuming real proportionality constants here
and in the following. The vevs of φ23, φ123 are familiar from various flavour models and lead to
tri-bimaximal neutrino mixing.

For realising the required vacuum alignment of φ123, we discuss two options:

• Option A: The (super-)potential for the first option is

Wφ123 = P123

(
φ4

123

M2
Υ123;123

− λ
(φ123φ123)1′(φ123φ123)1′′

MΥ ′MΥ ′′
− M2

123

)
,

Vsoft = m2
123|φ123|2, (3.2)

where Vsoft displays a SUSY-breaking soft mass term for φ123 with positive m2
123. The brack-

ets (· · ·)1′ and (· · ·)1′′ mean that the fields are contracted to 1′ and 1′′ representations of A4.
φ4

123 stands for (φ123φ123)1(φ123φ123)1. The (real) constants MΥ123;123 , MΥ ′ , and MΥ ′′ denote
messenger masses, see Appendix B.
It is not obvious, that this potential gives the desired alignment of 〈φ123〉 ∝ (±1,±1,±1) or
(±i,±i,±i). Let us assume that 〈φ123〉 = (x, y, z), then the invariant (· · ·)1′(· · ·)1′′ gives a
contribution to the F -term conditions of the form

x4 + y4 + z4 − x2y2 − x2z2 − y2z2.

This combination obviously vanishes for x2 = y2 = z2, which is already the desired align-
ment. Nevertheless, having only this invariant coupling to a driving field is not sufficient
since the scale of 〈φ123〉 is completely arbitrary up to this stage. This is fixed by the φ4

123 term
and the soft mass. Indeed, we have checked numerically that for 0 < λ < MΥ ′MΥ ′′/M2

Υ123;123

we end up in a vacuum, where 〈φ123〉 ∝ (±1,±1,±1) or (±i,±i,±i), if we assume M123
to be real.

• Option B: Alternatively one can achieve the alignment of the vev of φ123 by:

W ′
φ123

= A123(ξφ123 + φ123 � φ123)

+ P123

(
φ4

123

M2
Υ123;123

+ ξ2φ2
123

M2
Υ123;123

+ ξ4

M2
Υ123;123

− M2
123

)
. (3.3)

The F -term equations for A123 and P123 have three distinct solutions. With 〈ξ〉 = 0 the
potential reduces to the case in Eq. (3.4) giving, e.g. 〈φ123〉 ∝ (1,0,0). For 〈ξ〉 �= 0 there
exist two possibilities for 〈φ123〉: the vev of φ123 could vanish or, alternatively, point into the
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directions 〈φ123〉 ∝ (±1,±1,±1). The latter can be understood in the following way. The
F -term conditions of the first term in Eq. (3.3) give three relations between the ξ vev and the
components of 〈φ123〉 which enter the equations cyclically preferring already the solution
(±1,±1,±1). We only need a term, which drives the vevs to non-zero values which is done
by the second term in Eq. (3.3).
In the following we assume, that the latter option is realised. Compared to option A, the
“auxiliary flavon” ξ and the additional driving field A123 are introduced, however no soft
terms are involved in the alignment.

Now that we have this alignment at hand the alignment of the other flavons is comparatively
straightforward. The vevs of the other flavons are determined by the following additional super-
potential terms:

Wφ1,φ2,φ3 = P1

(
φ4

1

M2
Υ1;1

− M2
1

)
+ P2

(
φ4

2

M2
Υ2;2

− M2
2

)
+ P3

(
φ2

3 − M2
3

)
+ Ai(φi � φi) + Oij (φi .φj ), (3.4)

Wφ23 = P23

(
φ4

23

M2
Υ23;23

− M2
23

)
+ O1;23(φ1.φ23) + O123;23(φ123.φ23). (3.5)

Note that in Eq. (3.4) only the symmetric coupling Ai(φi � φi) appears, since the cross prod-
uct vanishes for two identical fields (which is of course also allowed by the symmetries). As
discussed in Section 2, and assuming spontaneous CP violation, we obtain that the phases of
the vevs of φ1, φ2, φ3, φ23, φ123 can only take the values {0,π,±π/2}, as desired. Among these
possible vacua, we will concentrate in the following on the solution where φ2 is purely imaginary
and the other flavon vevs are real.3

Together, the flavon superpotential in Eqs. (3.2)–(3.5) can result in the desired flavon align-
ment with imaginary φ2 and real φ1, φ3, φ23, φ123 as specified in Eq. (3.1).

3.2. Matter sector and predictions

With the A4 breaking flavon sector and the alignment of the flavon vevs at hand we will now
turn to the fermion masses and mixings within the A4 × SU(5) GUT model. The matter content
of the Standard Model fits into the five-dimensional representation of SU(5)

Fi = (
dc
R dc

B dc
G e −ν

)
i
, (3.6)

which we assume to be a triplet under A4, and the ten-dimensional representations of SU(5)

Ti = 1√
2

⎛
⎜⎜⎜⎝

0 −uc
G uc

B −uR −dR

uc
G 0 −uc

R −uB −dB

−uc
B uc

R 0 −uG −dG

uR uB uG 0 −ec

dR dB dG ec 0

⎞
⎟⎟⎟⎠

i

, (3.7)

3 We note that there are other combinations of the flavon vevs’ phases leading to the same results, whereas others
are phenomenologically invalid. In principle, higher-dimensional (Planck scale suppressed) operators may violate the
discrete symmetries and favour one vacuum over the others. This preferred vacuum may then expand and finally be the
only one in our observable universe. In a more fundamental theory one may even attempt to calculate which vacua are
preferred, but for the present work this is clearly beyond the scope.
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Table 2
The matter and Higgs fields of the A4 model.

SU(5) A4 Z
(1)
4 Z

(2)
4 Z

(3)
4 Z

(4)
4 Z

(1)
2 Z

(2)
2 U(1)R

Matter fields
F 5 3 0 0 0 0 0 1 1
T1 10 1 1 0 0 0 0 0 1
T2 10 1 0 0 1 0 0 0 1
T3 10 1 0 0 0 0 1 0 1
N1 1 1 0 0 3 3 0 0 1
N2 1 1 0 0 3 0 0 0 1

Higgs fields
H̄1 5 1 0 1 0 0 0 0 0
H̄2 45 1 0 0 0 1 0 0 0
H̄3 5 1 0 0 0 0 0 0 0
H 5 1 0 0 0 0 0 0 0
H24 24 1 0 0 0 0 0 1 0

which we assume to be singlets under A4. We also add two right-handed neutrinos N1 and N2,
being singlets under SU(5) and A4, to generate masses for two of the light neutrinos via the
seesaw mechanism [17]. The Higgs sector consists of H24, H and H̄i , i = 1,2,3. H24 is the
GUT symmetry breaking Higgs field while H contains the MSSM up-type Higgs doublet, and
the down-type Higgs doublet is a linear combination of the doublet components of the H̄i fields.

The model will predict the GUT scale ratios yτ /yb and yμ/ys . Instead of the commonly
encountered b–τ Yukawa unification and the Georgi–Jarlskog relation [18] for yμ/ys , which are
phenomenologically somewhat challenged in CMSSM scenarios [19–21], our model predicts the
GUT scale relations [21]

yμ

ys

≈ 9

2
and

yτ

yb

= −3

2
, (3.8)

which differ from the Georgi–Jarlskog predictions by an overall factor of 3/2 giving better agree-
ment with phenomenology. The operators yielding these predictions contain H24 with its vev
given by the diagonal matrix

〈H24〉 ∼ v24 diag(1,1,1,−3/2,−3/2). (3.9)

The non-renormalisable superpotential which is generated after integrating out the messenger
fields, cf. Appendix B, is given by the following terms:

Wd = FH24

(
T1H̄1φ2

MΞ2MΞ ′
2

+ T2H̄3φ123

MΞ123MΞ ′
123

+ T2H̄2φ23

MΞ23MΞ ′
23

+ T3H̄3φ3

MΞ3MΞ ′
3

)
, (3.10)

Wu = T 2
3 H + T 2

2 Hφ2
123

MΘ2;2MΥ123;123

+ T 2
1 Hφ2

1

MΘ1;1MΥ1;1
+ T2T3Hφ123φ3

MΘ2;3MΥ3;123

+ T1T3Hφ1φ3

MΘ1;3MΥ1;3
+ T1T2Hφ123φ1

MΘ1;2MΥ1;123

, (3.11)

Wν = FH24H

(
N1φ23

MΞ M ′
+ N2φ123

MΞ M ′

)
, (3.12)
23 Ξ23 123 Ξ123
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WN = φ2
23N

2
1

MΥ23

+ φ2
123N

2
2

MΥ123

. (3.13)

As before, order one coefficients are dropped where they have no influence on the model predic-
tions. The new masses are the masses of the messenger fields, as will be discussed in Appendix B.

For the low energy charged lepton and down-type quark Yukawa couplings we define

ε2 ∼ v24|〈φ2〉|
MΞ2MΞ ′

2

, ε3 ∼ v24|〈φ3〉|
MΞ3MΞ ′

3

,

ε23 ∼ v24|〈φ23〉|
MΞ23MΞ ′

23

, ε123 ∼ v24|〈φ123〉|
MΞ123MΞ ′

123

, (3.14)

where we have dropped order one coefficients and Higgs mixing angles. Similarly for the up-type
quark sector we define

a11 ∼ |〈φ1〉|2
MΘ1;1MΥ1;1

, a22 ∼ |〈φ123〉|2
MΘ2;2MΥ123;123

,

a12 ∼ |〈φ1〉||〈φ123〉|
MΘ1;2MΥ1;123

, a23 ∼ |〈φ3〉||〈φ123〉|
MΘ2;3MΥ3;123

. (3.15)

The top Yukawa coupling yt = a33 is generated at tree-level and the would-be a13 vanishes due
to the orthogonality of φ1 and φ3. For the neutrino Yukawa couplings we define

aν1 ∼ v24|〈φ23〉|
MΞ23MΞ ′

23

and aν2 ∼ v24|〈φ123〉|
MΞ123MΞ ′

123

, (3.16)

and for the right-handed neutrino masses

MR1 ∼ |〈φ23〉|2
MΥ23

and MR2 ∼ |〈φ123〉|2
MΥ123

. (3.17)

With these definitions at hand we can express the Yukawa couplings in a simple form using
the PDG convention [3], namely

LYuk = −(
Y ∗

d

)
ij
Qid̄jHd − (

Y ∗
e

)
ij
Li ējHd − (

Y ∗
u

)
ij
QiūjHu + H.c. (3.18)

Regarding the quark Yukawa matrices, from Eqs. (3.10) and (3.11) and using the above defini-
tions as well as the alignments of Eq. (3.1) we obtain:

Yd =
( 0 iε2 0

ε123 ε23 + ε123 −ε23 + ε123
0 0 ε3

)
, (3.19)

Yu =
(

a11 a12 0
a12 a22 a23
0 a23 a33

)
. (3.20)

Note that due to the complex conjugation in the definition of the Yukawa couplings a factor of
+i appears now in the 1–2 element of Yd (instead of −i). We see that the “phase sum rule” of
Ref. [7] applies since in both the up and the down quark sector we have zero 1–3 mixing. As
discussed in [7], the structures of Yu and Yd give the correct quark masses and mixings including
a CKM matrix that features a right-angled unitarity triangle with α ≈ ±90◦. In order to obtain
the positive sign of α we need to require a relative sign difference between the omitted real order
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one coefficients of the 1–2 and 2–2 elements of either Yu or Yd (but not both). Note that the
moduli of the parameters aij are not predicted in our model, since these Yukawa couplings stem
from effective operators generated by messenger fields with (in general) different masses. They
will be fixed by the fit to the up-type quark masses and the quark mixing angles.

For the neutrino and charged lepton sector we obtain:

MR =
(

MR1 0
0 MR2

)
, (3.21)

Yν =
( 0 aν2

aν1 aν2−aν1 aν2

)
, (3.22)

YT
e = −3

2

( 0 iε2 0
ε123 −3ε23 + ε123 3ε23 + ε123

0 0 ε3

)
. (3.23)

The size of the neutrino Yukawa couplings is given by the two parameters aν1 and aν2 , which are
of the order ε23 and ε123. The right-handed neutrino masses MR1 and MR2 can be chosen such
that the two observed neutrino mass squared differences are obtained, with one of the light neu-
trinos being massless (by construction since we have assumed only two right-handed neutrinos).

The mixing in the neutrino sector is “tri-bimaximal” to a good approximation, since the neu-
trino Yukawa matrix Yν above satisfies the conditions of constrained sequential dominance [14].
In the considered SU(5) GUT framework, Ye is connected to Yd and we obtain predictions for
the lepton mixing parameters due to “charged lepton” corrections.

The alignment of Eq. (3.1) fixes all the phases in the lepton sector as well, leading to a Maki–
Nakagawa–Sakata (MNS) mixing matrix with δMNS ≈ 0◦ or 180◦, depending on the relative sign
of ε123 and ε23, and vanishing CP violating Majorana phases.4 The would-be leptonic unitarity
triangle thus collapses to a line. Combining tri-bimaximal neutrino mixing with the charged
lepton corrections the predictions satisfy the lepton mixing sum rule θMNS

12 − cos(δMNS)θMNS
13 ≈

arcsin(1/
√

3) [14,15]. With θMNS
13 ≈ 3◦, the A4 model therefore predicts a ±3◦ shift of the solar

mixing angle from its tri-bimaximal value of 35.26◦.
In summary, we have constructed a simple model based on A4 × SU(5) symmetry, plus dis-

crete Z2 and Z4 shaping symmetries, which is capable of predicting a right-angled CKM unitarity
triangle α ≈ 90◦ following the method of “discrete vacuum alignment” described in Section 2.

4. S4 × SU(5)

In this section we present a variation of the direct S4 × SU(5) model in [13]. We adopt the
same S4 basis as well as the same notation; for the sake of brevity we refer the reader to [13]
whenever appropriate. As the neutrino sector remains unaltered we do not delve into an in-depth
discussion thereof. With the quark sector being our primary focus we wish to accommodate the
right-angled CKM unitary triangle by means of real and imaginary entries in the quark mass
matrices. Thus we are led to drop the flavon field φ̃u

2 and introduce two new ones, φu
1′ and φ̃d

2 .

4 We remark that there exist other similar vacuum alignment possibilities for α ≈ 90◦ leading to other discrete predic-
tions for δMNS, i.e. δMNS ∈ {0,π/2,π,3π/2}. A scenario with maximal leptonic CP violation is discussed in Section 4.
Strictly speaking, our approach is in general only predicting one out of these discrete possibilities. With a specific align-
ment chosen, here with the one in Eq. (3.1), the values of all phases (including also the two Majorana phases) can be
calculated.
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This entails slight changes in the choice of superfields which drive the flavon vevs. We begin
by briefly stating the leading Yukawa superpotential terms, the assumed vacuum configurations
and the resulting quark mass matrices. We proceed by discussing the required flavon potential in
detail. The U(1) shaping symmetry which was introduced in [13] in order to control the allowed
terms must be replaced by a set of Zn symmetries as discussed in Section 2. We construct all
possible such symmetries that can help constrain our model at the effective level and determine
all allowed terms which – if present – would spoil the desired structure. This investigation shows
that even the most general set of allowed Zn symmetries is insufficient to yield a viable model.
However, we argue that all additional dangerous terms can be forbidden by invoking a set of
messenger fields which gives rise to the required terms but disallows the dangerous ones.

4.1. Outline of the model

To make the following self-contained, we remark that the 5 of SU(5) is denoted by F while
the 10 is written as T . They furnish the following S4 representations:

F =
(

F1
F2
F3

)
∼ 3, T =

(
T1
T2

)
∼ 2, T3 ∼ 1.

The desired Yukawa superpotential terms are

Wu = T3T3H5 + 1

M
T T φu

2 H5 + 1

M2
T T

(
φu

1′
)2

H5 + 1

M3
T T

(
φd

3

)2
φν

1H5, (4.1)

Wd = 1

M
FT3φ

d
3 H5̄ + 1

M2

(
F φ̃d

3

)
1

(
T φd

2

)
1H45 + 1

M2

(
Fφd

3

)
2

(
T φ̃d

2

)
2H5̄, (4.2)

Wν = FNH5 + N
(
φν

3′ + φν
2 + φν

1

)
N, (4.3)

where (· · ·)1,2 denotes S4 contractions to the 1,2 representations, respectively. Here and in the
following we assume all order one coefficients to be real and suppress them in our notation.
Furthermore, the non-renormalisable terms are suppressed by a common mass scale M .

With the vacuum configuration of the flavon fields given as

〈
φu

2

〉 ∼ λ4M

(
0
1

)
,

〈
φu

1′
〉 ∼ λ3M, (4.4)

〈
φd

3

〉 ∼ λ2M

(0
1
0

)
,

〈
φ̃d

3

〉 ∼ λ3M

(0
2
1

)
,

〈
φd

2

〉 ∼ λM

(
1
0

)
,

〈
φ̃d

2

〉 ∼ λ3M

(−i
−i

)
, (4.5)

〈
φν

1

〉 ∼ λ4M,
〈
φν

2

〉 ∼ λ4M

(
1
1

)
,

〈
φν

3′
〉 ∼ λ4M

(1
1
1

)
, (4.6)

we are led to the following quark mass matrices

Mu ∼
(

λ8 λ6 0
λ6 λ4 0

)
vu, Md ∼

( 0 iλ5 0
iλ5 λ4 2λ4

2

)
vd, (4.7)
0 0 1 0 0 λ
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where λ ≈ 0.22 denotes the sine of the Cabibbo angle. In the up quark mass matrix, the 2–2
element arises from the second term of Eq. (4.1), the 1–2 and 2–1 elements originate from the
third term, and the 1–1 element from the fourth. As the vevs of all the flavon fields occurring
in Eq. (4.1) are real, the matrix Mu is real as well. Turning to the down quark mass matrix, we
obtain the 3–3 entry from the first term of Eq. (4.2), while the 2–2 and 2–3 entries are derived
from the second term. Notice the relative factor of 2 in the 2–3 element which is related to the
alignment of φ̃d

3 and serves to improve the fit of the 2–3 CKM mixing. From Eq. (4.7) we get
θCKM

23 ≈ 2 ms

mb
; evaluating this at the scale of, e.g. the top mass yields a value of around 0.038

which is to be compared to the measured 2–3 CKM mixing of 0.041, see, e.g. [22]. Without the
factor of 2 one would be far off. Finally the 1–2 and 2–1 elements of Md originate from the
third term of Eq. (4.2). Due to the vev configurations of the down-type flavons of Eq. (4.5), we
find purely imaginary entries for the 1–2 and 2–1 elements while the other elements of the down
quark mass matrix are all real. As discussed in [7], the structures of Mu and Md of Eq. (4.7), with
zero 1–3 mixings and a non-vanishing contribution in the 1–1 element of Mu, give the correct
quark masses and mixings including a CKM matrix that features a right-angled unitarity triangle
with α ≈ ±90◦. The positive sign of α is again obtained by requiring a relative sign difference
between the omitted real order one coefficients of the 1–2 and 2–2 elements of either Mu or Md

(but not both).
Turning to the lepton sector, we point out that the charged lepton mass matrix is related to Md

by transposition and an additional Georgi–Jarlskog factor of −3 in the entries that arise from the
H45 term of Eq. (4.2), i.e.

Me ∼
( 0 iλ5 0

iλ5 −3λ4 0
0 −6λ4 λ2

)
vd. (4.8)

Notice that, unlike in the above A4 model, the left-handed 1–2 charged lepton mixing involves
a maximal phase. In the parametrisation of [14] we get for the left-handed charged lepton mix-
ing VEL

θ
EL

12 ∼ λ

3
, θ

EL

13 = θ
EL

23 = 0, φ
EL

2 = φ
EL

3 = ±π

2
, χEL = 0, (4.9)

where the sign ambiguity is related to the relative sign difference between the coefficients of the
1–2 and 2–2 elements of Md in Eq. (4.7): the +π

2 solution corresponds to identical signs while the
−π

2 solution corresponds to opposite signs. In the neutrino sector, defined by the superpotential
of Eq. (4.3) as well as the flavon alignments of Eq. (4.6), we obtain the Dirac and Majorana mass
matrices

MD ∼
(1 0 0

0 0 1
0 1 0

)
vu, MR ∼

(
α + 2γ β − γ β − γ

β − γ β + 2γ α − γ

β − γ α − γ β + 2γ

)
λ4M, (4.10)

where α, β , γ are independent order one coefficients. The effective light neutrino mass matrix
after applying the seesaw mechanism is of exact tri-bimaximal form [13]. This can be easily
understood as the superpotential of Eq. (4.3) remains symmetric under the Klein symmetry [10]
after the flavons φν acquire their vevs. With these vevs taking real values, the light neutrino
mass matrix ends up being purely real as well. Therefore, it is diagonalised by the tri-bimaximal
mixing matrix without any phases. The resulting entries on the diagonal can in general be positive
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or negative. The latter case would require a Majorana phase ω
νL

i = π/2 which, however, does
not violate CP. The neutrino mixing matrix VνL

is thus parametrised by5

sin θ
νL

12 = 1√
3
, sin θ

νL

23 = 1√
2
, θ

νL

13 = 0,

φ
νL

2 = χνL = 0, φ
νL

3 = π. (4.11)

Using the general relations of [14] it is then straightforward to calculate the resulting MNS matrix
VEL

V †
νL

in terms of the two distinct left-handed mixing matrices, yielding

sin θMNS
23 e−iδ23 ≈ 1√

2
e−i(ω

νL
2 −ω

νL
3 ), (4.12)

θMNS
13 e−iδ13 ≈ − λ

3
√

2
e−i(ω

νL
1 −ω

νL
3 ± π

2 ), (4.13)

sin θMNS
12 e−iδ12 ≈ 1√

3
e−i(ω

νL
1 −ω

νL
2 )

(
1 ± i

λ

3

)
︸ ︷︷ ︸

≈e
±i λ

3

. (4.14)

This leads to a Dirac CP phase

δMNS = δ13 − δ23 − δ12 ≈ ∓
(

π

2
− λ

3

)
≈ ∓86◦, (4.15)

which is maximal up to a small correction of about 4◦. As before, with tri-bimaximal neu-
trino mixing and charged lepton corrections, the predictions satisfy the lepton mixing sum rule
θMNS

12 − cos(δMNS)θMNS
13 ≈ arcsin(1/

√
3) [14,15], with θMNS

13 ≈ λ/(3
√

2) ≈ 3◦. In this S4 model
we therefore predict θMNS

12 ≈ 35.5◦ corresponding to δMNS ≈ ∓86◦, together with θMNS
13 ≈ 3◦

and θMNS
23 ≈ 45◦, with an estimated error on these predictions of O(1◦) or smaller attributed to

renormalisation group and canonical normalisation corrections [23].

4.2. Flavon sector

In the following we discuss the origin of the vacuum configuration as given in Eqs. (4.4)–
(4.6). The flavon potential is made up of two types of terms: (i) terms which give the alignment
only and (ii) terms which render the vevs real or imaginary. We first list the terms of type (i)
which strongly resemble the ones used in [13].

W
(i)
flavon = Y ν

2 ζ
Yν

2
1

1

M

(
φν

1φν
2 + φν

2φν
2 + φν

3′φν
3′
) + Zν

3′ζ
Zν

3′
1

1

M

(
φν

1φν
3′ + φν

2φν
3′ + φν

3′φν
3′
)

(4.16)

+ Xd
1 ζ

Xd
1

1
1

M

(
φd

2

)2 (4.17)

+ Yd
2 ζ

Yd
2

1
1

M3

(
φd

2

)2(
φd

3

)2 (4.18)

+ X̃d
1 ζ

X̃d
1

1
1

M2
φd

2 φd
3 φ̃d

3 + X̃νd
1′ ζ

X̃νd
1′

1
1

M3

[(
φd

3

)2]
3′φ

ν
3′ φ̃d

3 (4.19)

5 The phase φ
νL
3 = π has been introduced because the conventional tri-bimaximal mixing matrix would otherwise be

incompatible with the standard PDG parametrisation where mixing angles take values between 0◦ and 90◦ .
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+ Ydu
2 ζ

Ydu
2

1
1

M
φd

2 φu
2 (4.20)

+ Xνd
1′ ζ

Xνd
1′

1
1

M
φν

2 φ̃d
2 . (4.21)

Note that we have introduced the auxiliary S4 singlet fields ζ1 each of which being associated to
a particular driving field. These fields allow us to impose a number of additional Z̃n symmetries
which prove useful in the construction of a messenger completion of the model. Under the Z̃n

symmetries, all matter, Higgs and flavon fields are taken to be neutral. The only Z̃n charged
particles are thus the driving fields, the associated ζ1’s as well as the yet to be specified messenger
fields. We emphasise that it is not our aim to present the most minimal version of such a theory
but rather one possible construction that demonstrates our method.

The terms labelled (4.16)–(4.21) give rise to all flavon alignments but leave the overall phases
undetermined. Each line determines the alignment of a particular flavon field successively: the
terms (4.16) give the φν alignments, the term labelled (4.17) determines 〈φd

2 〉, with this (4.18)
fixes 〈φd

3 〉, etc. As most of the operators are taken from [13] we do not spell out the corresponding
F -term conditions that lead to flavon alignments which are identical in both scenarios. Instead
we focus on the two operators of W

(i)
flavon that are new in our setup: (a) the second term of (4.19)

as well as (b) the term labelled (4.21).

(a) As has been discussed in [13], the first term of (4.19) renders 〈φ̃d
3,1〉 = 0. Inserting this

condition as well as the alignments of φd
3 and φν

3′ into the second term of (4.19) results in

X̃νd
1′ ζ

X̃νd
1′

1
1

M3

〈
φd

3,2

〉2〈
φν

3′,i=1,2,3

〉(
2
〈
φ̃d

3,3

〉 − 〈
φ̃d

3,2

〉)
. (4.22)

Under the assumption that the ζ1 fields get a non-vanishing vev, the F -term equation for X̃νd
1′

aligns φ̃d
3 such that

〈
φ̃d

3

〉 ∝
(0

2
1

)
. (4.23)

(b) Plugging the φν
2 alignment into the term labelled (4.21) leads to

Xνd
1′ ζ

Xνd
1′

1
1

M

〈
φν

2,i=1,2

〉(〈
φ̃d

2,2

〉 − 〈φ̃d
2,1

)
, (4.24)

which in turn generates the desired φ̃d
2 alignment

〈
φ̃d

2

〉 ∝ (
1
1

)
. (4.25)

Let us now turn to the second type of flavon potential terms. In order to fix the phases of all
flavon vevs we introduce the extra flavons ξ1 and ξ̃1′ . The part of the flavon potential that renders
the pre-aligned vevs either real or imaginary then reads

W
(ii)
flavon = P

(1)
0 ζ

P
(1)
0

1

[
1

M
(ξ1)

2 − m(1)

]
+ P

(2)
0 ζ

P
(2)
0

1

[
1

M
(ξ̃1′)2 − m(2)

]
(4.26)

+ P
(3)
0 ζ

P
(3)
0

1

[
1 (

φν
1

)2 − m(3)

]
(4.27)
M
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+ P
(1)
1 ζ

P
(1)
1

1

[
1

M

(
φu

1′
)2 − c(1)ξ1

]
+ P

(2)
1 ζ

P
(2)
1

1

[
1

M

(
φ̃d

2

)2 − c(2)ξ1

]
(4.28)

+ P
(3)
1 ζ

P
(3)
1

1

[
1

M

(
φ̃d

3

)2 − c(3)ξ1

]
+ P

(4)
1 ζ

P
(4)
1

1

[
1

M2

(
φd

2

)2
φν

2 − c(4)ξ1

]
(4.29)

+ P̃
(1)

1′ ζ
P̃

(1)

1′
1

[
1

M2

(
φd

3

)2
φν

2 − c̃(1)ξ̃1′
]

(4.30)

+ P̃
(2)

1′ ζ
P̃

(2)

1′
1 ζ̃

P̃
(2)

1′
1

1

M

[
1

M4
φu

2

(
φd

2

)4 − c̃(2)ξ̃1′
]
. (4.31)

As before, each of the driving fields P
(i)
0 , P

(i)
1 , P̃

(i)

1′ has an associated ζ1 field which allows us to
segregate the messengers of the different effective terms.6 In order to get the λ suppressions of
the flavons as given in Eqs. (4.4)–(4.6) we can choose the parameters

m(i) ∼ λ8M → 〈ξ1〉 ∼ 〈ξ̃1′ 〉 ∼ λ4M, (4.32)

c(i) ∼ λ2, c̃(i) ∼ λ4. (4.33)

We emphasise that this hierarchy in the parameters m(i)

M
, c(i) and c̃(i) is an ad hoc assumption but

a necessity in the setup of a model with hierarchical flavon vevs.
With the ζ1 fields acquiring non-vanishing (and possibly complex) vevs, the F -term equations

of the driving fields in W
(ii)
flavon determine the phases of the pre-aligned flavon vevs. Since we

require CP conservation of our underlying theory, all coupling and mass parameters can be taken
real. Assuming that all parameters – m(i), 〈ξ1〉, 〈ξ̃1′ 〉, c(i), c̃(i), as well as the suppressed order one
coefficients – are positive, it is straightforward to see that all flavon vevs turn out to be real. If we
now flip the sign of the parameter c(2) while keeping everything else unchanged, the vev of φ̃d

2 is
driven to a purely imaginary value, as required by Eq. (4.5). As a final remark, we mention that
only one of the neutrino-type flavon vevs has to be driven to a real value. This is a consequence
of the alignment terms (4.16) which relate the three vevs in a simple way, cf. [13].

4.3. All possible Zn symmetries

Having fixed our desired superpotential operators, we now determine the maximal set of Zn

symmetries that is consistent with the effective terms (4.1)–(4.3), (4.16)–(4.21), (4.26)–(4.31).
We do this in order to check whether or not we need to worry about additional operators that
might spoil our model at the effective level. In [13], a U(1) symmetry was invoked to forbid such
dangerous terms; due to the structure of the superpotential terms (4.26)–(4.31) a U(1) symmetry
is not possible here and we have to confine ourselves to Zn symmetries. Defining the parameters
ai = 0,1 we immediately obtain several Zn charges z[field] from the terms labelled (4.26)–
(4.31),

z[ξ1] = a1
n

2
, z[ξ̃1′ ] = a1′

n

2
, z

[
φν

] = a2
n

2
, (4.34)

z
[
φu

1′
] =

(
a1

2
+ a3

)
n

2
, z

[
φ̃d

2

] =
(

a1

2
+ a4

)
n

2
, z

[
φ̃d

3

] =
(

a1

2
+ a5

)
n

2
, (4.35)

z
[
φd

2

] =
(

a1 − a2

2
+ a6

)
n

2
, (4.36)

6 In the case of P̃
(2)
′ , it is possible to show that this separation only works if one introduces two ζ1 fields.
1
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z
[
φd

3

] =
(

a1′ − a2

2
+ a7

)
n

2
, z

[
φu

2

] = a1′
n

2
. (4.37)

Turning to the Yukawas of Eqs. (4.1)–(4.3) yields the Zn charges of the remaining fields. In
the up sector, the existence of the first two non-renormalisable terms demands z[φu

2 ] = 2z[φu
1′ ],

leading to a1 = a1′ . Introducing the integer parameter α = 0, . . . , n − 1, we find the relations

z[T3] = α, z[H5] = −2α, z[T ] = α +
(

−a1

2
− a4′

)
n

2
, (4.38)

z[N ] =
(

−a2

2
+ a8

)
n

2
, z[F ] = 2α +

(
a2

2
− a8

)
n

2
, (4.39)

z[H5] = −3α +
(

−a1

2
− a7 + a8

)
n

2
, (4.40)

z[H45] = −3α +
(

−a1

2
+ a4′ − a5 − a6 + a8

)
n

2
. (4.41)

Here the charge of H5 is calculated from the first term of Eq. (4.2). In order for the third term of
Eq. (4.2) to be allowed as well, we need to set a4′ = a4.

This leaves us with eight parameters ai = 0,1 and one integer parameter α. Choosing all but
one of these parameters non-zero defines a particular Z

(i)
n symmetry. The resulting set of Z

(i)
n

symmetries can then be used to constrain the allowed terms of our model. Let us identify these
initial Z

(i)
n symmetries.

Setting all ai = 0 and keeping only the integer parameter α, we obtain a symmetry with neutral
flavon fields and non-zero charges for the matter and Higgs fields,

z[T3] = z[T ] = α, z[H5] = −2α, z[N ] = 0,

z[F ] = 2α, z[H5] = z[H45] = −3α.

Such a symmetry is, however, always respected for SU(5) invariant products of two matter and
one Higgs field and therefore not useful in constraining our model. Hence we can simply disre-
gard such a symmetry.

It is clear that the remaining eight parameters can only give rise to either Z2 or Z4 symmetries.
The Z2 symmetry derived from setting all parameters to zero except for a8 = 1 yields non-
vanishing charge only for N , F , H5, and H45. Such a symmetry is, again, respected for all SU(5)

invariant terms so that it is not helpful in constraining our model. Hence we also disregard this
symmetry.

This leaves us with seven useful symmetries, five Z2’s and two Z4’s. They are summarised
in Table 3. Note that this set of symmetries forbids the bilinear term NN . We also remark that
all flavon fields are distinguished from one another by their Zn charges. Similarly, assuming
the ζ1 fields to be neutral under the above seven Zn symmetries, all driving fields in (4.16)–
(4.21) are charged differently except for Y ν

2 , Zν
3′ and Yd

2 which are neutral. In order to obtain
the desired flavon alignment we need to distinguish Yd

2 from Y ν
2 with some quantum number.

This is achieved by introducing the auxiliary fields ζ
Yd

2
1 and ζ

Yν
2

1 . In addition we impose two

new Z̃n symmetries such that ζ
Yd

2
1 is only charged under the first Z̃n while ζ

Yν
2

1 sees only the
second Z̃n. The matter, Higgs, and flavon fields are all assumed to be neutral under these Z̃n

symmetries. However, the driving fields do carry a Z̃n charge such that it compensates the charge

of the corresponding ζ1 field. Thus it is possible to distinguish Yd from Y ν . Even though Ydζ
Yd

2

2 2 2 1
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Table 3
All possible symmetries of the effective S4 model with matter, Higgs and flavon fields. These fields are assumed to be
neutral under the additional 17 Z̃n symmetries.

SU(5) S4 U(1)R Z
(1)
4 Z

(2)
4 Z

(3)
2 Z

(4)
2 Z

(5)
2 Z

(6)
2 Z

(7)
2

Matter fields
T 10 2 1 3 0 0 1 0 0 0
T3 10 1 1 0 0 0 0 0 0 0
F 5 3 1 0 1 0 0 0 0 0
N 1 3 1 0 3 0 0 0 0 0

Higgs fields
H5 5 1 0 0 0 0 0 0 0 0
H5 5 1 0 3 0 0 0 0 0 1
H45 45 1 0 3 0 0 1 1 1 0

Flavons
ξ1 1 1 0 2 0 0 0 0 0 0

ξ̃1′ 1 1′ 0 2 0 0 0 0 0 0
φu

2 1 2 0 2 0 0 0 0 0 0
φu

1′ 1 1′ 0 1 0 1 0 0 0 0

φd
3 1 3 0 1 3 0 0 0 0 1

φ̃d
3 1 3 0 1 0 0 0 1 0 0

φd
2 1 2 0 1 3 0 0 0 1 0

φ̃d
2 1 2 0 1 0 0 1 0 0 0

φν 1 3′, 2, 1 0 0 2 0 0 0 0 0

and Y ν
2 ζ

Yν
2

1 have identical net quantum numbers, it is possible to argue that the former couples
to (φd

2 )2(φd
3 )2, as shown in (4.18), while the latter couples to (φν)2, see the terms of (4.16). We

will get back to this example in Section 4.4.
The procedure of introducing a new Z̃n symmetry for each driving field and its associated ζ1

field leads to a total of 17 symmetries. In the high energy completion of our model we choose 16
Z̃

(k)
2 and one Z̃4 symmetry. As already mentioned the matter, Higgs and flavon fields are neutral

under these additional symmetries, so that a driving field and its associated ζ1 have opposite Z̃n

charges. Table 4 lists the charges of the driving fields under all possible symmetries.

4.4. Effectively allowed terms and messengers

Having imposed the maximal set of symmetries we can forbid many unwanted terms. How-
ever, it needs to be checked whether or not these symmetries are powerful enough to forbid all
unwanted operators. We therefore determine the additionally allowed terms at the effective level
with equal or less λ suppression compared to the desired ones.

In the Yukawa sector we obtain no additional such terms for Wd and Wν . The only unwanted
terms arise in the up sector, namely

�Wu = T T3H5
1

M
φ̃d

2 + T T H5

[
1

M
ξ1 + 1

M2

(
φ̃d

3

)2 + 1

M2

(
φ̃d

2

)2 + 1

M3

(
φd

2

)2
φν

]
. (4.42)

The first term of Eq. (4.42) leads to entries of order λ3 in the T1T3 as well as the T2T3 element of
the up quark Yukawa matrix. At the effective level this term is unavoidable if we require the first
and third term of the Yukawa couplings of Eq. (4.2) together with the first term of Eq. (4.1). The
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Table 4
The charges of the driving fields under all possible symmetries in the S4 model. The 16 Z̃2 symmetries are enumerated

by k = 1, . . . ,16 and δik denotes the Kronecker delta. Hence, Xd
1 , e.g. has a Z̃

(1)
2 charge of 1 and is neutral under the

remaining 15 Z̃
(k)
2 symmetries.

Driving fields SU(5) S4 U(1)R Z
(1)
4 Z

(2)
4 Z

(3)
2 Z

(4)
2 Z

(5)
2 Z

(6)
2 Z

(7)
2 Z̃

(k)
2 Z̃

(17)
4

Xd
1 1 1 2 2 2 0 0 0 0 0 δ1k 0

Yd
2 1 2 2 0 0 0 0 0 0 0 δ2k 0

X̃d
1 1 1 2 1 2 0 0 1 1 1 δ3k 0

X̃νd
1′ 1 1′ 2 1 0 0 0 1 0 0 δ4k 0

Ydu
2 1 2 2 1 1 0 0 0 1 0 δ5k 0

Xνd
1′ 1 1′ 2 3 2 0 1 0 0 0 δ6k 0

Yν
2 1 2 2 0 0 0 0 0 0 0 δ7k 0

Zν
3′ 1 3′ 2 0 0 0 0 0 0 0 δ8k 0

P
(1)
0 1 1 2 0 0 0 0 0 0 0 δ9k 0

P
(2)
0 1 1 2 0 0 0 0 0 0 0 δ10k 0

P
(3)
0 1 1 2 0 0 0 0 0 0 0 δ11k 0

P
(1)
1 1 1 2 2 0 0 0 0 0 0 δ12k 0

P
(2)
1 1 1 2 2 0 0 0 0 0 0 δ13k 0

P
(3)
1 1 1 2 2 0 0 0 0 0 0 δ14k 0

P
(4)
1 1 1 2 2 0 0 0 0 0 0 δ15k 0

P̃
(1)

1′ 1 1′ 2 2 0 0 0 0 0 0 δ16k 0

P̃
(2)

1′ 1 1′ 2 2 0 0 0 0 0 0 0 1

first term in the bracket of Eq. (4.42) is of order λ4 and contributes to the 1–2 element, while the
remaining three terms are λ6 suppressed and contribute to the 1–1 element.

Turning to the flavon potential, the additionally allowed effective terms read

�W
(i)
flavon = Y ν

2 ζ
Yν

2
1

1

M

[
1

M2

[(
φd

3

)4 + (
φd

2

)2(
φd

3

)2 + (
φd

2

)4] + (
φu

2

)2 + φu
2 (ξ1 + ξ̃1′)

]
(4.43)

+ Zν
3′ζ

Zν
3′

1
1

M3

[(
φd

3

)4 + (
φd

2

)2(
φd

3

)2] (4.44)

+ Yd
2 ζ

Yd
2

1
1

M3

(
φd

2

)4 (4.45)

+ X̃νd
1′ ζ

X̃νd
1′

1
1

M2

[(
φ̃d

3

)3 + 1

M
φ̃d

3

(
φd

2

)2
φν

]
(4.46)

+ Ydu
2 ζ

Ydu
2

1
1

M
φd

2 (ξ1 + ξ̃1′), (4.47)

�W
(ii)
flavon =

3∑
i=1

P
(i)
0 ζ

P
(i)
0

1
1

M3

(
φd

3

)2(
φd

2

)2 (4.48)

+
(

P̃
(1)

1′ ζ
P̃

(1)

1′
1

1
2

+ P̃
(2)

1′ ζ
P̃

(2)

1′
1 ζ̃

P̃
(2)

1′
1

1
3

)(
φd

2

)2
φν. (4.49)
M M
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Fig. 1. The underlying diagrams for the effective flavon superpotential terms (4.16), (4.18) with the driving fields Yν
2

and Yd
2 .

Fig. 2. On the left, the underlying diagram for the effective flavon superpotential term (4.20) with the driving field Ydu
2 .

On the right: a possible diagram for the unwanted terms of (4.47).

We see that it is impossible to formulate the model consistently at the effective level. How-
ever, as all of the above unwanted terms are non-renormalisable, we can forbid them in a high
energy completion of the model with suitably chosen messengers. We have worked out explicitly
that such a completion can be realised straightforwardly, the details of which are presented in Ap-
pendix C. Here we simply want to illustrate our strategy which employs the set of Z̃n symmetries
and the associated ζ1 fields on two examples.

As mentioned previously, the driving fields Y ν
2 and Yd

2 can be distinguished by introducing

the two auxiliary fields ζ
Yν

2
1 and ζ

Yd
2

1 . Then the underlying diagrams that give rise to the corre-
sponding effective flavon superpotential terms (4.16), (4.18) are given as shown in Fig. 1. The set
of Z̃n symmetries separates the messengers of both diagrams. While Σ1,2, Σ1,2 are only charged
under Z̃

(7)
2 , the messengers in the right diagram Σ5,6,7,8, Σ5,6,7,8 carry non-trivial charge only

under Z̃
(2)
2 . Thus the messenger in the left diagram cannot appear in the right diagram and vice

versa so that at the effective level, Y ν
2 ζ

Yν
2

1 cannot couple to (φd
2 )2(φd

3 )2 although Yd
2 ζ

Yd
2

1 does.
As our second example let us consider the effective terms involving the driving field Ydu

2 , i.e.
the terms of (4.20) and (4.47). The underlying structure for the former operator is presented in the
left diagram of Fig. 2. The corresponding diagrams for the unwanted effective terms are shown
on the right. Clearly, in both cases the messengers have identical Z̃n charges. However, while Σ14

is an S4 doublet, the messenger Σ ′
14 would have to furnish a one-dimensional S4 representation

in order to allow the diagrams on the right. Demanding the existence of the doublet messenger
and the absence of a similar one-dimensional one, we do not generate the unwanted operators
of (4.47).

Likewise, we have checked that the messenger sector of Appendix C, which gives rise to
the desired effective terms, does not generate any of the unwanted terms of �Wu, �W

(i)
flavon,

�W
(ii)
flavon. This can be easily verified by studying the allowed renormalisable superpotential terms

of the ultraviolet completed model as given in Appendix C.
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5. Summary and conclusions

In this paper we have proposed new classes of models which predict both tri-bimaximal lep-
ton mixing and a right-angled CKM unitarity triangle, α ≈ 90◦. The ingredients of the models
include a SUSY GUT such as SU(5) and a discrete family symmetry such as A4 or S4, which
are familiar ingredients of models which give rise to tri-bimaximal mixing.

The main additional restriction we impose is on the form of the shaping symmetry which we
require to consist of products of Z2 and Z4 groups, and also the assumption of spontaneous CP
violation. We have shown how the vacuum alignment in such models allows a simple explanation
of α ≈ 90◦ by a combination of purely real or purely imaginary vevs of the flavons responsible
for family symmetry breaking. We emphasise that the approach we have proposed is based on a
general method for the vacuum alignment of the flavon fields with additional discrete Zn shaping
symmetries, which forces the phases of the flavon vevs to take only discrete values. For the
special case of Z2 and Z4 symmetries, the vevs of the flavon fields can be forced to be purely
real or purely imaginary.

Another requirement is that the models must lead to quark mass matrices with 1–3 texture
zeros in order to satisfy the “phase sum rule” α ≈ δd

12 − δu
12 [7], where the phases δd

12 and δu
12

are the arguments of the complex 1–2 rotation angles in the up-type and down-type quark mass
matrices. To explain α ≈ 90◦ one might therefore simply try to realise δd

12 = 90◦, δu
12 = 0 or

alternatively δd
12 = 0, δu

12 = −90◦ in a model of flavour. The lepton mass matrices also satisfy the
“lepton mixing sum rule” together with a new prediction that the leptonic CP violating oscillation
phase is close to either 0◦, 90◦, 180◦, or 270◦ depending on the model, with neutrino masses
being purely real (no complex Majorana phases). This leads to the possibility of having right-
angled unitarity triangles in both the quark and lepton sectors.

We have constructed two explicit SU(5) SUSY GUT models with A4 and S4 family symme-
tries, respectively, plus Zn (even n) shaping symmetries in order to apply and illustrate our idea.
The A4 × SU(5) and S4 × SU(5) models provide examples of an indirect and direct model, with
each model being a variation on a previous model proposed in the literature, but including the
above restriction on the shaping symmetry, and also that of having 1–3 texture zeros.

In addition to the main theme of the paper, namely to realise a right-angled CKM unitar-
ity triangle with α ≈ 90◦, we have found the following interesting by-product: in models with
S4 family symmetry a flavon with a vev proportional to (0,2,1) can emerge from the vacuum
alignment and could significantly improve the prediction of the model with respect to the quark
mixing angle θCKM

23 . In our example S4 model, this specific flavon vev led to the prediction
θCKM

23 = 2ms/mb , which is in good agreement with current experimental data.
In summary, we have proposed a simple way to construct models that not only fit the amount

of quark CP violation but which instead feature a right-angled CKM unitarity triangle with
α ≈ 90◦, as suggested by the recent experimental data, as a prediction. The two explicit models
we constructed with A4 and S4 family symmetries and SU(5) SUSY GUTs, make predictions
for the leptonic Dirac CP phase of δMNS ≈ 0,180◦ and δMNS ≈ ±90◦ (respectively). Further-
more, both models predict θMNS

23 ≈ 45◦ and θMNS
13 ≈ 3◦. The sum rule θMNS

12 − cos(δMNS)θMNS
13 ≈

arcsin(1/
√

3) relates the reactor and the solar mixing angles via the Dirac CP phase. As a result,
we obtain a shift of θMNS

12 from its tri-bimaximal value of 35.26◦ which is of the order of 3◦ in the
model with A4 family symmetry, corresponding to δMNS = 0◦,180◦. In contrast, the S4 model
predicts θMNS

12 ≈ 35.5◦ corresponding to δMNS ≈ ∓86◦. These predictions are testable in future
neutrino oscillation facilities [24], and the required ingredients to completely reconstruct the lep-
tonic unitarity triangles have been discussed in [25]. The S4 × SU(5) SUSY GUT of Flavour
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illustrates the interesting possibility of having right-angled unitarity triangles in both the quark
and lepton sector.
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Appendix A. The basis of neutral driving fields

In this appendix we want to discuss how to disentangle the various couplings of the neutral
driving fields determining the phases of the flavons in the A4 model by going to a suitable basis.
For simplicity we want to assume for the moment that the flavons have only a Z2 charge and
we discuss only the superpotential terms which fix the phase of the flavon vevs. With only one
flavon we then have a superpotential of the kind

W = PA

(
g1φ

2
1 + M2

A

)
, (A.1)

where g1 is a real coupling constant which can have a-priori either sign. MA is the mass scale
of the flavon field φ1. Here we are already in the suitable basis which consists of PA and the
corresponding F -term condition fixes the phase of 〈φ1〉.

If we have a second flavon φ2 with a second driving field PB the above superpotential is
extended to

W = PA

(
g1φ

2
1 + g2φ

2
2 + M2

A

) + PB

(
h1φ

2
1 + h2φ

2
2 + M2

B

)
, (A.2)

where gi and hi are real coupling constants and MA and MB are real mass parameters. Since
the PA and PB are neutral under the discrete symmetries they can, in principle, couple to both
flavon fields. In this basis the F -term conditions do not give obviously the desired result. But if
we assume that the coupling matrix is non-singular, we can apply the real redefinitions

PA = h2P1 − h1P2

g1h2 − g2h1
and PB = g1P2 − g2P1

g1h2 − g2h1
, (A.3)

to the superpotential, which is expressed in terms of the new fields P1 and P2 as

W = P1
(
φ2

1 + M2
1

) + P2
(
φ2

2 + M2
2

)
, (A.4)

where

M1 = h2M
2
A − g2M

2
B

g1h2 − g2h1
and M2 = h1M

2
A − g1M

2
B

g2h1 − g1h2
. (A.5)

Taking P1 and P2 as the new basis their F -term conditions fix the phases of the flavon vevs as
discussed before.
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In general the situation is even a bit more complicated. For example, for the φ123 flavon field
at least two operators couple to the driving field P123. If we have more operators than driving
fields we cannot diagonalise the coupling matrix anymore. But we can redefine the driving fields
appropriately and bring the coupling matrix to a triangular form. In this case we can apply an
iterative procedure:

• We can start with the alignment of φ123, where we define a driving field P123 coupling only
to a combination of the operators as given in Eq. (3.2) or (3.3), what we can always do as
long as the coupling matrix is non-singular. After evaluating the F -term conditions of P123

and choosing a vacuum, the value (including phases) of 〈φ123〉 (and 〈ξ〉) is fixed.
• In the next iteration we redefine the driving fields in such a way that one driving field couples

only to φ123 (and ξ ) and another flavon, for example, φ1. Since the vev of φ123 (and ξ ) is
already fixed the new F -term condition again allows us to choose the value of the vev of φ1.
The additional terms involving φ123 (and ξ ) give only corrections to the mass parameter
determining the mass scale of 〈φ1〉.

This procedure can be iterated until all phases are fixed.

Table 5
List of messenger fields for the A4 model, which give the desired terms in the superpotential after integrating them out.

SU(5) A4 Z
(1)
4 Z

(2)
4 Z

(3)
4 Z

(4)
4 Z

(1)
2 Z

(2)
2 U(1)R

Ξ2, Ξ̄2 5, 5 1, 1 3, 1 3, 1 0, 0 0, 0 0, 0 0, 0 1, 1

Ξ3, Ξ̄3 5, 5 1, 1 0, 0 0, 0 0, 0 0, 0 1, 1 0, 0 1, 1

Ξ123, Ξ̄123 5, 5 1, 1 0, 0 0, 0 3, 1 0, 0 0, 0 0, 0 1, 1

Ξ23, Ξ̄23 5, 5 1, 1 0, 0 0, 0 3, 1 3, 1 0, 0 0, 0 1, 1

Ξ ′
2, Ξ̄ ′

2 5, 5 1, 1 3, 1 3, 1 0, 0 0, 0 0, 0 1, 1 1, 1

Ξ ′
3, Ξ̄ ′

3 5, 5 1, 1 0, 0 0, 0 0, 0 0, 0 1, 1 1, 1 1, 1

Ξ ′
123, Ξ̄ ′

123 5, 5 1, 1 0, 0 0, 0 3, 1 0, 0 0, 0 1, 1 1, 1

Ξ ′
23, Ξ̄ ′

23 5, 5 1, 1 0, 0 0, 0 3, 1 3, 1 0, 0 1, 1 1, 1

Υ1;1, Ῡ1;1 1, 1 1, 1 2, 2 0, 0 0, 0 0, 0 0, 0 0, 0 2, 0

Υ2;2, Ῡ2;2 1, 1 1, 1 2, 2 2, 2 0, 0 0, 0 0, 0 0, 0 2, 0

Υ23;23, Ῡ23;23 1, 1 1, 1 0, 0 0, 0 2, 2 2, 2 0, 0 0, 0 2, 0

Υ123;123, Ῡ123;123 1, 1 1, 1 0, 0 0, 0 2, 2 0, 0 0, 0 0, 0 2, 0

Υ ′
123;123, Ῡ ′

123;123 1, 1 1′, 1′ 0, 0 0, 0 2, 2 0, 0 0, 0 0, 0 2, 0

Υ ′′
123;123, Ῡ ′′

123;123 1, 1 1′′, 1′′ 0, 0 0, 0 2, 2 0, 0 0, 0 0, 0 2, 0

Υ1;3, Ῡ1;3 1, 1 1, 1 1, 3 0, 0 0, 0 0, 0 1, 1 0, 0 2, 0

Υ1;123, Ῡ1;123 1, 1 1, 1 1, 3 0, 0 1, 3 0, 0 0, 0 0, 0 2, 0

Υ3;123, Ῡ3;123 1, 1 1, 1 0, 0 0, 0 1, 3 0, 0 1, 1 0, 0 2, 0

Θ1;1, Θ̄1;1 5, 5 1, 1 2, 2 0, 0 0, 0 0, 0 0, 0 0, 0 2, 0

Θ2;2, Θ̄2;2 5, 5 1, 1 0, 0 0, 0 2, 2 0, 0 0, 0 0, 0 2, 0

Θ1;2, Θ̄1;2 5, 5 1, 1 3, 1 0, 0 3, 1 0, 0 0, 0 0, 0 2, 0

Θ1;3, Θ̄1;3 5, 5 1, 1 3, 1 0, 0 0, 0 0, 0 1, 1 0, 0 2, 0

Θ2;3, Θ̄2;3 5, 5 1, 1 0, 0 0, 0 3, 1 0, 0 1, 1 0, 0 2, 0
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Fig. 3. Diagrams giving the non-renormalisable operators in the superpotential for the alignment of the flavon vevs.

Fig. 4. Diagrams giving the non-renormalisable operators for the Yukawa couplings and right-handed neutrino masses.

Appendix B. A4 messenger sector

In this appendix we give the messenger sector for the A4 model. The superpotential including
messengers schematically looks like

W = MΞi
ΞiΞ̄i + MΞ ′

i
Ξ ′

i Ξ̄
′
i + MΥi;j Υi;j Ῡi;j + MΘi;j Θi;j Θ̄i;j

+ MΥ ′Υ ′
123;123Ῡ

′′
123;123 + MΥ ′′Υ ′′

123;123Ῡ
′

123;123

+
∑
i,j,k

TiΞj H̄k +
∑
i,j

NiΞjH + FφiΞ̄
′
i + H24Ξ̄iΞ

′
i + H24ΞiΞ̄

′
i +

∑
i,j

N2
i Ῡj

+
∑

i,j,k,l

HΘi;j Ῡk,l +
∑
i,j

TiTj Θ̄i;j +
∑
i,j

φiφjΥi;j + PiῩ
2
i;i + Υ123ξ

2, (B.1)

where the sum over the indices is taken over the fields listed in Tables 1, 2 and 5 and the coeffi-
cients of the operators are dropped for the sake of simplicity. Note the mass terms for the primed
Υ messengers. Due to our notation where the number of primes is the same as in the A4 repre-
sentation the mass terms are crossed. Keep here as well in mind that depending on the chosen
option for the alignment of φ123 different messengers are present or not. To be more concrete the
primed Υ messengers are present in option A and not present in option B. Although at the effec-
tive level option A seems to have much less fields than option B this is partially compensated at
the messenger level.
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In Fig. 3 we show the diagrams which give the non-renormalisable terms in the superpotential
in Eqs. (3.2)–(3.5). There is only one class of diagrams and one class of messengers involved.
Due to the fact that every flavon φ has its own symmetries it is quite suggestive that these dia-
grams plus the renormalisable ones give the leading order operators.

In Fig. 4 we give the diagrams generating the Yukawa couplings and right-handed neutrino
masses. The Υ messengers which already appeared in the diagrams for the flavon potential reap-
pear here in the diagrams giving the right-handed neutrino masses and up-type quark Yukawa
couplings.

Appendix C. A high energy completion of the S4 model

This appendix presents the details of a possible high energy completion of our S4 model.
The messenger sector is given in Table 6. With this set of messengers, the renormalisable su-
perpotential including matter, Higgs, flavon, driving and messenger fields can be worked out
straightforwardly and takes the following form

W ren. = W ren.
Yuk + W ren.

flavon, (C.1)

with

W ren.
Yuk = FNH5 + N

(
φν

3′ + φν
2 + φν

1

)
N + T3T3H5

+ T T Ω1 + H5φ
u
2 Ω1

+ T φu
1′Ω2 + H5Ω2Ω2

+ T φd
3 Ω3 + H5φ

ν
1Ω4 + Ω3Ω3Ω4

+ T3FΩ5 + H5φ
d
3 Ω5

+ T Ω6Ω7 + F φ̃d
3 Ω6 + H45φ

d
2 Ω7

+ T H5Ω9 + Fφd
3 Ω8 + φ̃d

2 Ω8Ω9

+ M

9∑
i=1

ΩiΩi, (C.2)

W ren.
flavon = Y ν

2 φν
3′Σ1 + ζ

Yν
2

1 φν
3′Σ1

+ Y ν
2

(
φν

1 + φν
2

)
Σ2 + ζ

Yν
2

1 φν
2Σ2

+ Zν
3′
(
φν

1 + φν
2 + φν

3′
)
Σ3 + ζ

Zν
3′

1 φν
3′Σ3

+ Xd
1 φd

2 Σ4 + ζ
Xd

1
1 φd

2 Σ4

+ Yd
2 φd

3 (Σ5 + Σ6) + φd
3 (Σ5 + Σ6)Σ7 + φd

2 Σ7Σ8 + ζ
Yd

2
1 φd

2 Σ8

+ X̃d
1 φd

2 Σ9 + φd
3 Σ9Σ10 + ζ

X̃d
1

1 φ̃d
3 Σ10

+ X̃νd
1′ φν

3′Σ11 + φ̃d
3 Σ11Σ12 + φd

3 Σ12Σ13 + ζ
X̃νd

1′
1 φd

3 Σ13

+ Ydu
2 φd

2 Σ14 + ζ
Ydu

2
1 φu

2 Σ14

+ Xνd′ φνΣ15 + ζ
Xνd

1′
φ̃dΣ15
1 2 1 2
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Table 6
The list of messengers in the S4 model.

Messengers SU(5) S4 U(1)R Z
(1)
4 Z

(2)
4 Z

(3)
2 Z

(4)
2 Z

(5)
2 Z

(6)
2 Z

(7)
2 Z̃

(k)
2 Z̃

(17)
4

Ω1, Ω1 5, 5 2, 2 0, 2 2, 2 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0
Ω2, Ω2 10, 10 2, 2 1, 1 0, 0 0, 0 1, 1 1, 1 0, 0 0, 0 0, 0 0, 0 0, 0
Ω3, Ω3 10, 10 3, 3 1, 1 0, 0 1, 3 0, 0 1, 1 0, 0 0, 0 1, 1 0, 0 0, 0
Ω4, Ω4 5, 5 1, 1 0, 2 0, 0 2, 2 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0
Ω5, Ω5 5, 5 3, 3 0, 2 0, 0 3, 1 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0
Ω6, Ω6 5, 5 1, 1 1, 1 3, 1 3, 1 0, 0 0, 0 1, 1 0, 0 0, 0 0, 0 0, 0
Ω7, Ω7 45, 45 2, 2 0, 2 0, 0 3, 1 0, 0 1, 1 1, 1 0, 0 0, 0 0, 0 0, 0
Ω8, Ω8 5, 5 2, 2 1, 1 3, 1 0, 0 0, 0 0, 0 0, 0 0, 0 1, 1 0, 0 0, 0
Ω9, Ω9 5, 5 2, 2 1, 1 2, 2 0, 0 0, 0 1, 1 0, 0 0, 0 1, 1 0, 0 0, 0

Σ1, Σ1 1, 1 3′, 3′ 0, 2 0, 0 2, 2 0, 0 0, 0 0, 0 0, 0 0, 0 δ7k , δ7k 0, 0
Σ2, Σ2 1, 1 2, 2 0, 2 0, 0 2, 2 0, 0 0, 0 0, 0 0, 0 0, 0 δ7k , δ7k 0, 0
Σ3, Σ3 1, 1 3′, 3′ 0, 2 0, 0 2, 2 0, 0 0, 0 0, 0 0, 0 0, 0 δ8k , δ8k 0, 0
Σ4, Σ4 1, 1 2, 2 0, 2 1, 3 3, 1 0, 0 0, 0 0, 0 1, 1 0, 0 δ1k , δ1k 0, 0
Σ5, Σ5 1, 1 3, 3 0, 2 3, 1 1, 3 0, 0 0, 0 0, 0 0, 0 1, 1 δ2k , δ2k 0, 0
Σ6, Σ6 1, 1 3′, 3′ 0, 2 3, 1 1, 3 0, 0 0, 0 0, 0 0, 0 1, 1 δ2k , δ2k 0, 0
Σ7, Σ7 1, 1 2, 2 0, 2 2, 2 2, 2 0, 0 0, 0 0, 0 0, 0 0, 0 δ2k , δ2k 0, 0
Σ8, Σ8 1, 1 2, 2 0, 2 1, 3 3, 1 0, 0 0, 0 0, 0 1, 1 0, 0 δ2k , δ2k 0, 0
Σ9, Σ9 1, 1 2, 2 0, 2 2, 2 3, 1 0, 0 0, 0 1, 1 0, 0 1, 1 δ3k , δ3k 0, 0
Σ10, Σ10 1, 1 3, 3 0, 2 1, 3 0, 0 0, 0 0, 0 1, 1 0, 0 0, 0 δ3k , δ3k 0, 0
Σ11, Σ11 1, 1 3, 3 0, 2 3, 1 2, 2 0, 0 0, 0 1, 1 0, 0 0, 0 δ4k , δ4k 0, 0
Σ12, Σ12 1, 1 3′, 3′ 0, 2 2, 2 2, 2 0, 0 0, 0 0, 0 0, 0 0, 0 δ4k , δ4k 0, 0
Σ13, Σ13 1, 1 3, 3 0, 2 1, 3 3, 1 0, 0 0, 0 0, 0 0, 0 1, 1 δ4k , δ4k 0, 0
Σ14, Σ14 1, 1 2, 2 0, 2 2, 2 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 δ5k , δ5k 0, 0
Σ15, Σ15 1, 1 2, 2 0, 2 1, 3 0, 0 0, 0 1, 1 0, 0 0, 0 0, 0 δ6k , δ6k 0, 0
Σ16, Σ16 1, 1 1, 1 0, 2 2, 2 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 δ9k , δ9k 0, 0
Σ17, Σ17 1, 1 1′, 1′ 0, 2 2, 2 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 δ10k , δ10k 0, 0
Σ18, Σ18 1, 1 1, 1 0, 2 0, 0 2, 2 0, 0 0, 0 0, 0 0, 0 0, 0 δ11k , δ11k 0, 0
Σ19, Σ19 1, 1 1′, 1′ 0, 2 1, 3 0, 0 1, 1 0, 0 0, 0 0, 0 0, 0 δ12k , δ12k 0, 0
Σ20, Σ20 1, 1 2, 2 0, 2 1, 3 0, 0 0, 0 1, 1 0, 0 0, 0 0, 0 δ13k , δ13k 0, 0
Σ21, Σ21 1, 1 3, 3 0, 2 1, 3 0, 0 0, 0 0, 0 1, 1 0, 0 0, 0 δ14k , δ14k 0, 0
Σ22, Σ22 1, 1 2, 2 0, 2 1, 3 1, 3 0, 0 0, 0 0, 0 1, 1 0, 0 δ15k , δ15k 0, 0
Σ23,Σ23 1, 1 2, 2 0, 2 0, 0 2, 2 0, 0 0, 0 0, 0 0, 0 0, 0 δ15k , δ15k 0, 0
Σ24, Σ24 1, 1 3′, 3′ 0, 2 1, 3 1, 3 0, 0 0, 0 0, 0 0, 0 1, 1 δ16k , δ16k 0, 0
Σ25, Σ25 1, 1 2, 2 0, 2 0, 0 2, 2 0, 0 0, 0 0, 0 0, 0 0, 0 δ16k , δ16k 0, 0
Σ26, Σ26 1, 1 2, 2 0, 2 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 3, 1
Σ27, Σ27 1, 1 1, 1 0, 2 3, 1 1, 3 0, 0 0, 0 0, 0 1, 1 0, 0 0, 0 3, 1
Σ28, Σ28 1, 1 1, 1 0, 2 3, 1 1, 3 0, 0 0, 0 0, 0 1, 1 0, 0 0, 0 2, 2
Σ29, Σ29 1, 1 2, 2 0, 2 2, 2 2, 2 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 2, 2
Σ30, Σ30 1, 1 2, 2 0, 2 1, 3 3, 1 0, 0 0, 0 0, 0 1, 1 0, 0 0, 0 2, 2
Σ31, Σ31 1, 1 1′, 1′ 0, 2 2, 2 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 1, 3

+ P
(1)
0 ξ1Σ16 + ζ

P
(1)
0

1 ξ1Σ16

+ P
(2)
0 ξ̃1′Σ17 + ζ

P
(2)
0

1 ξ̃1′Σ17

+ P
(3)
0 φν

1Σ18 + ζ
P

(3)
0

1 φν
1Σ18

+ P
(1)

φu′Σ19 + ζ
P

(1)
1 φu′Σ19
1 1 1 1
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+ P
(2)
1 φ̃d

2 Σ20 + ζ
P

(2)
1

1 φ̃d
2 Σ20

+ P
(3)
1 φ̃d

3 Σ21 + ζ
P

(3)
1

1 φ̃d
3 Σ21

+ P
(4)
1 φd

2 Σ22 + φd
2 Σ22Σ23 + ζ

P
(4)
1

1 φν
2Σ23

+ P̃
(1)

1′ φd
3 Σ24 + φd

3 Σ24Σ25 + ζ
P̃

(1)

1′
1 φν

2Σ25

+ (
P̃

(2)

1′ φu
2 Σ26 + φd

2 Σ26Σ27 + ζ̃
P̃

(2)

1′
1 Σ27Σ28

+ φd
2 Σ28Σ29 + φd

2 Σ29Σ30 + ζ
P̃

(2)

1′
1 φd

2 Σ30
)

+ P̃
(2)

1′ ζ
P̃

(2)

1′
1 Σ31 + ζ̃

P̃
(2)

1′
1 ξ̃1′Σ31

+
3∑

i=1

m(i)P
(i)
0 ζ

P
(i)
0

1 +
4∑

i=1

P
(i)
1 ζ

P
(i)
1

1 ξ1 + P̃
(1)

1′ ζ
P̃

(1)

1′
1 ξ̃1′ + M

31∑
i=1

ΣiΣi. (C.3)

These operators are grouped such that, after integrating out the messenger fields, each line gives
rise to one particular non-renormalisable term in the effective superpotential, i.e. Eqs. (4.1)–(4.3)
and the terms labelled (4.16)–(4.21), (4.26)–(4.31).
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