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Abstract. The Torsion Anomalous Conjecture states that an irreducible vari-

ety V embedded in a semi-abelian variety contains only finitely many maximal
V -torsion anomalous varieties. In this paper we consider an irreducible variety

embedded in a produc of elliptic curves. Our main result provides a totally

explicit bound for the Néron-Tate height of all maximal V -torsion anomalous
points of relative codimension one, in the non CM case, and an analogous

effective result in the CM case. As an application, we obtain the finiteness of

such points. In addition, we deduce some new explicit results in the context of
the effective Mordell-Lang Conjecture; in particular we bound the Néron-Tate

height of the rational points of an explicit family of curves of increasing genus.

1. Introduction

In this article, by variety we mean an algebraic variety defined over the algebraic
numbers. Equivalently, a variety X is defined by polynomials with coefficients in a
number field k, however k will not play any role in our theorems. In addition, we
identify X = X(Q).

Let G be a semi-abelian variety.
A subvariety V ⊆ G is a translate, respectively a torsion variety, if it is a finite

union of translates of proper algebraic subgroups of G by points, respectively by
torsion points.

An irreducible variety V ⊆ G is transverse, respectively weak-transverse, if it is
not contained in any translate, respectively in any torsion variety.

Many important classical results such as, for instance, the Manin-Mumford, the
Mordell-Lang, the Bogomolov Conjectures, nowadays theorems, and many open
problems, such as the Zilber-Pink Conjecture, investigate the relationship between
these geometrical definitions and the arithmetical properties of the variety V .

Recently E. Bombieri, D. Masser and U. Zannier in [BMZ07] introduced the
notions of anomalous and torsion anomalous varieties and formulated some general
conjectures. Following their work, we give the definition of torsion anomalous
varieties. However, unlike [BMZ07], we allow torsion anomalous varieties to be
zero dimensional. Like this, we can simplify the formulation of several statements.

Let V be a subvariety of a semi-abelian variety G. We say that an irreducible
subvariety Y of V is a V -torsion anomalous variety if

(i) Y is an irreducible component of V ∩ (B + ζ) with B + ζ an irreducible
torsion variety of G;

(ii) the dimension of Y is larger than expected, i.e. the codimensions satisfy

codimY < codimV + codimB.

We say that B + ζ is minimal for Y if, in addition, it has minimal dimension.
The codimension of Y in its minimal B+ ζ is called the relative codimension of Y .

We also say that a V -torsion anomalous variety Y is maximal if it is not contained
in any V -torsion anomalous variety of strictly larger dimension.
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The Torsion Anomalous Conjecture (TAC) is a natural variant of a conjecture by
Bombieri, Masser and Zannier.

Conjecture (TAC). An irreducible subvariety V of a semi-abelian variety contains
only finitely many maximal V -torsion anomalous varieties.

Clearly, if V is not weak-transverse, then V is itself V -torsion anomalous. In
addition, if V is a hypersurface, the only maximal V -torsion anomalous varieties
are the maximal torsion varieties contained in V , and they are finitely many by the
Manin-Mumford Conjecture. So the TAC is interesting when V is weak-transverse
of codimension at least 2.

The Zilber-Pink Conjecture is a special case of the TAC. More precisely, it is equi-
valent to the TAC restricted only to the V -torsion anomalous varieties that come
from an intersection expected to be empty. So the TAC implies, like the Zilber-Pink
Conjecture, several other celebrated questions such as the Manin-Mumford and the
Mordell-Lang Conjectures. Recent works also highlight links to model theory and
to algebraic dynamics, in the context of the Morton Conjectures.

Only the following few cases of the TAC are known: for curves in a product of
elliptic curves (Viada [Via08]), in abelian varieties with CM (Rémond [Rém09])
and in a torus (Maurin [Mau08]); for varieties of codimension 2 in a torus (Bom-
bieri, Masser and Zannier [BMZ07]) and in a product of elliptic curves with CM
([CVV14]). Under stronger geometric hypotheses on V , related results are proved
by many other authors.

It is proven in several works that, if the height of a set of maximal torsion anom-
alous points is bounded, then such a set is also finite. So when dealing with points,
the obstruction to the TAC is due only to the lack of bounds for their height. This
leads us to state the following natural extension of the Bounded Height Conjecture
(BHC), formulated by Bombieri, Masser and Zannier [BMZ07].

Conjecture (BHC’). For an irreducible variety V in a semi-abelian variety, the
set of maximal V -torsion anomalous points has bounded height.

Like above, if V is not weak-transverse then there are no maximal V -torsion
anomalous points, because they are all contained in V , which is itself V -torsion
anomalous.

Some relevant results in this context are due to Habbeger (see [Hab09.a] and
[Hab09.b]). His theorems imply the BHC’ in tori and abelian varieties, but only for
the V -torsion anomalous points not contained in any V -anomalous variety. This
condition is stronger than being maximal. In particular for varieties that do not
satisfy a geometric condition even stronger than transversality his theorems are
saying nothing (in his notations the set V oa is the empty set).

In addition, his results are not effective. Effective theorems are essentially only
known for transverse curves in tori and in products of elliptic curves.

In [CVV14] the authors prove the BHC’, but only for V -torsion anomalous points
of relative codimension one when V is a subvariety of a power of an elliptic curve
with CM. The method is effective, however the use of a Lehmer type bound is
a deep obstacle when trying to make the result explicit and such a bound is not
known in the non CM case.

In this article we are concerned with subvarieties of a power of an elliptic curve,
regardless of whether it has CM. From now on the ambient variety G will be EN ,
where E is an elliptic curve defined over the algebraic numbers, embedded in P2

via its Weierstrass equation, and N is a positive integer. We consider on EN the

canonical Néron-Tate height, denoted ĥ.
The aim of this article is twofold:
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• We prove the BHC’ and the TAC, for maximal V -torsion anomalous points
of relative codimension one. Our method is completely effective.
• In the non CM case, we make our proof explicit, computing all constants

and obtaining the only known bounds.

The importance of giving an explicit result is due, for instance, to the implications
on the Effective Mordell-Lang Conjecture specified below. More generally, it is
well known that an effective TAC implies the Effective Mordell-Lang Conjecture,
which has a strong impact in mathematics and it is only known for curves in a torus.

Our main result is:

Theorem 1.1. Let V be an irreducible variety embedded in EN . Then the set
of maximal V -torsion anomalous points of relative codimension one has effectively
bounded Néron-Tate height. If E is non CM the bound is explicit, we have

ĥ(P ) ≤ C1(N)h(V )(deg V )N−1 + C2(E,N)(deg V )N + C3(E,N),

where

C1(N) = (N !)NN3N−2

(
3N

2+N+122N2+3N−1(N + 1)N+1

(ωNωN−1)2

)N−1

C2(E,N) = C1(N)

(
3N log 2

2
+ 12N log 2 +N log 3 + 6NhW(E)

)
C3(E,N) =

7N2

6
log 2 +

N2

2
hW(E),

ωr = πr/2/Γ(r/2 + 1) is the volume of the euclidean unit ball in Rr, h(V ) is the
normalised height of V and hW(E) is the height of the Weierstrass equation of E
(see Section 2.2 for the definitions).

The bound of Theorem 1.1 does not depend on the field of definition of V , unlike
other bounds in similar contexts. This is central for our applications.

The structure of the proof of Theorem 1.1 does not distinguish CM from non
CM elliptic curves. The constants can be computed also in the CM case, however
further technical complications due to the structure of the endomorphism ring of E
would make the presentation less clear. For simplicity, we prefer to give the explicit
computation only in the non CM case.

In [Via09] Theorem 1.1 (and a remark at page 1220 for the CM case), E. Viada
proved, that on a weak-transverse variety V ⊆ EN , the maximal V -torsion an-
omalous points of bounded height are finitely many. Since there are no maximal
V -torsion anomalous points if V is not weak-transverse, we immediately deduce the
following special case of the TAC.

Corollary 1.2. An irreducible subvariety V of EN contains only finitely many
maximal V -torsion anomalous points of relative codimension one.

As an application of our main theorem we obtain new explicit results in the
context of the Effective Mordell-Lang Conjecture. In the setting of abelian vari-
eties, the only known effective methods for the Mordell-Lang Conjecture are the
Chabauty-Coleman method (see [PM10]) and the Manin-Demjanenko method (see
[Ser89], Chapter 5.2). Both methods are quite difficult to apply; for some of the
few explicit applications, see [PM10] and [Kul99].

In Section 4 we prove the following explicit theorem on points of rank 1; the rank
of a point in EN is the rank of the subgroup of E generated by its coordinates.
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Theorem 1.3. Let N ≥ 3 and let C ⊆ EN be a weak-transverse curve. The set of
points P ∈ C of rank ≤ 1 is a set of Néron-Tate height effectively bounded. If E is
non CM, we have that

ĥ(P ) ≤ C1(N)h(C)(deg C)N−1 + C2(E,N)(deg C)N + C3(E,N),

where C1(N), C2(E,N), C3(E,N) are the same as in Theorem 1.1.
If C is a transverse curve in E2, then the set of points P ∈ C of rank ≤ 1 is a set

of Néron-Tate height effectively bounded. If E is non CM, we have that

ĥ(P ) ≤ D1h(C)(deg C)2 +D2(E)(deg C)3 +D3(E),

where

D1 =
264340

π8
≈2.364 · 1034

D2(E) =
262341

π8
(71 log 2 + 4 log 3 + 30hW(E)) ≈ (5.319 · hW(E) + 9.504) · 1035

D3(E) =
9

2
hW(E) +

21

2
log 2 ≈4.5 · hW(E) + 7.279.

In particular, in both cases, if k is a field of definition for E and E(k) has rank 1,
then all points in C(k) have Néron-Tate height effectively bounded as above.

The assumption N ≥ 3 is necessary for weak-transverse curves. Indeed any weak-
transverse translate of E2 (for example E × p with p not a torsion point) contains
infinitely many points of rank 1 and of unbounded height (in the example the points
([n]p, p) for all natural n).

Finally, we give explicit bounds in a specific family of curves. This example is
particularly interesting as it gives, at least in principle, an algorithm to find all their
rational points. Let E be the elliptic curve defined by the equation y2 = x3 +x−1;
the group E(Q) has rank 1 with generator g = (1, 1) (see Section 5). We write

y2
1 = x3

1 + x1 − 1

y2
2 = x3

2 + x2 − 1

for the equations of E2 in P2
2, using affine coordinates (x1, y1)× (x2, y2). We have

the following theorem, proved in Section 5.

Theorem 1.4. Let E be the elliptic curve defined above, and consider the family
of curves {Cn}n with Cn ⊆ E2 defined via the additional equation xn1 = y2. Then
for every n ≥ 1, if P ∈ Cn(Q) we have

ĥ(P ) ≤ 8.253 · 1038(n+ 1)3

Moreover, writing P = ([a]g, [b]g), the following inequalities hold

|a| ≤ 7.037 · 1019(n+ 1)

and

|b| ≤
(

3na2

2
+ 14 log 2 + 10

) 1
2

.

Our explicit results cannot be obtained with the method used in [CVV14], because
the Lehmer type bound is not known in the non CM case and anyway there are no
published proofs that such a bound is effective. The available proof could possibly
be made explicit, but to get reasonable bounds it would be necessary to avoid the
use of a complicated descent argument, using instead a much simpler induction,
as done for tori by Amoroso and Viada in [AV12]. Nevertheless, even with such
improvements, the constants so obtained would be far from being optimal. Probably
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the dependence on the dimension N could not be improved further than NNN

,
which is of one exponential more than our bound.

We now briefly describe the proof-strategy of our main result.
The proof of Theorem 1.1 relies on an approximation process. Let P be a point

as in Theorem 1.1; in particular P is a component of V ∩ (B + ζ) for some torsion
variety B+ ζ. We will replace B+ ζ with an auxiliary translate of the form H +P
in such a way that P is still a component of V ∩ (H+P ), and the degree and height

of H + P can be controlled in terms of ĥ(P ). Using the properties of the height
functions, we can in turn control the height of P in terms of the height and degree of
H + P itself, and combining carefully these inequalities leads to the desired result.

This construction has been introduced in tori by Habegger [Hab08], Lemma 5.
When adopting this strategy for subvarieties of a power of an elliptic curve sev-
eral complications arise in computing degrees and heights. While the degree of a
subtorus can be easily related to the associated matrix, to compute the degree of
a subvariety of EN , it is necessary to fix an embedding of the ambient variety in
a projective space and to study how geometrical and arithmetical objects behave
under this embedding. This is done in Section 6. Concerning heights, to make the
results explicit, we need to work with different heights functions and use explicit
versions of several bounds relating the height functions on EN and those in the
projective spaces PN2 and Pm. Furthermore, we need to adapt and simplify some of
the arguments in [Hab08], in order to keep the constants as small as possible. This
is done in Section 7.

The following is an outline of the content of the different sections of this paper.
In Section 2 we recall some classical results such as the Arithmetic Bézout The-

orem, the Zhang Inequality and the Minkowski Theorem. We also present the
geometrical setting and we give explicit bounds relating different height functions.
Moreover, we recall the correspondence between algebraic subgroups of EN and
matrices with coefficients in End(E).

In Section 3 we give the structure of the proof of Theorem 1.1 while postponing
to Sections 6 and 7 the proof of the technical step.

In Section 4 we give the proof of Theorem 1.3 and in Section 5 we prove Theorem
1.4.

In Section 6 we compute explicit bounds for the degree of the rational functions
that represent morphisms from EN to E.

In Section 7, for a torsion anomalous point P of relative codimension one, we give
the construction of the auxiliary translate H +P , showing how to bound its height
and degree.

2. Embeddings, heights and algebraic subgroups

Let E be an elliptic curve without complex multiplication. We fix a Weierstrass
equation

E : y2 = x3 +Ax+B

with A and B algebraic integers (this hypothesis is not restrictive). As usual, we
define

∆ = −16(4A3 + 27B2) j =
−1728(4A)3

∆
.

In this section we give explicit bounds for embeddings of varieties in the projective
space. In Subsection 2.1 we compute the degree of EN as a subvariety of P3N−1, via
the Segre embedding. In Subsection 2.2, we define several height functions, state
their relevant properties and give explicit bounds between different heights. We
also recall the Arithmetic Bézout Theorem and the Zhang Inequality. In Subsection
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2.3 we recall the relations between algebraic subgroups and matrices, degrees and
minors.

2.1. Segre embedding. Let us consider the composition of maps

EN ↪→ PN2 ↪→ P3N−1.

The first map sends a point (X1, . . . , XN ) to ((x1, y1), . . . (xN , yN )) where (xi, yi)
are the affine coordinates of Xi in the Weierstrass form of E. The second map is the
Segre embedding. When computing heights and degrees of points and subvarieties,
we will think them as embedded in P3N−1 via the previous map.

The degree of a variety V ⊆ Pm, in particular, is the maximal cardinality of a
finite intersection V ∩ L, with L a linear subspace of dimension equal to codimV ,
the codimension of V . This degree is often conveniently computed as an intersection
product.

Let X(E,N) be the variety in P3N−1 identified with EN via the Weierstrass form
and the Segre embedding. The following lemma computes its degree.

Lemma 2.1. Let us denote by c1(N) the degree of X(E,N). Then

(1) c1(N) = 3NN !.

Proof. We can compute this degree by means of the intersection product in PN2 .
By definition, the degree of X(E,N) is obtained intersecting it with N hyperplanes
in general position in P3N−1, and computing the degree of the cycle thus obtained
in the Chow ring. Let l be the class of a line in the Picard group of P2, and li its
pullback π∗i (l) through the projection πi : PN2 → P2 on the i-th factor. Then the
Chow ring of PN2 is described as Z[l1, . . . , lN ]/(l31, . . . , l

3
N ). The class of a hyperplane

of P3N−1 restricts to the element l1 + · · ·+ lN , and the class of EN is easily seen to
be (3l1) · · · (3lN ). The desired intersection is therefore

(3l1) · · · (3lN )(l1 + · · ·+ lN )N = 3NN !(l1 · · · lN )2,

and the statement follows. �

2.2. Heights. We need to work with different height functions. These height func-
tions are all related to one another by effective relations. Making these relations
explicit for applications is sometimes a delicate task. In this section, based on the
work of Silverman and Zimmer, we are going to make explicit the constants that
we will need.

Let MK be the set of places of a number field K. For a point P = (P0 : · · · :
Pm) ∈ Pm(K) let

(2) h(P ) =
∑

v∈MK

[Kv : Qv]
[K : Q]

log max
i
{|Pi|v}

be the logarithmic Weil height, and let

(3) h2(P ) =
∑
v finite

[Kv : Qv]
[K : Q]

log max
i
{|Pi|v}+

∑
v infinite

[Kv : Qv]
[K : Q]

log

(∑
i

|Pi|2v

)1/2

be a modified version of the height that differs from the Weil height at the archimedean
places. They are both well-defined, they extend to Q and it follows easily from their
definitions that

(4) h(P ) ≤ h2(P ) ≤ h(P ) +
1

2
log(m+ 1).

For an algebraic number x ∈ K, the logarithmic Weil height (for short Weil
height) h(x) is the logarithmic Weil height of the projective point (x : 1) ∈ P1. We
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also denote h∞(x) the contribution to the Weil height coming from the archimedean
places, namely:

h∞(x) =
∑

v infinite

[Kv : Qv]
[K : Q]

max{log |x| , 0}.

For a point P on E, ĥ(P ) is the canonical Néron-Tate height, which is related to
the Weil height of the x coordinate of P by the following bound ([Sil90], Theorem
1.1):

(5) − h(j)

24
− h(∆)

12
− h∞(j)

12
− 0.973 ≤ ĥ(P )− 1

2
h(x(P )) ≤ h(∆)

12
+
h∞(j)

12
+ 1.07.

To relate ĥ(P ) and the Weil height of the point P , we define the Weil height of the
Weierstrass equation of E

hW(E) = h(1 : A1/2 : B1/3)

as the Weil height of the projective point (1 : A1/2 : B1/3) ∈ P2. Then by [Zim76],
p. 40, we have

(6) − hW(E)

2
− 7

6
log 2 ≤ 1

3
h(P )− ĥ(P ) ≤ hW(E) + 2 log 2.

For a point P = (P1, . . . , Pr) ∈ Pd1−1×· · ·×Pdr−1 we define h(P ) and h2(P ) ap-
plying formulae (2) and (3) to the image of P in Pd1···dr−1 via the Segre embedding.
With these definitions the following relation holds:

h(P ) =

r∑
i=1

h(Pi).

For a point P = (P1, . . . , Pr) ∈ Er, the canonical height ĥ(P ) is the sum

(7) ĥ(P ) =

r∑
i=1

ĥ(Pi).

In particular, combining (6) with (4) we get that for every point P ∈ EN we have

(8) ĥ(P ) ≤ h2(P )

3
+ c2(E,N),

where

(9) c2(E,N) =
N

2
hW(E) +

7N

6
log 2.

From (4) and (6), for every point P of EN we also have

(10) h2(P ) ≤ h(P ) +
N

2
log 3 ≤ 3ĥ(P ) + c3(E,N),

where

(11) c3(E,N) = N(3hW(E) + 6 log 2 +
1

2
log 3).

For a subvariety V ⊆ Pm we consider the normalised height of V , denoted h(V ),
defined in terms of the Chow form of the ideal of V , as done in [Phi91] and [Phi95].
We remark that, with this definition, the height of a point P regarded as a 0-
dimensional variety is equal to the height h2(P ) previously defined, which is not
equal, in general, to the Weil height of the point. To avoid confusion, we will always
write h2(P ) to denote the height of the variety {P}.

We end this subsection by recalling two classical results on the normalised height,
the Arithmetic Bézout Theorem and the Zhang Inequality.
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Theorem 2.2 (Arithmetic Bézout Theorem). Let X and Y be irreducible closed
subvarieties of Pm defined over Q. If Z1, . . . , Zg are the irreducible components of
X ∩ Y , then

g∑
i=1

h(Zi) ≤ deg(X)h(Y ) + deg(Y )h(X) +
(m+ 1) log 2

2
deg(X) deg(Y ).

For the constant (m+1) log 2
2 see [BGS94], Theorem 5.5.1 (iii).

Theorem 2.3 (Zhang’s inequality). Let X ⊆ Pm be an irreducible algebraic sub-
variety. Defining the essential minimum of X as

µ(X) = inf{θ ∈ R | {P ∈ X | h2(P ) ≤ θ} is Zariski dense in X},
we have

µ(X) ≤ h(X)

degX
≤ (1 + dimX)µ(X).

We also define a different essential minimum for subvarieties of EN , that will be
used in Subsection 7.2, as

µ̂(X) = inf{θ ∈ R | {P ∈ X | ĥ(P ) ≤ θ} is Zariski dense in X}.
By (8) and (10), these two definitions are related by the inequality

(12) 3µ̂(X)− 3c2(E,N) ≤ µ(X) ≤ 3µ̂(X) + c3(E,N)

where the constants c2(E,N) and c3(E,N) are defined in (9) and (11) respectively.

2.3. Algebraic Subgroups. In this subsection we present the relationship between
several different descriptions of the algebraic subgroups of EN .

Before explaining it in detail, we need to recall some classical tools in the geometry
of numbers. Let r and N be positive integers, with r ≤ N , and let Λ be a lattice
of rank r in RN . We define the determinant of Λ as det Λ =

√
det(MM t), where

M ∈ Matr×N (R) is any matrix whose rows form a basis of Λ. We also define the
successive minima λi of Λ as

λi = inf{t ∈ R | dim〈Bt ∩ Λ〉R = i},
where Bt is the euclidean ball or radius t centered at the origin.

The following theorem by Minkowski plays an important role in this setting.

Theorem 2.4 (Minkowski’s second theorem). Let Λ be a lattice of rank r. Then

2r

r!
det Λ ≤ ωrλ1 · · ·λr ≤ 2r det Λ,

where the λi’s are the successive minima of Λ and

(13) ωr =
πr/2

Γ(r/2 + 1)

is the volume of the euclidean unit ball in Rr (here Γ denotes the Euler Γ function).

It is well known that abelian subgroups of codimension r, matrices of rank r in
Matr×N (End(E)), and lattices of rank r in (End(E))N are essentially representa-
tions of the same objects up to some torsion subgroup; analogously, their degree,
minors and successive minima can be related up to constants.

In more detail, let B + ζ be an irreducible torsion variety of EN of codimension
codimB = r and let πB : EN → EN/B be the natural projection. We know that
EN/B is isogenous to Er; let ϕB : EN → Er be the composition of πB and this
isogeny.
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We associate B with the morphism ϕB and we have that kerϕB = B + τ with
τ a torsion subgroup whose cardinality is absolutely bounded (by [MW93] Lemma
1.3). Obviously ϕB is identified with a matrix in Matr×N (End(E)) of rank r. Using
basic geometry of numbers, we can choose the matrix representing ϕB such that
the degree of B is essentially the product of the squares of the norms of the rows
of the matrix.

More precisely, given B ⊆ EN an algebraic subgroup of rank r, we associate it
with a matrix in Matr×N (End(E)) with rows u1, . . . , ur such that the euclidean
norm |ui| of ui equals the i-th successive minimum of the lattice Λ = 〈u1, . . . , ur〉Z.
In Subsection 7.3 we show that there is a constant c4(N, r) such that

(14) degB ≤ c4(N, r)

r∏
i=1

|ui|2

and, when E is non CM, we have

c4(N, r) = 3NN !

(
3

2
(N + 1)12N−1

)r
.

Combining bound (14) and Minkowski’s theorem one can relate the degree of an
algebraic subgroup and the determinant of the associated lattice (i.e. the lattice
generated by the rows of the associated matrix); when the curve E is non CM the
following explicit bound holds:

(15) degB ≤ c4(N, r)
4r

ω2
r

(det Λ)2,

where c4(N, r) is given above.

3. The main result

In this section we give the proof of our main result, which is Theorem 1.1 of the
Introduction. The constants that we obtain are always effective and also explicit
in the non CM case.

The proof of our main theorem is based on the following idea: given a point
P ∈ EN which is contained in a torsion variety of dimension 1, we construct,
by means of the geometry of numbers, another abelian subvariety H ⊆ EN of
dimension 1 so that the degree degH and the height of the translate H + P are
both well controlled. An application of the Arithmetic Bézout Theorem, recalled
in Subsection 2.2, leads then to the end of the proof. We will show in the technical
Section 7 how to construct the auxiliary algebraic subgroup H; in order to compute
all the constants explicitly we need several pages of careful computations, which we
have collected in Section 6.

The overall construction of the auxiliary algebraic subgroup H is summarised in
the following propositions, whose proofs are postponed to Section 7.

Proposition 3.1 (Non CM Case). Let E be a non CM elliptic curve and let 1 ≤
m ≤ N be integers. Let P = (P1, . . . , PN ) ∈ B ⊆ EN , where B is a torsion variety
of dimension ≤ m. Say s is an integer with 1 ≤ s ≤ N and T ≥ 1 a real number.

Then there exists an abelian subvariety H of codimension s such that

deg(H + P ) ≤ c4(N, s)T

h(H + P ) ≤ c5(N,m, s)T 1− N
ms ĥ(P ) + c6(E,N, s)T ;
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where

c4(N, s) = 3NN !

(
3

2
(N + 1)12N−1

)s
c5(N,m, s) = m3(m!)4

(
N +m

N

)
3sN2(N − s+ 1)43N−m+1

(ωsωN−sωN )2
c4(N, s)

c6(E,N, s) = 3N(N − s+ 1)

(
2 log 2 +

log 3

6
+ hW(E)

)
c4(N, s).

Here ωr = πr/2/Γ(r/2 + 1) is the volume of the euclidean unit ball in Rr, and
hW(E) is defined in Section 2.2.

Proposition 3.2 (CM Case). Let E be a CM elliptic curve and let 1 ≤ m ≤ N
be integers. Let P = (P1, . . . , PN ) ∈ B ⊆ EN , where B is a torsion variety of
dimension ≤ m. Say s is an integer with 1 ≤ s ≤ N and T ≥ 1 a real number.

Then there exists an abelian subvariety H of codimension s such that

h(H + P ) ≤ c7T 1− N
ms ĥ(P ) + c8T

and

deg(H + p) ≤ c9T,
where c7, c8, c9 are effective positive constants depending only on the integers N,m, s,
the ring End(E) and the height hW(E) (defined in Section 2.2).

We now show how to deduce Theorem 1.1 from Propositions 3.1 and 3.2.

Proof of Theorem 1.1. If N = 2, then the codimensional inequality (ii) at page 1
tells us that the only V -torsion anomalous points are the torsion points contained
in V , which have height zero. We can now assume that N ≥ 3.

The point P is a component of the intersection V ∩ (B + ζ), where B + ζ is a
torsion variety of dimB = 1.

Assume first that E is non CM. Let T be a free parameter that will be specified
later; we apply Proposition 3.1 to P , T , m = 1 and s = N − 1. This gives a
translate H + P of dimension dim(H + P ) = 1, of degree bounded in terms of T

and such that h(H + P ) is bounded solely in terms of degH and ĥ(P ).
Explicitely, if

c10(N) = c4(N,N − 1) = 3NN !

(
3

2
(N + 1)12N−1

)N−1

c11(N) = c5(N, 1, N − 1) =
3

2

N2(N2 − 1)64N

(ωNωN−1)2
c10(N)

c12(E,N) = c6(E,N,N − 1) = 6N(hW(E) + 2 log 2 +
1

6
log 3)c10(N),

then the degree and the height of the translate H +P are bounded by Proposition
3.1 as

deg(H + P ) ≤ c10(N)T

and

h(H + P ) ≤ c11(N)

T 1/(N−1)
ĥ(P ) + c12(E,N)T.

We want to prove that P is a component of V ∩ (H+P ). If not, then H+P ⊆ V
because dim(H + P ) = 1. In addition dim(B + H + ζ) ≤ 2, as dimB = 1. Since
N ≥ 3, the torsion variety B + H + ζ is proper. Thus H + P ⊆ V ∩ (B + H + ζ)
would be V -torsion anomalous, contradicting the maximality of P .
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This means that P is a component of V ∩ (H +P ). In order to bound the height
of P we can apply the Arithmetic Bézout Theorem to the irreducible varieties V
and H + P . We have
(16)

h2(P ) ≤ h(V )c10(N)T+deg V

(
c11(N)

T 1/(N−1)
ĥ(P ) + c12(E,N)T

)
+

3N log 2

2
c10(N)T deg V.

We now choose

T =

(
N

N − 1

c11(N)

3
deg V

)N−1

,

so that the coefficient of ĥ(P ) at the right-hand side of (16) becomes 3(N − 1)/N .
Recall that by (8)

ĥ(P ) ≤ h2(P )

3
+ c2(E,N)

where c2(E,N) is the explicit constant in (9) depending only on the coefficients of
E and on N . Then we get

3ĥ(P ) ≤3(N − 1)

N
ĥ(P ) + 3c2(E,N) + c10(N)Th(V )+

+

(
3N log 2

2
c10(N) + c12(E,N)

)
T deg V,

and hence

ĥ(P ) ≤ N

3
c10(N)Th(V ) +

N

3

(
3N log 2

2
c10(N) + c12(E,N)

)
T deg V +Nc2(E,N),

which is the desired bound for ĥ(P ).
This concludes the proof of the non CM case. Notice that the application of

Proposition 3.1 is the only point in the proof where it is required that E is non CM.
Therefore the same argument, with the use of Proposition 3.2 instead of Proposition
3.1, proves the result in the CM case. �

4. An application to the Effective Mordell-Lang Conjecture

We now clarify the implications of our theorems on the Effective Mordell-Lang
Conjecture, proving Theorem 1.3 from the introduction.

Proof of Theorem 1.3. The last part of the theorem is a direct consequence of the
first part. Indeed if E(k) has rank 1, then all points in C(k) have rank at most one.

We now prove the first part of the theorem. The points of rank zero are exactly
the torsion points; for these points the bound is trivially true because their height
is zero.

Consider first the case that C is weak-transverse andN ≥ 3. Let P = (P1, . . . , PN ) ∈
C be a point of rank 1 and let g ∈ E be a generator of ΓP = 〈P1, . . . , PN 〉Q. Then
the coordinates of P satisfy aiPi = big for some ai 6= 0 and bi in Z. Since P is
not a torsion point, at least one of the bi must be different from zero; let’s say that
b1 6= 0. Then P lies on the algebraic subgroup B in EN given by the intersection
of the N − 1 algebraic subgroups of equations aib1Xi = a1biX1 for i = 2, . . . , N .
Note that the matrix of coefficients has obviously rank N − 1, so the dimension of
B is one.

Since C is weak-transverse, P is a component of C ∩ B; thus for N ≥ 3 P is
C-torsion anomalous and it has relative codimension 1. In addition, on weak-
transverse curves all torsion anomalous points are maximal; thus P is a maximal
C-torsion anomalous point of relative codimension 1. We can now apply Theorem
1.1 to V = C to obtain the height bound, thus concluding the case of N ≥ 3.
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For N = 2, the previous argument cannot be directly applied, indeed a point of
rank 1 is never torsion anomalous in E2. We now show how to reduce the case of
a transverse curve C ⊆ E2 to the previous case. Let P = (P1, P2) ∈ C be a point of
rank 1 and let g ∈ E be a generator of ΓP = 〈P1, P2〉Q. Fix a positive real ε, and

choose an integer M such that εM2 ≥ ĥ(g) deg(C). Let QM be a point in E such
that MQM = g; by our choice of M we have that

ĥ(QM ) =
ĥ(g)

M2
≤ ε

deg C
.

We define C′M = C ×{QM} ⊆ E3 and P ′M = P ×{QM} ∈ C′M . Since C is transverse
in E2, C′M is weak-transverse in E3. Notice that P ′M ∈ C′M is a point of rank 1 and

ĥ(P ) ≤ ĥ(P ′M ).

In addition deg C′M = deg C and µ̂(C′M ) = µ̂(C) + ĥ(QM ). By Zhang’s inequality
and (12) we have

h(C′M ) ≤ 2µ(C′M ) deg C ≤ 2 deg C (3µ̂(C′M ) + c3(E, 3)) =

= 2 deg C
(

3µ̂(C) + 3ĥ(QM ) + c3(E, 3)
)
≤

≤ 2 deg C
(
µ(C) + 3c2(E, 3) + 3ĥ(QM ) + c3(E, 3)

)
≤

≤ 2h(C) + 6ε+ 6 deg C
(
c2(E, 3) +

c3(E, 3)

3

)
where the constant c2(E, 3) is defined in (9) and c3(E, 3) in (11).

To bound ĥ(P ′M ) and in turn ĥ(P ), we apply the first part of the theorem to
C′M ∈ E3, obtaining:

ĥ(P ) ≤2C1(3)h(C)(deg C)2 + (C2(E, 3) + 6c2(E, 3)C1(3) + 2c3(E, 3)C1(3)) (deg C)3+

+ C3(E, 3) + 6εC1(3)(deg C)2.

Clearly the point P does not depend on the initial choice of ε and, letting ε go
to zero, we get the desired bound for the height. �

5. Rational points on an explicit family of curves

We now give an explicit method to find, in principle, all rational points on a
family of curves in a power of a non CM elliptic curve.

Let E be the elliptic curve defined by the Weierstrass equation

E : y2 = x3 + x− 1.

With an easy computation one can check that

∆(E) = −496,

j(E) =
6912

31
,

hW(E) = 0,

in particular the curve is non CM because j(E) 6∈ Z. Furthermore the group E(Q)
has rank 1 with generator g = (1, 1) and no non-trivial torsion points; this can
be checked on a database of elliptic curve data (such as http://www.lmfdb.org/

EllipticCurve/Q). The Néron-Tate height of the generator g can be bounded from
below, computationally, as

(17) ĥ(g) ≥ 1/4

(we used dedicated software (PARI/GP) which implements an algorithm with sigma
and theta functions due to Silverman).

http://www.lmfdb.org/EllipticCurve/Q
http://www.lmfdb.org/EllipticCurve/Q
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As an application of our main result we give the proof of Theorem 1.4, which is an
example of the explicit Mordell Conjecture for a family of curves in E2 of increasing
genus and degrees. We recall the definition of the curves from the introduction.
We write

y2
1 = x3

1 + x1 − 1

y2
2 = x3

2 + x2 − 1

for the equations of E2 in P2
2, using affine coordinates (x1, y1) × (x2, y2) and we

consider the family of curves {Cn}n with Cn ⊆ E2 defined via the additional equa-
tion

xn1 = y2.

Proof of Theorem 1.4. To prove the theorem we first show that the curves Cn are
irreducible and transverse in E2 and then we apply Theorem 1.3 with N = 2 and
E(Q) of rank 1, computing all invariants of the case.

The irreducibility of the Cn is easily seen to be equivalent to the primality of the
ideal generated by the polynomials y2

1 − x3
1 − x1 + 1 and x2n

1 − x3
2 − x2 + 1 in the

ring Q[x1, x2, y1]. This follows from an easy argument in commutative algebra.
Notice that in E2 the only irreducible curves that are not transverse are translates,

so curves of genus one. Thus, we need to show only that each Cn has genus at least
2; in fact we prove that Cn has genus 4n+ 2.

Consider the morphism πn : Cn → P1 given by the function y2. The morphism
πn has degree 6n, because for a generic value of y2 there are three possible values
for x2, n values for x1, and two values of y1 for each x1.

Let α1, α2, α3 be the three distinct roots of the polynomial f(T ) = T 3 + T − 1;
let also β1, β2, β3, β4 be the four roots of the polynomial 27T 4 + 54T 2 + 31, which
are the values such that f(T ) − β2

i has multiple roots. Notice that none of the αi
can be equal to the βj because they have different degrees.

The morphism πn is ramified over β1, β2, β3, β4, 0, α
n
1 , α

n
2 , α

n
3 ,∞. Each of the

points βi has 2n preimages of index 2 and 2n unramified preimages. The point 0
has 6 preimages ramified of index n. The points αni have 3 preimages ramified of
index 2 and 6n− 6 unramified preimages. The point at infinity is totally ramified.

By Hurwitz formula

2− 2g(Cn) = deg πn(2− 2g(P1))−
∑
P∈Cn

(eP − 1)

2− 2g(Cn) = 12n− (4 · 2n+ 6(n− 1) + 3 · 3 + 6n− 1)

g(Cn) = 4n+ 2.

Thus the family {Cn}n is a family of transverse curves in E2. We can therefore
apply Theorem 1.3 with N = 2 to each Cn, which gives, for P ∈ Cn(Q)

(18) ĥ(P ) ≤
(
2.364 · 1034h(Cn) + 9.504 · 1035 deg Cn

)
(deg Cn)2.

We now compute deg Cn and h(Cn).

We can compute the degree of Cn as an intersection product. Let `,m be the
classes of lines of the two factors of P2

2 in the Chow group. Then the degree of Cn is
obtained multiplying the classes of the hypersurfaces cut by the equation xn1 = y2,
which is n`+m, by the two Weierstrass equations of E, which are 3` and 3m, and
by the restriction of an hyperplane of P8, which is `+m. In the Chow group

(n`+m)(3`)(3m)(`+m) = 9(n+ 1)(`m)2

and then

deg Cn = 9(n+ 1).
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We estimate the height of Cn using Zhang’s inequality and computing an upper
bound for the essential minimum µ(Cn) of Cn. To this aim, we construct an infinite
set of points on Cn of bounded height. By the definition of essential minimum, this
gives also an upper bound for µ(Cn).

Let Qζ = ((x1, y1), (ζ, y2)) ∈ Cn, where ζ ∈ Q is a root of unity. Clearly there
exist infinitely many such points on Cn. Denoting by h the logarithmic Weil height
on Q and using the equations of E and Cn, we have:

h(ζ) = 0, h(y2) ≤ log 3

2
, h(x1) ≤ log 3

2n
, h(y1) ≤ log 3

n
+

log 3

2
.

Thus

h(x1, y1) ≤ log 3

(
n+ 3

2n

)
, h(ζ, y2) ≤ log 3

2

and from (4)

h2(x1, y1) ≤ log 3

(
2n+ 3

2n

)
, h2(ζ, y2) ≤ log 3.

So for all points Qζ we have

h2(Qζ) = h2(x1, y1) + h2(ζ, y2) ≤ log 3

(
4n+ 3

2n

)
.

By the definition of essential minimum, we deduce

µ(Cn) ≤ log 3

(
4n+ 3

2n

)
and by Zhang’s inequality h(Cn) ≤ 2 deg Cnµ(Cn) ≤ 9(n+ 1) log 3

(
4n+3
n

)
.

From formula (18), if P ∈ Cn(Q) then

(19) ĥ(P ) ≤ 8.253 · 1038(n+ 1)3.

Let us now write P = ([a]g, [b]g), with g = (1, 1) the generator of E(Q). By the

definition of ĥ on E2 (see (7)) and the properties of the Néron-Tate height, we have

ĥ(P ) = (a2 + b2)ĥ(g).

Now, by relations (5), (6) and (x([a]g))n = y([b]g) because P is on the curve, we
have

2na2ĥ(g) ≤ nh(x([a]g)) + 2n

(
h(∆)

12
+
h∞(j)

12
+ 1.07

)
≤

= h(y([b]g)) + 5n ≤ h([b]g) + 5n ≤

≤ 3b2ĥ(g) + 6 log 2 + 5n,

and therefore (
2n

3
+ 1

)
a2ĥ(g) ≤ ĥ(P ) + 2 log 2 +

5

3
n.

Combining this with (19) and the lower bound (17) we obtain

|a| ≤ 7.037 · 1019(n+ 1).

Using again (5) and (6) as before, we get that

2b2ĥ(g) ≤ 3na2ĥ(g) + 7 log 2 + 5
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and from this and (17) we get

|b| ≤
(

3na2

2
+ 14 log 2 + 10

) 1
2

. �

6. Estimates for degrees of maps

The central aim of this section is to produce sharp bounds for the degree of
algebraic subgroups of EN .

For example, consider the algebraic subgroup of codimension 1 defined by the
morphism (l1, · · · , lN ) : EN → E sending (X1, · · · , XN ) 7→ l1X1 + · · · + lNXN ,
where l1, . . . , lN ∈ End(E). The degree of this subgroup is equal to a constant
times |(l1, · · · , lN )|2. To get explicit results we need to compute this constant and,
to this purpose, we have to describe the sum of two points and the multiplication
by an integer on E and EN in terms of rational maps. We will examine these maps
in detail and bound their degrees. These bounds will be used to prove Propositions
3.1 and 3.2, which are the core of our main theorem.

We briefly anticipate here what is needed to prove the above mentioned proposi-
tions. We consider an algebraic subgroup H of EN of codimension s. It is defined
by s equations

L1(X1, . . . , XN ) = 0,

...

Ls(X1, . . . , XN ) = 0

where Li(X1, . . . , XN ) = li1X1 + · · · + liNXN are morphisms from EN to E; here
the coefficients are endomorphisms lij ∈ End(E), and they are expressed by certain
rational functions; similarily the + that appears in this expression is the addition
map in EN , which is expressed by a rational function of the coordinates.

More precisely, if the Xi’s are all points on E with affine coordinates (xi, yi) in
P2, then Li(X) are also points on E with coordinates in P2 (x(Li(X)), y(Li(X)))
which are rational functions of the xi’s and yi’s.

The purpose of this section is to study the rational functions x(Li(X)) and to
bound the sums of the partial degrees (not only the partial degrees) of their numer-
ators and denominators. The reason is that, in the proof of the main theorem, we
will need to study the image of the algebraic subgroup H in P3N−1 via the Segre
embedding, and when studying the effect of the Segre embedding on the functions
defining the embedded variety, it is the sum of the partial degrees that comes into
play.

To this aim, we proceed in the following way: in Subsection 6.1 we give bounds
for the sums of the partial degrees of the product and the sum of quotients of poly-
nomials in several variables. Then, in Subsection 6.2 we estimate the multiplication
map on E. In Subsection 6.3, we study the sum of many points on an elliptic curve.
Finally, we estimate the sums of the partial degrees of Li(X1, . . . , XN ).

All the computations are carried out for linear combinations of points with in-
tegral coefficients (which is to say, when E is non CM). In Remark 6.1 we describe
how to adapt this to the CM case.

6.1. Estimates for degrees of rational functions. In this short paragraph we
recall how to bound the sums of the partial degrees of products and sums of quo-
tients of polynomials in the field of rational functions.

If figi are rational functions, with fi, gi polynomials in several variables and coeffi-

cients in Z, we denote by d(fi/gi) the maximum of the sums of the partial degrees
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of both fi, gi. Then

f

g
=

r∏
i=1

fi
gi

d(f/g) ≤
r∑
i=1

d(fi/gi)(20)

f

g
=

r∑
i=1

fi
gi

d(f/g) ≤
r∑
i=1

d(fi/gi)(21)

where d(f/g) is the bound for the sum of partial degrees of the product (in (20))
and of the sum (in (21)) of the fi/gi’s respectively.

6.2. The multiplication by m. Let m be a positive integer and let E be an
elliptic curve. The aim of this subsection is to bound the sum of the partial degrees
of the rational function giving the multiplication by m on E. If P = (x, y) ∈ E,
then by [Sil86], Ex 3.7, p. 105 we have that

[m]P =

(
φm(P )

ψ2
m(P )

,
ωm(P )

ψ3
m(P )

)
where φm, ψm, ωm ∈ Z[A,B, x, y] are certain polynomials defined below.

The polynomial ψm is defined inductively as follows:

ψ1 = 1, ψ2 = 2y,

ψ3 = 3x4 + 6Ax2 + 12Bx−A2,

ψ4 = 4y(x6 + 5Ax4 + 20Bx3 − 5A2x2 − 4ABx− 8B2 −A3),

and for m ≥ 2

ψ2m+1 = ψm+2ψ
3
m − ψm−1ψ

3
m+1, (m ≥ 2)

2yψ2m = ψm(ψm+2ψ
2
m−1 − ψm−2ψ

2
m+1) (m ≥ 2).

The polynomials φm and ωm are defined as:

φm = xψ2
m − ψm+1ψm−1

4yωm = ψm+2ψ
2
m−1 − ψm−2ψ

2
m+1.

As Silverman points out, one can prove that ψm, φm, y
−1ωm (for m odd) and

(2y)−1ψm, φm, ωm (for m even) are polynomials in Z[A,B, x, y2]. Hence, using
the Weierstrass equation for E to replace y2, they can be treated as polynomials in
Z[A,B, x].

Moreover, as polynomials in x we have

φm(x) = xm
2

+ lower order terms,

ψ2
m(x) = m2xm

2−1 + lower order terms.

We need to find bounds for the degrees of the polynomials ψm, φm, ωm.
The following bounds are obtained combining the above definitions in [Sil86] and

the expressions for φm and ψ2
m:

d(φm) = m2

d(ψ2
m) = m2 − 1

d(ψm) ≤ m2 + 1

2

d(ψ3
m) ≤ 3m2 − 1

2

d(ωm) ≤ 3

2
(m2 + 1).
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Using the above bounds and the formula for the coordinates of [m]P , we see
that the sum of the partial degrees of the polynomials φm, ψ

2
m, ωm, ψ

3
m, which are

numerators and denominators of the rational functions given by the coordinates of
[m]P , are bounded by 3

2 (m2 + 1).

6.3. Estimates for linear maps. We now look first at the functions giving the
sum of two, and then many, points on an elliptic curve. Our aim is to obtain explicit
bounds on the sum of the partial degrees of the rational function expressing a linear
combination of N points in E.

Then we will study equations defining algebraic subgroups of EN , obtained equat-
ing to zero linear combinations of N variables with coefficients in End(E). Evaluat-
ing the functions at points in E whose coordinates are themselves rational functions,
we will bound the sum of partial degrees of these linear combinations, viewed as
rational functions in the new coordinates.

6.3.1. Estimates for the addition map. We consider an elliptic curve E embedded
in P2 via its Weierstrass equation.

Let P1 = (x1, y1) and P2 = (x2, y2) be points on E and P3 = (x3, y3) = P1 ⊕ P2

be their sum.
If x1 6= x2, from [Sil86], Chap. 3, setting

λ =
y2 − y1

x2 − x1

ν =
y1x2 − y2x1

x2 − x1

we have that

x3 = λ2 − x1 − x2

y3 = −λx3 − ν.
(22)

So x3 and y3 are rational functions of the coordinates of P1 and P2, and we now
want to control the sum of their partial degrees.

Using (22), if (x1, y1) and (x2, y2) already have coordinates given by certain other
rational functions, whose sums of the partial degrees are bounded respectively by
d1, d2, then the sums of the partial degrees, in the variables of x1, y1, x2, y2, of the
functions x3, y3 are given by:

d(x3) ≤ 5(d1 + d2)

d(y3) ≤ 12(d1 + d2).

If instead x1 = x2 and y1 = y2, then setting

λ =
3x2

1 +A

2y1

we have that

x3 = λ2 − 2x1

y3 = y1 + λ(x3 − x1).

Again applying (20), (21), if P1 = P2 have coordinates given by rational functions
in certain variables with sums of the partial degrees bounded by d1, then x3 and
y3 are rational functions, in the same variables, with sums of the partial degrees
bounded as

d(x3) ≤ 7d1

d(y3) ≤ 11d1.



18 S. CHECCOLI, F. VENEZIANO, E. VIADA

If x1 = x2 and y1 = −y2, then the two points are opposite and the sum is the
zero of the elliptic curve.

Comparing the bounds obtained in the three cases, one checks that in any case

max(d(x3), d(y3)) ≤ 12(d1 + d2)(23)

holds. This computation was carried out for the sum of two points. We now iterate
it M − 1 times to obtain bounds for the rational function expressing the sum of M
points. It follows by induction from (23) that

d ≤ 12M−1d1 +

M∑
i=2

12M−i+1di ≤ 12M−1
M∑
i=1

di,(24)

where di is a bound for the sum of the partial degrees of the x and y coordinates
of the i-th point.

6.3.2. Estimates for group morphisms. Let us consider the morphism L : EN → E
defined as

L(X) = l1X1 + · · ·+ lNXN

where li ∈ Z and Xi = (xi, yi) is in the i-th factor of EN . Then L(X) is also a point
on E with coordinates (x(L(X)), y(L(X))). By the considerations above, these are
rational functions in the coordinates (xi, yi) of all Xi’s. We want to combine the
results from the previous subsections to bound the sum of the partial degrees of
the rational function x(L(X)).

Let us set d(L) = d(x(L(X))) to be the sum of the partial degrees in the numerator
and denominator of x(L(X)).

Now combining inequality (24) with the bounds from Subsection 6.2 we obtain

(25) d(L) ≤ 3

2
12N−1

(
N +

N∑
i=1

|li|2
)
.

Remark 6.1. The content of this section holds analogously when E is CM. In this
case End(E) = Z + τZ for some imaginary quadratic integer τ .

For a point P = (x, y) we denote τ(P ) = (xτ , yτ ). Then xτ and yτ are rational
functions of x and y and we let dCM (τ) be the sum of their partial degrees. Writing
τ =
√
−d for some non-square positive integer d we have

dCM (τ) ≤ 2d.

Since every element li ∈ End(E) can be written as li = ri + τsi, where r, s ∈ Z, we
can write

L(X) = r1X1 + · · ·+ rNXN + τs1XN+1 + · · ·+ τsNX2N

and, using the above results, we can effectively compute a bound

d(L) ≤ D(E,N, τ)

N∑
i=1

|li|2 for li ∈ End(E) not all 0,

corresponding to the bound (25). However we omit here the explicit computations.

7. Conclusion

In this section we prove Proposition 3.1 (explicit for non CM varieties) and Pro-
position 3.2 (effective for CM varieties), which are the core of the proofs of our main
results. Essentially the propositions state that: if a point P ∈ EN belongs to an
algebraic subgroup B then we can construct a translate H +P ⊆ EN of controlled
degree and height.
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To prove these results, we use the bounds for the height of Subsection 2.2 and for
the degree of Section 6. Then we use the geometry of numbers, to construct the
algebraic subgroup H.

Before moving on with the main proof, we need a short section in linear algebra.

7.1. A lemma on adjugate matrices. Let A be a n × n matrix with complex
coefficients. Let ai ∈ Cn be the rows of A.

Definition 7.1. The adjugate matrix of A, denoted A∗, is the transpose of the
matrix ((−1)i+j detMij)ij, where Mij is the (n− 1)× (n− 1) minor obtained from
A after deleting the i-th row and the j-th column.

The adjugate matrix has the property that

AA∗ = A∗A = (detA)Id

and its entries are bounded as it follows:

Lemma 7.2. Let A ∈ Mn×n(C) be the matrix with rows a1, . . . , an ∈ Cn. Then
every entry in the i-th column of A∗ has absolute value bounded by

|a1| · · · |an|
|ai|

.

Proof. Applying Hadamard’s inequality to Mij , and denoting by a′i ∈ Cn−1 the
vector obtained from ai after deleting the j-th entry, we have that

|detMij | ≤
∏
k 6=i

|a′k| ≤
∏
k 6=i

|ak| =
|a1| · · · |an|
|ai|

.

The thesis follows multiplying by (−1)i+j and transposing. �

7.2. A bound for the height. To estimate the height ofH+P we use an argument
based on linear algebra, and some bounds on heights from Subsection 2.2.

Let H be a component of the algebraic subgroup defined by the s × N matrix
with rows u1, . . . , us ∈ ZN . Let Λ ⊆ RN be the associated lattice, and Λ⊥ its
orthogonal lattice. Let us+1, . . . , uN be a basis of Λ⊥ such that |us+1| , . . . , |uN | are
the successive minima of Λ⊥, as defined in Subsection 2.3.

The (N − s) × N matrix with rows us+1, . . . , uN defines an algebraic subgroup
H⊥, and for any point P ∈ EN there are two points P0 ∈ H, P⊥ ∈ H⊥, unique up
to torsion points in H ∩H⊥, such that P = P0 + P⊥.

Let U be the N ×N matrix with rows u1, . . . , uN , and let ∆ be its determinant.
Notice that

|∆| = det Λ · det Λ⊥

because Λ and Λ⊥ are orthogonal.
We remark that ui(P0) = 0 for all i = 1, . . . , s, because P0 ∈ H, and ui(P

⊥) = 0
for all i = s+ 1, . . . , N because P⊥ ∈ H⊥.

Therefore

UP⊥ =



u1(P⊥)
...

us(P
⊥)

0
...
0


=



u1(P0 + P⊥)
...

us(P0 + P⊥)
0
...
0


=



u1(P )
...

us(P )
0
...
0


,
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hence

[∆]P⊥ = U∗UP⊥ = U∗



u1(P )
...

us(P )
0
...
0


where U∗ is the adjugate matrix of U from Definition 7.1.

Computing canonical heights and applying Lemma 7.2 yields

|∆|2 ĥ(P⊥) = ĥ([∆]P⊥) ≤ N |u1|2 · · · |uN |2
s∑
i=1

ĥ(ui(P ))

|ui|2
.

Recall inequality (12), which gives

µ(H + P ) ≤ 3µ̂(H + P ) + c3(E,N),

where c3(E,N) was defined as

c3(E,N) = N(3hW(E) + 6 log 2 +
1

2
log 3).

By [Phi12] we know that

µ̂(H + P ) = ĥ(P⊥)

and therefore, by Zhang’s inequality

h(H + P ) ≤ (N − s+ 1)(degH)µ(H + P ) ≤
≤ (N − s+ 1)(degH)(3µ̂(H + P ) + c3(E,N)) ≤

≤ (N − s+ 1)(degH)(3ĥ(P⊥) + c3(E,N)) ≤

≤ (N − s+ 1) degH

(
3N

|∆|2
|u1|2 · · · |uN |2

s∑
i=1

ĥ(ui(P ))

|ui|2
+ c3(E,N)

)
.(26)

By (14) we get

degH ≤ c4(N, s)

s∏
i=1

|ui|2,

by (15) we obtain
degH

(det Λ)2
≤ c4(N, s)

4s

ω2
s

,

and by Minkowski’s second theorem∏N
i=s+1 |ui|
det Λ⊥

≤ 2N−s

ωN−s
.

Plugging these inequalities in (26) we obtain

h(H+P ) ≤ 3N(N − s+ 1)4N

(ωN−sωs)2
c4(N, s)

s∏
i=1

|ui|2
s∑
i=1

ĥ(ui(P ))

|ui|2
+c3(E,N)(N−s+1)c4(N, s)

s∏
i=1

|ui|2.

So, we have proved the following proposition

Proposition 7.3. Let E be a non CM elliptic curve. Let H ⊆ EN be a component
of the algebraic subgroup associated with an s×N matrix with rows u1, . . . , us ∈ ZN .
Then

h(H +P ) ≤ 3N(N − s+ 1)4N

(ωN−sωs)2
c4(N, s)

s∏
i=1

|ui|2
s∑
i=1

ĥ(ui(P ))

|ui|2
+ c6(E,N, s)

s∏
i=1

|ui|2,
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where ωn is defined at (13),

c4(N, s) = 3NN !

(
3

2
(N + 1)12N−1

)s
and

c6(E,N, s) = N(N − s+ 1)c4(N, s)(3hW(E) + 6 log 2 +
1

2
log 3).

7.3. A bound for the degree. Here we use an inductive geometric construction
to bound the degree of a translate.

We first consider an algebraic subgroup given by a single equation in EN . Then
we apply the Segre embedding and see this subgroup as a subvariety of P3N−1. In
doing this we must be careful in selecting irreducible components. Finally we apply
inductively Bézout’s theorem for the case of several equations.

Let U be a matrix in Mats×N (Z) with rows u1, . . . , us ∈ ZN and let H ⊆ EN be
an irreducible component of the algebraic subgroup associated with the matrix U
(see Subsection 2.3).

If X1 = (x1, y1), . . . , XN = (xN , yN ) are points on E and v = (v1, . . . , vN ) ∈ ZN
is a vector, we denote v(X) = v1X1 + . . .+ vNXN .

As remarked in the previous section, v(X) = (x(v(X)), y(v(X))) is a point in E
and x(v(X)) is a rational function of the xi, yi’s.

Let now P = (P1, . . . , PN ) ∈ EN be a point. Take the k-th row uk ∈ ZN of U
and consider the equation

x(uk(X)) = x(uk(P ))

with X = (X1, . . . , XN ) ∈ EN as before.
Clearing out the denominators the previous equation can be written as

fuk,P (x1, y1, . . . , xN , yN ) = 0,

where fuk,P is a polynomial of degree bounded by d(uk) (see formula (24)).
This polynomial defines a variety in PN2 . Applying the Segre embedding, we want

to study this variety as a subvariety of P3N−1.
The Segre embedding induces a morphism between the fields of rational functions,

whose effect on the polynomials in the variables (x1, y1, . . . , xN , yN ) is simply to
replace any monomial in the variables of PN2 with another monomial in the new
variables, without changing the coefficients; the total degree in the new variables is
the sum of the partial degrees in the old ones.

Recall that in Subsection 2.1 we defined X(E,N) as the image of EN in P3N−1.

Denote by Y ′k ⊆ P3N−1 the zero-set of the polynomial fuk,P (x1, y1, . . . , xN , yN )
after embedding PN2 in P3N−1.

Now consider an irreducible component of the translate in EN defined by

uk(X) = uk(P )

and denote by Yk its image in P3N−1. We want to obtain bounds for the degree of
the hypersurfaces Yk.

Notice that
Yk ⊆ Y ′k ∩X(E,N)

and it is a component. This is because setting the first coordinate of uk(X) equal
to x(uk(P )) defines two cosets, uk(X) = uk(P ) and uk(X) = −uk(P ).

By Bézout’s theorem

deg Yk ≤ degX(E,N) deg Y ′k ≤ c1(N)
3

2
12N−1

(
N + |uk|2

)
,

where the last inequality follows from formula (25) and the definition of c1(N) in
Lemma 2.1.
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In a similar way, considering all the rows we get

deg(H + P ) ≤ degX(E,N) deg Y ′1 · · · deg Y ′s ≤ c1(N)

(
3

2
12N−1

)s s∏
i=1

(|ui|2 +N) ≤

≤ c1(N)

(
3

2
(N + 1)12N−1

)s s∏
i=1

|ui|2(27)

where we recall that, from relation (1), c1(N) = 3NN !.

Remark 7.4. Clearly the degree of H +P is equal to the degree of H and does not
depend on P . Thus we can deduce the value of the constant c4(N, r) of Subsection
2.3, formula (14), when the elliptic curve E is non CM; by the previous inequality,
we may take

(28) c4(N, r) = 3NN !

(
3

2
(N + 1)12N−1

)r
.

7.4. Geometry of numbers. In this subsection, inspired by the work of Habegger
[Hab08], we give two lemmas based on tools from the geometry of numbers which
are used to define H. We have the following version for powers of elliptic curves of
Lemma 1 in [Hab08].

Lemma 7.5. Let 1 ≤ m ≤ N be integers and let P = (P1, . . . , PN ) ∈ B ⊆ EN ,
where B is a torsion variety of dimension ≤ m and E is non CM.

There exist linear forms L1, . . . , Lm ∈ R[X1, . . . , XN ] such that |Lj | ≤ 1 ∀j,
where |Lj | is the euclidean norm of the vector of the coefficients of Lj, and

ĥ(t1P1 + · · ·+ tNPN ) ≤ c16(N,m) max
1≤j≤m

{|Lj(t)|2}ĥ(P )

for all t = (t1, . . . , tN ) ∈ ZN . The constant c16(N,m) is given by

c16(N,m) =
m3(m!)4N

4m−1
.

Proof. The points Pi lie in a finitely generated subgroup of E of rank at most m.
By [Via03], Lemma 3, there are elements g1, . . . , gm ∈ E, and torsion points

ζ1, . . . , ζN ∈ E, such that

Pi = ζi + vi1g1 · · ·+ vimgm for i = 1, . . . , N and some vij ∈ Z

and

ĥ(b1g1 + · · ·+ bmgm) ≥ 22m−2

m2(m!)4
max

1≤i≤m
{|bi|2ĥ(gi)} ∀b ∈ Zm.

Let A = maxi,j{|vij |2ĥ(gj)} and define

L̃j = v1jX1 + · · ·+ vNjXN j = 1, . . . ,m

Lj =

(
ĥ(gj)

NA

) 1
2

L̃j j = 1, . . . ,m.

Notice that we can assume A > 0, otherwise the point P would be a torsion point,
and the thesis of the lemma would be trivially true. Notice also that |Lj | ≤ 1.

With these definitions, for every t ∈ ZN we have that

t1P1 + · · ·+ tNPN = ξ +

m∑
i=1

L̃j(t)gj
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where ξ is a torsion point. Therefore

ĥ(t1P1 + · · ·+ tNPN ) = ĥ

 m∑
j=1

L̃j(t)gj

 ≤ m∑
j=1

|L̃j(t)|2ĥ(gj) =

= NA

m∑
j=1

|Lj(t)|2 ≤ mNA max
1≤j≤m

{|Lj(t)|2}.(29)

If i0, j0 are the indices for which the maximum is attained in the definition of A,
then

22m−2

m2(m!)4
A =

22m−2

m2(m!)4
|vi0j0 |2ĥ(gj0) ≤ ĥ(Pi0) ≤ ĥ(P ).

Combining this with inequality (29), we get the thesis of the lemma. �

We now recall the following lemma of Habegger ([Hab08], Lemma 3), obtained
applying Minkowski’s second theorem.

Lemma 7.6. Let 1 ≤ m ≤ N and let L1, . . . , Lm ∈ R[X1, . . . , XN ] be linear forms
with |Lj | ≤ 1 ∀j. If T ≥ 1, then for any integer s with 1 ≤ s ≤ n there exist
linearly independent u1, . . . , us ∈ ZN such that |u1| · · · |us| ≤ T and

|u1| · · · |us|
Lj(uk)

|uk|
≤ c17(N,m)T 1− N

ms

for 1 ≤ j ≤ m and 1 ≤ k ≤ s and

c17(N,m) =

(
m+N

N

)1/2
4N

ωN
.

The value of c17(N,m) follows from formulae (27) and (28) in the proof of [Hab08],
Lemma 2.

7.5. The proofs of Propositions 3.1 and 3.2.

7.5.1. The non-CM case.

Proof of Proposition 3.1. By Lemma 7.5, and Lemma 7.6 applied to
√
T , there are

linearly independent vectors u1, . . . , us ∈ ZN such that

(30) |u1|2 · · · |us|2 ≤ T

and (
|u1| · · · |us|
|uk|

)2

ĥ(uk(P )) ≤ c16(N,m)c17(N,m)2T 1− N
ms ĥ(P ).

If we consider the algebraic subgroup defined by equations uk(X) = 0, and call H
the irreducible component containing 0, then, combining (30) and (27), its degree
is bounded as

deg(H + P ) ≤ c4(N, s)T

and we can use Proposition 7.3 to bound the height of H + P as

h(H+P ) ≤ 3sN(N − s+ 1)4N

(ωsωN−s)2
c4(N, s)c16(N,m)c17(N,m)2T 1− N

ms ĥ(P )+c6(E,N, s)T.

�
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7.5.2. The CM case.

Proof of Proposition 3.2. If the elliptic curve is CM, one can still apply the argu-
ments of Section 7. More precisely, the geometric arguments of Subsection 7.3 do
not depend on E having CM, one only needs to replace the application of formula
(25) with the corresponding bound for the CM case, as discussed in Remark 6.1.

The argument of Subsection 7.2 assumes that End(E) = Z because it uses the
formulae from Subsection 2.3, which are straightforward consequences of the second
Minkowski’s theorem, here stated in the classical form for a lattice in RN . Analog-
ous inequalities may be derived, when End(E) is an order in an imaginary quadratic
number field, from more general reformulations of Minkowski’s theorem, such as
Theorem 3 of [BV83]. The linear algebra used in Subsection 7.2 remains the same
if the entries of the matrix lie in C instead of R.

Of the two lemmas in Subsection 7.4, Lemma 7.6 holds regardless of whether E
is CM, while in Lemma 7.5 it is necessary to replace [Via03], Lemma 3 with the
Proposition 2 of [Via03]. This proves Proposition 3.2. �
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