
This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 131.152.112.139

This content was downloaded on 25/01/2017 at 13:58

Please note that terms and conditions apply.

Machine learning of molecular electronic properties in chemical compound space

View the table of contents for this issue, or go to the journal homepage for more

2013 New J. Phys. 15 095003

(http://iopscience.iop.org/1367-2630/15/9/095003)

Home Search Collections Journals About Contact us My IOPscience

You may also be interested in:

Resolution-of-identity approach to Hartree–Fock, hybrid density functionals, RPA, MP2 and GW with

numeric atom-centered orbital basis functions

Xinguo Ren, Patrick Rinke, Volker Blum et al.

Combining GW calculations with exact-exchange density-functional theory: an analysis of

valence-band photoemission for compound semiconductors

Patrick Rinke, Abdallah Qteish, Jörg Neugebauer et al.

Theoretical description of protein field effects on electronic excitations of biological

chromophores

Daniele Varsano, Stefano Caprasecca and Emanuele Coccia

Electronic structure calculations with GPAW: a real-space implementation of the

projectoraugmented-wave method

J Enkovaara, C Rostgaard, J J Mortensen et al.

Many-body van der Waals interactions in molecules and condensed matter

Robert A DiStasio Jr, Vivekanand V Gobre and Alexandre Tkatchenko

A self-consistent first-principles calculation scheme for correlated electron systems

Koichi Kusakabe, Naoshi  Suzuki, Shusuke  Yamanaka et al.

Ab initio density-functional calculations in materials science: from quasicrystals overmicroporous

catalysts to spintronics

Jürgen Hafner

First principles studies of complex oxide surfaces and interfaces

Claudine Noguera, Fabio Finocchi and Jacek Goniakowski

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1367-2630/15/9
http://iopscience.iop.org/1367-2630
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience
http://iopscience.iop.org/article/10.1088/1367-2630/14/5/053020
http://iopscience.iop.org/article/10.1088/1367-2630/14/5/053020
http://iopscience.iop.org/article/10.1088/1367-2630/7/1/126
http://iopscience.iop.org/article/10.1088/1367-2630/7/1/126
http://iopscience.iop.org/article/10.1088/0953-8984/29/1/013002
http://iopscience.iop.org/article/10.1088/0953-8984/29/1/013002
http://iopscience.iop.org/article/10.1088/0953-8984/22/25/253202
http://iopscience.iop.org/article/10.1088/0953-8984/22/25/253202
http://iopscience.iop.org/article/10.1088/0953-8984/26/21/213202
http://iopscience.iop.org/article/10.1088/0953-8984/19/44/445009
http://iopscience.iop.org/article/10.1088/0953-8984/22/38/384205
http://iopscience.iop.org/article/10.1088/0953-8984/22/38/384205
http://iopscience.iop.org/article/10.1088/0953-8984/16/26/025


Machine learning of molecular electronic properties
in chemical compound space
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Abstract. The combination of modern scientific computing with electronic
structure theory can lead to an unprecedented amount of data amenable
to intelligent data analysis for the identification of meaningful, novel and
predictive structure–property relationships. Such relationships enable high-
throughput screening for relevant properties in an exponentially growing pool
of virtual compounds that are synthetically accessible. Here, we present a
machine learning model, trained on a database of ab initio calculation results for
thousands of organic molecules, that simultaneously predicts multiple electronic
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ground- and excited-state properties. The properties include atomization energy,
polarizability, frontier orbital eigenvalues, ionization potential, electron affinity
and excitation energies. The machine learning model is based on a deep multi-
task artificial neural network, exploiting the underlying correlations between
various molecular properties. The input is identical to ab initio methods,
i.e. nuclear charges and Cartesian coordinates of all atoms. For small organic
molecules, the accuracy of such a ‘quantum machine’ is similar, and sometimes
superior, to modern quantum-chemical methods—at negligible computational
cost.

S Online supplementary data available from stacks.iop.org/NJP/15/095003/
mmedia
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1. Introduction

The societal need for novel computational tools and data treatment that serve the accelerated
discovery of improved and novel materials has gained considerable momentum in the form of
the materials genome initiative8. Modern electronic structure theory and computer hardware
have progressed to the point where electronic properties of virtual compounds can be routinely
calculated with satisfactory accuracy. For example, using quantum chemistry and distributed
computing, the members of the widely advertised Harvard Clean Energy Project endeavor to
calculate relevant electronic properties for millions of chromophores [1]. A more fundamental
challenge persists, however: it is not obvious how to distill from the resulting data the crucial

8 Based on the Materials Genome Initiative www.whitehouse.gov/mgi announced by the US President Obama
in June 2011, four federal science and research agencies (National Science Foundation, Department of
Energy, Air Force Research Laboratory and Office of Naval Research) recently published their support:
www.whitehouse.gov/blog/2011/10/26/four-new-federal-programs-support-materials-genome-initiative.
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insights that relate structure to property in a predictive and quantitative manner. How are we
to systematically construct robust models of electronic structure properties that properly reflect
the information already obtained for thousands to millions of different chemical compounds?

With increasing numbers of data and available computational resources, increasingly
sophisticated statistical data analysis, or machine learning (ML) methods, have already been
applied for predicting not only outcomes of experimental measurements but also outcomes
of computationally demanding high-level electronic structure calculations. In close analogy
to the quantitative structure property relationships (QSPRs) prevalent in cheminformatics and
bioinformatics, QSPRs can also be constructed for electronic structure properties. Examples
include QSPRs for exchange-correlation potentials using neural networks (NNs) [2, 3], basis-
set effects using support vector machines [4, 5] or molecular reorganization energies affecting
charge transfer rates [6, 7], or for solid ternary oxides [8]. Ordinarily, these applications rely on
association, using regression methods that create statistically optimized relationships between
the so-called descriptor variables and the electronic property of interest. Not surprisingly, the
heuristic ad hoc identification and formatting of appropriate descriptors represents a crucial and
challenging aspect of any QSPR, and is to be repeated for every property and class of chemicals.

We make use of an alternative ML approach, recently introduced by some of us for
the modeling of molecular atomization energies [9]. This approach is based on a strict first
principles view on chemical compound space [11]. Specifically, solutions to Schrödinger’s
equation (SE) are inferred for organic query molecules using the same variables that also
enter the electronic Hamiltonian H , i.e. nuclear charges Z I and positions RI ,9 and that are

mapped to the corresponding total potential energy, H({Z I , RI })
9

7−→ E [11, 12]. Unlike
the aforementioned QSPRs this ML model is free of any heuristics: it exactly encodes the
supervised learning problem posed by SE, i.e. instead of finding the wavefunction 9 which
maps the system’s Hamiltonian to its energy, it directly maps the system to energy (based on

examples given for training), {Z I , RI }
ML

7−→ E . The employed descriptor, dubbed the ‘Coulomb’-
matrix, is directly obtained from {Z I , RI }. As such this constitutes a well-defined supervised-
learning problem and in the limit of the converged number of training examples the ML model
becomes a formally exact inductive equivalent to the deductive solution of SE. It is advantageous
that the training data can come from experiment just as well as from numerical evaluation of
the corresponding quantum mechanical observable using approximate wavefunctions (separated
nuclear and electronic wavefunctions, Slater determinant expansions, etc), Hamiltonians (such
as the Hückel or any exchange-correlation potential), and self-consistent field procedures.
Building on our previously introduced work [9], we present here a more mature ML model
developed to accomplish the following two additional tasks: (i) simultaneously predict a variety
of different electronic properties for a single query and (ii) reach an accuracy comparable with
the employed reference method used for generating the training set. The presented ML model is
based on a multi-task deep artificial NN approach that captures correlations between seemingly
related and unrelated properties and levels of theory. A remarkable predictive accuracy for ‘out-
of-sample’ molecules (i.e. molecules that were not part of the training set) has been obtained
through the use of random Coulomb matrices that introduce invariance with respect to atom
indexing. For training, we generated a quantum chemical database containing nearly 105 entries
for over 7000 stable organic molecules, made of up to seven atoms from main-group elements,
consisting of C, N, O, S and Cl, saturated with hydrogen to satisfy valence rules [13, 14]. For

9 The number of electrons is implicitly encoded by imposing charge neutrality.
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each molecule, the atomization energy, static polarizabilities, frontier orbital eigenvalues and
excitation energies and intensities have been calculated by a variety of widely used electronic
structure methods, including state-of-the-art first principles methods, such as hybrid density-
functional theory and the many-body single particle Green’s function and screened Coulomb
interaction (GW) approach (see section 2)10. Figure 1 illustrates the complete property database
and how it has been used in model training and prediction.

2. Methods

2.1. Molecular structures (input)

While the present ML model approach is generally applicable, for the purpose of this study we
restrict ourselves to the chemical space of small organic molecules. For all the cross-validated
training and out-of-sample model performance testing, we rely on a controlled test bed of
molecules, namely a subset of the general molecular data base (GDB)-13 database [13, 14]
consisting of all 7211 small organic molecules that have up to seven second and third row atoms
consisting of C, N, O, S or Cl, saturated with hydrogen. The entire GDB-13 database represents
an exhaustive list of the ∼0.97 B organic molecules that can be constructed from up to 13 such
‘heavy’ atoms. All GDB molecules are stable and synthetically accessible according to organic
chemistry rules [15]. Molecular features such as functional groups or signatures include single,
double and triple bonds; (hetero-) cycles, carboxy, cyanide, amide, amine, alcohol, epoxy,
sulfide, ether, ester, chloride, aliphatic and aromatic groups. For each of the many possible
stoichiometries, many constitutional isomers are considered, each being represented only by a
single conformational isomer.

Based on the string representation (SMILES [16, 17]) of molecules in the database, we
used the universal force field [18] to generate reasonable Cartesian molecular geometries,
as implemented in OpenBabel [19]. The resulting geometries were relaxed using the PBE
approximation [20] to Kohn-Sham density functional theory (DFT) [21] in a converged
numerical basis, as implemented in the FHI-aims code [22] (tight settings/tier2 basis
set). All the geometries are provided in the supplementary material (available from
stacks.iop.org/NJP/15/095003/mmedia).

2.2. Molecular representation (descriptor)

One of the most important aspects for creating a functional ML model is the choice of an
appropriate data representation (descriptor) that reflects important constraints and properties
due to the underlying physics, SE in our case. While there is a wide variety of descriptors
used in chem- and bio-informatics applications [23–27], they are conventionally based on

10 Electronic properties considered include PBE0 atomization energies ranging from −800 to −2000 kcal mol−1;
the first excitation energies (1.52–36.77 eV), as well as maximal absorption intensities (oscillator strengths (〈 j |r|0〉)
ranging from 0.05 to 3.35 arbitrary units) and the corresponding excitation energies (3.37–39.69 eV) at the ZINDO
level of theory; HOMO and LUMO values calculated at the ZINDO/s, PBE0 and GW level of theory (HOMOPBE0:
−10.95 to −5.12; HOMOGW: −14.13 to −6.98 eV; LUMOPBE0: −3.81 to 0.41 eV; LUMOGW: −1.84 to 1.96 eV)
(the corresponding gap ranging from 6.9 to 20.2 and from 7.3 to 15.2 eV, respectively); PBE0 and self-consistent
screening [28] molecular polarizabilities (2.5–10 Å3); electron affinity (−3.99 to 2.91 eV) and ionization potentials
(6.93–15.73 eV) at the ZINDO/s level of theory.
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Figure 1. Overview of the calculated database used in training and testing the
ML model. The quantum chemistry results for 14 properties of 7211 molecules
are displayed. All the properties and level of theory, GW (G), PBE0 (P) and
Zerner’s intermediate neglect of differential overlap (ZINDO; Z) are defined
in section 2.3. Cartoons of ten exemplary molecules from the database are
shown; they are used as the input for quantum chemistry, for learning or for
prediction. Relying on the input in the ‘Coulomb’ matrix form, the concept
of a ‘quantum machine’ (QM) is illustrated for two seemingly uncorrelated
properties, atomization energy E and HOMO eigenvalue, which are decoded
in terms of the largest two principal components (PCA1, PCA2) of the last NN
layer for 2k molecules not part of the training. The color-coding corresponds to
the HOMO eigenvalues.
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prior knowledge about chemical binding, electronic configuration or other quantum mechanical
observables. Instead, we derive our representation without any pre-conceived knowledge,
i.e. exclusively from stoichiometry and configurational information, from that generated
according to the previous subsection. As such, the molecular representation is in complete
analogy to the electronic Hamiltonian used in ab initio methods.

For this study, we use a randomized variant of the recently introduced ‘Coulomb matrix’,
M [9, 10]. The Coulomb matrix is an inverse atom-distance matrix representation that is
unique (i.e. no two molecules will have the same Coulomb matrix unless they are identical
or enantiomers) and retains invariance with respect to molecular translation and rotation by
construction:

MI J =

{
0.5Z 2.4

I for I = J,

Z I Z J
|RI −RJ |

for I 6= J.
(1)

Off-diagonal elements encode the Coulomb repulsion between nuclear charges of atoms I
and J , while diagonal elements represent the stoichiometry through an exponential fit in
Z to the free atoms’ potential energy. We have enforced invariance with respect to atom
indexing by representing each molecule as a probability distribution over Coulomb matrices
p(M) generated by different atom indexing of the same molecule. Details for producing
such random Coulomb matrices can be found in the supplementary material (available from
stacks.iop.org/NJP/15/095003/mmedia).

2.3. Molecular electronic properties (output)

The reference values necessary for learning and testing consist of various electronic ground-
and excited-state properties of molecules in their PBE geometry minimum. Specifically, we
consider the atomization energies E , static polarizabilities (trace of tensor) α, frontier orbital
eigenvalues HOMO and LUMO, ionization potential IP and electron affinity EA. Furthermore,
from optical spectrum simulations (10–700 nm), we consider the first excitation energy E∗

1st,
excitation of maximal optimal absorption E∗

max and its corresponding intensity Imax. Data ranges
of properties for the molecular structures and for various levels of theory are given in footnote 9;
property mean values in the data set also feature in table 1.

To also gauge the impact of the reference method’s level of theory on the ML model,
polarizabilities and frontier orbital eigenvalues were evaluated with more than one method.
Static polarizability has been calculated using self-consistent screening (SCS) [28] as well
as hybrid density functional theory (PBE0) [29, 30]. PBE0 has also been used to calculate
atomization energies and frontier orbital eigenvalues. The electron affinity, ionization potential,
excitation energies and maximal absorption intensity have been obtained from ZINDO [31–33].
Hedin’s GW approximation [34] has also been used to evaluate frontier orbital eigenvalues.
GW is a quasi-particle ab initio many-body perturbation theory, known to accurately account
for electronic excitations that describe electron addition and removal processes [34]. The
SCS, PBE0 and GW calculations have been performed using FHI-aims; [22, 35], ZINDO/s
calculations are based on the ORCA code [36]. ZINDO/s is an extension of the INDO/s
semiempirical method with parameters to accurately reproduce single excitation spectra of
organic compounds and complexes with rare-earth elements. The INDO Hamiltonian neglects
some two-center two-electron integrals in order to simplify the calculation of time-dependent
Hartree–Fock equations. While the ZINDO results are usually not as accurate as highly

New Journal of Physics 15 (2013) 095003 (http://www.njp.org/)
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Table 1. Mean absolute errors (MAEs) and root mean square errors (RMSE)
for out-of-sample predictions by the ML model, together with typical error
estimates of the corresponding reference level of theory. Errors are reported
for all 14 molecular properties, and are based on out-of-sample predictions
for 2211 molecules using a multi-task multi-layered NN ML model obtained
by cross-validated training on 5000 molecules. The corresponding true versus
predicted scatter plots feature in figure 3. Property labels refer to the level of
theory and molecular property, i.e. atomization energy (E ref), averaged molecular
polarizability (α), HOMO and LUMO eigenvalues, ionization potential (IP),
electron affinity (EA), first excitation energy (E∗

1st), excitation frequency of
maximal absorption (E∗

max) and the corresponding maximal absorption intensity
(Imax). To guide the reader, the mean value of the property across all
7211 molecules in the database is shown in the second column. Energies,
polarizabilities and intensity are in eV, Å3 and arbitrary units, respectively.

Property Mean MAE RMSE Reference MAE

E (PBE0) −67.79 0.16 0.36 0.15a, 0.23b, 0.09 − 0.22c

α (PBE0) 11.11 0.11 0.18 0.05 − 0.27d, 0.04 − 0.14e

α (SCS) 11.87 0.08 0.12 0.05 − 0.27d, 0.04 − 0.14e

HOMO (GW) −9.09 0.16 0.22 –
HOMO (PBE0) −7.01 0.15 0.21 2.08f

HOMO (ZINDO) −9.81 0.15 0.22 0.79g

LUMO (GW) 0.78 0.13 0.21 –
LUMO (PBE0) −0.52 0.12 0.20 1.30g

LUMO (ZINDO) 1.05 0.11 0.18 0.93g

IP (ZINDO) 9.27 0.17 0.26 0.20, 0.15d

EA (ZINDO) 0.55 0.11 0.18 0.16h, 0.11d

E∗

1st (ZINDO) 5.58 0.13 0.31 0.18h, 0.21i

E∗
max (ZINDO) 8.82 1.06 1.76 –

Imax (ZINDO) 0.33 0.07 0.12 –

a PBE0, MAE of formation enthalpy for the G3/99 set [54, 55].
b PBE0, MAE of atomization energy for six small molecules [56, 57].
c B3LYP, MAE of atomization energy from various studies [52].
d B3LYP, MAE from various studies [52].
e MP2, MAE from various studies [52].
f MAE from GW values.
g ZINDO, MAE for a set of 17 retinal analogues [58].
h PBE0, MAE for the G3/99 set [54, 55].
i TD-DFT(PBE0), MAE for a set of 17 retinal analogues [58].

correlated methodologies, the semiempirical Hamiltonian reproduces the most important
features of the absorption spectra of many small molecules and complexes, particularly
characterizing their most intense bands on the UV–vis spectra. All properties are provided in
the supplementary material (available from stacks.iop.org/NJP/15/095003/mmedia).

Similar conclusions hold for the selected levels of theory: the employed methods can be
considered to represent a reasonable compromise between computational cost and predictive
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accuracy. It should be mentioned that ML methods can, in principle, be applied to any method
or level of approximation.

2.4. Training the model

Our model consists of a deep and multi-task NN [37, 38] that is trained on molecule–properties
pairs. It learns to map Coulomb matrices to all 14 properties of the corresponding molecule
simultaneously. NNs are well established for learning functional relationships between the
input and the output. They have successfully been applied to different tasks such as object
recognition [39] and speech recognition [40]. Given a sufficiently large NN, its universal
approximation capabilities [41] and the existence of the underlying noise-free SE, an NN
solution can be expected to exist that satisfyingly relates molecules to their properties.
Specifically, a deep NN will properly unfold, layer after layer, a complex input into a simple
representation of molecular properties. Finding the true relationship unfolding among those
that fit the training data can be challenging because there is typically a manifold of solutions.
The multi-task setup forces the NN to predict multiple properties simultaneously. This is
conceptually appealing because these additional constraints narrow down the search for the
‘true model’ [42], as the set of models that fit all properties simultaneously is smaller. Details
of the NN training procedure can be found in the supplementary material (available from
stacks.iop.org/NJP/15/095003/mmedia).

3. Results and discussion

Before reporting and discussing our results, we note the long history of statistical learning of
the potential energy hyper surface for molecular dynamics applications. It includes, for example,
the modeling of potential energy surfaces with artificial NNs starting with the work of Sumpter
and Noid in 1992 [43–49] or Gaussian processes [50, 51]. Our work aims to go beyond single
molecular systems and learn to generalize to unseen compounds. This extension is not trivial,
as the input representation must deal with molecules of diverse sizes and compositions in the
absence of one-to-one mapping between atoms of different molecules.

3.1. Database

Scatter plots among all properties for all the molecules are shown in figure 1. Visual inspection
confirms the expected relationships between various properties: Koopman’s theorem relating
ionization potential to the HOMO eigenvalue [52], the hard soft acid base principle linking
polarizability to stability [53] or electron affinity correlating with the first excitation energy.
Correlations of identical properties at different levels of theory reveal more subtle differences.
Polarizabilities, calculated using PBE0 or with the more approximate SCS model [28], are
strongly correlated. Also, less well-known relationships can be extracted from these data. One
can obtain to a very decent degree, for example, the GW HOMO eigenvalues by subtracting
1.5 eV from the corresponding PBE0 HOMO values.

Some properties, such as atomization and HOMO energies, exhibit very little correlation
in their scatter plot. The inset of figure 1 illustrates how our QM (i.e. the NN-based ML model)
extracts and exploits hidden correlations for these properties despite the fact that they cannot

New Journal of Physics 15 (2013) 095003 (http://www.njp.org/)
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Figure 2. Error decay of the ML model with increasing number of molecules in
the training set (shown on a logarithmic scale). The MAE and its error bar are
shown for atomization energy (E), polarizability (α), frontier orbital eigenvalues
(HOMO, LUMO) and the first excitation energy (E∗

1st).

be recognized by visual inspection. Similar conclusions hold for atomization energy versus first
excitation energy or polarizability versus HOMO energy.

3.2. Accuracy versus training set size

It is an important feature of any ML model that the error can be controlled systematically
as the training set size is varied. We have investigated this dependence for our ML model.
Figure 2 shows a typical decay of the ML model’s mean absolute error (MAE) for predicting
the properties of ‘out-of-sample’ molecules as the number of molecules in the training set
increases logarithmically from 500 to 5000. For all the investigated properties, the improvement
of error suggests that the MAE could still be lowered even further through the addition of
more molecules. However, since the reference method’s ‘precision’ (i.e. the estimated accuracy
of the employed level of theory) is reached for almost all properties already using 5000
examples, adding further examples does not make sense. For the atomization energy the decay
is particularly dramatic: a tenfold increase in the number of molecules (500 → 5000) reduces
the error by 70%, from 0.55 to 0.16 eV. But also for the HOMO/LUMO eigenvalues, the error
reduces substantially. We find that the expected error decay law of ∝1/

√
N is only recovered

for the atomization energy; for other properties the error decays more slowly. Figure 2 also
features the statistical error bars for the MAEs—a measure of outliers. The error bar is only
slightly larger than symbol size, and hardly varies as the training set increases and the testing
set decreases.

3.3. The final machine learning model

After cross-validated training on the largest training set with 5000 randomly selected molecules,
2211 predictions have been made for the remaining ‘out-of-sample’ molecules, yielding at once
all 14 quantum chemical properties per molecule. The corresponding true versus predicted
scatter plots feature in figure 3. The corresponding mean absolute and root-mean square errors

New Journal of Physics 15 (2013) 095003 (http://www.njp.org/)
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Figure 3. Scatter plot of the true value versus the ML model value for all
properties. The red line indicates the identity mapping. All units correspond to
the entries shown in table 1.

(RMSE) are shown in table 1, together with the literature estimates of errors typical of the
corresponding level of theory. Errors of all properties range in the single digit percent of the
mean property. Remarkably, when compared to published typical errors for the corresponding
level of theory, i.e. used as a reference method for training, similar accuracy is obtained—the
sole exception being the most intense absorption and its associated excitation energy. This,
however, is not too surprising: extracting the information about a particular excitation energy
and the associated absorption intensity requires sorting the entire optical spectrum—thus
encoding significant knowledge that was entirely absent from the information employed for
training. For all other properties, however, our results suggest that the presented ML model
makes ‘out-of-sample’ predictions with an accuracy competitive with the employed reference
methods. These methods include some of the more costly state-of-the-art electronic structure
calculations, such as GW results for HOMO/LUMO eigenvalues and hybrid DFT calculations
for atomization energies and polarizabilities. Work is in progress to extend our ML approach
to other properties, such as the prediction of ionic forces or the full optical spectrum. We note,
however, that for the purpose of this study any level of theory and any set of geometries could
have been used.

The remarkable predictive power of the ML model can be rationalized by (i) the deep
layered nature of the NN model that permits us to progressively extract the relevant problem
subspace from the input representation and gain predictive accuracy [59, 60]; (ii) inclusion of
random Coulomb matrices for training, effectively imposing invariance of property with respect
to atom indexing, clearly benefits the model’s accuracy: additional tests suggest that using
random, instead of sorted or diagonalized [9], Coulomb matrices also improves the accuracy
of kernel ridge regression models to similar degrees; and (iii) the multi-task nature of the
NN accounts for the strong and weak correlations between seemingly unrelated properties and
different levels of theory. Aspects (i) and (iii) are also illustrated in figure 4.

We reiterate that evaluation of all 14 properties at the said level of accuracy for an out-
of-sample molecule requires only milliseconds using the ML model, as opposed to several CPU
hours using the reference methods used for training. The downside of such accuracy, of course,
is the limit in transferability. All ML model predictions are strictly limited to out-of-sample
molecules that interpolate. More specifically, the 5000 training molecules must resemble the
query molecule in a similar fashion as they resemble the 2211 test molecules. For compounds
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Figure 4. Principal component analysis (PCA) on the multiple layers of the
deep NN. Each point (molecule) is colored according to the rule: E and HOMO
large → red; E large and HOMO small → blue; E small and HOMO large →

green; E and HOMO small → black. We can observe that the NN extracts, layer
after layer, a representation of the chemical space that better captures the multiple
properties of the molecule.

that bear no resemblance to the training set, the ML model must not be expected to yield accurate
predictions. This limited transferability might one day become moot through a more intelligent
choice and construction of molecular training sets tailored to cover all of a pre-defined chemical
compound space, i.e. all of the relevant geometries and elemental compositions, up to a certain
number of atoms.

4. Conclusion

We have introduced a ML model for predicting the electronic properties of molecules based
on training deep multi-task artificial NNs in chemical space. Advantages of such a QM
(conceptually speaking, as illustrated in figure 1) are the following: (i) multiple dimensions:
a single QM execution simultaneously yields multiple properties at multiple levels of theory;
(ii) a systematic reduction of error: by increasing the training set size the QM’s accuracy can
be converged to a degree that outperforms modern quantum chemistry methods, hybrid density-
functional theory and the GW method in particular; (iii) a dramatic reduction in computational
cost: the QM makes virtually instantaneous property predictions; (iv) user-friendly character:
training and the use of the QM do not require knowledge about the electronic structure or even
about the existence of the chemical bond; (v) arbitrary reference: the QM can learn from data
corresponding to any level of theory, and even experimental results. The main limitation of
the QM is the empirical nature inherent in any statistical learning method used for inferring
solutions, namely that meaningful predictions for new molecules can only be made if they fall
in the regime of interpolation.

We believe our results to be encouraging numerical evidence that ML models can
systematically infer highly predictive structure–property relationships from high-quality
databases generated via first-principles atomistic simulations or experiments. In this study, we
have demonstrated the QM’s performance for a rather small subset of chemical space, namely
for small organic molecules with only up to seven atoms (not counting hydrogen) as defined by
the GDB. Due to its inherent first principles setup, we expect the overall approach to be equally
applicable to molecules or materials of arbitrary size, configurations and composition—without
any major modification. We note, however, that in order to apply the QM to other regions in
chemical space with a similar accuracy differing amounts of training data might be necessary.
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We conclude that combining reliable databases with ML promises to be an important step
toward the general goal of exploring chemical compound space for the computational bottom-up
design of novel and improved compounds.
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Appendix A. Details of random Coulomb matrices

Random Coulomb matrices define a probability distribution over the set of Coulomb matrices
and account for different atom indexing of the same molecule. The following four-step
procedure randomly draws Coulomb matrices from the distribution p(M): (i) take an arbitrary
valid Coulomb matrix M of the molecule, (ii) compute the norm of each row of this Coulomb
matrix: n = (‖M1‖, . . . , ‖M23‖), (iii) draw a zero-mean unit-variance noise vector ε of the same
size as n and (iv) permute the rows and columns of M with the same permutation that sorts
n + ε. An important feature of random Coulomb matrices is that the probability distributions
over Coulomb matrices of two different molecules are completely disjoint. This implies that the
randomized representation is not introducing any noise into the prediction problem. Invariance
to atom indexing proves to be crucial for obtaining models with high predictive accuracy. The
idea of encoding known invariances through such data extension has previously been used
to improve prediction accuracy on image classification and handwritten digit recognition data
sets [61].

Appendix B. Details of training the neural network

The ML model and the NN perform a sequence of transformations on the input that are
illustrated in figure B.1. The Coulomb matrix is first converted to a binary representation before
being processed by the NN. The rationale for this binarization is that continuous quantities such
as Coulomb repulsion energies encoded in the Coulomb matrix are best processed when their
information content is distributed across many dimensions of low information content. Such
binary expansion can be obtained by applying the transformation

φ(x) =

[
. . . , sigm

(x − θ

θ

)
, sigm

(x

θ

)
, sigm

(x + θ

θ

)
, . . .

]
,

where φ : R→ [0, 1]∞, the parameter θ controls the granularity of the transformation and
sigm(x) = ex/(1 + ex) is a sigmoid function. Transforming Coulomb matrices M of size 23 × 23
with a granularity θ = 1 yields three-dimensional tensors of size [∞ × 23 × 23] of quasi-binary
values, approximately 2000 dimensions of which are non-constant. Transforming vectors P of
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Figure B.1. Predicting the properties for a new molecule: (a) enter the Cartesian
coordinates and nuclear charges, (b) form a Coulomb matrix, (c) binarize the
representation, (d) propagate into a trained NN and (e) scale outputs back to
property units.

14 properties with a granularity 0.25 of the same units as in table 1 yields matrices of size
[∞ × 14], approximately 1000 components of which are non-constant.

We construct a four-layer NN with 2000, 800, 800 and 1000 nodes at each layer. The
network implements the function φ−1

◦ f3 ◦ f2 ◦ f1 ◦ φ(M), where functions f1, f2 and f3

between each layer correspond to a linear transformation learned from data followed by a
sigmoid nonlinearity. The NN is trained to minimize the MAE of each property using the
stochastic gradient descent algorithm (SGD) [62]. Errors are back-propagated [63] from the
top layer back to the inputs in order to update all parameters of the model. We run 250 000
iterations of the SGD and present at each iteration 25 training samples. During training, each
molecule–property pair is presented in total 1250 times to the NN, but each time with different
atom indexing. A moving average of the model parameters is maintained throughout training
in order to attenuate the noise of the stochastic learning algorithm [64]. The moving average
is set to remember the last 10% of the training history and is used for the prediction of out-
of-sample molecules. Training the NN on a CPU takes ∼24 h. Once the NN has been trained, the
typical CPU time for predicting all 14 properties of a new out-of-sample molecule is ∼100 ms.
Prediction of an out-of-sample molecule is obtained by propagating ten different realizations
of p(M) and averaging outputs. Prediction of multiple molecules can be easily parallelized by
replicating the trained NN on multiple machines. For more details on training neural networks,
the reader is referred to [65, 66]
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[18] Rappé A K, Casewit C J, Colwell K S, Goddard W A III and Skid W M 1992 Uff, a full periodic table force
field for molecular mechanics and molecular dynamics simulations J. Am. Chem. Soc. 114 10024–35

[19] Guha R, Howard M T, Hutchison G R, Murray-Rust P, Rzepa H, Steinbeck C, Wegner J K and Willighagen E
2006 The blue obelisk—interoperability in chemical informatics J. Chem. Inform. Model. 46 991–8

[20] Perdew J P, Burke K and Ernzerhof M 1996 Generalized gradient approximation made simple Phys. Rev. Lett.
77 3865–8

[21] Kohn W and Sham L J 1965 Self-consistent equations including exchange and correlation effects Phys. Rev.
140 A1133

[22] Blum V, Gehrke R, Hanke F, Havu P, Havu V, Ren X, Reuter K and Scheffler M 2009 Ab initio molecular
simulations with numeric atom-centered orbitals Comput. Phys. Commun. 180 2175–96

[23] Schneider G 2010 Virtual screening: an endless staircase? Nature Rev. 9 273–6
[24] Faulon J-L, Visco D P Jr and Pophale R S 2003 The signature molecular descriptor: 1. Using extended

valence sequences in QSAR and QSPR studies J. Chem. Inform. Comput. Sci. 43 707–20
[25] Ivanciuc O 2000 QSAR comparative study of Wiener descriptors for weighted molecular graphs J. Chem.

Inform. Comput. Sci. 40 1412–22
[26] Todeschini R and Consonni V 2009 Handbook of Molecular Descriptors (Weinheim: Wiley-VCH)
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