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electric-quadrupole rotation-vibration transitions in Hund’s case
b molecules
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We report the derivation of line-strength formulae for fine- and hyperfine resolved electric-
quadrupole rotation-vibration transitions in Hund’s case b molecules using the formalism
of spherical tensor algebra. These expressions may serve in the analysis of spectra of linear
molecules, in particular diatomic molecules such as Ha, N2 and their ions, which are of current
interest in precision spectroscopy.
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Recent progress towards spectroscopic precision experiments on molecules has
rekindled interest in the study of dipole-forbidden molecular spectra. Such for-
bidden transitions exhibit very narrow natural linewidths which are desirable
for very-high resolution experiments. In several recent publications, electric-
dipole-forbidden vibrational transitions in homonuclear diatomics, i.e., electric-
quadrupole transitions, have been identified as promising candidates for precision
spectroscopic experiments [1-3]. While such transitions had been observed in se-
lected neutral diatomics like Hy, No and Oq already several decades ago [4-6], their
observation in a molecular ion has only recently been achieved [7, §].

The analysis of high-resolution quadrupole spectra requires expressions for the
transition line strengths taking into account the fine and hyperfine structure. To
the best of our knowledge, their derivation has not been reported before. Here, we
derive expressions for the line strengths of fine- and hyperfine-resolved quadrupole
rotation-vibration transitions in a Hund’s case bg, molecule [9] using spherical-
tensor algebra [10]. These may be applied to, e.g., the vibrational spectra of the
X 22; electronic ground states of Hf and N3 which are of particular interest for
precision measurements [1-3, 7].

Fig. 1 shows energy levels and the angular-momentum-coupling hierarchy for a
molecule in Hund’s case bg, as is approximately the case for the X 22; ground
electronic state of N; [11]. In this scheme, the total electron spin S couples to
the total angular momentum without spin N yielding J (spin-rotation or fine
structure). J then couples with the total nuclear spin I yielding the total an-
gular momentum F (hyperfine structure). The molecular states can be denoted
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Figure 1. Energy levels and angular-momentum-coupling hierarchy for a Hund’s case bg, molecule ex-
emplified with ortho—N; (even rotational quantum numbers N associated with the nuclear spin quantum
numbers I = 0,2) in its X 22; ground electronic state. See text for discussion.

as [nA) |v) INASJIFMFp) where n labels the electronic state of the molecule, v
stands for the vibrational quantum number and A is the quantum number of the
projection of the electronic orbital angular momentum on the internuclear axis. N
denotes the quantum number of the molecule’s total angular momentum without
spin (corresponding to the mechanical rotation of the molecule in a ¥ electronic
state). S is the total electron spin quantum number (S = 1/2 for Nj X 22;), J
the quantum number for the total angular momentum without nuclear spin, I the
quantum number for the total nuclear spin, and finally F' and Mg the total angu-
lar momentum quantum number and its associated space-fixed projection quantum
number, respectively.

The line strength for a hyperfine-resolved electric-quadrupole rotation-vibration
transition is then given by:
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and ' denote the lower and upper states of the transition, respectively.

where "

TIQ, [Q(S)] is the space-fixed electric-quadrupole operator in spherical tensor nota-
tion [12].

We express TZ [Q(S)} in terms of molecule-fixed coordinates

2
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where Dg) is a second-rank Wigner rotation-matrix element [10] and the index
(m) refers to the molecule-fixed frame. As the molecule-fixed electric-quadrupole
operator does not act on the angular coordinates, we can separate the matrix
element according to:

<nA, ', N'AS'J'T'F' M,

= 22: <nA, v’

q=-2

T]% [Q(s)} ) nA, UN, N//AS//J//I//F//Mg>

T2 [Q(mq ’nA, v"> <N’AS’J’I’F’M;7

[D%)} " ‘ N”AS”J”I”F”M}> .
(3)

Using the Wigner-Eckart theorem, the spin-rotational matrix element is ex-
pressed as

<N’AS’J’I’F’M1’w

[Dﬁ)} ’ ) N”AS”J”I”F”M}}>

/ /!
= (—]_)Fl*MI,? ( F 2 F

Al 717! T (2)*H 1"l T
_Ml,prl,p,><NASJIF D] | NrasmrrEny (@)

where on the right-hand side the expression in pointed brackets is a reduced matrix
element and the expression in round brackets a Wigner 3j-symbol [10]. As the
rotation-matrix elements do not act on the nuclear spin, the angular momenta [
and F' can be eliminated from the reduced matrix element [10]:

<N’AS’J’I’F’

{D(f)} " H N”AS”J”I”F”>

J/ I/ F// 2 J, F, I/
= 6pp (=) T2 R L1V 11 {F,, o 2} <N’AS’J’

[7.7.(3)] * H N”AS”J”> 7
(5)
where the expression in curly brackets denotes a Wigner 6j-symbol. Similarly,

the resulting reduced matrix element can further be simplified by eliminating the
quantum numbers S and J:

<N’AS’J’

D] || vasrar

rogroQr *
— 53,5”(_1)N/+S/+J//+2\/2J/ + 1\/2J// +1 {]}/;/ ]:\i” 52 } <N/A H [fD(q?)} H N”A>.
(6)

The remaining reduced matrix element can be expressed as [12]:

<N/A H [D_(qmr H N,,A> = (—1)NV A VAN T 1VeNT 11 CVA' (2] A{i”) ()

Only the term with ¢ = 0 contributes to the sum in Eq. (3) because of the properties
of the Wigner 3j-symbol in Eq. (7).
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Substituting equations (4) to (7) into (3), we obtain the matrix element

<nA, ', N'AS'J'T'F' M,

T127 [Q(S)} ’ nA, v//7 N//ASUJ//I”F”M%>

_ 5S/S”51/I”(_1)S’+I/+J/+J”+F’+F”—M}—A\/QN/ n 1\/2N” n 1\/2J/ n 1\/2J// 41

N' 2N"\ ( F' 2 F"
/ i
V2F + 1V2F" + 1 (—AO A) (—MHM%)

N J s JF'r ,
J" N" 9 F gt 9 <nA7U
(8)

The line strength for a hyperfine-resolved electric-quadrupole rotation-vibration
line is thus

T2 {Q(m)] ‘nA, U"> .

S = 05500010 (2N"+ 1)(2N" + 1)(2J + 1) (2" + D(2F + 1)(2F" + 1)

/N/ /J/I/F/
o' N"S" J T E N' 2 N 2 N J S 2 J Fr 2
<—A0 A> {J”N” 2} {F”J”Q}

‘<nA,v' T2 {Q(m)] ‘nA,v"> 2, 9)

where the orthogonality properties of the 3j-symbols have been used for simpli-
fication [10]. In the double-harmonic approximation [13], the vibrational matrix
element appearing in the last line of Eq. (9) may be evaluated as [14]

T2 [Q@n)} ‘nA,v"> ~ \/g d?ﬂ%)z Re\/gjm, (10)
R=R.

where QS?Z)Z is the zz-component of the Cartesian electric quadrupole-moment
tensor of the molecule in the electronic state n, R the internuclear distance, R its
equilibrium value and B, and W, the rotational constant and vibrational frequency
in units of wavenumbers, respectively.

From the Kronecker deltas and the properties of the 3j- and 6j-symbols in Eq.
(9), the following selection rules are obtained:

<nA, v

AS=8-5"=0, (11)
Al=T-1"=0, (12)
AF =F — F"=0,+1,42 (13)
AJ=J —J"=0,+1,+2 (14)
AN =N'— N" =0,+1,42. (15)

For A = 0, the cases AN = +1 and N’ = N” = 0 are forbidden. The angular
part of Eq. (9) can readily be evaluated with a computer algebra system such
as “Mathematica” [15]. An application is illustrated in Fig. 2 which shows the
normalized line strengths of the most intense hyperfine transitions in descending
order for (a) a S(0) and (b) a S(6) transition. S denotes the AN = +2 branch and
the number in parentheses refers to the value of N”. One can see that for higher
values of N’ as in Fig. 2 (b), a propensity rule AN = AJ = AF emerges because
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Figure 2. Normalized line strengths of hyperfine components of (a) S(0) and (b) S(6) quadrupole rotation-
vibration transitions. In the case of higher values of N”, as in (b), note the emergence of a AN = AJ = AF
propensity rule. Transitions are labeled as (J", F") — (J', F’).

of angular-momentum uncoupling. Similar effects have been observed previously,
for instance, in electric-dipole-allowed hyperfine-resolved electronic spectra of N;r
[16].

If only the fine- but not the hyperfine structure is resolved, an analogous deriva-
tion yields the result for the line strength of fine-structure components:

S —issgn@N 4 DENT )RS+ )T+ 1)
NS N 2 N"\? (N' J §)? 12 [A ANE
(0% ) 0w S} (ot |13 [@] sl 1)

where gy is the nuclear-spin statistical weight factor. This result can be compared
with the equivalent expression for a Hund’s case a molecule reported in Ref. [17].
Eq. (16) also reproduces the line strengths of the quadrupole infrared transitions
of Oy calculated for Hund’s case b in Ref. [18]. For reference, we list in Tab. 1 the
spin-rotational line strength factors (“Honl-London factors”) obtained from the
evaluation of the angular terms in Eq. 16. Note the emergence of a AN = AJ
propensity rule for high values of N, which is evident from the scaling with N” of
the line strength factors given in Tab. 1.

In the present research note, we have reported the derivation of line-strength for-
mulae for fine- and hyperfine-resolved electric-quadrupole rotation-vibration tran-
sitions for the Hund’s case bg, coupling scheme. These expressions may serve in the
analysis of the vibrational spectra of molecules such as H2+ and N;r of relevance for
precision spectroscopic measurements. Eq. (9) can also be applied to other Hund’s
cases after a suitable basis transformation as outlined in, e.g., Ref. [12]. The present
expressions can also readily be adapted to mixed coupling cases as are found, for
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Table 1. Spin-rotational line strength factors for electric-quadrupole rotation-vibration lines in a 2y state. Fy

and F» refer to the spin-rotation components J = N +1/2 and J = N — 1/2, respectively (see Fig. 1).

Component AN = —2 AN =0 AN = +2
oy 3N"(N"” —1)(N" +1) 2N"(N" +1)(N" + 2) 3(N" +1)(N" 4+ 2)(N" +3)
! 1 (2N —1)(2N"" +1) (2N"" +1)(2N"" + 3) (2N" + 3)(2N"" +5)
F! 5 F! 0 6NN(N"+1) 6(N"+1)(N"+2)
1 2 (2N'" —1)(2N" +1)(2N"" + 3) (2N +1)(2N"" + 3)(2N" + 5)
. , 6N (N —1) 6N"(N" +1)
F2 - Fl " o_ " o_ 1 " o_ 1 11 0
(2N 3)(2N 1)(2N" +1) (2N 1)(2N"” +1)(2N" + 3)
F”_>F/ 3N//(N”72)(N”71) 2N"(N//71)(N//+1) 3NN(N//+1)(N//+2)
2 2

(2N7 = 3)(2N" — 1) QN7 —1)(2N" + 1) (2N + 1)(2N" + 3)

instance, in low rotational levels of NJ [19].
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