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Abstract

Wave phenomena appear in a wide range of applications such as full-waveform seismic
inversion, medical imaging, or composite materials. Often, they are modeled by the
acoustic wave equation. It can be solved by standard numerical methods such as, e.g.,
the finite element (FE) or the finite difference method. However, if the wave propagation
speed varies on a microscopic length scale denoted by ε, the computational cost becomes
infeasible, since the medium must be resolved down to its finest scale. In this thesis
we propose multiscale numerical methods which approximate the overall macroscopic
behavior of the wave propagation with a substantially lower computational effort. We
follow the design principles of the heterogeneous multiscale method (HMM), introduced
in 2003 by E and Engquist. This method relies on a coarse discretization of an a priori
unknown effective equation. The missing data, usually the parameters of the effective
equation, are estimated on demand by solving microscale problems on small sampling
domains. Hence, no precomputation of these effective parameters is needed. We choose
FE methods to solve both the macroscopic and the microscopic problems.

For limited time the overall behavior of the wave is well described by the homoge-
nized wave equation. We prove that the FE-HMM method converges to the solution of
the homogenized wave equation. With increasing time, however, the true solution devi-
ates from the classical homogenization limit, as a large secondary wave train develops.
Neither the homogenized solution, nor the FE-HMM capture these dispersive effects. To
capture them we need to modify the FE-HMM. Inspired by higher order homogenization
techniques we additionally compute a correction term of order ε2. Since its computation
also relies on the solution of the same microscale problems as the original FE-HMM, the
computational effort remains essentially unchanged. For this modified version we also
prove convergence to the homogenized wave equation, but in contrast to the original
FE-HMM the long-time dispersive behavior is recovered.

The convergence proofs for the FE-HMM follow from new Strang-type results for
the wave equation. The results are general enough such that the FE-HMM with and
without the long-time correction fits into the setting, even if numerical quadrature is
used to evaluate the arising L2 inner product.

In addition to these results we give alternative formulations of the FE-HMM, where
the elliptic micro problems are replaced by hyperbolic ones. All the results are supported
by numerical tests. The versatility of the method is demonstrated by various numerical
examples.
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tensor at T = 1, 2, and 3 with a sketch of the highly oscillatory tensor aε on
the bottom. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.7 Cross section, i.e., fixed second component x2, of the tensor aε through the
material. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.8 Two-dimensional example. Two snapshots of the FE-HMM solution uH (left)
and the homogenized solution u0 (right) at T = 0.1 and T = 0.25. . . . . . . 58

5.9 The computational domain Ω for the waveguide example. . . . . . . . . . . . 58

xi



xii List of Figures

5.10 Waveguide example. Three snapshots of the FE-HMM solution uH (left) and
the homogenized solution u0 (right) at T = 1, 2, 3. . . . . . . . . . . . . . . . 59

5.11 Computational domain with subdomains and receiver (red cross) at (1,−0.5)
(left), sample triangulation respecting inner interfaces (right) . . . . . . . . . 60

5.12 Rock layer example. Three snapshot of FE-HMM solution uH (left), the
homogenized solution u0 (middle), and the solution ū computed with an
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One

Introduction

Wave phenomena are ubiquitous in science and engi-
neering. From the obvious and long-standing appli-
cations in hydrodynamics, through seismics, acoustic
noise propagation and radio wave propagation, waves
underlie many important scientific and engineering ar-
eas.

Jan S. Hesthaven, Houssem Haddar, [51]

There is a growing need to develop systematic modeling
and simulation approaches for multiscale problems.

Russel E. Caflisch, [18]

Many natural and artificial materials are heterogeneous. Often their properties, such
as bulk modulus, thermal conductivity, and wave propagation speed vary within the do-
main. If these variations occur on a microscopic scale, they cause serious computational
challenges when simulating physical phenomena in those materials. They are known
as composite materials and consist of at least two finely mixed components. Typical
examples are concrete, a mixture of tiny stones and cement or fiber-reinforced plastic,
consisting of carbon, glass, or other fibers in a polymeric surrounding material, called
the matrix. Within this mixture the components are not dissolved into each other, but
are combined such that one can distinguish them at a microscopic level. Even if we are
only interested in the overall behavior of a physical process on a larger, macroscopic
scale we can not simply neglect the microscopic structure of the underlying material.
On the contrary, using classical numerical methods such as the finite difference (FD) or
the finite element (FE) method one needs to resolve the medium down to its finest scale
to obtain satisfactory simulation results. However, the full resolution of a problem is
often very costly or even not feasible due to CPU or memory restrictions.

1
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1.1 Homogenization theory

Although composites consist of materials with different properties, at the macro-
scopic level they behave like a homogeneous material, if the mixture is fine enough.
The so-called effective or homogenized material displays properties differing from the
properties of the original components. Homogenization theory describes this process
mathematically. Its goal is to describe the macroscopic behavior of solutions of mul-
tiscale problems. Let us consider the following general multiscale problem: Find the
solution uε in an appropriate function space such that

Lε(uε) = 0. (1.1)

Here, Lε is a multiscale operator reflecting material variations on a microscale of typical
length ε. The parameter ε can be seen as a measure of the fineness of the mixture in the
composite material. For composite materials the multiscale structure of the operator Lε

is caused by the microscale nature of the material. We denote this by Lε(·) = Lε(·, dε),
where dε are given microscale data on which the multiscale operator depends.

We assume that the multiscale problem (1.1) is well-posed and has a unique solution
uε for every ε > 0. Homogenization theory answers the question, does the sequence of
solutions uε converges if ε→ 0 and if so, is there an effective or homogenized equation

Leff(ueff) = 0

such that its solution ueff is the limit of the uε, possibly in a weak sense. Often the
answer is positive.

Remark. Because uε → ueff as ε→ 0, the effective solution is commonly denoted by u0

and the corresponding effective operator by L0. We reserve the superscript 0 for the
classical homogenization limit. To study long-time wave propagation, however, we will
use a different effective model; therefore, we prefer the superscript “eff” here.

The effective equation typically has the following form: Find ueff such that

Leff(ueff, deff) = 0,

where the homogenized data deff can be computed analytically only in exceptional cases,
but the structure of Leff is known. For a better understanding consider, e.g, heat conduc-
tion in a material with highly oscillatory thermal conductivity kε. The heat distribution
in the heterogeneous material is modeled by the heat equation. The overall distribution
can be well described by the homogenization limit of this problem. It turns out that the
homogenized equation is again a heat equation. Nevertheless the homogenized thermal
conductivity k0 needed for a complete description can only be computed analytically in
some special cases, e.g., if kε is ε-periodic. We will see later in the thesis that we are
in the same situation for the wave equation with highly oscillatory propagation speed.
Again the limit equation stays of the same type as the original multiscale problem. Thus
we know its structure, but the homogenized wave speed can only rarely be computed
analytically, too.
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1.2 Heterogeneous multiscale methods

The heterogeneous multiscale method (HMM) introduced in [30] provides a frame-
work for the design of multiscale algorithms for problems given in the general setting
of the previous section. We now describe its main idea. Further details about HMM
can be found in the review articles [4, 31]. Specific details for particular cases are given
throughout the thesis. The goal of HMM is to approximate the effective behavior of
the solution of a multiscale problem without fully resolving the whole computational
domain. HMM follows a top-down approach, beginning with the effective equation.

Assuming that we know the structure of the effective equation, we first choose a
numerical method to discretize it. The method chosen is called the macro solver and its
discretization parameter, e.g., the mesh size, is denoted by H. The discretized effective
equation is written as

Leff
H (ueff

H , d
eff) = 0. (1.2)

Note that this equation is incomplete since we do not know deff. Every time we need
it for the evaluation of the macro solver, we estimate these missing data by solving a
micro problem

Lmic(umic, dmic) = 0.

The micro problem is often identical with the original multiscale problem (1.1), yet this
is not necessary. The purpose of the micro problem is to estimate the missing data in
(1.2). Note that we do not precompute deff everywhere, but we compute it on demand. In
addition the micro problem is constrained by dmic to be consistent with the macroscopic
solution. These constraints are often realized by special initial or boundary conditions.
To solve the micro problem we need to apply another numerical method which we call
the micro solver. We denote the discretization parameter of the micro solver by h and
consider the micro problem

Lmic
h (umic

h , dmic) = 0.

From the numerical solution umic
h we estimate the missing data. This is often done by

an averaging process. Replacing deff with the estimate data dest we finally get our HMM
scheme LH :

LH(uH) = Leff
H (uH , d

est) = 0.

In Figure 1.1 the concept of the HMM framework is shown schematically.
The HMM scheme is computationally affordable since it does not resolve the whole

computational domain with the micro mesh size h. Only some small sampling domains
needed to estimate the missing data are fully resolved. The macroscopic discretization
can be much coarser and does not need to resolve the fine scale structure of the medium,
i.e., H � ε is allowed. The goal of this thesis is to develop and analyze HMM schemes
for the wave equation. In particular we are looking for FE heterogeneous multiscale
methods (FE-HMM), where both the macro and the micro problem are solved with FE
methods.
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macro: Leff(ueff, deff) = 0 Leff
H (ueff

H , d
eff) = 0

discr.
Leff
H (uH , d

est) = 0

data
estimation

micro: Lmic(umic, dmic) = 0 Lmic
h (umic

h , dmic) = 0
discr.

d
m

ic
=
d

m
ic (u

eff
) d est

=
d est

(u m
ich

)

Figure 1.1: Schematics of the HMM.

1.3 Numerical methods for waves in multiscale materials

We consider the acoustic wave equation

∂ttu(t;x)−∇ · (a(x)∇u(t;x)) = f(t;x) in Ω× (0, T ), (1.3)

where Ω denotes a bounded open set in Rd, T > 0 the final time, and a(x) is the
squared wave propagation field. For a well-posedness of the system, appropriate initial
and boundary conditions must be specified as well. We postpone a more detailed math-
ematical introduction to Section 2.2. If the material the wave is propagating through
is highly oscillatory, we denote this by replacing a(x) with aε(x). Only the propagation
speed may vary on the microscale. The source f and the initial and boundary conditions
depend only on the macroscale.

In the following we give an overview of multiscale methods developed to simulate wave
propagation in highly heterogeneous media. Here we do not discuss purely analytical
approaches where effective equations are developed. Because these effective models are
the starting point of an HMM scheme, they will be discussed in more detail in Chapter
4.

While there are many multiscale methods for elliptic and parabolic problems, only
a few of them are designed for the acoustic wave equation (1.3). The method most
similar to the one presented in this thesis is the FD-HMM scheme proposed in [35, 37].
Although both methods follow the general HMM approach described in Section 1.2,
they differ essentially in the following aspects: On the first approach finite differences
are used to solve the macro and the micro problem, whereas we use finite elements. Since
the macroscopic solvers are not the same, different effective data must be estimated: an
effective flux for FD-HMM and an effective bilinear form for FE-HMM. For the FD-HMM
this estimation relies on the numerical solution of a wave equation in a small space-time
sampling domain as contrasted with the elliptic micro problem of FE-HMM. In Section
5.5 we give alternative formulations of the standard FE-HMM which are more similar
to the FD-HMM scheme. In [36, 39] the FD-HMM was modified slightly such that it is
able to capture long-time dispersive effects of wave propagation. The modifications are
described in Section 6.4.
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In the following we give an overview of multiscale methods beyond HMM: In [56] the
multiscale finite element method (MsFEM) was used to solve the acoustic wave equa-
tion with continuum spatial scales. MsFEM relies on the computation of multiscale basis
functions. See, e.g., the monograph [33] for further details. In [66] another FE method
relying on global change of variables is proposed. This techniques has been used to solve
elliptic and parabolic multiscale problems in [64, 65]. The approach is general since it
does not assume any scale separation of the medium and can be applied to strongly non-
local media. However, the computation of the change of coordinates is rather challenging
and computationally intensive. The computation of the coarse scale models requires the
solution of fully resolved problems throughout the whole computation domain. Similar
in this aspect are the methods presented in [58, 71, 72]. These operator based upscaling
methods calculate effective media property. Because of the full resolution, the computa-
tional cost scales at a comparable rate to any fully resolved standard FD or FE method.
The computational gain lies in the possibility that these computations can be made in
parallel. Based on an asymptotic expansion, a numerical method for the acoustic wave
equation with rapidly oscillating coefficients was proposed in [27]. Yet it assumes not
only periodicity, but also internal symmetry in the periodic cells.

1.4 Outline of the thesis

The thesis is divided into three parts. In the first preliminary part we introduce
the accurate function spaces for the wave equation. Afterwards we consider, on one
hand, wave propagation, but without exploiting the multiscale nature of the medium.
On the other hand, we then consider elliptic problems in highly oscillating media. First,
in Chapter 2, we recall well-known analytical results, which we will use later on. The
numerical methods on which the FE-HMM is based, i.e., FEM for the wave equation and
HMM, are introduced in Chapter 3. In Section 3.1 we prove an a priori error estimate,
which we apply to show convergence results for the FE-HMM schemes proposed in the
following part.

In the second part we combine these topics and consider wave propagation in highly
oscillatory media. In Chapter 4 we recall first the result from homogenization theory
for the wave equation. We consider both the finite-time and the long-time regime and
show the differences between them. In Chapter 5 we propose an FE-HMM scheme for
the wave equation, show convergence results and give various numerical examples. We
conclude this chapter by proposing two alternative formulations of the FE-HMM and
comment on the implementation that we used for the numerical examples. The following
Chapter 6 is structured similarly, but here we consider longer times, where dispersive
effects develop unexpectedly.

In the last and short part we summarize our results, draw conclusions, and give an
outlook on further research.
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1.5 Notation

We introduce here the notation that we use throughout this thesis.
Let the computational spatial domain Ω ⊂ Rd be an open bounded set in the d-

dimensional real Euclidean space, where d ∈ {1, 2, 3}. For a domain O ⊂ Ω, |O| denotes
the measure of O. The time domain is given by (0, T ) with T > 0. The l2 scalar product
of x, y ∈ Rd is given by x ·y =

∑d
i=1 xiyi and |x| denotes the Euclidean norm of x. Hence

we have |x|2 = x · x for all x ∈ Rd.
For a function

f :

{
(0, T )× Ω→ R,

(t, x) 7→ f(t;x),

we mean by writing f(t) : Ω → R the function given by (f(t))(x) = f(t;x). If f(t)
belongs to a certain function space X, the function f can be identified with a function
from (0, T ) to X. For more information on Banach space valued functions, see Section
2.1.

Partial derivatives with respect to time are written as ∂
∂t ,

∂2

∂t2
, and ∂k

∂tk
or more briefly

as ∂t, ∂tt and ∂kt , respectively. Partial derivatives with respect to spatial variables are
denoted accordingly. Moreover we use ∇ = (∂x1 , . . . , ∂xd)

T to abbreviate the gradient of
a scalar-valued function and the divergence of a vector-valued function by the suggestive
notation ∇f and ∇ · g, respectively. The Jacobian of a function

g :

Rd → Rd,

x 7→
(
g1(x), . . . , gd(x)

)T
,

is given by

(Dg)ij = ∂xjg
i.

Thus for a scalar-valued function f , we have Df = (∇f)T . We want to emphasize that
∇ and D are taken with respect to the spatial variable only.

The function spaces Lp(Ω) and W k,p(Ω) denote the standard Lebesque and Sobolev
spaces. For p = 2 we use the notation Hk(Ω) and Hk

0 (Ω) as usual. The associated
norm are written as ‖·‖Lp(Ω), ‖·‖Wk,p(Ω) and ‖·‖Hk(Ω), respectively, where the explicit
indication of the domain may be dropped, if no confusion can occur. If Ω is cuboidal, we
denote the subspace of H1 consisting of functions with Ω-periodic trace and vanishing
mean value by

H1
per(Ω) = {v ∈W 1,2

per(Ω);

∫
Ω
v dx = 0},

where W 1,2
per(Ω) is defined as the closure of C∞per(Ω), the subset of Ω-periodic functions

of C∞(Ω), with respect to the W 1,2 norm. In addition to standard Sobolev norms, we
introduce the broken Sobolev norm. Let TH be a partition of Ω into disjoint elements
K, as in Section 3.1. Provided that v : Ω → R is such that ‖v‖H`(K) is finite for all



1.5. NOTATION 7

K ∈ TH , the broken Sobolev norm is given by

‖v‖H̄`(Ω) =

 ∑
K∈TH

‖v‖2H`(K)

 1
2

.

Note that if v ∈ H`(Ω) the identity ‖v‖H̄` = ‖v‖H` holds.
The constant C > 0 is generic and not necessarily the same at any two occurrences.





Part I

Preliminaries

9





Two

Analytical background

In this chapter we summarize important analytical propositions and theorems with-
out giving detailed proofs. They can be found in the referenced literature. We first
introduce the accurate function spaces for time dependent functions and recall the exis-
tence and uniqueness theorems for the wave equation. Then we provide a short overview
of the homogenization theory for elliptic equations.

2.1 Banach space valued functions

In this section we follow [41, Section 5.9.2]. Let X be a Banach space with norm
‖·‖X . The Bochner space Lp(0, T ;X), 1 ≤ p ≤ ∞, consists of measurable functions
v : [0, T ]→ X such that

‖v‖Lp(0,T ;X) =


(∫

Ω
‖v(t)‖pX dx

) 1
p

for 1 ≤ p <∞,

ess sup
t∈[0,T ]

‖v(t)‖X for p =∞

is finite. It is well known that with this norm Lp(0, T ;X) is a Banach space.
The set of all continuous functions v : [0, T ]→ X satisfying

‖v‖C(0,T ;X) = max
t∈[0,T ]

‖v(t)‖X ≤ ∞

is denoted by C(0, T ;X).

Theorem 2.1 (see [41, Section 5.9.2, Theorem 2]). Let X be a Banach space. After a
possible modification on a set of measure zero, the following inclusion holds:

W 1,p(0, T ;X) = {v|v ∈ Lp(0, T ;X), ∂tv ∈ Lp(0, T ;X)} ⊂ C(0, T ;X)

for all 1 ≤ p ≤ ∞, where ∂tv is the weak derivative with respect to time. Moreover, there
is a constant C > 0 such that

‖v‖C(0,T ;X) ≤ C
(
‖v‖Lp(0,T ;X) + ‖∂tv‖Lp(0,T ;X)

)
11
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for all v ∈W 1,p(0, T ;X).

We will use this theorem to bound v(t), where v ∈ W 1,p(0, T ;X) and t ∈ [0, T ]. We
have

‖v(t)‖X ≤ ‖v‖C(0,T ;X) ≤ C
(
‖v‖Lp(0,T ;X) + ‖∂tv‖Lp(0,T ;X)

)
.

2.2 Wave equation

We consider the linear wave equation, which is a typical example for second order
hyperbolic partial differential equations. There are various physical areas where the
wave equation arises. The most prominent examples are acoustics, electromagnetism,
and elasticity theory. In this section, we summarize classical existence, uniqueness, and
regularity results for the wave equation. The results presented here are general, since
no special assumption on the medium is needed.

A weak solution of the wave equation (1.3) is a solution of the following variational
problem: Find u : [0, T ]→ H1

0 (Ω) such that
(∂ttu(t), v) +B(u(t), v) = (f(t), v) for all v ∈ H1

0 (Ω), 0 ≤ t ≤ T,
u(0) = uI in Ω,

∂tu(0) = vI in Ω,

(2.1)

where (·, ·) denotes the standard L2 scalar product. The bilinear form B is given by

B(v, w) =

∫
Ω
a(x)∇v · ∇w dx,

where a(x) is symmetric, uniformly elliptic, and bounded. Note that due to the symme-
try of a, the bilinear form B is symmetric, too. To be more precise we introduce a set of
admissible matrix-valued functionsM(λ,Λ) and assume from now on that a ∈M(λ,Λ).

Definition 2.2. Let 0 < λ ≤ Λ and d ∈ N. The set M(λ,Λ) consists of all a(x) ∈
(L∞(Ω))d×d such that for all ξ ∈ Rd and for almost every x ∈ Ω

λ |ξ|2 ≤ a(x)ξ · ξ
and

|a(x)ξ| ≤ Λ |ξ| . (2.2)

Remark. There are (at least) two alternative definitions of M(λ,Λ) available in the
literature (see, e.g., [22, 62]), where the boundedness, i.e. (2.2), is replaced by either

a(x)ξ · ξ ≤ Λ |ξ|2 or a−1(x)ξ · ξ ≥ L |ξ|2 .

It can be shown that these definitions are equivalent, but only if a(x) is symmetric,
which we always assume.
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The given functions f , uI , and vI describe the source term and the initial conditions,
respectively. We always assume that the standard assumptions

f ∈ L2(0, T ;L2(Ω)), (2.3)

uI ∈ H1
0 (Ω), (2.4)

vI ∈ L2(Ω), (2.5)

hold.
From [61, Chap. 3, Theorems 8.1 and 8.2] we have the following existence and unique-

ness theorem.

Theorem 2.3. Let Ω ⊂ Rd, and a(x) ∈ M(λ,Λ). Given the assumptions (2.3)–(2.5),
the wave equation (2.1) has a unique weak solution u ∈ L2(0, T ;H1

0 (Ω)) with ∂tu ∈
L2(0, T ;L2(Ω)). The solution is actually more regular. After a possible modification on
a set of measure zero, we have

u ∈ C(0, T ;H1
0 (Ω)) and ∂tu ∈ C(0, T ;L2(Ω)).

Properties of the wave equation

In the following we highlight two characteristic properties of the wave equation. The
first property is the conservation of energy. Assume that f ≡ 0 and let u(t) be the weak
solution of the wave equation. Choosing formally v = ∂tu(t) in (2.1) we find

(∂ttu, ∂tu) +B(u, ∂tu) =
1

2

d

dt

(
‖∂tu‖2L2(Ω) +B(u, u)

)
= 0,

where we used that B is symmetric. Hence, the energy defined by

E(t) =
1

2

(
‖∂tu(t)‖2L2(Ω) +B(u(t), u(t))

)
(2.6)

is constant. Knowing the initial conditions we can compute

E(t) = E(0) =
1

2

(
‖vI‖2L2(Ω) +B(uI , uI)

)
.

For a rigorous proof we refer to [61, Chapter 3, Section 8].
The second property of the wave equation is the finite speed of disturbances. We

consider first the one-dimensional wave equation in R in a homogeneous medium, i.e.,
a(x) = c20 for all x ∈ R. Here this property is immediately comprehensible. For the
ease of presentation we assume here that uI and vI are smooth. Then the solution of{

∂ttu(t;x)− c2∂xxu(t;x) = 0 in (0, T )× R,
u(0) = uI and ∂tu(0) = vI in Ω,
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with c > 0 is given by d’ Alembert’s formula

u(t;x) =
1

2
(uI(x+ ct) + uI(x− ct)) +

1

2c

∫ x+ct

x−ct
vI(ξ) dξ. (2.7)

From this formula we can conclude that u(t;x) only depends on the values of uI and vI
in the interval [x − ct, x + ct]; or vice versa, that the initial data at x0 only influence
values in the cone {(x, t);x0−ct ≤ x ≤ x0 +ct}. These considerations can be generalized
to the multidimensional, non-homogeneous case. For the wave equation (2.1) with a ∈
M(λ,Λ), we have that the initial data at x0 do not influence u(t;x), if x 6∈ x0 +
[−
√

Λt,
√

Λt]d. In other words, information travels with a speed less than
√

Λ. Note
that these are not sharp bounds. A precise statement can be found in [41, Section
7.2.4].

2.3 Homogenization for elliptic problems

Here we recall some classical results from homogenization theory for the most fun-
damental case, which is the homogenization of a second order elliptic partial differential
equation. Further results and details can be found, e.g., in the monographs [13, 22, 57].
Homogenization of the wave equation is described in more detail in Chapter 4.

We consider {
−∇ · (aε(x)∇vε(x)) = g(x) in Ω,

vε(x) = 0 on ∂Ω,
(2.8)

with g ∈ H−1(Ω). The tensor aε describes the characteristics of the medium, varying
on a length scale ε > 0, where ε is much smaller than the diameter of Ω. Assuming that
aε ∈ M(λ,Λ) for all ε, problem (2.8) has a unique solution vε for every ε. We consider
now the sequence (vε)ε of these solutions, which is uniformly bounded since λ and Λ
do not depend on ε. Hence there is a subsequence, still denoted by (vε)ε, that weakly
converges to v0 as ε tends to zero. To examine the limit function, we are looking for an
equation such that its solution equals v0. We name this equation the homogenized or
effective equation, and accordingly v0 is called the homogenized or effective solution.

H-convergence

The existence of a homogenized equation can be studied using the notion of H-
convergence, introduced in [62].

Definition 2.4 (see [22, Definition 13.3]). A sequence of matrix-valued functions (aε)ε,
satisfying aε ∈M(λ,Λ) for all ε, H-converges to a0 ∈M(λ′,Λ′), if for any g ∈ H−1(Ω),
the solution vε of the elliptic problem (2.8) is such that

vε ⇀ v0 weakly in H1
0 (Ω) and aε∇vε ⇀ a0∇v0 weakly in (L2(Ω))d,

where v0 is the unique weak solution of the homogenized problem{
−∇ ·

(
a0(x)∇v0(x)

)
= g(x) in Ω,

v0(x) = 0 on ∂Ω.
(2.9)
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Remark. It is well known, that every sequence (aε)ε ⊂ M(λ,Λ) has an H-converging
subsequence. If additionally aε is symmetric it can be shown that the H-limit a0 ∈
M(λ,Λ) is symmetric, too. In this case H-convergence coincides with G-convergence
introduced in [70].

Note that in general there are no formulas to compute the limit a0 of an H-converging
sequence explicitly. By contrast such formulas are available for periodic materials.

Periodic material

Here we restrict ourselves to symmetric, ε-periodic tensors aε. Let Y = [−1/2, 1/2]d

be the d-dimensional centered unit cube and a : Rd → R be a Y -periodic function in
M(λ,Λ). We set

aε(x) = a
(x
ε

)
for all x ∈ Ω. (2.10)

Note that aε ∈ M(λ,Λ) is εY -periodic. In this particular setting, preciser statements
are available. Often they can be justified by a (formal) asymptotic expansion, where
the macroscale and the microscale are separated; see [13]. Additional techniques such as
the notion of two-scale convergence [10, 63] provide a broader access to understand ho-
mogenization in periodic materials. Following [22] we summarize the results for periodic
homogenization.

Theorem 2.5. Let g ∈ H−1(Ω), a ∈ M(λ,Λ) be Y -periodic, aε be given as in (2.10),
and vε be the solution of (2.8).Then

vε ⇀ v0 weakly in H1
0 (Ω) and aε∇vε ⇀ a0∇v0 weakly in (L2(Ω))d,

where v0 ∈ H1
0 (Ω) is the weak solution of the homogenized problem (2.9) with the constant

matrix a0 given by

a0
r,s =

∫
Y

(
ar,s(y) +

d∑
k=1

ar,s(y)
∂ψ̂s

∂yk

)
dy. (2.11)

Here ψ̂s is the unique solution of the following cell problem: Find ψ̂s ∈ H1
per(Y ) such

that ∫
Y
a(y)∇ψ̂s · ∇z dy = −

∫
Y
a(y)es · z dy for all z ∈ H1

per(Y ), (2.12)

where es is the s-th canonical basic vector.

The first statement in this theorem guarantees that the whole sequence (vε)ε H-
converges. The second one provides a formula to compute the homogenized tensor a0

analytically. We will rewrite (2.11) into a closed matrix formulation. The homogenized
tensor is equivalently given by

a0 =

∫
Y
a(y)

(
Id+DT ψ̂(y)

)
dy, (2.13)

where ψ̂ = (ψ̂1, . . . , ψ̂d)T and Id is the identity matrix.
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In one dimension, i.e., d = 1 and Y = [−1/2, 1/2], the homogenized tensor a0 can be
computed explicitly. In this case we have (see, e.g., [22, Section 5.3])

a0 =

(∫ 1
2

− 1
2

1

a(y)
dy

)−1

. (2.14)

Moreover, there are explicit formulas for a layered material in two dimensions. By
layered we mean that a(x) only depends on the first component of x = (x1, x2)T , i.e.,
a(x) = a(x1). In this case we have (see, e.g., [22, Section 5.4])

a0 =

(
a0

1,1 a0
1,2

a0
2,1 a0

2,2

)
, (2.15)

with

a0
1,1 =

(∫ 1
2

− 1
2

1

a1,1
dy1

)−1

,

a0
1,2 = a0

1,1

∫ 1
2

− 1
2

(
a1,2

a1,1

)
dy1,

a0
2,1 = a0

1,1

∫ 1
2

− 1
2

(
a2,1

a1,1

)
dy1,

a0
2,2 =

a0
1,2a

0
2,1

a0
1,1

+

∫ 1
2

− 1
2

a2,2 −
a1,2a2,1

a1,1
dy1.

Remark. All formulas in this subsection can be generalized to media not only oscillating
periodically in the microscale, but also depending on the macroscale, i.e.,

aε(x) = a
(
x,
x

ε

)
,

where a : Ω × Rd → Rd×d is Y -periodic in the second variable. Contrary to the purely
periodic case, it is now no longer sufficient to solve only a single cell problem. Due to
the variation in the macroscale, a cell problem must now be solved for every x ∈ Ω.



Three

Fundamentals from numerical analysis

The method developed in this thesis to simulate wave propagation through a highly
heterogeneous medium is based on two numerical methods. On the one hand we use the
well-known finite element method and on the other hand the heterogeneous multiscale
method introduced in [30]. The latter should rather be seen as methodology or frame-
work to develop multiscale algorithms than as a method itself. The algorithms following
the design principles of HMM consist of two different solvers to tackle the macroscale
and the microscale problems as described in the introduction of this thesis. We prefer
for both scales to use FEM, because of its flexibility when applied to various geometries
and of its rigorous analytical foundation. In this chapter we introduce both methods,
FEM and HMM.

3.1 FEM for the wave equation

The use of finite elements to solve the wave equation (2.1) numerically can be consid-
ered as well established. The method consists of two steps: First, a Galerkin projection
onto a finite dimensional space leads to a system of ordinary differential equations that is
solved numerically in the second step, using a time stepping scheme. In addition to the
introduction of the method itself, we prove a new error estimate in an abstract setting.

Space discretization

We consider a regular partition TH of Ω into simplicial or quadrilateral elements K,
where H = maxK∈TH HK and HK denotes the diameter of K. By regular we mean that
there is a constant σ such that HK/ρK ≤ σ for all K ∈ TH , where ρK is the diameter of
the largest circle contained in K. Additionally we assume that all elements in TH are
affine equivalent to a reference element K̂. The associated affine mapping is denoted by
FK : K̂ → K. For the ease of presentation, we restrict ourself to a polygonal domain Ω,
which is covered exactly by the partition TH .

17
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For ` > 1 let S`BC(Ω, TH) be the finite element space defined by

S`BC(Ω, TH) =
{
vH ∈ H1

BC(Ω); vH |K ∈ R`(K) ∀K ∈ TH
}
,

where BC encodes the boundary condition and R`(K) is the space P`(K) of polynomial
on K of total degree at most ` for simplicial elements or the space Q`(K) of polynomials
on K of degree at most ` in each variable for rectangular elements. In this thesis
we consider a homogeneous Dirichlet boundary condition, denoted by BC = 0, and a
periodic boundary condition, denoted by BC = per.

The time-continuous finite element approximation of the wave equation (2.1) is given
by the following: Find uH : [0, T ]→ S`0(Ω, TH) such that

(∂ttuH , vH) +B(uH , vH) = (f, vH) for all vH ∈ S`0(Ω, TH), 0 ≤ t ≤ T,
uH(0) = IH(uI) in Ω,

∂tuH(0) = IH(vI) in Ω,

(3.1)

with a suitable interpolation operator IH : H1
0 (Ω) → S`0(Ω, TH); see (3.13) for further

details.
Let N be the dimension of S`0(Ω, TH) and {φ1, . . . , φN} be the standard finite element

basis. Then uH can be written as

uH(t) =
N∑
j=1

uHj(t)φj ,

with time dependent coefficients uHj . The problem (3.1) is equivalent to
∂ttMUH(t) +AUH(t) = F (t) for all 0 ≤ t ≤ T,

UH(0) = IH(uI) in Ω,

∂tUH(0) = IH(vI) in Ω,

(3.2)

where UH = (uH1, . . . , uHN )T . The mass matrix M , the stiffness matrix A, and the
load vector F are given by

Mi,j = (φj , φi), Ai,j = B(φj , φi), Fi = (f, φi),

for i, j = 1, . . . , N .

Remark. Provided that uH is sufficiently smooth, we can test (3.1) with ∂tuH , which
yields for f = 0 that the energy defined in (2.6) with u replaced by uH is still conserved.
Using the mass and the stiffness matrix we can rewrite this energy as

E(t) = M∂tUH(t) · ∂tUH(t) +AUH(t) · UH(t).

The proof relies on the symmetry of M and A, which is obviously given, since (· , ·) and
B are both symmetric.
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To achieve a discrete scheme in space, the integrals are computed numerically. There-
fore, let (x̂j , ω̂j) for j = 1, . . . , J be a quadrature formula on the reference element K̂
given by its integration nodes and its corresponding weights. By setting

xK,j = FK(x̂j) and ωK,j = ω̂j det(DFK) (3.3)

for all j, we get a quadrature formula for every K ∈ TH and by summation a quadrature
formula for the whole computational domain.

The FEM with numerical integration is given by
(∂ttuH , vH)QF +BQF(uH , vH) = (f, vH) for all vH ∈ S`0(Ω, TH), 0 ≤ t ≤ T,

u(0) = IH(uI) in Ω,

∂tu(0) = IH(vI) in Ω,

where

BQF(vH , wH) =
∑
K∈TH

J∑
j=1

ωK,ja(xK,j)∇vH(xK,j) · ∇wH(xK,j)

and

(vH , wH)QF =
∑
K∈TH

J∑
j=1

ωK,jvH(xK,j)wH(xK,j)

for all vH , wH ∈ S`0(Ω, TH).

Remark. Note that there is no need to use the same quadrature formula to approxi-
mate both the L2 inner product and the bilinear form. On the contrary, sometimes it
is advantageous to use different quadrature formulas, as we will see later and as was
mentioned in [67]. Additionally we could use a third quadrature formula to approximate
the right-hand side. For the ease of presentation we assume that the right-hand side is
computed exactly. At the end of the next section we briefly comment on the changes
needed in the general setting to cover this case, too.

General error analysis

The first a priori error estimates can be traced back to the 1970s [11, 29]. In [12]
error estimates for (3.1) taking into account numerical integration were derived. Using
a quadrature formula to evaluate both the bilinear form B and the L2 scalar product,
the method is no longer conforming in the sense of [20]. For nonconforming FE methods
Strang-type lemmas are essential; see [20, Chapter 4]. The first Strang lemma [20,
Section 4.1, Theorem 4.1.1], on which the analysis of the finite element method with
numerical quadrature for elliptic problems relies, can be seen as a generalization of
Céa’s lemma. In [5] a Strang-type lemma for the wave equation was derived. In [6] an
improved version for the setting of FE-HMM-L, the finite element HMM scheme for long
time wave propagation described in Chapter 6 was used. The theorems presented below
can be seen as similar results, in a more general setting. We consider the solution ũ of
the wave equation (2.1), where B is replaced by any symmetric, coercive, and bounded
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bilinear form B̃. Its approximation is computed with a finite element method which is
nonconforming, since not only a Galerkin projection is used but in addition the bilinear
form is altered. Moreover, we assume that the L2 inner product is not computed exactly,
but only approximately.

Let ũ : [0, T ]→ H1
0 (Ω) and ũH : [0, T ]→ S`0(Ω, TH) be the unique solutions of

(∂ttũ, v) + B̃(ũ, v) = (f, v) for all v ∈ H1
0 (Ω), 0 ≤ t ≤ T,

ũ(0) = uI in Ω,

∂tũ(0) = vI in Ω,

(3.4)

and
{∂ttũH , vH}+ B̃H(ũH , vH) = (f, vH) for all vH ∈ S`0(Ω, TH), 0 ≤ t ≤ T,

ũ(0) = IH(uI) in Ω,

∂tũ(0) = IH(vI) in Ω,

(3.5)

where (· , ·) is the standard L2 inner product and {· , ·} is a possibly different inner
product, which is symmetric and coercive, which means, that there is a C such that

‖vH‖2L2 ≤ C{vH , vH}. (3.6)

Moreover, there is an α independent of H such that

|{vH , wH}| ≤ C ‖vH‖L2 ‖wH‖L2 + α ‖∇vH‖L2 ‖∇wH‖L2 (3.7)

and
|(vH , wH)− {vH , wH}| ≤CH`+µ ‖vH‖H̄`+µ ‖wH‖H̄1+µ

+ α ‖∇vH‖L2 ‖∇wH‖L2

(3.8)

for all vH , wH ∈ S`0(Ω, TH). We use this assumption either for µ = 0 or µ = 1.
We assume that both bilinear forms B̃ and B̃H are symmetric, elliptic, and bounded,

i.e., there are 0 < γ ≤ Γ such that

γ ‖v‖2H1 ≤ B̃(v, v),
∣∣∣B̃(v, w)

∣∣∣ ≤ Γ ‖v‖H1 ‖w‖H1 , (3.9)

γ ‖vH‖2H1 ≤ B̃H(vH , vH),
∣∣∣B̃H(vH , wH)

∣∣∣ ≤ Γ ‖vH‖H1 ‖wH‖H1 . (3.10)

Furthermore, the difference between the bilinear forms can be bounded as∣∣∣B̃(vH , wH)− B̃H(vH , wH)
∣∣∣ ≤ CH`+µ ‖vH‖H̄`+µ ‖wH‖H̄1+µ

+ β ‖∇vH‖L2 ‖∇wH‖L2

(3.11)

and ∣∣∣B̃(vH , wH)− B̃H(vH , wH)
∣∣∣ ≤ CH ‖vH‖H1 ‖wH‖H1

+ β ‖∇vH‖L2 ‖∇wH‖L2 .
(3.12)
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In addition, we assume that for any integer k with 2 ≤ k ≤ ` + 1, there is a linear
interpolation operator IH : Hk(Ω) ∩H1

0 (Ω)→ S`0(Ω, TH) such that

‖IHv − v‖H̄m ≤ CHk−m ‖v‖Hk for all v ∈ Hk(Ω) ∩H1
0 (Ω) (3.13)

and for all 0 ≤ m ≤ k. Note that for m = k we have for all v ∈ Hk(Ω)

‖IHv‖H̄k ≤ ‖IHv − v‖H̄k + ‖v‖H̄k ≤ C ‖v‖Hk ,

which shows the boundedness of IH .
Using these assumptions we can now state the two main results of this chapter.

Theorem 3.1. Let H ≤ H0 and ũ and ũH be the unique solutions of (3.4) and (3.5),
respectively. Suppose that the inner product {· , ·} satisfies (3.6)–(3.8) and the two bilin-
ear forms satisfy (3.9)–(3.12) for µ = 0. Provided that there is an interpolation operator
IH satisfying (3.13) and that

∂kt ũ ∈ L2(0, T ;H`+1(Ω)), ∂2+k
t ũ ∈ L2(0, T ;H`(Ω)) for k = 0, 1, 2,

uI ∈ H`+1(Ω), vI ∈ H ˜̀
(Ω) with ˜̀= max{`, 2},

and ∂tuH ∈ L2(0, T ;H1(Ω)), then

‖∂t(ũ− ũH)‖L∞(0,T ;L2(Ω)) + ‖ũ− ũH‖L∞(0,T ;H1(Ω)) ≤ C
(
H` + α+ β

)
.

Theorem 3.2. Let H ≤ H0 and ũ and ũH be the unique solutions of (3.4) and (3.5),
respectively. Suppose that the inner product {· , ·} satisfies (3.6)–(3.8) and the two bilin-
ear forms satisfy (3.9)–(3.12) for µ = 1. Provided that there is an interpolation operator
IH satisfying (3.13) and that

∂kt ũ ∈ L2(0, T ;H`+1(Ω)) for k = 0, 1, 2, 3,

∂4
t ũ ∈ L2(0, T ;H`(Ω)),

uI ∈ H`+1(Ω), vI ∈ H ˜̀
(Ω) with ˜̀= max{`, 2},

and ∂tuH ∈ H1
(
0, T ;H1(Ω)

)
, then

‖ũ− ũH‖L∞(0,T ;L2(Ω)) ≤ C
(
H`+1 + α+ β

)
.

Following the lines of the proof we see that the regularity assumptions on uH are not
needed if α = 0, which means, among other things, that {· , ·} induces a norm equivalent
to the standard L2-norm for vH ∈ S`0(Ω, TH).

Corollary 3.3. If α = 0, Theorem 3.1 remains valid without the assumption ∂tuH ∈
L2(0, T ;H1(Ω)). Similarly Theorem 3.2 remains valid without the assumption ∂tuH ∈
H1
(
0, T ;H1(Ω)

)
, if α = 0.
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The proofs of both theorems follow ideas from [12] and rely on the following elliptic
projection πH ũ defined by

B̃H(πH ũ, vH) = B̃(ũ, vH) + (∂ttũ, vH)− {IH(∂ttũ), vH}, (3.14)

for all vH ∈ S`0(Ω, TH). The projections πH(∂kt ũ) for k > 1 are defined accordingly
by differentiating (3.14). Since B̃H is coercive and bounded and the right-hand side of
(3.14) is linear, πH ũ ∈ S`0(Ω, TH) is uniquely defined. Note that since neither the bilinear
forms nor the inner products depend on time, we have provided sufficient regularity,

∂kt (πH ũ) = πH(∂kt ũ).

Inserting vH = πH ũ into (3.14) we find that ‖πH ũ‖L2(H1) is bounded using (3.7), the

ellipticity of B̃H , and the boundedness of B̃.
Before proving Theorems 3.1 and 3.2 we establish bounds for the difference between

ũ and πH ũ in the following two auxiliary lemmas.

Lemma 3.4. Assume that the solution ũ of (3.4) has the regularity

∂kt ũ ∈ L2(0, T ;H`+1(Ω)) and ∂2+k
t ũ ∈ L2(0, T ;H`(Ω))

for k = 0, 1, 2. Then, provided that (3.13) and (3.8)–(3.11) hold for µ = 0, we have∥∥∥∂kt ũ− πH(∂kt ũ)
∥∥∥
L2(H1)

≤ C
(
H` + α+ β

)
.

Proof. We give here the proof only for k = 0. For higher k it follows by differentiating
(3.14). We find

B̃H(πH ũ− IH ũ, vH) = B̃(ũ− IH ũ, vH) + B̃(IH ũ, vH)− B̃H(IH ũ, vH)

+ (∂ttũ− IH(∂ttũ), vH) + (IH(∂ttũ), vH)

− {IH(∂ttũ), vH}
and hence we have∣∣∣B̃H(πH ũ− IH ũ, vH)

∣∣∣ ≤ Γ ‖ũ− IH ũ‖H1 ‖vH‖H1 + CH` ‖IH ũ‖H̄` ‖vH‖H̄1

+ β ‖∇(IH ũ)‖L2 ‖∇vH‖L2

+ ‖∂ttũ− IH(∂ttũ)‖L2 ‖vH‖L2

+ CH` ‖IH(∂ttũ)‖H̄` ‖vH‖H̄1

+ α ‖∇(IH(∂ttũ))‖L2 ‖∇vH‖L2

≤ C ‖vH‖H1

(
H` ‖ũ‖H`+1 +H` ‖ũ‖H` + β ‖ũ‖H1

+H` ‖∂ttũ‖H` +H` ‖∂ttũ‖H` + α ‖∂ttũ‖H1

)
,

where we used the Cauchy-Schwartz inequality, the boundedness of B̃, and additionally
(3.8) and (3.11) for µ = 0 in the first, and (3.13) in the second inequality. Now we set
vH = πH ũ− IH ũ, use the ellipticity of B̃H , and integrate from 0 to T to get

‖πH ũ− IH ũ‖L2(H1) ≤ C
(
H`(‖ũ‖L2(H`+1) + ‖ũ‖L2(H`) + ‖∂ttũ‖L2(H`))

+ β ‖ũ‖L2(H1) + α ‖∂ttũ‖L2(H1)

)
.
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Finally, the use of the regularity assumptions on ũ and the triangle inequality

‖πH ũ− ũ‖L2(H1) ≤ ‖πH ũ− IH ũ‖L2(H1) + ‖IH ũ− ũ‖L2(H1)

give the result.

Lemma 3.5. Assume that the solution ũ of (3.4) has the regularity

∂kt ũ ∈ L2(0, T ;H`+1(Ω)) and ∂2+k
t ũ ∈ L2(0, T ;H`+1(Ω))

for k = 0, 1, 2. Then, provided that (3.13) and (3.8)–(3.12) hold for µ = 1, we have∥∥∥∂kt ũ− πH(∂kt ũ)
∥∥∥
L2(L2)

≤ C
(
H`+1 + α+ β

)
for H ≤ H0.

We apply a duality argument known as the Aubin-Nitsche Trick, see, e.g., [20, Section
3.2] or [15, Section 7.6], which is commonly used to prove optimal convergence rates for
FEM in the L2-norm.

Proof. Again we only show the proof for k = 0. The proofs for higher k follow by
differentiation. For any g ∈ L2(0, T ;L2(Ω)) let ϕg(t) ∈ H1

0 (Ω) be the solution of

B̃(v, ϕg(t)) = (v, g(t)) for all v ∈ H1
0 (Ω).

From the made assumptions it follows, that ϕg ∈ L2(0, T ;H2(Ω) ∩H1
0 (Ω)) and that

‖ϕg‖L2(H2) ≤ C ‖g‖L2(L2) . (3.15)

For v = πH ũ− ũ, using (3.14) we find

(πH ũ− ũ, g) = B̃(πH ũ− ũ, ϕg)− B̃H(πH ũ, vH) + B̃(ũ, vH)

+ (∂ttũ, vH)− {IH(∂ttũ), vH}
= B̃(πH ũ− ũ, ϕg − vH)

+ B̃(πH ũ− IH ũ, vH)− B̃H(πH ũ− IH ũ, vH)

+ B̃(IH ũ, vH)− B̃H(IH ũ, vH)

+ (∂ttũ− IH(∂ttũ), vH)

+ (IH(∂ttũ), vH)− {IH(∂ttũ), vH}.
Let vH = IHϕg. By integrating from 0 to T we get∣∣∣∣∫ T

0
(πH ũ− ũ, g) dt

∣∣∣∣ ≤ ∫ T

0

∣∣∣B̃(πH ũ− ũ, ϕg − IHϕg)
∣∣∣ dt

+

∫ T

0

∣∣∣B̃(πH ũ− IH ũ, IHϕg)− B̃H(πH ũ− IH ũ, IHϕg)
∣∣∣ dt

+

∫ T

0

∣∣∣B̃(IH ũ, IHϕg)− B̃H(IH ũ, IHϕg)
∣∣∣ dt

+ CH`+1 ‖∂ttũ‖L2(H`+1) ‖ϕg‖L2(L2)

+ C
(
H`+1 ‖∂ttũ‖L2(H`+1) ‖ϕg‖L2(H2) + α ‖∂ttũ‖L2(H1) ‖ϕg‖L2(H1)

)
,
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where we used (3.13) and (3.8) with µ = 1 to bound the last two terms. We now estimate
the three remaining integrals.∫ T

0

∣∣∣B̃(πH ũ− ũ, ϕg − IHϕg)
∣∣∣ dt ≤ C ∫ T

0
‖πH ũ− ũ‖H1 ‖ϕg − IHϕg‖H1 dt

≤ CH ‖πH ũ− ũ‖L2(H1) ‖ϕg‖L2(H2)

≤ CH
(
H` + α+ β

)
‖ϕg‖L2(H2)

≤ C
(
H`+1 + α+ β

)
‖ϕg‖L2(H2) ,

where we used (3.13), that ϕg ∈ H2(Ω), Lemma 3.4, and H ≤ H0. For the second
integral we compute∫ T

0

∣∣∣B̃(πH ũ− IH ũ, IHϕg)− B̃H(πH ũ− IH ũ, IHϕg)
∣∣∣ dt

≤ C
∫ T

0
H ‖πH ũ− IH ũ‖H1 ‖ϕg‖H1 + β ‖πH ũ− IH ũ‖H1 ‖ϕg‖H1 dt

≤ CH ‖πH ũ− IH ũ‖L2(H1) ‖ϕg‖L2(H1)

+ Cβ ‖πH ũ− IH ũ‖L2(H1) ‖ϕg‖L2(H1)

≤ C
(
H
(
H` + α+ β

)
+ β ‖πH ũ− IH ũ‖L2(H1)

)
‖ϕg‖L2(H2) ,

where we used (3.12) in the first and once again Lemma 3.4 and the regularity of ũ in the
last inequality. Furthermore we find a bound of πH ũ by inserting vH = πH ũ into (3.14)
and using the ellipticity of B̃H and the boundedness of the right-hand side. Hence,

‖πH ũ− IH ũ‖L2(H1) ≤ ‖πH ũ‖L2(H1) + ‖IH ũ‖L2(H1) ≤ C.
Finally, we find for the second integral∫ T

0

∣∣∣B̃(πH ũ− IH ũ, IHϕg)− B̃H(πH ũ− IH ũ, IHϕg)
∣∣∣ dt

≤ C
(
H`+1 + α+ β

)
‖ϕg‖L2(H2) .

The third integral can be bounded similarly using (3.11) with µ = 1:∫ T

0

∣∣∣B̃(IH ũ, IHϕg)− B̃H(IH ũ, IHϕg)
∣∣∣ dt

≤ C
(
H`+1 ‖ũ‖L2(H`+1) ‖ϕg‖L2(H2) + β ‖ũ‖L2(H1) ‖ϕg‖L2(H1)

)
≤ C

(
H`+1 + β

)
‖ϕg‖L2(H2) .

To finish the proof, we note that

‖πH ũ− ũ‖L2(L2) = sup
g∈L2(L2)
g 6=0

∣∣∣∫ T0 (πH ũ− ũ, g) dt
∣∣∣

‖g‖L2(L2)

,
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and recall (3.15). Putting all together we have

‖ũ− πH ũ‖L2(L2) ≤ C
(
H`+1 + α+ β

)
.

We will now give the proofs of Theorems 3.1 and 3.2.

Proof of Theorem 3.1. Set ζH = ũH − πH ũ and consider

{∂ttζH , vH}+ B̃H(ζH , vH) = (f, vH)− {πH(∂ttũ), vH} − B̃H(πH ũ, vH)

= B̃(ũ, vH) + (∂ttũ, vH)− {πH(∂ttũ), vH} − B̃H(πH ũ, vH)

= {IH(∂ttũ)− πH(∂ttũ), vH},

where we used (3.14) and that ũ and ũH solve (3.4) and (3.5), respectively. Setting
vH = ∂tζH and exploiting the symmetry of {· , ·} and B̃H we get

1

2

d

dt

(
{∂tζH , ∂tζH}+ B̃H(ζH , ζH)

)
= {IH(∂ttũ)− πH(∂ttũ), ∂tζH}.

Define
η(t) = {∂tζH , ∂tζH}+BH(ζH , ζH),

and proceed by

1

2

d

dt
η(t) = {IH(∂ttũ)− πH(∂ttũ), ∂tζH}

≤ C
(
‖IH(∂ttũ)− πH(∂ttũ)‖L2 ‖∂tζH‖L2

+ α ‖∇(IH(∂ttũ)− πH(∂ttũ))‖L2 ‖∇(∂tζH)‖L2

)
≤ C

2

(
‖IH(∂ttũ)− πH(∂ttũ)‖2L2 + ‖∂tζH‖L2

+ ‖∇(IH(∂ttũ)− πH(∂ttũ))‖2L2 + α2 ‖∇(∂tζH)‖L2

)
.

Since ∂tũH ∈ L2(0, T ;H1(Ω)) by assumption, we find that ‖∂tζH‖L2(H1) is bounded.

The continuous embedding of C(0, T ;H1(Ω)) into H1
(
0, T ;H1(Ω)

)
yields a bound for

‖∇(∂tζH(t))‖L2 for every t. Moreover, due to (3.6) and adding BH(ζH , ζH) ≥ 0 to the
right-hand side of the above inequality, we find

d

dt
η(t) ≤ C

(
η(t) + ‖IH(∂ttũ)− πH(∂ttũ)‖2H1 + α2

)
.

Using Gronwall’s Lemma we obtain

sup
0≤t≤T

η(t) ≤ C
(
η(0) + ‖IH(∂ttũ)− πH(∂ttũ)‖2L2(H1) + α2

)
.

Because of (3.13) and the regularity assumptions on ũ we have

‖IH(∂ttũ)− ∂ttũ‖2L2(H1) ≤ CH2`,
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and because of Lemma 3.4 for k = 2,

‖∂ttũ− πH(∂ttũ)‖2L2(H1) ≤ C(H2` + α2 + β2),

which yields by applying the triangle inequality

‖IH(∂ttũ)− πH(∂ttũ)‖2L2(H1) ≤ C(H2` + α2 + β2).

It remains to bound η(0):

η(0) = {∂tζH(0), ∂tζH(0)}+BH(ζH(0), ζH(0))

≤ C
(
‖∂tζH(0)‖2L2 + α ‖∂tζH(0)‖2H1 +BH(ζH(0), ζH(0))

)
.

By the initial condition of (3.4) and (3.5) we find∣∣∣B̃H(ζH(0), ζH(0))
∣∣∣ ≤ C ‖ζH(0)‖2H1 ≤ C

(
‖IHuI − uI‖2H1 + ‖uI − πH ũ(0)‖2H1

)
≤ C

(
H2` ‖uI‖2H`+1 + ‖ũ(0)− πH ũ(0)‖2H1

)
≤ C

(
H2` + ‖ũ− πH ũ‖2L2(H1) + ‖∂t(ũ− πH ũ)‖2L2(H1)

)
≤ C

(
H2` + α2 + β2

)
.

In the third inequality we used the continuous embedding of H1
(
0, T ;H1(Ω)

)
into

C(0, T ;H1(Ω)), see Theorem 2.1, and in the last one Lemma 3.4 for k = 0, 1. Simi-
larly using the embedding H1

(
0, T ;L2(Ω)

)
into C(0, T ;L2(Ω)) yields

‖∂tζH(0)‖L2 = ‖IHvI − πH(∂tũ(0))‖L2

≤ ‖IHvI − vI‖L2 + ‖∂tũ(0)− πH(∂tũ(0))‖L2

≤ C
(
H

˜̀‖g‖
H ˜̀ + ‖∂tũ− πH(∂tũ)‖L2(L2) + ‖∂ttũ− πH(∂ttũ)‖L2(L2)

)
≤ C

(
H

˜̀
+ α+ β

)
,

and by the same arguments we find

‖∇(∂tζH(0))‖L2 ≤ C
(
H

˜̀−1 +H` + α+ β
)
.

All together we have the following bound

η(0) ≤ C
(
H2` + α2 + β2 + α(H2˜̀−2 +H2` + α2 + β2)

)
,

which can be simplified to

η(0) ≤ C
(
H2` + α2 + β2

)
,

as either α ≤ H2 and hence αH2˜̀−2 ≤ H2` or α ≥ H2 inducing that α2 is dominant.
Since

c
(
‖∂tζH‖2L∞(L2) + ‖ζH‖2L∞(H1)

)
≤ sup

0≤t≤T
η(t),

we finally obtain the result using once more the triangle inequality.
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Proof of Theorem 3.2. As before let ζH = ũH − πH ũ. Additionally define

ΨH = IH(∂tũ)− πH(∂tũ)− ∂tζH
and

ΦH = IH(∂tũ)− πH(∂tũ).

In the proof of Theorem 3.1 we saw that

{∂ttζH , vH}+ B̃H(ζH , vH) = {IH(∂ttũ)− πH(∂ttũ), vH}.

For all vH ∈ L2(0, T ;S`0(Ω, TH)) with ∂tvH ∈ L2(0, T ;S`0(Ω, TH)) we can rewrite this
identity as

−{∂tζH , ∂tvH}+ B̃H(ζH , vH) = −{∂tζH , ∂tvH}+ {∂tΨH , vH}

= −{∂tζH , ∂tvH}+
d

dt
{ΨH , vH} − {ΨH , ∂tvH}

=
d

dt
{ΨH , vH} − {ΦH , ∂tvH}.

For 0 < s ≤ T let

vH(t;x) =

∫ s

t
ζH(τ ;x) dτ.

Since ∂tvH = −ζH , the above identity becomes

1

2

d

dt

(
{ζH , ζH} − B̃H(vH , vH)

)
=

d

dt
{ΨH , vH}+ {ΦH , ζH}.

Note that vH(s) = 0 and ΨH(0) = 0, too. Now we integrate from 0 to s to get

1

2

(
{ζH(s), ζH(s)}2 − {ζH(0), ζH(0)}2 + B̃H(vH(0), vH(0))

)
=

∫ s

0
{ΦH , ζH} dτ.

We can bound the integral on the right-hand side by∫ s

0
{ΦH , ζH} dτ ≤

∫ s

0
(‖ΦH‖L2 ‖ζH‖L2 + α ‖∇ΦH‖L2 ‖∇ζH‖L2) dτ

≤
∫ T

0
(‖ΦH‖L2 ‖ζH‖L2 + α ‖ΦH‖H1 ‖ζH‖H1) dτ

≤
(
‖ΦH‖L2(L2) ‖ζH‖L∞(L2) + α ‖ΦH‖L2(H1) ‖ζH‖L2(H1)

)
.

Using (3.6), (3.7), (3.10), and the Cauchy inequality leads to

‖ζH(s)‖2L2 ≤ C
(
‖ζH(0)‖2L2 + α ‖∇ζH(0)‖2L2

)
+
C

κ
‖IH(∂tũ)− πH(∂tũ)‖2L2(L2) + Cκ ‖ζH‖2L∞(L2)

+ Cα
(
‖IH(∂tũ)− πH(∂tũ)‖2L2(H1) + ‖ζH‖2L2(H1)

)
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for all κ > 0. Thus taking the supremum over s, we obtain for κ small enough

‖ζH(s)‖2L∞(L2) ≤ C
(
‖ζH(0)‖2L2 + ‖IH(∂tũ)− πH(∂tũ)‖2L2(L2)

)
+ Cα

(
‖∇ζH(0)‖2L2 + ‖IH(∂tũ)− πH(∂tũ)‖2L2(H1) + ‖ζH‖2L2(H1)

)
.

We have

‖ζH(0)‖L2 ≤ ‖πHuI − uI‖L2 + ‖uI − IHuI‖L2

≤ ‖πH ũ− ũ‖L2(L2) + ‖πH(∂tũ)− ∂tũ‖L2(L2) + ‖ũ(0)− IH ũ(0)‖L2

≤ C
(
H`+1 + α+ β

)
,

using the continuous embedding from H1
(
0, T ;L2(Ω)

)
into C(0, T ;L2(Ω)) and Lemma

3.5 for k = 0, 1. From the same lemma together with (3.13) it follows that

‖IH(∂tũ)− πH(∂tũ)‖L2(L2) ≤ ‖IH(∂tũ)− ∂tũ‖L2(L2) + ‖∂tũ− πH(∂tũ)‖L2(L2)

≤ C
(
H`+1 + α+ β

)
.

From Lemma 3.4 it follows similarly that

‖IH(∂tũ)− πH(∂tũ)‖L2(H1) ≤ C
(
H` + α+ β

)
.

Moreover, using the embedding from H1
(
0, T ;H1(Ω)

)
into C(0, T ;H1(Ω)) and Lemma

3.4 for k = 0, 1,

‖∇ζH(0)‖L2 ≤ ‖IHuI − uI‖H1 + ‖ũ(0)− πH ũ(0)‖H1

≤ C
(
H` + ‖ũ− πH ũ‖L2(H1) + ‖∂tũ− πH(∂tũ)‖L2(H1)

)
≤ C

(
H` + α+ β

)
.

Finally, ‖ζH‖L2(H1) can be bounded by Theorem 3.1. Summing up, we have

‖ζH(s)‖2L∞(L2) ≤ C
(
H2`+2 + α2 + β2 + α(H2` + α2 + β2)

)
,

from where the theorem follows by the same argument as in the proof before.

Remark. The case where the right hand-side of (3.5) is computed with a quadrature
formula as well, can be incorporated into the general setting as follows: Replace (f, vH) in
(3.5) with [f, vH ], where [·, ·] is an additional inner product satisfying (3.6)–(3.8). Since
f ∈ L2(0, T ;L2(Ω)) the pointwise evaluation, which is needed to apply a quadrature
formula, is not well definied. Hence we should either consider a conforming interpolation
or assume that f is continuous. In the latter case the projection πH should be defined
by

B̃H(πH ũ, vH) = [f, vH ]− {IH(∂ttũ), vH}.
Note that this is equivalent to (3.14) if [·, ·] is the standard L2 inner product. Mutatis
mutandis, the proofs in this section would remain valid. However an additional term,
coming from the difference between [·, ·] and (· , ·) would remain in the estimates.
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A priori error estimates

We can apply Theorems 3.1 and 3.2 to get a priori error estimates for FEM with and
without numerical integration. In the absence of numerical integration we have {· , ·} =
(· , ·) and B̃H = B. Hence (3.6)–(3.7), (3.11), and (3.12) hold with α = β = 0. The
coercivity and the boundedness follow since a ∈ M(λ,Λ). For FEM without numerical
integration we get under appropriate regularity assumptions on u

‖∂t(u− uH)‖L∞(0,T ;L2(Ω)) + ‖u− uH‖L∞(0,T ;H1(Ω)) ≤ CH`,

‖u− uH‖L∞(0,T ;L2(Ω)) ≤ CH`+1,

where u and uH are the solutions of (2.1) and (3.1), respectively. Very similar results
can be found in [29] and [11].

In the presence of numerical integration we set {· , ·} = (· , ·)QF and B̃H = BQF. We
now give sufficient assumptions on the quadrature formula such that the assumptions
(3.6)–(3.12) hold again with α = β = 0. We assume that

ω̂j > 0 for j = 1, . . . , J, (3.16)

that there is a λ̂ > 0 such that
J∑
j=1

ω̂j |∇p̂(x̂j)|2 ≥ λ̂ ‖∇p̂‖2L2(K̂)
for all p̂ ∈ R`(K̂), (3.17)

∫
K̂
p̂(x̂) dx̂ =

J∑
j=1

ω̂j p̂(x̂j) for all p̂ ∈ Rσ(K̂), (3.18)

where σ = max(2`− 2, `) if K̂ is a simplicial element, or σ = max(2`− 1, `+ 1) if K̂ is
a quadrilateral element. Additionally, we assume that

J∑
j=1

ω̂j |p̂(x̂j)|2 ≥ λ̂ ‖p̂‖2L2(K̂)
for all p̂ ∈ R`(K̂), (3.19)

which implies (3.17).

Remark. If a ∈W `+µ,∞(Ω) for µ = 0, 1, then the conditions (3.7)–(3.12) with α = β = 0
follow from (3.16)–(3.18); see [20, 21]. But for (3.6), i.e., the coercivity of (· , ·)QF, the
stricter assumption (3.19) is necessary. Here we see, why it might be advantageous to use
two different quadrature formulas. If the pointwise evaluation of a is computationally
costly, we should minimize the number of quadrature nodes needed such that (3.16)–
(3.18) hold. A more accurate quadrature formula for which assumption (3.19) holds,
may have more nodes and should therefore be used only for the computation of (· , ·)QF.

Now we can use again Theorems 3.1 and 3.2 to recover the error estimates from [12]:

‖∂t(u− uH)‖L∞(0,T ;L2(Ω)) + ‖u− uH‖L∞(0,T ;H1(Ω)) ≤ CH`,

‖u− uH‖L∞(0,T ;L2(Ω)) ≤ CH`+1.
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Time discretization

As seen in Section 3.1, the Galerkin projection leads to a system of second order
ordinary differential equations (3.2). We solve this system by applying a time stepping
scheme with step size ∆t. Let NT = T/∆t be the number of time steps always assumed
to be an integer, which means that T is a multiple of ∆t. The approximation of uH(tk)
is denoted by ukH , where tk = k∆t. The time stepping schemes we use are the well-
known second order leap-frog scheme and the fourth order modified equation scheme,
introduced in [69].

Leap-frog scheme

Applying the leap-frog scheme to (3.1) leads to the following time-discrete FE scheme
for the wave equation.

(
∂̃ttu

n
H , vH

)
+B(unH , vH) = (f(tn), vH) for all vH ∈ S`0(Ω, TH), 1 ≤ n ≤ NT − 1,

u0
H = IH(uI), u1

H = u0
H + ∆tIH(vI) +

∆t2

2
ü0
H ,

(3.20)
where

∂̃ttu
n
H =

un+1
H − 2unH + un−1

H

∆t2
,

and ü0
H is given by(

ü0
H , vH

)
= (f(0), vH)−B

(
u0
H , vH

)
for all vH ∈ S`0(Ω, TH).

Similarly to the time-continuous FE scheme (3.1), numerical integration can be applied
to evaluate the integrals of the L2 inner product and the bilinear form B. The matrix
formulation of (3.20) reads as

M

(
Um+1
H − 2UmH + Um−1

H

∆t2

)
+AUmH = Fm for m = 1, . . . , NT − 1.

We recall that the wave equation and the time-continuous finite element approxi-
mation conserve the energy E(t) defined in (2.6). It is easy to prove that the leap-frog
scheme conserves the following discretized energy

E
m+1/2
H =

1

2

(Um+1
H − UmH

∆t

)T
M

(
Um+1
H − UmH

∆t

)
+ Um+1

H AUmH

 . (3.21)

Note that E
m+1/2
H ≥ 0 for all m and that E

m+1/2
H = 0 if and only if Um+1

H = UmH = 0.
The conservation of the discretized energy (3.21) holds if A and M are symmetric. To
show that the energy is positive definite, one needs in addition the positive definiteness
of the matrix M − ∆t2/4A, which is given for ∆t small enough.
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In addition we want to mention that the mesh size H and the time step ∆t should
be refined simultaneously. The necessary condition

∆t

H
≤ CCFL (3.22)

to ensure stability of the leap-frog scheme is known as CFL-condition, named after
Courant, Friedrichs and Lewy, the authors of [24]. Note that the constant CCFL depends
only on the space discretization and on aε.

Modified equation scheme

We give the modified equation scheme directly in the matrix formulation:

M

(
Um+1
H − 2UmH + Um−1

H

∆t2

)
+

(
A− ∆t2

12
AM−1A

)
UmH = Fm

for m = 1, . . . , NT − 1. To determine U0
H and U1

H we need a Taylor expansion with four
terms such that we do not destroy the order of convergence. Besides the higher order
of convergence another advantage of the ME scheme over the leap-frog scheme is the
weaker CFL condition. In [47] it is proven that the ME scheme is stable if

∆t

H
≤
√

3CCFL,

where CCFL is the constant given in (3.22).
The modified equation scheme can be seen as a leap-frog scheme, where A is replaced

by

Ã = A− ∆t2/12AM−1A.

Note that Ã is again symmetric and positive definite for ∆t small enough. Hence, the
modified equation scheme conserves a discrete energy, given by (3.21), replacing A with
Ã.

Mass lumping

Regardless of whether we use the leap-frog or the modified equation scheme, the
mass matrix must be inverted in every time step. To reduce the needed computational
cost, the mass matrix can be replaced by a diagonal approximation. Then both time
stepping schemes become fully explicit. This diagonalization of the mass matrix can
be achieved by evaluating the L2 inner product with a suitable quadrature formula,
where quadrature nodes correspond to the FE nodes. Note that FEM with rectangular
elements and mass lumping is very similar to the spectral element method. This case
is much easier than mass lumping for triangular elements. More details about mass
lumping for the wave equation can be found in [23, Chapters 11–13].
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3.2 FE-HMM for elliptic problems

In this short description of FE-HMM for elliptic homogenization problems we follow
basically the lines of [2] and [4, Section 4]. The results and their proofs can be found
in [1–3, 32]. The goal is to approximate the macroscale behavior of the solution of the
elliptic problem (2.8) without fully resolving the microscale of the medium given by aε.
The variational formulation of (2.8) reads as follows: Find vε ∈ H1

0 (Ω) such that

Bε(vε, w) = (g, w) for all w ∈ H1
0 (Ω),

where (· , ·) is the standard scalar product in L2(Ω) and the bilinear form Bε is given by

Bε(v, w) =

∫
Ω
aε(x)∇v · ∇w dx for all v, w ∈ H1

0 (Ω). (3.23)

Recall that HMM is designed following a top-down approach. This means that we have
to choose the macroscale solver first and to identify the missing data, before we can
choose an appropriate microscale problem and its solver to estimate the missing data.

Macroscale solver

From homogenization theory, see Section 2.3, we know that an appropriate macroscale
problem is again an elliptic second order PDE with a diffusion tensor a0 not depending
on the microscale. If a0 were explicitly known we could directly apply standard FE to
the variational formulation of the homogenized problem (2.9): Find v0 ∈ H1

0 (Ω) such
that

B0
(
v0, w

)
= (g, w) for all w ∈ H1

0 (Ω), (3.24)

where the homogenized bilinear form B0 is given by

B0(v, w) =

∫
Ω
a0(x)∇v · ∇w dx for all v, w ∈ H1

0 (Ω).

The Galerkin projection of problem (3.24) into the space S`0(Ω, TH) using a quadra-
ture formula to evaluate the integral in the bilinear form reads as follows: Find v0

H ∈
S`0(Ω, TH) such that

B0
QF

(
v0
H , wH

)
= (g, wH) for all wH ∈ S`0(Ω, TH),

where B0
QF is given by

B0
QF(vH , wH) =

∑
K∈TH

ωK,ja
0(xK,j)∇vH(xK,j) · ∇wH(xK,j) (3.25)

for all vH , wH ∈ S`0(Ω, TH), where xK,j and ωK,j are defined as in (3.3). Since a0 only
depends on the macroscale, H > ε is allowed. Hence we refer to S`0(Ω, TH) as the macro
FE space. However, since a0 is usually not known, we need to estimate B0

QF or more

precisely the value a0(xK,j)∇vH(xK,j) · ∇wH(xK,j) for all quadrature nodes xK,j . This
is done by solving numerically a micro problem in a sampling domain of size δ centered
at the corresponding quadrature node.
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Micro problem and micro solver

Let us first introduce the needed notation. Recall that we denote the unit cell
centered at the origin by Y = [−1/2, 1/2]d. For δ > 0 the sampling domain is given by

Iδ = Iδ(xK,j) = xK,j + δY.

Note that δ ≥ ε with both variables being of the same order, i.e., δ/ε = O(1). Since
we use again a finite element method to solve the micro problems defined in (3.26), we
consider for every sampling domain a (micro) partition Th of Iδ(xK,j) into simplicial or
quadrilateral elements Q and a micro FE space

Sqper(Iδ, Th) =
{
vh ∈ H1

per(Iδ); vh|Q ∈ Rq(Q) ∀Q ∈ Th
}
.

By choosing the Sobolev spaceH1
per(Iδ(xK,j)) we use a periodic coupling between macroscale

and microscale. For a coupling through Dirichlet boundary conditions we choose the FE
space

Sq0(Iδ, Th) =
{
vh ∈ H1

0 (Iδ); vh|Q ∈ Rq(Q) ∀Q ∈ Th
}
.

Writing only Sq(Iδ, Th) without any specification about the coupling, the statements are
valid for both choices. A detailed description about different coupling methods can be
found in [75].

The micro problem is given as follows: Find vh such that vh− vH,lin ∈ Sq(Iδ, Th) and∫
Iδ

aε(x)∇vh · ∇zh dx = 0 for all zh ∈ Sq(Iδ, Th), (3.26)

where

vH,lin(x) = vH(xK,j) + (x− xK,j) · ∇vH(xK,j) (3.27)

is the linearization of vH at the quadrature node xK,j . We do not indicate the dependence
of vH,lin and vh on xK,j to avoid cluttered notation.

Multiscale method

Find vH ∈ S`0(Ω, TH) such that

BH(vH , wH) = (g, wH) for all wH ∈ S`0(Ω, TH), (3.28)

where BH is given by

BH(vH , wH) =
∑
K∈TH

J∑
j=1

ωK,j
|Iδ(xK,j)|

∫
Iδ

aε(x)∇vh(x) · ∇wh(x) dx (3.29)

for all vH , wH ∈ S`0(Ω, TH), where vh and wh are the solutions of the micro problem
(3.26) with the obvious modification for wh.
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The FE-HMM bilinear form can be rewritten as

BH(vH , wH) =
∑
K∈TH

J∑
j=1

ωK,ja
0
K(xK,j)∇vH(xK,j) · ∇(xK,j),

where (
a0
K(xK,j)

)
r,s

=
1

|Iδ|

∫
Iδ

(
aε(x)(es +∇ψsh(x))

)
· er dx, (3.30)

and ψsh is the solution of the problem: Find ψsh ∈ Sq(Iδ, Th) such that∫
Iδ

aε(x)∇ψsh · ∇zh dx = −
∫
Iδ

aε(x)es · zh dx for all zh ∈ Sq(Iδ, Th). (3.31)

Again we do not indicate that ψsh depends on xK,j . The tensor a0
K can be seen as a

numerically homogenized tensor.

Remark. Comparing (3.30) with (2.11) and (3.31) with (2.12), we see the close relation
between the FE-HMM and the homogenized bilinear form. The micro problem can be
seen as a scaled version of the cell problem. But contrary to homogenization, there is
no restriction to periodic materials only. Similar to (2.13) the numerically homogenized
tensor is given equivalently by

a0
K(xK,j) =

1

|Iδ|

∫
Iδ(xK,j)

aε(x)
(
Id+DTψh(x)

)
dx,

where ψh = (ψ1
h, . . . , ψ

d
h)T .

Error analysis

For the a priori error estimates we need the following lemma.

Lemma 3.6 (Coercivity and boundedness of BH). There are constants γ and Γ such
that the FE-HMM bilinear form satisfies

γ ‖vH‖2H1(Ω) ≤ BH(vH , vH)

and

|BH(vH , wH)| ≤ Γ ‖vH‖H1(Ω) ‖wH‖H1(Ω)

for all vH , wH ∈ S`0(Ω, TH).

The following error bounds hold.

Theorem 3.7. Let v0 and vH be the solution of (3.24) and (3.28), respectively. Suppose
that aε ∈ M(λ,Λ) and that the regularity v0 ∈ H`+1(Ω) and a0 ∈ W `+µ,∞(Ω) for
µ = 0, 1 hold. Provided that the quadrature formula (x̂j , ω̂j)

J
j=1 satisfies (3.16)–(3.18),

we have ∥∥v0 − vH
∥∥
H1(Ω)

≤ C(H` + eHMM),∥∥v0 − vH
∥∥
L2(Ω)

≤ C(H`+1 + eHMM),
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where C is independent of H and h, and

eHMM = sup
K∈TH
j=1,...,J

∥∥a0(xK,j)− a0
K(xK,j)

∥∥
F
,

where ‖·‖F is the Frobenius norm.

The proof uses standard error estimates for FEM, the first Strang lemma [20, Section
4.1, Theorem 4.1.1], and that∣∣B0

QF(vH , wH)−BH(vH , wH)
∣∣ ≤ CeHMM ‖∇vH‖L2 ‖∇wH‖L2 . (3.32)

Note that there are no assumptions, such as periodicity on the spatial structure of aε.
However, to give further estimates for eHMM additional assumptions are needed. The
error of the HMM scheme can be decomposed in a micro error eMIC and a modeling
error eMOD. Roughly speaking, the micro error comes from solving the micro problem
numerically and the modeling error from the difference between the exact homogenized
tensor a0 and its approximation.

For a precise statement let us introduce the semidiscrete numerically homogenized
tensor

ā0
K(xK,j) =

1

|Iδ(xK,j)|

∫
Iδ

aε(x)
(
Id+DTψ(x)

)
dx,

where ψ = (ψ1, . . . , ψd)T and ψs is the solution of the problem: Find ψs ∈ H1
per(Iδ) such

that ∫
Iδ

aε(x)∇ψs · ∇zh dx = −
∫
Iδ

aε(x)es · z dx for all z ∈ H1
per(Iδ), (3.33)

if a periodic coupling condition is used. For Dirichlet coupling replace H1
per(Iδ) with

H1
0 (Iδ). Note that (3.33) is the nondiscretized version of (3.31). Now the micro and the

modeling error are given by

eMIC = sup
K∈TH
j=1,...,J

∥∥ā0
K(xK,j)− a0

K(xK,j)
∥∥
F
,

eMOD = sup
K∈TH
j=1,...,J

∥∥a0(xK,j)− ā0
K(xK,j)

∥∥
F
,

and we obviously have
eHMM ≤ eMIC + eMOD.

These errors can be bounded as follows.

Theorem 3.8 (Micro error). Suppose that aε ∈M(λ,Λ) and that |ψs|Hq+1(Iδ)
≤ Cε−q

√
|Iδ|,

then

eMIC ≤ C
(
h

ε

)2q

,

where C is independent of H, h, and ε.
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Theorem 3.9 (Modeling error). Suppose that aε(x) = a(x, x/ε), with a matrix valued
function a(x, y), which is Y -periodic in y, and that

aij(x, y) ∈ C(Ω̄;W 1,∞
per (Y ))

for all i, j = 1, . . . , d. Then

eMOD ≤ C
(ε
δ

+ δ
)
,

where the size of the sampling δ > ε and C is independent of H, h, and ε.
If additionally δ/ε ∈ N, periodic coupling is used and if the slow variable x is collocated

at the quadrature point xK,j, then the modeling error vanishes.

By collocation we mean that we replace aε(x) = a(x, x/ε) by a(xK,j , x/ε) in (3.26) and
(3.29).



Part II

Wave Propagation in
Heterogeneous Media

37





Four

Homogenization of the wave equation

In this part, consisting of Chapters 4, 5, and 6, we are focusing on wave propagation
in heterogeneous media. In this context we write the wave equation (2.1) as

(∂ttu(t), v) +Bε(u(t), v) = (f(t), v) for all v ∈ H1
0 (Ω), 0 ≤ t ≤ T,

u(0) = uI in Ω,

∂tu(0) = vI in Ω,

(4.1)

where Bε is given as in (3.23). In this chapter we give an overview of analytical ho-
mogenization results; in the two following chapters we introduce and analyze FE-HMM
schemes to solve (4.1). First of all, we introduce a model example, which will be used
repeatedly as illustrative motivation and as a test case.

4.1 Model example

Let Ω = (−1, 1). Remember that the one-dimensional wave equation with periodic
boundary condition is given by

∂ttu
ε(t;x)− ∂x(aε(x)∂xu

ε(t;x)) = f(t;x) in Ω× (0, T ),

uε(t;−1) = uε(t; 1) for all t ∈ (0, T ),

uε(0;x) = uI(x) in Ω,

∂tu
ε(x, 0) = vI(x) in Ω.

We consider no internal sources, i.e., f ≡ 0 and we choose a Gaussian pulse with zero
velocity as initial condition. More precisely we have

uI(x) = exp
(
−100x2

)
and vI(x) = 0.

For this model example we choose a smooth ε-periodic wave speed, given by

aε(x) =
√

2 + sin
(

2π
x

ε

)
. (4.2)

39
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Figure 4.1: Reference solution of the model example at T = 2 for ε = 1/5, 1/15, 1/30.

In Figure 4.1 the reference solution uε at T = 2 is shown for three different ε. The end
time corresponds to one evolution of the main pulse. The reference solution is computed
on a mesh that resolves the microscale. More specifically, we use cubic finite elements
with Gauss-Lobatto mesh points on a mesh with H = 2−13 = 1.22 · 10−4, where H
denotes the length of an element. Hence the number of degree of freedoms is 49,153.
Furthermore, we use the leap-frog scheme with ∆t = H/8 for time stepping. We see that
the oscillations in the solution diminish as ε gets smaller.

From the model example we can see that undersampling or simple averaging tech-
niques do not yield a reliable approximation of the macroscopic behavior of the solution.
In Figure 4.2 we plot a DNS of the model example at T = 2 with ε = 50, computed
with the same parameter setting as before. In addition we depict the solution of the
wave equation, where aε is replaced by its average ā =

√
2. Third we show the FEM

solution with the correct squared wave speed aε but on a too coarse mesh. For this
computation the size of an element is set to H = 2−6. We see that the averaged and
the undersampled solutions both deviate from the reference solution. Therefore more
involved techniques, such as classical homogenization theory, are needed to recover the
macroscopic wave propagation.

4.2 Homogenization for the wave equation

For finite time the effective behavior is well described by classical homogenization
theory. Before we give the precise results, we make a formal asymptotic expansion
showing the relation between homogenization of elliptic and hyperbolic homogenization
problems.



4.2. HOMOGENIZATION FOR THE WAVE EQUATION 41

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

x

T = 2, ε = 1/50

reference
average
undersampling

Figure 4.2: Reference, averaged, and undersampled solutions of the model example at
T = 2 for ε = 1/50.

Asymptotic expansion

As is commonly done for an asymptotic expansion we consider only periodic media.
Therefore, let aε(x) be given as in (2.10). First, we separate the scales by the ansatz

uε(t;x) = u
(
t;x,

x

ε

)
.

Because of the periodicity of aε, we assume that u(t;x, y) is Y -periodic in the y variable.
Note that we have

∇uε(t;x) = ∇xu(t;x, y) +
1

ε
∇yu(t;x, y). (4.3)

Now we expand u in an ε-power series

u(t;x, y) =
∞∑
k=0

εkuk(t;x, y) (4.4)

with uk(t;x, y) ∈ H1
per(Y ) for fixed t and x. We want to recover u0, which describes the

macroscopic behavior. We insert (4.4) into the wave equation (1.3) and compare the like
terms in ε.

From order ε−2 we deduce that u0 is independent of y. At order ε−1 we find the
elliptic problem

−∇y · (a(y)(∇xu0 +∇yu1)) = 0. (4.5)
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We notice that u1 depends linearly on u0. Hence we can write

u1(t;x, y) = ∇xu0(t;x) · ψ̂(y) + c(t;x)

with ψ̂(y) = (ψ̂1(y), ψ̂2(y), . . . , ψ̂d(y))T , where ψ̂s is given as in (2.12).
Up to this point the time dependence has no crucial influence on the asymptotic

expansion. Only for the equations of order 0 or higher in ε does the time derivative
come into effect. Using (4.3) we get

∂ttu
0 −∇x · (a(y)∇xu0)−∇x · (a(y)∇yu1)−∇y · (a(y)∇xu1)−∇y · (a(y)∇yu2) = f,

from where the following elliptic problem for u2 follows:

−∇y · (a(y)∇yu2) = f − ∂ttu0 +∇x · (a(y)(∇xu0 +∇yu1)) +∇y · (a(y)∇xu1).

For fixed x and t this is a partial differential equation for u2(t;x, ·) ∈ H1
per(Y ), which

is well-posed if the mean over Y of the right-hand side vanishes. Since |Y | = 1, by the
periodicity of a and u1 this reads∫

Y
f − ∂ttu0 +∇x · (a(y)(∇xu0 +∇yu1)) = 0.

Note that f and u0 are independent of y and that ∇yu1 = (DT ψ̂)∇xu0 due to (4.5).
This leads to

∂ttu
0 −∇x ·

((∫
Y
a(y)

(
Id+DT ψ̂(y)

)
dy

)
∇xu0

)
= f,

which simplifies to
∂ttu

0 −∇x ·
(
a0∇xu0

)
= f,

using a0 as given in (2.13).
This formal asymptotic expansion shows that the effective behavior is described

by a wave equation, where the homogenized coefficient a0 is given as for the elliptic
homogenization. The following theorem explicates this statement; its proof can be found
for example in [13, Chapter 3, Section 2].

Theorem 4.1 (Homogenization for the wave equation). Let (aε)ε ⊂ M(λ,Λ) be a
sequence of matrix-valued functions that H-converges to a0. Provided that the regularity
assumptions (2.3)–(2.5) on the source term and the initial data hold, then the sequence
of solutions uε of the wave equation (2.1) converges in the following sense:

uε ⇀ u0, weak-? in L∞(0, T ;H1
0 (Ω)),

∂tu
ε ⇀ ∂tu

0, weak-? in L∞(0, T ;L2(Ω)),

where u0 is the solution of the homogenized wave equation given by
(
∂ttu

0(t), v
)

+B0
(
u0(t), v

)
= (f(t), v) for all v ∈ H1

0 (Ω), 0 ≤ t ≤ T,
u0(0) = uI in Ω,

∂tu
0(0) = vI in Ω,

(4.6)
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Figure 4.3: Reference solution uε and homogenized solution u0 of the model example at
T = 2 (left) and T = 100 (right) for ε = 1/50.

and the homogenized bilinear form B0 is defined by

B0(v, w) =

∫
Ω
a0(x)∇v · ∇w dx. (4.7)

In [16] it is pointed out that the energy Eε of uε does not converge to the energy E0

of the homogenized solution in general as ε→ 0. For vI ≡ 0 we have, for example,

lim
ε→0

Eε =
1

2
lim
ε→0

Bε(uI , uI) >
1

2
B0(uI , uI) = E0.

We return to our model example; see Section 4.1. For aε given as in (4.2) the formula
(2.14) can be applied and the homogenized coefficient can be computed as

a0 =

(∫ 1

0

1√
2 + sin(2πy)

dy

)−1

= 1.

In Figure 4.3 on the left the reference solution for ε = 1/50 coincides with the homogenized
solution, which we computed analytically using d’ Alembert’s formula (2.7). The energy
of uε is Eε ≈ 8.86, whereas the homogenized energy E0 ≈ 6.27.

4.3 Long-time dispersive effects

In the previous section we have seen that for limited time the propagation of waves
in a highly oscillatory medium is well described by the nondispersive homogenized wave
equation. With increasing time, however, the true solution deviates from the classi-
cal homogenization limit, as a large secondary wave train develops unexpectedly. The
dispersion can be well observed in the model example as seen on the right of Figure 4.3.
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To capture these dispersive effects different methods have been applied: In [68] a
Bloch expansion [14,74], in [19,42–46] an asymptotic expansion into multiple fast spatial
and slow temporal scales, and the construction of an adaption operator in [59, 60] were
used to devise a dispersive effective equation. While the former three references contain
formal calculations, rigorous proofs were given in the two latter references for a purely
periodic medium in one dimension. Very recently the results of [59,60] were generalized
to higher dimensions in [25]. All developed effective equations resemble each other in
that a small fourth order term, either ∂xxxxu

eff or ∂tt∂xxu
eff, is added to the homogenized

wave equation. This leads to the following one-dimensional effective equations, often
referred to as linearized Boussinesq equations [55,73]:

∂ttu
eff − a0∂xxu

eff − ε2b0∂xxxxu
eff = f, (4.8)

∂ttu
eff − a0∂xxu

eff − ε2 b
0

a0
∂tt∂xxu

eff = f. (4.9)

Note that for f ≡ 0 there are exponentially growing solutions for (4.8). For example,

u(t;x) = cos(kx) exp
(√

k4 − k2t
)

with |k| > 1 is a solution of (4.8) with f ≡ 0 and a0 = ε2b0 = 1. This is the reason
why (4.8) is called the linearized “bad” Boussinesq equation. On the contrary (4.9) is
well-posed and called the linearized “improved” Boussinesq equation [34,54].

Summarizing the results from this chapter we point out that the homogenized wave
equation (4.6) is an accurate effective model to describe the macroscopic behavior of wave
propagation in a highly oscillatory medium. The homogenized tensor a0 is the same as for
homogenization of elliptic problems. For longer time, however, the addition of a fourth-
order term is needed to capture long-time dispersive effects. This additional term leads to
a Boussinesq-type effective model. In Figure 4.4 the solution of the effective model (4.9)
is shown. Not only for short, but also for longer time it describes well the macroscopic
behavior of the reference solution. The coefficient a0 = 1 and b0 = 9.09632625 · 10−3 are
computed with the MAPLE program given in [53, Section 3].
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Figure 4.4: Reference solution uε and solution of the improved linearized Boussinesq
equation ueff of the model example at T = 2 (left) and T = 100 (right) for ε = 1/50.





Five

FE-HMM for the wave equation for finite
time

Since HMM follows a top-down philosophy from macro- to microscale, we have first
to identify an appropriate macroscale model. As seen in the previous chapter classical
homogenization theory provides a suitable model for finite time. For elliptic problems
the homogenized tensor a0 and the cell problems are the same. Hence we can benefit
from the FE-HMM theory developed for elliptic problems, described in Section 3.2. We
adapt the FE-HMM to the time dependent wave equation, as was done in [5].

5.1 Description of the multiscale method

We give here a description of the FE-HMM for the wave equation. In view of the
equality of the homogenized tensor for elliptic and hyperbolic problems, we can use the
same computation to approximate an effective bilinear form. The notation used here is
in accordance with the notation introduced in Section 3.2.

Let Ω ⊂ Rd be the computational domain. The wave speed aε ∈ M(λ,Λ) has
a micro-scale nature of a typical length ε (e.g., period, correlation length). First, we
generate a macro triangulation TH . By macro we mean that H � ε is allowed. Choosing
a quadrature formula in the reference element K̂, we get by (3.3) a quadrature formula
{xK,j , ωK,j} on every macro element K ∈ TH . The HMM solution uH is given by he
following variational problem: Find uH : [0, T ]→ S`0(Ω, TH) such that

(∂ttuH , vH) +BH(uH , vH) = (f, vH) for all vH ∈ S`0(Ω, TH), 0 ≤ t ≤ T,
uH(0) = IH(uI) in Ω,

∂tuH(0) = IH(vI) in Ω,

(5.1)

where BH given in (3.29) is an approximation of the discretized homogenized bilinear
B0

QF, defined in (3.25). Since BH is elliptic and bounded, the FE-HMM is well defined
for all H,h > 0.

47
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Figure 5.1: Visualization of the FE-HMM: Macro mesh shown in red and micro mesh in
blue.

Remember that we estimate the bilinear form by solving an elliptic micro problem
within sampling domains Iδ of diameter δ = O(ε) around each quadrature node. For
this we use triangulations Th of the sampling domains. Here the mesh must resolve the
micro scale, i.e., h < ε. However, since the sampling domains scale in size with ε, the
computational work is independent of ε. In Figure 5.1 the different meshes used in the
FE-HMM are depicted.

The inner products can also be computed using numerical integration. Replacing
(· , ·) with (· , ·)QF we get a scheme, which is fully discretized in space. The application
of mass lumping techniques as described on page 31 leads to a diagonal mass matrix,
which is easy to invert. Note that the quadrature used to evaluate the L2 inner product
may differ from the quadrature formula used to define the FE-HMM bilinear form.

Regardless of whether numerical integration is used to compute the L2 inner product
or not, the FE-HMM scheme (5.1) is equivalent to a system of second order ordinary
differential equations; c.f. Section 3.1. To solve it, we apply either the leap-frog scheme
or the modified equation scheme. There is no restriction that forbids use of any other
time stepping scheme.

5.2 Convergence analysis

In [5] a convergence proof of the FE-HMM scheme (5.1) was given. Here we apply
Theorems 3.1 and 3.2 to give a slightly more general proof, as it generalizes immediately
to the case where numerical quadrature is used to evaluate the L2-inner product on the
left-hand side. In contrast to [5] no regularity assumption on uH is needed.
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Theorem 5.1. Let u0 and uH be the unique solutions of the homogenized wave equation
(4.6) and the FE-HMM scheme (5.1), respectively. Suppose that the quadrature formula
satisfies (3.16)–(3.18). Provided that aε ∈ M(λ,Λ), a0 ∈ W `,∞(Ω), and the following
regularity assumptions hold,

∂kt u
0 ∈ L2(0, T ;H`+1(Ω)), ∂2+k

t u0 ∈ L2(0, T ;H`(Ω)) for k = 0, 1, 2,

uI ∈ H`+1(Ω), vI ∈ H ˜̀
(Ω), with ˜̀= max{`, 2},

we have∥∥∂t(u0 − uH)
∥∥
L∞(0,T ;L2(Ω))

+
∥∥u0 − uH

∥∥
L∞(0,T ;H1(Ω))

≤ C
(
H` + eHMM

)
for all H ≤ H0.

If the stronger regularity conditions, a0 ∈W `+1,∞(Ω) and

∂kt u
0 ∈ L2(0, T ;H`+1(Ω)), ∂4

t u
0 ∈ L2(0, T ;H`(Ω)) for k = 0, 1, 2, 3,

uI ∈ H`+1(Ω), vI ∈ H ˜̀
(Ω), with ˜̀= max{`, 2},

hold we have additionally∥∥u0 − uH
∥∥
L∞(0,T ;L2(Ω))

≤ C
(
H`+1 + eHMM

)
.

Moreover, if the quadrature formula also satisfies (3.19), we get the same error esti-
mates, even if we replace (· , ·) with (· , ·)QF on the left-hand side of (5.1).

Proof. In order to apply Theorems 3.1 and 3.2 with B̃ = B0, B̃H = BH , and {· , ·} =
(· , ·) we have to verify their assumptions for these choices. The assumptions (3.6)–(3.8)
on the inner product are trivially fulfilled. In addition the coercivity and boundedness
of both bilinear forms follow since aε, a0 ∈ M(λ,Λ); see the remark on page 15 and
Lemma 3.6. It remains to estimate the difference between B0 and BH . We treat this
difference by splitting it as follows:∣∣B0(vH , wH)−BH(vH , wH)

∣∣ ≤ ∣∣B0(vH , wH)−B0
QF(vH , wH)

∣∣
+
∣∣B0

QF(vH , wH)−BH(vH , wH)
∣∣ .

Since a0 ∈W `+µ,∞(Ω), µ = 0, 1 it follows from the remark on page 29 that∣∣B0(vH , wH)−B0
QF(vH , wH)

∣∣ ≤ CH`+µ ‖vH‖H̄`+µ ‖wH‖H̄1+µ

and ∣∣B0(vH , wH)−B0
QF(vH , wH)

∣∣ ≤ CH ‖vH‖H1 ‖wH‖H1 .

Moreover, from (3.32) we have that∣∣B0(vH , wH)−B0
QF(vH , wH)

∣∣ ≤ CeHMM ‖∇vH‖L2 ‖∇wH‖L2 .

Hence we can apply 3.1 and Theorem 3.2 with α = 0 and β = eHMM. Note that we do
not need any assumptions on uH because α = 0; see Corollary 3.3.

If numerical integration is used to evaluate the inner product on the left-hand side,
we can conclude this result similarly. The additional assumption (3.19) is needed to
guarantee the coercivity of (· , ·)QF; see the remark on page 29.
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Note that we can decompose eHMM into micro and modeling error, which can be
bounded by Theorems 3.8 and 3.9. From Theorem 3.8 we deduce that the micro mesh size
h and the macro mesh size H must be refined simultaneously such that the convergence
order is not destroyed.

Numerical confirmation

We recover the theoretical order of convergence by the following experiment: We
consider (4.1) in Ω = (−1, 1) until the final time T = 0.6 with the initial conditions
uI(x) = sin(πx) and vI(x) = 0. The squared velocity field is given as for the model
example (4.2) with ε = 1/50. Since we can compute analytically that a0 = 1, the
homogenized solution is given by u0 = sin(πx) cos(πt). We compute the L2- and the
H1-error between the homogenized solution u0 and its FE-HMM approximation uH for
different discretization levels. We choose equidistant meshes for the macro and the micro
mesh, and use linear, quadratic, or cubic FEM as macro- and micro solver. We set the
size δ of the sampling domain Iδ equal to the periodicity length ε. For linear FEM we
choose the leap-frog time stepping scheme and for quadratic and cubic FEM the modified
equation scheme. The discretization parameters are given as follows:

H =
1

2k
, h =

δ

5 · 2k , ∆t =
1

10 · 2k ,

for k = 2, . . . , 8. In Figure 5.2 we observe the expected overall convergence order for the
L2- and the H1-error for all linear, quadratic, and cubic finite elements, though fixing
the micro mesh size destroys the convergence as expected; see Figure 5.3.

5.3 Complexity of the FE-HMM

In this section we compare the computation load for the FE-HMM scheme presented
in Section 5.1 with the fully resolved standard FEM. In general the overall computational
cost of an HMM scheme consists of the cost of the macroscopic solver and the cost of
the microscopic solver times the number of micro problems that we need to solve.

The macroscopic solver consists of two steps as is usually the case solving the wave
equation with standard FEM. First the mass and the stiffness matrix need to be com-
puted and afterwards the time stepping scheme is applied. The computation of the
mass matrix and the time stepping scheme are the same as for standard FEM with
the macro triangulation TH . Only the computation of the HMM stiffness matrix given
by Ai,j = BH(φj , φi) becomes more expensive. Recall that {φ1, . . . , φN} denotes the
standard FEM basis for S`0(Ω, TH). By Nelem we denote the degree of freedom for each
element K ∈ TH . This is the number of basis functions φi such that the intersection of
the support of φi and K is nonempty. Furthermore, let Nmac be the number of macro-
scopic elements. For quasi-uniform meshes we have Nmac ∈ O

(
H−d

)
, where d is the

spatial dimension. Assembling the stiffness matrix elementwise, we need to evaluate
the HMM bilinear form JN2

elemNmac times, where J denotes the number of quadrature
nodes per macro element. Having computed the micro solutions φih, i = 1, . . . , N of the
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Figure 5.2: L2- and the H1-error of the FE-HMM with linear, quadratic, and cubic FEM
for the macro and the micro solver. The expected orders of convergence are achieved if
the macro and micro mesh are refined simultaneously.

micro problem (3.26) corresponding to the basis function φi, we need to multiply the
micro stiffness matrix with two coefficient vectors of two micro solutions. Since the micro
stiffness matrix needs to be assembled to solve the micro problems, the main additional
work consists of solving the micro problems. Saving the solutions of the micro prob-
lems temporally, we need to solve Nelem micro problems per quadrature node. Overall
JNelemNmac micro problems need to be solved. Since the micro problems are elliptic,
their solution requires the solution of one sparse linear system per sampling domain.

Remark. In [28] it was shown that the number of microscale problems that need to be
solved can be reduced by choosing a special quadrature formula with quadrature nodes
on the boundary of the element. Thus one can use one micro problem and its solution
for several elements. Furthermore, to speed up the implementation one could solve the
micro problems in parallel since they do not depend on each other.
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Figure 5.3: H1-error of the FE-HMM with linear FEM for the macro and micro solver
and with fixed micro mesh size h. The convergence is harmed if h is not refined.

As mentioned above, we use a standard explicit time stepping scheme. A fully
resolved spatial domain enforces very small time steps because of the CFL condition.
Hence, being allowed to use a coarser mesh, as is the case for the FE-HMM scheme,
leads to a less restrictive CFL condition and to an additional computational gain.

To demonstrate the deliberations above we compare the computational cost of solving
the model problem introduced in Section 4.1 with ε = 2−10 and T = 2. First we use a
standard fully resolved quadratic FE solution and afterwards the FE-HMM scheme with
quadratic FE for the macro and the micro solver. The size δ of the sampling domains Iδ
is set to one period of the underlying material, i.e., δ = ε. All integrals are approximated
in both schemes elementwise with a Simpson quadrature formula.

Furthermore, we use uniform meshes with H = 2−5 and h = 2−13. Here H denotes
the length of an element of the macroscopic partition TH and h the length of an element
of the microscopic partition Th. Moreover we used the same mesh size h for the fully
resolved FEM. The mesh sizes H and h are chosen such that the L2 differences between
the approximations and the analytically computed homogenized solution are of the same
order; see the last row in Table 5.1. Note that we cannot coarsen the mesh size of the fully
resolved FEM: If we double the mesh size, we would undersample the fine scale structure
of the medium. The error between this coarsened FEM solution and the homogenized
solution would increase over fifty-fold to 0.0139.

For the time stepping we use the leap-frog scheme (3.20). Since H/h = 28 the CFL
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Table 5.1: Computational cost to solve the model problem with ε = 2−10 with a fully
resolved FEM and the FE-HMM.

fully resolved FEM FE-HMM

mesh size 2−13 2−5

number of elements 214 26

time for computing the mass matrix 7.310 · 10−1 s 4.618 · 10−3 s
number of micro problems — 192
time for computing the stiffness matrix 1.301 s 2.698 · 10−1 s

time step 2−16 2−8

number of time steps 217 29

time for time stepping 2.606 · 102 s 3.609 · 10−2 s

L2-difference to u0 2.454 · 10−4 2.9576 · 10−4

condition is 28 times more stringent for the fully resolved FEM than for the FE-HMM.
Hence we set the time step for the FE-HMM 28 times greater than the time step for
FEM.

In Table 5.1 the results are summarized. The indicated times needed for the com-
putation are the averages of a hundred runs on the same computer. The overall average
computation time for the fully resolved FEM is 263 s. For the FE-HMM only 0.311 s are
needed in average. Whenever possible the same implementation techniques are used for
both the FEM and FE-HMM. Hence the computational gain is not due to an optimized
implementation, but inherent in the method itself. This computational gain can be ex-
plained as follows: Since fewer elements are needed for the FE-HMM than for a fully
resolved FEM, the assembling of the mass matrix is over 150 times faster. In contrast,
the computation of the FE-HMM stiffness matrix is only five times faster because it
involves the solution of the micro problems. As mentioned above this step could be sped
up by solving the micro problems in parallel. The biggest gain in computation time is
caused by the time-stepping. On one hand each time iteration is faster since the number
of degree of freedoms and hence the size of the matrices is smaller for FE-HMM. On
the other hand considerably fewer iterations are needed. The combination of these two
effects leads to a speed up of over 7000.

Remark. The cost of the FE-HMM is independent of ε, since the sampling domain
Iδ scales with ε. For the standard FEM a decreasing microscopic structure ε of the
material must be fully resolved by the mesh, leading to smaller mesh sizes. Due to the
CFL condition the time step must be decreased as well. Hence for even smaller ε and
in multiple space dimensions the fully resolved FEM may no longer be computable.

5.4 Numerical experiments

In [48–50] we have performed a variety of tests and examples to show the usefulness
and versatility of our FE-HMM. In this section we just consider the most prominent
examples. First we apply the FE-HMM to the model example of Section 4.1. Then, we
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Figure 5.4: Reference solution uε and FE-HMM solution uH of the model example at
T = 2 for ε = 1/100.

consider one-dimensional wave propagation through a medium, which depends on both
scales x and x/ε. Finally we show three two-dimensional examples with different macro-
scopic solvers. For the first example we used Q1, for the second Q2, and for the third
P1 elements. We conclude this section giving some comments on the implementation of
the FE-HMM.

Model problem

We apply the FE-HMM with P3 elements for the macro and the micro solver to our
model example. We set ε = 1/100 and choose the discretization parameters as follows:

H = 2−4 =
1

16
, h =

ε

100
=

1

5000
, ∆t =

H

8
=

1

128
.

The macroscopic behavior of uε is well described by the FE-HMM scheme, as shown in
Figure 5.4. Furthermore the discretized energy of the FE-HMM solution EHMM

H ≈ 6.238
is a good approximation of the homogenized energy. The relative error between EHMM

H

and the discretized energy of the homogenized solution E0
H , where the same discretization

parameters are used, is ∣∣EHMM
H − E0

H

∣∣∣∣E0
H

∣∣ = 1.878 · 10−11.
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Figure 5.5: The tensor aε in the whole computational domain Ω = (−3, 5) with a zoom
of the x-axis at x = 4.5.

If the error eHMM → 0 the convergence EHMM
H → E0

H follows. Note that the modeling
error vanishes due to Theorem 3.9 since aε is periodic and does only depends on the
micro scale 1/ε. Hence we have eHMM = eMIC, which can be bounded using Theorem 3.8.

One-dimensional wave propagation

In contrast to the model example the medium considered now is no longer purely
periodic since it depends on the macro and the micro scale. At the micro scale the
medium oscillates and is discontinuous at the macro scale.

Let the computational domain Ω = (−3, 5) and the final time T = 3. We consider
the problem {

∂ttu
ε(t;x)− ∂x (aε(x)∂xu

ε(t;x)) = 0 in Ω, 0 < t < T,

uε(t;x) = 0 on ∂Ω, 0 < t < T,

where the initial condition is a right-moving Gaussian pulse and we set ε = 10−3. The
material described by

aε(x) =

{√
2 + sin

(
2π xε

)
, x ≤ 0 or x ∈ [k, k + 0.5), k ∈ N0,√

2 + sin
(
2π xε

)
+ 2, x ∈ [k + 0.5, k + 1), k ∈ N0,

is shown in Figure 5.5. In this example we use linear elements to solve either the macro
aor the micro problem. To constrain the micro solution a periodic coupling condition
was enforced. The discretization parameters of our HMM are set as follows: the macro
mesh size H = 10−2, the size of the sampling domain δ = ε = 10−3, the micro mesh size
h = 10−4, and the time step in the leap-frog scheme ∆t = 10−3. Here we compare the
FE-HMM solution with a reference solution (DNS) on a highly refined mesh. On the
left-hand side of Figure 5.6 three snapshots of the solution are shown. We see that the



56 CHAPTER 5. FE-HMM FOR THE WAVE EQUATION FOR FINITE TIME

−2 0 2 4
−0.5

0
0.5
1

T = 2

−2 0 2 4
−0.5

0
0.5
1

T = 1

uε

uH

−2 0 2 4
−0.5

0
0.5
1

T = 3

−2 0 2 4
0
4

x

a
ε
(x
)

−2 0 2 4
−0.5

0
0.5

1

T = 2

−2 0 2 4
−0.5

0
0.5

1

T = 1

uε

ū
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Figure 5.6: One-dimensional example. Three snapshots of the the reference solution
uε, the FE-HMM solution uH and the solution ū computed with an averaged tensor at
T = 1, 2, and 3 with a sketch of the highly oscillatory tensor aε on the bottom.

FE-HMM solution is in good accordance with the reference solution, whereas a naive
average of aε leads to wrong results. This can be seen from the right-hand side of Figure
5.6.

Two-dimensional wave propagation

Locally isotropic medium with anisotropic effective medium

Let Ω = [0, 1]2 ∈ R2, T = 0.25, and ε = 1/300. We now consider the following
two-dimensional problem from [37, Section 4.3.2]:

∂ttu
ε(t;x)−∇ · (aε(x)∇uε(t;x)) = 0 in Ω, 0 < t < T,

uε(t;x) = 0 on ∂Ω, 0 < t < T,

uε(0;x) = exp

(
−|x− xM |

2

σ2

)
in Ω,

∂tu
ε(0;x) = 0 in Ω ,

where xM = (0.5, 0.5), σ = 0.1, and aε(x) = aε(x1) is the 2× 2 tensor given by

aε(x) =

(
1.1 + 0.5

(
sin 2πx1 + sin 2π x1ε

)
0

0 1.1 + 0.5
(
sin 2πx1 + sin 2π x1ε

)) ,
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Figure 5.7: Cross section, i.e., fixed second component x2, of the tensor aε through the
material.

with ε = 1/300. A cross section through the material is shown in Figure 5.7. In this case
the homogenized tensor can be computed analytically by (2.15). It is given by

a0 =

(√
(1.1 + 0.5 sin 2πx1)2 − 0.52 0

0 1.1 + 0.5 sin 2πx1

)
.

Note that even though aε is locally isotropic, the homogenized tensor is not. We compare
the HMM solution with the solution of the homogenized problem. For the FE-HMM we
used Q1 elements for solving the macro and the micro problems, again with a periodic
coupling condition. We set H = 1/100, δ = ε = 1/300, h = 1/3000, and ∆t = 1/1000. As
shown in Figure 5.8, both solutions coincide as the initially circular wave front propagates
through the stratified medium and becomes increasingly distorted. We recall that in
contrast to the direct FE solution of the homogenized wave equation, which requires the
a priori analytic derivation of the homogenized tensor a0, the FE-HMM solution only
uses the original fine scale description of the medium, contained in aε.

Waveguide example

We now let Ω = (0, 3) × (0, 1) ⊂ R2 and divide Ω into two distinct subregions (see
Figure 5.9):

Ω1 = {x = (x1, x2) ∈ Ω : x2 ≥ x1 − 1}
Ω2 = {x = (x1, x2) ∈ Ω : x2 < x1 − 1}.

We consider the wave equation (1.3) in two space dimensions with zero initial con-
dition, i.e., uI = vI = 0. The squared velocity field is given by

aε(x) =

(
1.1 + δi2 sin(2π x1ε ) 0

0 1.1 + δi2 sin(2π x1ε )

)
for x ∈ Ωi,
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Figure 5.8: Two-dimensional example. Two snapshots of the FE-HMM solution uH
(left) and the homogenized solution u0 (right) at T = 0.1 and T = 0.25.
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Figure 5.9: The computational domain Ω for the waveguide example.
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Figure 5.10: Waveguide example. Three snapshots of the FE-HMM solution uH (left)
and the homogenized solution u0 (right) at T = 1, 2, 3.

where δ12 = 0 and δ22 = 1.
On the upper and lower boundary we impose a homogeneous Neumann and on the

right boundary a homogeneous Dirichlet boundary condition. On the left boundary we
set the time dependent Dirichlet condition,

uε(x, t) = sin(4πt),

which corresponds to a plane wave incoming from the left. We set ε = 10−3 and used
quadrilateral biquadratic finite elements on a rectangular mesh with mesh size H = 10−2.
The sampling domains are of size δ = ε, each partitioned into an equidistant, rectangular
submesh with mesh size h = 10−4.

In Ω1, no homogenization is needed, whereas in Ω2, we can apply again (2.15). For
comparison, we compute the FE solution of the wave with the analytically computed
homogenized tensor

a0(x) =



(
1.1 0

0 1.1

)
for x ∈ Ω1,(√

0.21 0

0 1.1

)
for x ∈ Ω2.

Snapshots of the FE-HMM solution uH and the homogenized solution u0 are shown in
Figure 5.10 at different times. A good correspondance can be observed.
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Figure 5.11: Computational domain with subdomains and receiver (red cross) at
(1,−0.5) (left), sample triangulation respecting inner interfaces (right)

Rock layer example

Here, we shall now extend the FE-HMM approach to triangular meshes and illustrate
its use in complex geometry, reminiscent of rock layers. We consider the computational
domain Ω = [0, 2]× [−1, 1] ⊂ R2, subdivided into four distinct subdomains, as shown in
Figure 5.11. The material tensor aε(x) is given by

aε(x) =


I2×2 for x ∈ Ω1,(√

2 + sin
(
2π x2ε

))
I2×2 for x ∈ Ω2,(√

2 + 1
2 sin (2πx2) + sin

(
2π x2ε

))
I2×2 for x ∈ Ω3,

2I2×2 for x ∈ Ω4,

where I2×2 = ( 1 0
0 1 ) and ε = 10−3. To achieve uniqueness, initial and boundary conditions

need to be imposed. As initial condition we choose a downward moving Gaussian plane
wave centered at y = 0.5 and set homogeneous Neumann boundary conditions on the
entire boundary.

To solve the wave equation (1.3) numerically we choose P1 finite elements for the
macro solver, Q1 finite elements for the micro solver, and a leap-frog time stepping
scheme. The macro mesh we use has 63,498 elements and respects the inner interfaces of
the medium, similar to the mesh shown on the right of Figure 5.11. Further discretization
parameters are

δ = ε =
1

1000
, h =

1

7000
, ∆t =

1

1000
.

If we would use a fully resolved triangular mesh with the fine mesh size h, we would
need almost 400 millions elements.

In Figure 5.12 we show three snapshots of the wave at different times. We depict not
only the FE-HMM solution but also the numerical solution of the analytically homoge-
nized problem, due to (2.15). Finally we show the solution where aε has been replaced
by its local average. We observe that the HMM solution and the homogenized solution
coincide, whereas the naively averaged solution displays errors both in phase and in am-
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Figure 5.12: Rock layer example. Three snapshot of FE-HMM solution uH (left), the
homogenized solution u0 (middle), and the solution ū computed with an averaged tensor
(right) at T = 0.83, 0.12456 and 0.2.

plitude. In Figure 5.13 we compare the three numerical solutions at the receiver location
at x∗ = (1,−0.5); it is marked with a red cross in Figures 5.11 and 5.12.

5.5 Alternative FE-HMM formulations

In the FE-HMM scheme (5.1) the use of elliptic micro problems to compute the
FE-HMM bilinear form BH is probably surprising. The explanation thereof relies on ho-
mogenization theory; see Chapter 4. The homogenized tensor a0 is computed in the same
manner for elliptic and for hyperbolic homogenization problems. This observation is the
starting point for the design of this FE-HMM scheme. Nevertheless, the most obvious
idea to design a FE-HMM scheme consists in solving the wave equation on space-time
sampling domains to estimate the missing data in the macro scale model. Following this
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Figure 5.13: The homogenized solution u0(t;x∗), the FE-HMM solution uH(t;x∗) and
the solution ū computed with an averaged tensor at x∗ = (1,−0.5) for t ∈ [0, 5]. The
solutions u0 and uH coincide (left), whereas naively averaging the tensor aε leads to a
wrong solution (right).

approach, a FD-HMM for the wave equation was proposed in [35, 37]. There, solutions
of the wave equation are used to estimate an effective flux. Inspired by this FE-HMM
scheme, we propose an alternative to our standard FE-HMM, which we call the the
flux-averaging FE-HMM scheme. The direct application of the ideas of [35, 37] leads to
a bilinear form, which is in general not symmetric. This non-symmetry is unfavorable
since we know from homogenization theory that the analytically homogenized tensor a0

is symmetric, as mentioned in the remark on page 15. Moreover, the energy conservation
and the proof of the general a priori error estimates use the symmetry of the involved
bilinear forms. For that reason we propose a second alternative, which is symmetric
and uses hyperbolic micro problems. We show a close relation between this hyperbolic
FE-HMM scheme and the standard FE-HMM proposed in Section 5.1.

Flux-averaging FE-HMM

While in an FD discretization the flux appears naturally, it is usually not considered
in an FE discretization. Therefore we rewrite the bilinear form Bε by

Bε(v, w) =

∫
Ω

[F ε(v)](x) · ∇w(x) dx,

where [F ε(v)](x) = aε(x)∇v(x). Similarly we can rewrite the homogenized bilinear form
by

B0(v, w) =

∫
Ω

[F 0(v)](x) · ∇w(x) dx,

where the homogenized flux is given by [F 0(v)](x) = a0(x)∇v(x) and a0 is the usual
homogenized tensor defined in (2.11). Note that we have only introduced the notation
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of the flux. So far everything is equivalent to the earlier considerations.
The definition of the flux-averaging FE-HMM is similar the to standard FE-HMM.

Only the definition of the bilinear form changes. Everything else, e.g., the triangu-
lation TH , the finite element space S`0(Ω, TH), or the quadrature formula {xK,j , ωK,j}
remains unchanged. The flux-averaging FE-HMM is given by the following problem:
Find ufl

H : [0, T ]→ S`0(Ω, TH) such that
(
∂ttu

fl
H , vH

)
+Bfl

H

(
ufl
H , vH

)
= (f, vH) for all vH ∈ S`0(Ω, TH), 0 ≤ t ≤ T,

ufl
H(0) = IH(uI) in Ω,

∂tu
fl
H(0) = IH(vI) in Ω,

(5.2)

where Bfl
H is given by

Bfl
H(vH , wH) =

∑
K∈TH

J∑
j=1

ωK,j [FH(vH)](xK,j) · ∇wH(xK,j),

and the averaged flux is given by

[FH(vH)](xK,j) =

∫ τ

−τ

∫
Iδ(0)

kτ (t)kη(x)aε(xK,j + x)∇ṽh(t;x) dx dt, (5.3)

where ṽh is the solution of the following hyperbolic micro problem: Find ṽh : [−τ, τ ]→
Sq(Iδ, Th) such that

(∂ttṽh, zh) +Bε(ṽh, zh) = 0 for all zh ∈ Sq(Iδ, Th), −τ ≤ t ≤ τ,
ṽh(0) = Q(vH) in Ω,

∂tṽh(0) = 0 in Ω.

(5.4)

Here δ and τ are the size of the sampling domain in space and time. Furthermore, kτ
and kη are averaging kernels and Q(vH) is the macro-to-micro coupling operator, used
to initialize the micro problem.

For the kernel we introduce the kernel spaces Kp′,q′ by

k ∈ Kp′,q′ ⇔


k ∈ Cq′(R),

supp k ⊂ [−1, 1],∫
R k(x) dx = 1,∫
R k(t)tr dx = 0, 1 ≤ r ≤ p′,

and set kν(x) := 1/νk(x/ν) for any ν > 0. Averaging kernels were introduced in [40] for
an HMM scheme to solve stiff ordinary equations and used in [35–37,39] to estimate an
effective flux. In this thesis we consider only symmetric polynomial kernels and we write
kν ∈ Kp′,q′ if there exists a k ∈ Kp′,q′ such that kν(x) = 1/νk(x/ν). Due to the initial
condition ∂tṽh(0) = 0, the micro solution ṽh is symmetric in time. Hence we have

[FH(vH)](xK,j) = 2

∫ τ

0

∫
Iδ(0)

kτ (t)kη(x)aε(xK,j + x)∇ṽh(t;x) dx dt,
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and it is enough to solve the micro problem only forward in time. For an actual imple-
mentation a time stepping scheme must again be applied.

Note that the support [−η, η] of the averaging kernel must be inside the sampling
domain Iδ, hence we let η ≤ δ/2. Furthermore, we choose δ to be large enough, such that
no information propagates from the boundary into the averaging area. This is possible
because of the finite speed of propagation of the wave equation. Hence the choice of the
boundary condition of the micro problem does not influence the scheme.

Here we restrict ourself to a linear coupling given by

[Q(vH)](x) = vH(xK,j) +∇vH(xK,j) · x. (5.5)

We will discuss the use of higher order coupling conditions later in Section 6.4.
For the analysis we consider the semidiscrete case as-well. Here ṽh is replaced by the

exact solution ṽ of the exact micro problem: Find ṽ : [−τ, τ ]→ H1(Iδ) such that
(∂ttṽ, z) +Bε(ṽ, z) = 0 for all z ∈ H1(Iδ), −τ ≤ t ≤ τ,

ṽ(0) = Q(vH) in Ω,

∂tṽ(0) = 0 in Ω.

(5.6)

We denote the corresponding bilinear form by B̄fl
H and the corresponding flux by F̄H .

In the following we show that the difference between B̄fl
H and the homogenized bi-

linear form can be bounded, but first we show two properties of the fluxes FH and
F̄H .

Lemma 5.2 (Linearity of fluxes, cf. [37, Section 2.2]). The operators FH , F̄H : S`0(Ω, TH)→
Rd are linear.

Proof. This proof works for both fluxes FH and F̄H . The micro problem we have to
solve is a linear wave equation, which is linear with respect to its initial data. Due to
the linearity of Q the micro solution w̃h corresponding to the macro function

wH = αvH + βv′H
is given by

w̃h = αṽh + βṽ′h,

where ṽh and ṽ′h are the micro solutions corresponding to vH and v′H , respectively.
Averaging consists of computing a weighted integral, which is again a linear operation
and so is the entire flux.

From [37, Theorem 3.1] we have the following convergence result.

Lemma 5.3 (Convergence of F̄H). Let F 0 and F̄H be the homogenized flux and the HMM
flux with an exact solution of the micro problem respectively, aε(x) = a(x/ε), where a is
Y -periodic, symmetric, positive definite, and smooth. Moreover, suppose k ∈ Kp′,q′, the
initial data being smooth, and η = τ . Then,∥∥[F 0(v)](x)− [F̄H(v)](x)

∥∥ ≤ C |∇v(x)|
(
ε

η

)q′
,
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where C is independent of ε, η, p′, and q′.

From this we find a bound for the difference of the bilinear form B̄fl
H compared with

B0.

Corollary 5.4. Suppose that the assumptions of Lemma 5.3 and the assumptions (3.16),
(3.17), and (3.18) on the quadrature formula {xK,j , ωK,j} hold. Then we have

∣∣∣B0
QF(vH , wH)− B̄fl

H(vH , wH)
∣∣∣ ≤ C ( ε

η

)q′
‖∇vH‖L2(Ω) ‖∇wH‖L2(Ω) .

Proof. We have∣∣∣B0
QF(vH , wH)− B̄fl

H(vH , wH)
∣∣∣

≤
∑
K∈TH

J∑
j=1

ωK,j
∣∣[F 0(vH)](xK,j)− [F̄H(vH)](xK,j)

∣∣ |∇wH(xK,j)|

≤ C
(
ε

η

)q′ ∑
K∈TH

J∑
j=1

ωK,j |∇vH(xK,j)| |∇wH(xK,j)|

≤ C
(
ε

η

)q′ ∑
K∈TH

J∑
j=1

ωK,j |∇vH(xK,j)|2
 1

2
 ∑
K∈TH

J∑
j=1

ωK,j |∇wH(xK,j)|2
 1

2

≤ C
(
ε

η

)q′
‖∇vH‖L2(Ω) ‖∇wH‖L2(Ω) .

We use the positivity of the quadrature weights and the triangle inequality in the first,
Lemma 5.3 in the second, the Cauchy-Schwartz inequality in the third, and the assump-
tion on the quadrature formula in the last inequality.

This corollary implies that the assumptions (3.11) and (3.12) are fulfilled for B̃ = B0

and B̃H = B̄fl
H . However, we cannot apply Theorems 3.1 and 3.2, because B̄fl

H is not
symmetric in general. To show this, let us first introduce some notation. It is easy to
see that the fluxes [F̄H(vH)](xK,j) and [F̄H(wH)](xK,j) are equal, if the gradients of vH
and wH at xK,j are the same. More precisely we have for the one-dimensional case

[F̄H(vH)](xK,j) = F̄H;K,j∂xvH(xK,j), (5.7)

where F̄H;K,j = [F̄H(x)](xK,j). For the d-dimensional case let ei be the i-th unit vector
and denote by

F̄
(i)
H;K,j = [F̄H(x · ei)](xK,j)

the i-th component of the flux. Then we have

[F̄H(vH)](xK,j) = F̄H;K,j∇vH(xK,j),
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where

F̄H;K,j = [F̄
(1)
H;K,j , F̄

(2)
H;K,j , . . . , F̄

(d)
H;K,j ].

Note that we could use the same techniques to study FH .

Lemma 5.5 (Symmetry of B̄fl
H). The bilinear form B̄fl

H is symmetric, if the matrices
F̄H;K,j are symmetric.

Proof. This lemma follows immediately from the equation

B̄fl
H(vH , wH) =

∑
K∈TH

J∑
j=1

ωK,j [F̄H(vH)](xK,j) · ∇wH(xK,j)

=
∑
K∈TH

J∑
j=1

ωK,jFH;K,j∇vH(xK,j) · ∇wH(xK,j).

If d = 1, F̄H;K,j is a scalar, hence obviously symmetric and therefore the symmetry
of B̄fl

H follows. But for higher dimensions the flux F̄H;K,j is in general not symmetric.
For example, notice that

u1(t;x) = x1 + t2x2, u2(t;x) = x2,

are solutions of the two-dimensional wave equation with a(x) =
(

2x1x2+c 0
0 1

)
and initial

data

u1(0) = x1, u2(0) = x2,

∂tu1(0) = 0, ∂tu2(0) = 0.

The constant c is chosen such that a(x) remains positive definite for all x. The flux
of the first solution is A∇u1 = (2x1x2, t

2)T , whereas the flux of the second solution is
A∇u2 = (0, 1)T . With Lemma 5.5 we can deduce that the corresponding bilinear form
is not symmetric. Due to this lack of symmetry we do not further investigate the general
d-dimensional case, but only the restriction to d = 1.

To conclude the presentation of the flux-averaging FE-HMM scheme (5.2), we apply
it to our model example with ε = 1/100. The parameters are chosen as on page 54.
Additionally, we set η = τ = 5ε. The size of the sampling domain was chosen such that
no information from the boundary intrudes into the averaging domain. We set

δ = η + τ

(
sup
x∈Ω
|aε(x)|

) 1
2

.

To average the flux we used kernels in K9,9; see [53]. In Figure 5.14 we see that the
homogenized solution is recovered as it is for the FE-HMM scheme (5.1). The maximal
difference between the solutions ufl

H and uH of the two schemes is 7.16× 10−6.
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Figure 5.14: Reference solution uε and flux-averaging FE-HMM solution ufl
H of the model

example at T = 2 for ε = 1/100.

Hyperbolic FE-HMM

The second alternative that we propose is a combination between the standard and
the flux-averaging FE-HMM. It uses the hyperbolic micro problem (5.4), but averages

the micro solution and not the flux. It is given as follows: Find uhyp
H : [0, T ]→ S`0(Ω, TH)

such that
(
∂ttu

hyp
H , vH

)
+Bhyp

H

(
uhyp
H , vH

)
= (f, vH) for all vH ∈ S`0(Ω, TH), 0 ≤ t ≤ T,

uhyp
H (0) = IH(uI) in Ω,

∂tu
hyp
H (0) = IH(vI) in Ω,

(5.8)

where

Bhyp
H (vH , wH) =

∑
K∈TH

J∑
j=1

ωK,j

∫
Iδ(0)

kη(x)aε(xK,j + x)∇v̄h(x) · ∇w̄h(x) dx (5.9)

and v̄h and w̄h are given by

v̄h(x) =

∫ τ

−τ
kτ (t)ṽh(t;x) dt, (5.10)
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with the obvious changes for w̄h. Again, ṽh is the solution of (5.4) with a linear coupling
condition Q. Because we average the solution ṽh over the time interval [−τ, τ ] the micro
solution v̄h and w̄h are time independent.

Furthermore, if we choose simple averages for the kernels, i.e.,

kη(x) =
1

|Iδ(0)|χIδ(0)(x) and kτ (t) =
1

2τ
χ[−τ,τ ](t),

where χ denotes the characteristic function of the set indicated by the subscript, the
bilinear form Bhyp

H becomes in this setting

Bhyp
H (vH , wH) =

∑
K∈TH

J∑
j=1

ωK,j
|Iδ|

∫
Iδ(0)

aε(xK,j + x)∇v̄h(x) · ∇w̄h(x) dx.

We consider now the semidiscrete case where the micro problems are solved exactly. Let
ṽ be the solution of the continuous hyperbolic micro problem (5.6) and

v̄(x) =

∫ τ

−τ
kτ (t)ṽ(t;x) dt.

Under sufficient smoothness we have

−∇ · (aε(xK,j + x)∇v̄(x)) = − 1

2τ

∫ τ

−τ
∇ · (aε(xK,j + x)∇ṽ(t;x)) dt

= − 1

2τ

∫ τ

−τ
∂ttṽ(t;x) dt

= − 1

2τ
(∂tṽ(τ ;x)− ∂tṽ(−τ ;x))

= −1

τ
∂tṽ(τ ;x),

where we used the symmetry if ṽ. We conclude, that v̄ solves the continuous version
of the elliptic micro problem (3.26), where the right-hand side is disturbed by a term
of order Ω(1/τ). Hence v̄ approximates the solution of the elliptic micro problem vh
as τ increases. This shows the close relation between the hyperbolic and the standard
FE-HMM scheme.

As for the flux-averaging FE-HMM scheme, we apply the hyperbolic FE-HMM
scheme to our model problem. All the parameters are set as before for the flux-averaging
FE-HMM scheme; see page 66. Again, we approximate well the homogenized solution
u0.

5.6 Comments on the implementation of the FE-HMM

The examples shown in Section 5.4 were computed by different implementations
of the the FE-HMM. In this section we comment on the features of these different
implementations. We do not explain the whole code, but give a brief overview.
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Figure 5.15: Reference solution uε and hyperbolic FE-HMM solution uhyp
H of the model

example at T = 2 for ε = 1/100.

One-dimensional FE-HMM

All the one-dimensional examples were computed with our own implementation of
the FE-HMM scheme written in MATLAB. To be able to test various ideas and slight
modifications of the FE-HMM easily we used a modular implementation. There are three
main modules, one for the computation of the mass matrix, one for the computation of
the stiffness matrix, and one for the time stepping scheme. The input parameters for the
first two modules are the description of the material aε as a function handle, a description
of the (macro) FEM, the quadrature formula that we use, and a list of the coordinates
and the elements. The list of coordinates is a vector containing all interpolation nodes.
In the list of elements every line contains the indexes of the nodes in a specific element.
This representation follows the idea of [9] applied to the one-dimensional case. Although
we use only uniform meshes for the examples shown in this thesis, nonuniform meshes
could be used as well. The output is either the mass or the stiffness matrix.

Since we only consider affine-equivalent FE it is enough to prescribe the location of
the interpolation nodes in the reference element [0, 1] and the FE reference basis func-
tions. For example, the nodes for linear FEM are given by refElementNodes = [0,1]

and for quadratic FEM by refElementNodes = [0,0.5,1]. All reference basis func-
tions are given as a single function handle, where each row is the evaluation of one basis
function. For example, we have
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phi_linear = @(x) [x; 1-x]

for linear FE and

phi_quad = @(x) [2*x.^2 - 3*x + 1; -4*x.^2 + 4*x; 2*x.^2 - x]

for quadratic FE. In addition we pass the derivatives of the basis function similarly. For
the quadrature formula we pass two row vectors, the first one contains the quadra-
ture node for the reference element and the second one contains the corresponding
weights. For the trapezoidal quadrature these two vectors are quadNodes = [0,1]

and quadWeights = [0.5,0.5] and for the Simpson rule quadNodes = [0,0.5,1] and
quadWeights = [1/6,2/3,1/6]. The last input parameter is a function handle point-
ing to a routine that describes how to compute the element mass or stiffness matrix,
respectively. The global mass and stiffness matrix are assembled elementwise, where a
loop through all elements is implemented in the main module. In each iteration the
necessary data are passed to the routine to compute the contribution of the current
element. This design allows use of the same main module for different schemes. The
only difference between standard FEM, FE-HMM, and flux-averaging FE-HMM is the
computation of the element stiffness matrix. Therefore, the majority of the code can be
reused.

For the time stepping we implemented both the second order leap-frog and the forth
order modified equation scheme. Both schemes take the mass matrix, the stiffness ma-
trix, and the initial data as input parameters and compute an approximation at the final
time T . To reduce memory burden we do not save all time steps, but only the last two
are stored. If the solution is not only needed at T but, for example, in addition at an
intermediate time T̃ < T , we run the time stepping scheme for 0 to T̃ . After saving
the needed data, we can continue starting from T̃ . We do not have to recompute the
time iteration from 0 to T̃ since leap-frog and ME can both be written as a three term
recurrence relation. Hence we only use the last two time-steps.

Two-dimensional FE-HMM

To solve two-dimensional problems we use two different implementations. Our im-
plementation uses the ideas from the implementation for one-dimension described above,
but only rectangular elements on uniform meshes are supported. The code is a mixture
of MATLAB and C combined by the MEX facility of MATLAB. The first two examples
in two-dimensions shown in Section 5.4 are computed using this implementation.

The third example is computed with an adaption and extension of the FE-HMM
implementation described in [7]. This MATLAB code is designed to solve multiscale
elliptic or parabolic problems in two or three space dimensions with FE-HMM. It is
freely available from http://anmc.epfl.ch/abdulle.html.

Since the estimation of the bilinear form is the same for elliptic, parabolic, or hyper-
bolic problems, we were able to use the part of the code which is devoted to the solution
of the micro problems and the assembling of the stiffness matrix. To assemble the mass
matrix we could profit from the implementation for the parabolic case. To the contrary,

http://anmc.epfl.ch/abdulle.html
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the time stepping scheme is entirely new. We use a leap-frog scheme to solve the occur-
ring second order system of ordinary differential equations. Because this implementation
handles only linear and bilinear elements on a triangular, respectively a quadrilateral
mesh, the chosen time stepping scheme is in accordance with the spatial solver, since
it provides the same order of convergence. The quadrature formula is set fixed to be
the barycenter rule for triangular and a Gauss-Legendre two points quadrature rule for
quadrilateral elements.

Because of the ability to use nonregular meshes we use this code to compute the
FE-HMM solution in complex computational domains, e.g., the last example in Section
5.4. In this example the computational domain is partitioned into subdomains respected
by the triangulation. Each subdomain has its own tensor aε, but not all of them display
a microscopic behavior. To decrease the computational cost we use FE-HMM only in the
nonhomogeneous domains, whereas for the homogeneous subdomains standard FEM is
used. To this goal we modified the code such that it can be prescribed whether FE-HMM
or FEM is used for each subdomain.





Six

FE-HMM for the wave equation for long
time

In Section 4.3 we have seen that the homogenized wave equation is not accurate
enough for long-time intervals, since it neglects macroscopic dispersive effects, which do
not influence the macroscopic behavior of the solution in the short run, but accumulate
over time. Since the macro scale model of both HMM schemes presented in Chapter 5 is
the homogenized wave equation we do not expect that these schemes recover the long-
time dispersive effects. This is in fact true as can be seen from Figure 6.1. On the left
we show the solution of the standard and on the right the solution of the flux-averaging
FE-HMM scheme.

To design an FE-HMM scheme accurately for both time regimes the macro scale
model needs to be changed. In Chapter 4 we have seen that the linearized Boussinesq

T = 100, ε = 1/50
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Figure 6.1: Reference solution uε, standard FE-HMM solution uH , and flux-averaging
FE-HMM solution ufl

H of the model example at T = 100 for ε = 1/50. Both FE-HMM
schemes do not recover the long-time dispersive effects.

73
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equation is a suitable model. We will first focus on the linearized “improved” Boussinesq
equation (4.9). In Section 6.4 we present two alternative formulations, where the first is
based on the linearized “bad” Boussinesq equation (4.8).

6.1 Description of the multiscale method

We first consider the weak formulation of the one-dimensional linearized improved
Bousinesq equation (4.9): Find u : [0, T ]→ H1

0 (Ω) such that
∂tt(u(t), v)eff +Bε(u(t), v) = (f(t), v) for all v ∈ H1

0 (Ω), 0 ≤ t ≤ T,
u(0) = uI in Ω,

∂tu(0) = vI in Ω,

(6.1)

where B0 is the homogenized bilinear form defined in (4.7) and (· , ·)eff is the sum of the
standard L2 inner product and a correction term

(v, w)eff = (v, w) + (v, w)cor for all v, w ∈ H1
0 (Ω).

The correction is given by

(v, w)cor = ε2

∫
Ω

b0

a0
∂xv(x) · ∂xw(x) dx for all v, w ∈ H1

0 (Ω).

This correction is symmetric, bilinear, and positive semidefinite. Moreover it only de-
pends on the spatial derivatives of its arguments and is of order O

(
ε2
)
.

We propose an FE-HMM scheme that uses (6.1) as a macro model. In contrast
to the FE-HMM schemes of Chapter 5 we do not only need to estimate an effective
bilinear form, but in addition we have to estimate the effective inner product (· , ·)eff,
respectively, the correction (· , ·)cor. Since the bilinear form is the same for (6.1) and for
the homogenized wave equation (4.6), we will use again the standard FE-HMM bilinear
form BH defined in (3.29). To not increase the computational cost of the method, we
reuse the solution of the micro problems (3.26) to compute the FE-HMM correction of
the L2 inner product. The method described below lies in the FE-HMM framework
described in Section 3.2 and can be seen as an extension of the FE-HMM for the wave
equation described in Section 5.1. We do not repeat all the notation, since they remain
unchanged.

The solution uH of the FE-HMM scheme for long time (FE-HMM-L) is given by he
following variational problem: Find uH : [0, T ]→ S`0(Ω, TH) such that

(∂ttuH , vH)H +BH(uH , vH) = (f, vH) for all vH ∈ S`0(Ω, TH), 0 ≤ t ≤ T,
uH(0) = IH(uI) in Ω,

∂tuH(0) = IH(vI) in Ω,

(6.2)

where BH given in (3.29) and

(vH , wH)H = (vH , wH) + (vH , wH)cor
H . (6.3)
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The approximation of the correction is given by

(vH , wH)cor
H =

∑
K∈TH

J∑
j=1

ωK,j
|Iδ|

∫
Iδ

(vh(x)− vH,lin(x))(wh(x)− wH,lin(x)) dx, (6.4)

where vh, wh are the solution of the micro problem (3.26) and vH,lin, wH,lin are the
linearizations of vH , wH , respectively, defined in (3.27).

Remark. For a fully discrete scheme in space, we have to evaluate the remaining L2 inner
products in the definition of (· , ·)H with a quadrature formula. Again we emphasize that
this quadrature formula may differ from the quadrature formula {xK,j , ωK,j}.

Form (6.4) it is easy to see that (· , ·)cor
H is symmetric. Because all weights ωK,j

are positive it follows immediately that (· , ·)cor
H is positive semidefinite. Hence we can

conclude in view of Lemma 6.1 that (· , ·)H is in fact a true inner product and hence the
FE-HMM-L is well defined for all H,h > 0.

6.2 Convergence analysis

Before giving an a priori error estimate for FE-HMM-L, we show that the approx-
imation of the correction has the same properties as the true correction itself. The
bilinearity, the dependence of the spatial derivatives, and the second order bound in ε
follow directly from the following lemma.

Lemma 6.1. The following identity holds:

(vH , wH)cor
H = ε2

∑
K∈TH

J∑
j=1

ωK,jm
cor
K (xK,j)∇vH(xK,j) · ∇wH(xK,j).

The (d× d)-matrix mcor
K (xK,j) is symmetric and given by

(mcor
K (xK,j))r,s =

(
δ

ε

)2 ∫
Y
ψ̂rh(y)ψ̂sh(y) dy,

where ψ̂sh ∈ Sq
(
Y, T̂h

)
solves∫

Y
axK,j (y)∇ψ̂sh(y) ·∇ẑh dy = −

∫
Y
axK,j (y)es ·∇ẑh dy for all ẑh ∈ Sq

(
Y, T̂h

)
, (6.5)

and axK,j (y) = aε(xK,j + δy). As before Y = [−1/2, 1/2]d denotes the centered unit cube

and T̂h is the scaled and translated micro triangulation Th of the sampling domain Iδ
given by

T̂h =
1

δ
Th − xK,j .

Moreover, we have for all vH , wH ∈ S`0(Ω, TH)

|(vH , wH)cor
H | ≤ C̃ε2 ‖∇vH‖L2(Ω) ‖∇wH‖L2(Ω) , (6.6)
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where C̃ = Cd(δ/ε)2(Λ/λ) with a constant C independent of all the mentioned parameters.
Note that inequality (6.6) gives the correct order in ε because δ/ε = O(1).

Proof. Recalling the definition of the micro problem (3.26) we note that its solution can
be expressed as

vh(x) = vH,lin(x) +
d∑
s=1

ψsh(x)∇vH(xK,j) · es,

where ψsh is defined in (3.31). Identifying x = xK,j+δy we can write ψsh with the solution
of the scaled micro problem (6.5) as

ψsh(x) = δψ̂sh(y).

We can proceed as follows:

(vH , wH)cor
H =

∑
K∈TH

J∑
j=1

ωK,j
|Iδ|

∫
Iδ

(vh(x)− vH,lin(x))(wh(x)− wH,lin(x)) dx

=
∑
K∈TH

J∑
j=1

ωK,j
|Iδ|
·

∫
Iδ

(
d∑
s=1

ψsh(x)∇vH(xK,j) · es
)(

d∑
r=1

ψrh(x)∇vH(xK,j) · er
)
dx

=
∑
K∈TH

J∑
j=1

ωK,j
|Iδ|

d∑
r,s=1

∂xrvH(xK,j)

(∫
Iδ

ψrh(x)ψsh(x) dx

)
∂xswH(xK,j)

=
∑
K∈TH

J∑
j=1

ωK,j

d∑
r,s=1

∂xrvH(xK,j)

(
δ2

∫
Y
ψ̂rh(y)ψ̂sh(y) dy

)
∂xswH(xK,j)

=
∑
K∈TH

J∑
j=1

ωK,j

d∑
r,s=1

∂xrvH(xK,j)
(
ε2 (mcor

K (xK,j))r,s

)
∂xswH(xK,j)

= ε2
∑
K∈TH

J∑
j=1

ωK,jm
cor
K (xK,j)∇vH(xK,j) · ∇wH(xK,j).

To show the second part of the lemma, we use that∥∥∥ψ̂sh∥∥∥
H1(Y )

≤ C
∥∥∥∇yψ̂sh∥∥∥

L2(Y )
≤ C λ

Λ
,

since aε ∈M(λ,Λ) and therefore we have for all r and s

∣∣∣(mcor
K (xK,j))r,s

∣∣∣ ≤ C (δ
ε

)2 Λ

λ
.
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Hence the following estimates holds for all ξ ∈ Rd:

|mcor
K (xK,j)ξ| ≤ ‖mcor

K (xK,j)‖F |ξ| ≤ dC
(
δ

ε

)2 Λ

λ
|ξ| .

Thus we conclude

(vH , wH)cor
H ≤ C̃ε2

 ∑
K∈TH

d∑
j=1

ωK,j |∇vH(xK,j)|2
 1

2
 ∑
K∈TH

d∑
j=1

ωK,j |∇vH(xK,j)|2
 1

2

≤ C̃ε2 ‖∇vH‖L2(Ω) ‖∇wH‖L2(Ω) .

Again we give a priori bounds for the difference between the homogenized and the
HMM solution. In contrast to the convergence analysis in Section 5.2 we use here the
FE-HMM-L scheme with the long-time correction of the L2 inner product, defined in
(6.2). This method fits into the setting of Theorems 3.1 and 3.2 which we apply to prove
the following convergence result.

Theorem 6.2. Let u0 and uH be the unique solutions of the homogenized wave equation
(4.6) and the FE-HMM scheme (6.2), respectively. Suppose that the quadrature formula
satisfies (3.16)–(3.18). Provided that aε ∈ M(λ,Λ), a0 ∈ W `,∞(Ω), and the following
regularity assumptions hold,

∂kt u
0 ∈ L2(0, T ;H`+1(Ω)), ∂2+k

t u0 ∈ L2(0, T ;H`(Ω)) for k = 0, 1, 2,

uI ∈ H`+1(Ω), vI ∈ H ˜̀
(Ω) with ˜̀= max{`, 2},

we have∥∥∂t(u0 − uH)
∥∥
L∞(0,T ;L2(Ω))

+
∥∥u0 − uH

∥∥
L∞(0,T ;H1(Ω))

≤ C
(
H` + eHMM + ε2

)
for all H ≤ H0.

If the stronger regularity conditions a0 ∈W `+1,∞(Ω) and

∂kt u
0 ∈ L2(0, T ;H`+1(Ω)), ∂4

t u
0 ∈ L2(0, T ;H`(Ω)) for k = 0, 1, 2, 3,

uI ∈ H`+1(Ω), vI ∈ H ˜̀
(Ω) with ˜̀= max{`, 2}

hold, we have additionally∥∥u0 − uH
∥∥
L∞(0,T ;L2(Ω))

≤ C
(
H`+1 + eHMM + ε2

)
.

Moreover, if the quadrature formula also satisfies (3.19), we get the same error esti-
mates, even if we replace (· , ·) with (· , ·)QF in the definition (6.3) of (· , ·)H .

Proof. We proceed as in the proof of Theorem 5.1. First we have to check that the
assumptions of Theorems 3.1 and 3.2 are fulfilled with B̃ = B0 and {· , ·} = (· , ·)H . We
have already seen that the assumptions on the bilinear form B0 hold with β = eHMM.
Assumptions (3.6)–(3.8) with α = C̃ε2 follow immediately from Lemma 6.1. Hence we
can apply the two cited theorems. Note that we absorb C̃ into the constant C to get
the final result. Using numerical quadrature the coercivity of (· , ·)QF due to (3.19); see
the remark on page 29.
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Figure 6.2: Size of the approximated correction (· , ·)cor
H for different values of ε. The

expected second order dependence on ε is recovered.

Numerical confirmation

We recover the theoretical results of Lemma 6.1 and Theorem 6.2 numerically. First
we consider again Ω and aε as given for the model example; see Section 4.1. For ε = 1/50k

with k = 1, 2, . . . , 40, we computed maxi,j(φi, φj)
cor
H , where the φi are the standard linear

FEM basis functions on a regular mesh with H = 2−5. In Figure 6.2 the results are plot-
ted on a log-log-scale against ε and we retrieve the expected second order convergence.

To recover the convergence order of the FE-HMM-L scheme we consider the same
example as in Section 5.2 for the FE-HMM scheme. Since there is an additional addend
in O

(
ε2
)

in the a priori error estimate of Theorem 6.2 compared with Theorem 5.1, we
reduce ε to 1/2000 such that this additional term does not harm the observed convergence.
In Figure 6.3 the L2- and the H1-error at T = 0.6 are shown for the FE-HMM-L with
linear macro and micro solver for simultaneously refined mesh sizes H and h. The second
order convergence of the L2-error between the solution uH of the FE-HMM-L scheme
and the homogenized solution u0 and the first order convergence of the corresponding
H1-error are clearly evident.

6.3 Numerical experiments

To show the usefulness and versatility of the FE-HMM-L we give some numerical
examples. First we apply the FE-HMM-L to the model example. Afterwards we consider
two further one-dimensional examples, where aε is not ε-periodic, but depends on the
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Figure 6.3: L2- and the H1-error of the FE-HMM with linear FEM for the macro and
the micro solver. The expected orders of convergence are achieved if the macro and
micro mesh are refined simultaneously.

macro scale. Note that for the construction of the FE-HMM-L scheme no particular
dependence of the microscopic behavior, e.g., periodicity, is assumed. Finally, we show
a two-dimensional example.

Model example

We apply the FE-HMM-L with P3 elements for the macro and the micro solver to our
model example; see Section 4.1. For the time integration we use the leap-frog scheme.
We set ε = 1/50 and choose the discretization parameters as follows:

H = 2−8 =
1

256
, h =

ε

100
=

1

5000
, ∆t =

H

8
=

1

2048
.

Since we are interested in the long-time behavior of the wave equation, we have to
be aware of numerical dispersion. This is why we can not enlarge the macro mesh size
H to the same value as for the short-time experiment on page 54. In order not to violate
the CFL condition the time step ∆t must be adapted accordingly.

In Figure 6.4 we see that the FE-HMM-L solution uH approximates the solution ueff

of the improved linearized Boussinesq equation (4.9). Thus, it is able to capture the
long-time dispersive effects.

Explicit macroscale and microscale dependence

In the following two examples the tensor aε is no longer ε-periodic. Thus, the the-
oretical results of [25, 59, 60] mentioned in Section 4.3 are not applicable. Nevertheless,
the FE-HMM-L solution coincides well with the reference solution. Similar experiments
are considered in [36] to test the FD-HMM scheme for longer times.

For the first example the high frequency oscillation of aε is superposed with a low
frequency oscillation. The squared wave propagation speed is given by

aε1(x) =
√

2 +
1

2

(
cos
(
πx
)

+ sin
(

2π
x

ε

))
.
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Figure 6.4: Reference solution ε, effective solution ueff of the improved linearized Boussi-
nesq equation, and FE-HMM-L solution uH of the model example at T = 2 and T = 100
for ε = 1/50.

For the second example we again consider a fast varying media, where the amplitude
of the oscillations changes on a macroscopic level. Here the squared wave propagation
speed is given by

aε2(x) =

(√
2 +

1

2
sin
(

2π
x

ε

))(
(1 +

1

4
cos(πx)

)
.

The initial condition is a Gaussian pulse with zero initial velocity as for the model
example, the computational domain Ω is [−1, 1], and the boundary conditions are again
imposed to be periodic.

In both examples we compare the numerical solution of the FE-HMM-L scheme
with a reference solution computed on a fully resolved mesh. We use cubic FE and the
leap-frog time stepping scheme. The discretization parameters are

ε = δ =
1

50
, H = 2−10, h =

ε

500
, ∆t =

H

8
.

In addition we compute the solution of the standard FE-HMM scheme with the same
discretization.

The results are shown in Figure 6.5 for the first example and in Figure 6.6 for the
second example. For short times all three solutions coincide. For longer times, however,
the standard FE-HMM solution deviates from the reference solution, whereas the FE-
HMM-L scheme provides reliable results for short and long times.

Two-dimensional example

We consider two-dimensional wave propagation in a periodic, highly oscillating,
anisotropic waveguide. The computational domain is given by Ω = [−1, 1] × [0, 0.25].
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Figure 6.5: Reference, FE-HMM, and FE-HMM-L solution at T = 2 and T = 100 for
ε = 1/50 with tensor aε1.
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Figure 6.6: Reference, FE-HMM, and FE-HMM-L solution at T = 2 and T = 100 for
ε = 1/50 with tensor aε2.
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Figure 6.7: Three snapshot of reference solution uε (left), the FE-HMM solution (mid-
dle), and the FE-HMM-L solution (right) at T = 2, 10, and 20 for ε = 1/20.

We impose homogeneous Neumann boundary conditions on the top and bottom and a
periodic boundary condition on the left and right. As initial condition we consider a
Gaussian pulse in the x1 direction with zero initial velocity, i.e.,

uI(x) = uI(x1) = exp(−100x2
1), vI(x) = 0.

The material is described by the tensor

aε(x) =

(√
2 + sin

(
2π x1ε

)
1 + 1

2 sin
(
2π x1ε

))
with ε = 1/20. Since aε only depends on x1, we can apply formula (2.15) to compute the
homogenized tensor

a0(x) =

(
1 0
0 1

)
.

Because of this particular choice the homogenized solution is given by

u0(t;x) =
1

2

(
exp(−100(x1 − t)2) + exp(−100(x1 + t)2)

)
and displays no dispersive behavior. However, the reference solution computed with Q1

finite elements on a fully resolved grid is dispersive, as can be seen on the left column
of Figure 6.7. The standard FE-HMM scheme approximates the u0 and thus fails to
capture these long-time dispersive effects; see the middle column of Figure 6.7. By way
of contrast, the FE-HMM-L solution is dispersive as well; see the right column of Figure
6.7. For easier comparison cross sections of the three solutions at x2 = 0.1 are shown in
Figure 6.8.

For both schemes we used Q1 finite elements for the macro and the micro solver with
a two points Gauss quadrature rule given on the reference element [0, 1]2 by the nodes
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Figure 6.8: Cross section of the reference solution, the FE-HMM solution, and the FE-
HMM-L solution at x2 = 0.1 for T = 2 and T = 20.

(1/2±
√

3/6, 1/2±
√

3/6) and the corresponding weights ω̂j = 1/4 for 1 ≤ j ≤ 4. The macro
and micro mesh sizes are given by

H =
1

200
and h =

1

2000
.

For the time stepping we used the leap-frog scheme.

6.4 Alternative FE-HMM-L formulations

In [36, 39] the FD-HMM scheme proposed in [35, 37] was modified to recover the
long-time dispersive effects. In this method an effective flux is still computed by solving
the wave equation on a micro space-time sampling domain. These domains must be
larger than the sampling domains used in the original FD-HMM scheme. However, the
use of a cubic coupling condition between the macro and the micro solver is the main
modification for the new scheme. Because of the enhanced coupling mechanism the flux
depends not only on the first, but also on the second and third derivative of the solution.

We present a modification of the flux-averaging FE-HMM scheme, which follows
these ideas. The second formulation that we present resembles the FE-HMM-L scheme.
Again, an effective linear form is computed, but the micro problem is no longer elliptic,
but hyperbolic. Because the symmetry can only be guaranteed for one dimension, see
Section 5.5, we restrict ourself to this particular case.

Modification of the flux-averaging scheme

Like the FD-HMM of [36, 39] the macroscopic model which this modification relies
on is the linearized “bad” Boussinesq equation (4.8). Multiplying this equation with a
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test function v and integrating by parts we get

∂tt

(
ueff(t), v

)
+Beff

(
ueff(t), v

)
= (f(t), v),

where

Beff(v, w) =

∫
Ω

(a0∂xv + ε2b0∂xxxv) · ∂xw dx.

The sum in the parentheses can be seen as an effective flux, which we want to estimate
by solving hyperbolic problems on small sampling domains. This effective flux depends
on the third derivative, whereas the flux-averaging scheme (5.2) only depends on the
first derivative of the macroscopic solution uH ; see formula (5.7). This dependence is
caused by the linear coupling condition (5.5). To modify the flux-averaging FE-HMM
(5.2), such that the flux FH depends on the third spatial derivatives of uH , we change
the coupling condition to

[Q(vH)](x) = c0vH(xK,j) + c1∂xvH(xK,j) · x+ c2∂xxvH(xK,j) ·
x2

2
+ c3∂xxxvH(xK,j) ·

x3

6
,

where c0, c1, c2, and c3 must be chosen appropriately. This means that the initial data
of the micro problem must be consistent with the macroscopic solution, as was pointed
out in [36,39]. The change of the coupling condition is the main modification. Otherwise
the scheme is given as in (5.2). Since this coupling uses spatial derivatives up to order
three of the macroscopic FE solution, such a coupling is only meaningful for FE of order
three or higher.

From numerous numerical experiments we have detected the effects of these coeffi-
cients: The coefficients c0 and c2 do not influence the solution at all. For c0 this can
be explained since only the derivative of the microscale solution is used in the averaging
process of the micro fluxes; see (5.3). The coefficient c2 has no influence because of
symmetry, since we only use symmetric kernels and purely periodic ε in our tests. The
coefficient c1 mainly influences the propagation speed of the wave, whereas c3 deter-
mines how dispersive the scheme is. Setting c3 = 0 we could not observe any long-time
dispersive effects. Therefore, it is inevitable that a scheme, capable of recovering the
long-time dispersive effects of wave propagation through a highly oscillatory medium,
has a c3 > 0. On the downside, we saw that the stiffness matrix is no longer symmetric
if c3 is positive. We could not resolve this dilemma of wanting both a symmetric scheme,
which is capable of recovering the long-time dispersive effects, with this approach.

Hyperbolic FE-HMM-L

As in the short-time regime we can replace the elliptic with a hyperbolic micro
problem. This formulation can be seen as a combination of the FE-HMM-L (6.2) and

the hyperbolic FE-HMM scheme (5.8). It reads as follows: Find uhyp
H : [0, T ]→ S`0(Ω, TH)
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such that
(
∂ttu

hyp
H , vH

)
hyp
H +Bhyp

H

(
uhyp
H , vH

)
= (f, vH) for all vH ∈ S`0(Ω, TH), 0 ≤ t ≤ T,

uhyp
H (0) = IH(uI) in Ω,

∂tu
hyp
H (0) = IH(vI) in Ω,

where Bhyp
H is given in (5.9) and

(vH , wH)hyp
H = (vH , wH) + (vH , wH)cor,hyp

H .

The approximation of the correction is given by

(vH , wH)cor,hyp
H =

∑
K∈TH

J∑
j=1

ωK,j

∫
Iδ(0)

kη(x)v̄h(x)w̄h(x) dx,

where v̄h and w̄h are the weighted averages over [−τ, τ ] of the solutions ṽh and w̃h of the
micro problem (5.4); see (5.10). The coupling condition of the micro problem is given
by

[Q(vH)](x) = ∇vH(xK,j) · x. (6.7)

Remark. This coupling condition differs slightly from (5.5) where a constant term is
added. Note that this difference has no influence for the computation of the bilinear
form Bhyp

H since only the spatial derivatives of v̄h and w̄h are used. Hence the additional

constant cancels out. However, for the computation of (· , ·)cor,hyp
H the choice of the

coupling condition is crucial. By choosing (6.7) we can use the same solution of the
micro problem for both computations. Therefore, every micro problem needs to be
solved only once.

The hyperbolic FE-HMM-L behaves comparably to the standard FE-HMM scheme:
with the correction of the L2 inner product it is not only accurate for short time, but
captures the long-time dispersive effects as well. To demonstrate this we consider again
the model problem for ε = 1/50; see Figure 6.9. We set η = τ = 10ε and kη, kτ ∈ K9,9.
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Figure 6.9: Reference solution uε and hyperbolic FE-HMM-L solution uhyp
H of the model

example at T = 2 and T = 100 for ε = 1/50. Similarly to standard FE-HMM-L,
hyperbolic FE-HMM-L recovers the long-time dispersive effects.



Part III

Conclusions and Future Work

87





Seven

Conclusions and Future Work

7.1 Conclusions

In this thesis we have shown that the HMM framework can be used to simulate
acoustic wave propagation in a highly oscillatory medium. We focused on FEM because
of its ability to handle complex geometry easily and its profound theoretical foundation.
The standard FE-HMM approximates the solution of the homogenized wave equation
without precomputation of any effective coefficients. We have shown that this approach
leads to a significant reduction of CPU time as well as a reduction in memory reduction,
since we only need to fully resolve the medium on small sampling domains. To solve the
arising system of second order ordinary differential equations we used the second order
leap-frog or the fourth order modified equation scheme. Here, the computational gain
from the fact that the triangulation for the macro solver does not need to resolve the
micro structure of the medium is twofold. On one side the number of degrees of freedom
and hence the sizes of the mass matrix and the stiffness matrix are substantially reduced.
On the other side we can use a greater time step due to the CFL condition.

The overall behavior of the wave is well described by the homogenized wave equation,
but for longer times the true solution deviates as a large secondary wave train develops.
This dispersive behavior is not captured by classical homogenization theory. Since the
FE-HMM converges to the homogenized solution, it does also not recover the dispersion.
To get a reliable approximation of the true solution even in this long-time regime we
modified the method. This modification is based on the improved linearized Boussinesq
equation, which was shown to serve as an effective model for short and long times.
In addition to the estimation of the homogenized bilinear form we estimated a small
correction of the L2 inner product. We have shown that this correction is of order ε2

and only depends on the gradient of the macroscopic solution. This is consistent with
our expectations raised from the effective model. The FE-HMM scheme with the L2

correction, called FE-HMM-L, is well-posed and stable for all H, h, and ε.
We have proven convergence to the solution of the homogenized wave equation for

both methods, FE-HMM and FE-HMM-L, in the L2 and the energy norm. The proof
relies on new Strang-type results for the wave equation. It covers not only the case

89
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where the L2 product is computed analytically, but also the use of a quadrature formula
is comprised. This is of special interest since it justifies the use of mass lumping tech-
niques for the FE-HMM. Note that mass lumping leads to a diagonal mass matrix and
thus its inversion, which is needed in every time step, becomes trivial. The proof of the
Strang-type results follows and generalizes ideas from convergence proofs for standard
FEM with numerical quadrature. Its key ingredient is the consideration of an adequately
defined elliptic projection. The imposed assumptions can be considered as conventional,
since they are used for standard FEM with numerical quadrature as well. The order of
dependence of the macro solver is conserved, but only if the micro mesh is refined ac-
cordingly. For the main convergence theorem no special assumptions such as periodicity
of the medium are needed. As it is usual for FE-HMM, however, additional assumptions
are needed to bound the HMM error eHMM.

Various numerical experiments show the usefulness and versatility of the methods.
In particular we retrieved the expected order of convergence numerically. In this thesis
we restricted ourselves to examples in one and two dimensions, but the extension of
the method to three-dimensional problems is straightforward. A model problem served
as a test case to simplify the comparison between the different methods. We applied
FE-HMM and FE-HMM-L to problems not covered by homogenization theory, espe-
cially in the long-time regime, where only results for ε-periodic materials are available.
Nevertheless, we found good agreement between the HMM solutions and the reference
solution computed on a fully resolved mesh.

We proposed alternative formulations of the FE-HMM and the FE-HMM-L method,
where the elliptic micro problems are replaced by hyperbolic ones. More precisely we
solved the wave equation on small space-time sampling domains. Since averaging the
fluxes of the micro solution leads to a nonsymmetric stiffness matrix, except for the
short-time one-dimensional case, we prefer to average the micro solution itself. The
symmetry of the stiffness matrix is important, because the convergence proofs are not
easily generalizable to nonsymmetric bilinear forms. Moreover, the symmetry gives rise
to the conservation of a discretized energy. The time average of the micro solution
over the sampling domain is time independent, which reveals a close relation between
the hyperbolic and the standard FE-HMM. The L2 long.-time correction can also be
incorporated into this alternative formulation.

7.2 Future work

In this section we comment on open questions, present possible extensions of our
work, and describe lines of research that could be pursued.

While the connection of the FE-HMM solution and the homogenized equation is well
understood, an a priori error estimate between the effective solution and the solution of
the Boussinesq-type effective model is still missing. Probably an extension of the general
convergence Theorems 3.1 and 3.2 is needed. Instead of replacing the L2 inner product
involving second time derivatives by a nonstandard inner product in only one of the two
wave equations, the case where both of these L2 inner products are replaced should be
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considered. Very recent theoretical results [25] might help to gain closer insight.
Furthermore, by revocation of restrictions one encounters new problems. While we

considered wave propagation fields that vary rapidly in space, we always assumed that
the tensor aε is time independent. Removing this assumption one has to distinguish
between two cases; see [13, Chapter 2, Section 3]. In the first case aε changes only
slowly over time, whereas in the second case aε oscillates on a microscopic time scale of
order ε. For the first case we could apply FE-HMM and FE-HMM-L, but we would have
to recalculate the stiffness matrix and the L2 correction in every time step. Hence, we
have to solve the micro problems over and over again, which is computationally costly.
The natural question in this context is how tho reduce the computational work. In the
context of time dependent tensors we refer to [8], where FE-HMM methods have been
applied to parabolic problems. For the second case, however, the use of elliptic micro
problems is unlikely to result in a reliable method. Here hyperbolic FE-HMM seems to
be a more promising approach.

In this thesis only the tensor aε displays a multiscale nature, whereas the initial con-
ditions vary only at the macroscale. In [38] an HMM scheme for one-dimensional wave-
propagation with high frequency initial condition in a smooth, nonoscillatory medium
is proposed. For the combination, i.e., wave propagation in a highly oscillatory medium
with high frequency initial condition, no HMM scheme seems to be available.

Besides considering highly oscillatory media one could try to adapt FE-HMM such
that it is applicable to perforated domain. The notion of H-convergence was generalized
to perforated domains and called H0-convergence; see [17]. This generalization was
applied to the acoustic wave equation in [26]. An extension of our FE-HMM based on
this theoretical framework would enlarge the number of treatable applications. There
are HMM methods to solve elliptic problems in perforated domains, see, e.g., [52], which
could be a starting point for the design of FE-HMM for acoustic wave propagation in
such domains.

I hope that this thesis might be used as a sound basis for further research in multiscale
methods for wave phenomena.
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[10] Grégoire Allaire. Homogenization and two-scale convergence. SIAM J. Math. Anal.,
23(6):1482–1518, 1992.

[11] Garth A. Baker. Error estimates for finite element methods for second order hy-
perbolic equations. SIAM Journal on Numerical Analysis, 13(4):564–576, 1976.

93



94 BIBLIOGRAPHY

[12] Garth A. Baker and Vassilios A. Dougalis. The effect of quadrature errors on finite
element approximations for second order hyperbolic equations. SIAM Journal on
Numerical Analysis, 13(4):577 – 598, 9 1976.

[13] Alain Bensoussan, Jacques-Louis Lions, and George Papanicolaou. Asymptotic
Analysis for Periodic Structures. AMS Chelsea Publishing, Providence, RI, 2011.
Corrected reprint of the 1978 original.
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