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The ligand migration network for O2–diffusion in truncated Hemoglobin N is analyzed based on
three different clustering schemes. For coordinate-based clustering, the conventional k–means and the
kinetics-based Markov Clustering (MCL) methods are employed, whereas the locally scaled diffusion
map (LSDMap) method is a collective-variable-based approach. It is found that all three methods
agree well in their geometrical definition of the most important docking site, and all experimentally
known docking sites are recovered by all three methods. Also, for most of the states, their population
coincides quite favourably, whereas the kinetics of and between the states differs. One of the major
differences between k–means and MCL clustering on the one hand and LSDMap on the other is that
the latter finds one large primary cluster containing the Xe1a, IS1, and ENT states. This is related to
the fact that the motion within the state occurs on similar time scales, whereas structurally the state is
found to be quite diverse. In agreement with previous explicit atomistic simulations, the Xe3 pocket
is found to be a highly dynamical site which points to its potential role as a hub in the network. This
is also highlighted in the fact that LSDMap cannot identify this state. First passage time distributions
from MCL clusterings using a one- (ligand-position) and two-dimensional (ligand-position and
protein-structure) descriptor suggest that ligand- and protein-motions are coupled. The benefits and
drawbacks of the three methods are discussed in a comparative fashion and highlight that depending
on the questions at hand the best-performing method for a particular data set may differ. C 2015 AIP
Publishing LLC. [http://dx.doi.org/10.1063/1.4904431]

I. INTRODUCTION

The difficulty of characterizing long-time scale dynamics
in complex systems that exhibit several states is a fundamental
problem in chemistry and biology. With the increasing avail-
ability of computational facilities, it is now routine to generate
extended trajectories for large macromolecules in explicit sol-
vent and to explore the fundamental dynamics of biomolecular
processes, including protein folding, enzyme catalysis, signal
transduction, and ligand binding. It is therefore paramount
to formulate and validate methods to analyze the spatial and
temporal evolutions of the system dynamics.

One method which has attracted considerable interest
in analyzing the dynamics by which a system moves from
one state to another is based on a transition network anal-
ysis (TNA), also known as Markov state modeling.1–4 TNs
are discrete representations of states or clusters and contain
information about the possible pathways between the states.
In graph theoretical terms, the conformational states are rep-
resented by nodes or vertices, whereas the transitions between
them correspond to the edges. The kinetics between the nodes
can be recovered by a master equation1 or by kinetic Monte

a)Current address: Laboratory of Chemical Physics, NIDDK, NIH, Bethesda,
Maryland 20892, USA.

b)Electronic mail: m.meuwly@unibas.ch

Carlo (KMC) methods.5–9 KMC is particularly suitable for
situations in which the time scale separation between different
motions of interest is large, such as in protein folding. TNs
have found several applications in protein folding,10–18 enzyme
catalysis,19,20 ligand migration,21 and studies of electron spin
resonance.22

For a transition network analysis, the original data set
needs to be clustered. In the present work, three different clus-
tering methods are applied to the same data set and the ensuing
coarse grained dynamics is followed based on this clustering.
The methods include k–means, kinetics-based, and collective
variable (CV)-based methods. The k–means method is based
on geometrically clustering the data around a set of prede-
fined (here, based on previous experimental and computati-
onal studies23–25) or continuously updated centers (Sec. II B 1).
The kinetics-based approach used here relies on the Markov
Clustering (MCL) method which partitions space on a fine
mesh. This provides a large number of microstates which are
then kinetically lumped together into clusters (macrostates)
(Sec. II B 2). Alternatively, CV-based approaches (Sec. II B
3) can be used to define the clusters. For more details on
CVs, the reader is referred to a recent review.26 LSDMap
employed here preserves the so-called “diffusion distances”
which can be understood as the “ease” to transit from one
configuration to a neighboring one by considering the num-
ber of possible pathways between them, and therefore is

0021-9606/2015/142(2)/025103/15/$30.00 142, 025103-1 © 2015 AIP Publishing LLC
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suitable for quantitative estimation of the transition barrier
and rate.27

Ligand migration in globular proteins offers the possi-
bility to compare experimentally and computationally charac-
terized pockets with the states found by the clustering methods.
Some clustering algorithms (MCL, LSDMap) do not make
any assumption about the nature of the states (cluster centers),
whereas others do (k–means). Hence, if different independent
clustering methods find the same or largely similar states, and
if they furthermore agree with experimentally characterized
states, it is likely that they constitute a meaningful set of
states of the system. It is of great general interest to bench-
mark different clustering methods on the same system for
which experimental data are available for validation. One such
protein for which the internal pockets have been analyzed is
the truncated hemoglobin trHbN of M. tuberculosis.23–25 The
bacterial species is responsible for human tuberculosis and
evades macrophage killing by neutralizing toxic agents, such
as nitric oxide (NO) by oxidizing NO to nitrate (NO−3).28,29

For this, O2–access to the protein active site is required. The
structure of trHbN is shown in Figure 1. Efficient NO detoxi-
fication in trHbN has been attributed to the presence of an
almost continuous tunnel through the protein that ensures rapid
ligand transfer to the heme where the chemical reaction takes
place.23,30,31 Hence, trHbN is an important example of the
direct involvement of ligand migration in a physiologically
relevant process.

The tunnels in trHbN consist of two orthogonal branches
connecting the heme distal pocket to the protein surface at two
distinct sites.31 The crystal structure of trHbN with Xe atoms
under pressure revealed five distinct docking sites along the
two branches of the tunnel.23 Furthermore, atomistic Molec-

FIG. 1. X-ray structure of trHbN (PDB code 1s56 Ref. 23). The backbone
is represented in petrol and the helices are labeled. The heme and Phe62
residues are shown in red and black sticks, respectively. The five xenon
pockets found in the X-ray data are represented by yellow spheres. The
residues around the channel I entrance are represented in magenta sticks. The
red dashed lines indicate the two channels of the protein network.

ular Dynamics (MD) simulations have provided a structural
and spectroscopic characterization of NO and O2 localization
as physiologically relevant probes.24,25 The resulting connec-
tivity network provided insight into the ligand migration path-
ways and exit channels (Figure 2). While NO docks in the Xe2
pocket, O2 preferably localizes in the DS2 pocket. Therefore,
protein-ligand interactions appear to be specific.

O2 is a particularly relevant physiological ligand and
early studies of its migration were interpreted in terms of
unspecific random diffusion.32–34 More recent work found
that O2 follows specific tunnels (see above),35–37 may involve
multiple pathways, and is likely to be coupled (slaved) to
the protein motion.38–42 The possibility for a ligand to follow
multiple pathways was, for example, demonstrated experi-
mentally and through MD simulation for CO in Mb and O2-
migration in flavoenzymes.38,43,44 The studies also suggest
that small ligands can move through the bulky regions of the
protein governed by thermal fluctuations of the protein and that
ligand migration follows defined routes through the protein
matrix.42,45–60 Multiple pathways and active migration make
a kinetic analysis of the ligand dynamics particularly relevant
in view of the different time scales involved.

The purpose of the present work is to compare three
different clustering algorithms applied to the same underly-
ing MD data set characterizing the diffusion and extensive
transition dynamics involving around 90 000 transitions of O2
in NO-bound trHbN. The main questions asked in this work
are (a) do different clustering algorithms applied to a close-
to-complete microscopic sampling find the same “states” as
characterized by their geometrical characteristics?, (b) how
do the populations of the states compare?, and (c) does the
kinetics of the states found from the three clustering algorithms
differ and how closely do they trace the original reference
trajectories? To answer these questions, the states involved are
determined from different methods and then used in a transition
network analysis. Finally, particularly important states in the
network and their connectivity to the network are investigated
in more detail.

FIG. 2. Connectivity network of the O2-ligand docking sites in trHbN. The
observed ligand transitions among various protein pockets are indicated by
arrows and line widths illustrate relative fluxes (thick for large flux, thin for
small flux). The loss of ligand to the bulk solvent is indicated by arrows
towards water. Docking sites which open toward the bulk (red), the “inner”
network (green), and pockets around the reactive site (blue) are color-coded.
The role of Xe3 as a hub is evident from this representation. The isolated
PDS2 pocket is not represented for clarity.
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II. METHODS

A. Molecular dynamics simulations

Details on the simulation conditions can be found in the
previously published work.25 Overall, 32 independent trajec-
tories of 2 ns each are available for analysis from which the
connectivity network is characterized. A simulation time of
2 ns for a trajectory was found to be sufficient for O2 to exten-
sively sample the entire network because free energy barriers
between neighboring sites are typically around 1 kcal/mol
or lower.25 Moreover, beyond 2 ns of simulation, it becomes
highly probable to find O2 in the solvent as had also been found
for NO in a previous study.21,24 The runs are initially started
in one of the 5 pockets identified experimentally23,31 or from
previous atomistic simulations.24 From pockets Xe1, Xe2, and
Xe3, 10 independent trajectories were started because these
pockets were extensively sampled in exploratory runs. Sampl-
ing from pockets Xe4 and Xe5 was only carried out for one
trajectory each because they are solvent exposed and ligands
leave these sites on time scales of a few hundred picoseconds.
Snapshots are written every 100 fs which leads to close to 6·105

snapshots analyzed involving more than 90 000 transitions.

B. Clustering methods

As a first step for a more coarse grained investigation
of the O2–dynamics within the protein, partitioning of the
space visited by the unbound ligand into representative states
is required. Various clustering methods and algorithms have
been devised to address this issue.61,62 In the following, we
briefly summarize the different approaches employed in the
present work, including k–means clustering,61–64 MCL,65 and
the locally scaled diffusion map (LSDMap) methods.66 All
of them are applied to the same data set consisting of the
Cartesian coordinates of O2 from reoriented trajectories with
the Fe-atom at the origin and the least-squares plane containing
the four nitrogen atoms of the heme group of the protein in
the x y–plane. The total number of configurations available is
6.4 ·105 of which 5.8 ·105 were analyzed, except for LSDMap,
as explained below. The known xenon pockets are those identi-
fied in the X-ray structure of trHbN and complemented by MD
studies23,25 totaling 13 clusters: ENT, Xe1a, Xe1b, Xe2, DS2,
EXT, Xe3, IS1, IS3, Xe4, Xe5, PDS2, WAT, and DUM.

1. k–means clustering

k–means clustering61–64 aims at partitioning data space
into Voronoi cells. In this approach, only the number of desired
clusters is specified as input. The local optimal partitioning
is found iteratively from a set of k clusters whose centers m
= (m1x,m1y,m1z,. . .,mk x,mk y,mkz) need to be initially guessed.
The algorithm can be summarized as follows:

arg min
S

k
i=1


x j ∈Si

�
x j−mi

�2
, (1)

with x the coordinates of the data points and m the coordinates
of the k cluster centers. The explicit algorithm involves assign-
ment of a new data point xp to one of the sets Si(∀ 1 ≤ i ≤ k)

according to

S(ν)
i =

�
xp :

�
xp−m(ν)

i

�
≤
�
xp−m(ν)

j

�
∀ 1 ≤ j ≤ k

	
(2)

and then updating the cluster centers m

m(ν+1)
i =

1

|S(ν)
i |


x j ∈S

(ν)
i

x j, (3)

where the variable ν loops over the iterations. The distance
between the old m(ν)

i and the new m(ν+1)
i centers is used as the

convergence criterion, and the clustering is considered to be
converged when the sum of distances fulfills m(ν+1)

i −m(ν)
i = 0.

The procedure used in the present work is an extended
version of the k–means algorithm in that two cutoffs, r lc and
r sc, are used around each center. The larger cutoff, r lc, rejects
configurations which are too far from any center to be included
in the clustering (Eq. (4)), whereas the smaller cutoff, r sc,
is used to determine which configurations will be used to
optimize each center (Eqs. (5) and (6)). This is necessary to
facilitate convergence and to obtain a more robust clustering.
In what follows, the cutoffs are r sc = 1.7 Å and r lc = 6.12 Å.
These values were chosen such that (a) the cluster centers
remain close to the initial guesses from the X-ray structures
and MD results and (b) the number of unassigned data (size of
the “DUM” cluster) is lowest.

S(t)
DUM=


xp : ∥xp−m(t)

i ∥ > r lc ∀ 1 ≤ i ≤ k

, (4)

S
′(t)
i =


xp : 


xp−m(t)

i



 ≤ r sc ∀xp ∈ S(t)

i


, (5)

m(t+1)
i =

1

|S′(t)i |


x j ∈S
′(t )
i

x j . (6)

In general, the result of a k–means clustering depends on
the initial guess and the number of cluster centers. For the
present case, an obvious initial assignment uses the structur-
ally observed pockets25 described above. However, in order to
scrutinize the final clustering performed along these lines, a
clustering without initial guess (KMWG) was carried out. In
this case, the first data entry was used as the first center m.

2. Markov clustering algorithm

In contrast to k–means, the Markov CLustering Algorithm
(MCL)65 does not require an initial guess concerning the size
and structure of the final clusters. The method is based on
the analysis of a transition network which is obtained by (i)
mapping the MD trajectory onto a discrete set of microstates;
and (ii) building a transition network in which the nodes are
the microstates and a link is placed between them if two micro-
states are visited one after the other along the trajectory.67

Within MCL, several methods have been proposed so far
for the definition of these microstates, ranging from second-
ary structure strings,67 RMSD clustering,68 and order param-
eter fluctuations.69 Before clustering, a transition network
was built with the microstates corresponding to the cells
of the rectangular grid (1 Å side) of the Cartesian region
[−65.0, 65.0],[−65.0, 65.0],[−65.0, 65.0], each cell represent-
ing a microstate of the O2 molecule. The discretization pro-
cess represents a fine grained description of the molecular
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dynamics, resulting in a total of 24 664 microstates visited by
the O2 ligand along the 5.8×105 snapshots analyzed.

The discrete microstates time series built from the contin-
uous O2 trajectories were then mapped onto a transition
network67,70 with the properties described further below. In this
network, nodes (i.e., microstates) are weighted with the total
number of times they appear along the discrete trajectories.
Links are added to the graph between any pair of nodes ap-
pearing successively, accounting this way for the total number
of transitions observed. Finally, for each link detailed balance
was imposed by averaging the number of transitions in both
directions. Given the exhaustive sampling (98 163 transitions
in total) that was possible in the present case, this was only
partially necessary because the original trajectories mostly
satisfied detailed balance already.

The application of the MCL algorithm on this transition
network results in a set of kinetically homogeneous states. As
is shown elsewhere, the resulting partitioning reflects the prop-
erties of the underlying free-energy surface where the clusters
represent free-energy basins.71,72 The kinetic model provided
by these clusters satisfies the Markov property73 which is not
generally true for any type of clustering.2

MCL is based on the behavior of a random walker on the
network guided by the transition probabilities. The algorithm
can be summarized as follows: (i) build a transition matrix
(TM) where each element Tj i represents the transition prob-
ability from node j to node i (i.e., sum over columns equal to
one); (ii) compute T2=T ×T ; (iii) take the pth power (p > 1)
of every element of T2 and normalize each column to one;
and (iv) go back to step (ii). After several iterations, MCL
converges to a matrix TMCL(p) invariant under transformations
(ii) and (iii). Only a few lines of TMCL(p) have several nonzero
entries that give the clusters as separated basins (usually, there
is exactly one nonzero entry per column). Step (iii) reinforces
high-probability walks at short time at the expense of low-
probability ones. The parameter p determines the granularity
of the clustering, see Figure 10. For large p, the random walks
are likely to end up in small “basins of attraction” of the
network, resulting in several small clusters. For p = 1, the
clustering is not sensitive to any barrier and only one cluster
covering the whole network is obtained. Thus, in free-energy
language, the value of p determines to what barrier heights the
algorithm is sensitive to. Small values of p split the network
along the highest barriers.71 As p increases, successively lower
barriers are detected and the number of states increases, see
Figure 10. For practical applications, p was found to typically
vary between 1.1 and 1.8.71,72 For dynamical processes with a
clear separation of time scales, results are robust for different
values of p.

3. Locally scaled diffusion map

The locally scaled diffusion map (LSDMap) is based on
the kernel

Ki j = exp
(
−
∥xi−x j∥2

2εiε j

)
, (7)

where ∥xi − x j∥ is the root mean square deviation between
two configurations xi and x j and local scale εi represents

the scale in configuration space around xi within which the
underlying manifold is almost linear and can be approximated
by a hyperplane tangent to the manifold. The procedure to
estimate this configuration-dependent local scale is detailed in
previous work.27 The exponential kernel Ki j can be considered
as the “ease” with which xi can diffuse into x j. A normalized
version of this kernel approximates the Markov TM between
pairs of configurations in the data set, and the eigenvectors
of this matrix serve as the diffusion coordinates (DCs), repre-
senting the essential slowest motions of the system. LSDMap
is useful to define Markovian clusters because configurations
with barriers between them will be more distant in the low-
dimensional CVs from LSDMap (diffusion coordinates) than
in the original configuration space, and vice versa.

In order to render the calculation computationally
manageable, a subset of the entire MD trajectories is chosen
for LSDMap analysis by taking every fifth frame of the
original trajectories. One of the original 32 trajectories is not
included in the final analysis with LSDMap because most of
the frames in that trajectory were far away from the frames
of all the other trajectories. Similarly, 2 shorter trajectories
were discarded giving a total of 29 trajectories. More detailed
analysis on that trajectory suggests that most of the data
points correspond to the less interesting situations in which
O2 is in the solvent instead of the protein. Therefore, 29
trajectories with each 4000 frames (1.16 ·105 frames in total)
are taken into account in LSDMap analysis.

The configurations represented by the first three DCs
were clustered via the topological mode analysis tool
ToMATo.74 The method clusters the high-dimensional data
set according to the spatial density function and merges the
inconsequential clusters into noise. In the spatial density
functions, the height of the peak is the density of the basin,
and the position of the peak is the candidate cluster center.
The cluster is filtered out as noise by checking the density
difference between the height of the peak and the valley in
the middle of the peak of interest and its neighboring peaks,
that is, by checking the prominent part of the density peak.
The free parameters used for ToMATo are the number nN

of neighbors to estimate the density, which was 200; the
cutoff distance rc = 0.09 Å in DC space to build the nearest
neighbor network; and the threshold ϵ = 0.08% of the number
of points in the data set on the prominence of the density peak
to consider a cluster as noise.

For each clustering, the method-specific parameters were
varied to explore the sensitivity of the clusterings and to
optimize discrimination between neighboring states. For KM
and KMWG (see further below), initial tests without cutoffs
lead to non-convergence. However, using an inner and outer
cutoff for defining the clusters leads to ready convergence
of the clusterings and changes of the present cutoffs away
from the values used in the final clusterings modified the
populations only in the percent range without changing the
identity and number of clusters.

For MCL, an explicit example of the influence of the
granularity parameter p on the clustering is given further
below. For p = 1, the MCL algorithm detects 1 cluster. With
larger values of p, the number of clusters increases but not all
of them are statistically significant. The choice of p, which is
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usually between 1 and 2, is usually based on minimizing the
number of clusters and the noise.

For LSDMap, the free parameter is a cutoff in the
analysis of the noise spectra when determining the local
scales.75 It has been shown that the definition of states
with LSDMap is robust to changes of this parameter (see
Appendix A of Ref. 75). The results are also robust against
changes of nN since the data are densely sampled in the
regions of interest. The value of rc used to build the nearest
neighbor network is directly related to the number of final
clusters and the percentage of data clustered in the final
states. When increasing rc from 0.03 to 0.09 Å, the number
of clusters decreases until it levels off at 0.08 and 0.09 Å.
We choose rc = 0.09 Å because over 99% of the data points
are clustered, facilitating the comparison with the other two
methods. With a suitable choice of rc to build the nearest
neighbor network, the results are also robust against ϵ to filter
the noise.

C. O2 Migration kinetic model

Once the clusters have been determined, they can be used
as the “states” of a kinetic model by means of a transition
network approach.
The transition network: The nodes of a transition network
(TN) correspond to the states obtained from the clustering
(see Sec. II B). A weight Ci is assigned to each node i
accounting for the total number of times the system has
visited that particular state. The total number of transitions
C̃j i observed from state i to state j within two consecutive
snapshots corresponds to the weight of the directed links of
the network. Ideally, for equilibrium sampling, the transition
count should be symmetric to satisfy detailed balance,
i.e., C̃i j = C̃j i. However, due to finite sampling, these values
are only nearly symmetric.2,15,76 For this reason, symmetricity
is imposed with the averaged weight for links Cj i = (C̃i j +

C̃j i)/2.
The network can be described by a single transition

probability matrix T(∆t) of the Markov chain with matrix
elements

Tj i (∆t)= Cj i
kCki

, (8)

which represent the probability of the ligand to be found in
state j at time t +∆t given that it was in state i at time t.
Hence, T is a row-stochastic matrix, given that

j

Tj i (∆t)= 1, (9)

and T describes the time evolution of a first order kinetic
model according to

p⃗(t+∆t)=T p⃗(t), (10)

where p⃗(t) is the probability distribution along the states at
time t. By construction, the stationary solution of Eq. (10) is
given by the normalized occupation

Ti =
Ci
jCj

. (11)

The TN described above with its compact matrix represen-
tation captures the temporal evolution of the entire system.
As such, a Markov model can be built to describe ligand
migration in trHbN with the states provided by the three
clustering methods: k–means, MCL, and LSDmap.
Validation through first passage time distributions: The First
Passage Time (FPT) distribution corresponds to the distri-
bution of times to reach a given target state from any other
snapshot of the trajectory. In other words, the distribution of
the time the system needs to be in state j at t+ τ, given that it
is in any state i (i , j) at time t.

In order to compare the FPTs collected from the original
MD trajectories, with those from the transition network, a
random walk was run on the TN derived from each of
the three clusterings. This random walk generates a discrete
stochastic trajectory depending only on the transition proba-
bilities between clusters. Arrival times from the random walk
depend on the definition of the target state only and not on the
detailed clustering of the data. For the original MD trajectory,
the target state is defined as snapshots which correspond to
the network state of interest obtained with a certain clustering
method while for the random walk trajectories the target is
represented by a network state as given in Table I derived
from a particular clustering method.

III. RESULTS

In the present work, the dynamics of unbound O2 in
trHbN sampled from MD simulations has been analyzed
following the different methods outlined in Sec. II.

A. Structural characterization of the states

Clustering from k–means: For k–means, two strat-
egies were pursued. In one, the clustering was initialized
from centers found either from experiment (Xe-pressurized
X-ray scattering23,31) or from atomistic simulations.24,25 They
correspond to cavities naturally present in the protein. In the
other, KMWG, initialization of the clustering only depends
on the first data entry. In both cases, the quantity of interest is
the population of each state (see Table I) and its geometrical
center. The most populated states are DS2 and EXT which
correspond to the main docking site for O2 in the reactive
site and to an exit route around the reactive site, respectively.
The next most populated clusters are Xe1b, Xe1a, and ENT
all along channel I which was found to be the uptake
route for O2.25 From the main clusters (those found in
X-ray experiments), Xe3 is the least populated one which
is in accord with previous studies24,25 and identifies it as a
metastable state.

Clustering from MCL: As a result after analyzing the
29 trajectories (20 000 frames each), the network consists
of 24 664 nodes and 98 163 links. Two weakly connected
(depending on the details of the clustering) components are
found: 62 nodes with 3.4% of the total weight and 24 602
nodes with the remaining population. The small component
(PDS2) appears because there was a trajectory visiting a
region of the Cartesian space not visited by any of the other
28 trajectories.
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TABLE I. Comparison between the clusters found by KM, KMWG, MCL, LSDMap clustering, and experi-
ment.23

KM KMWG MCL (p = 1.6) LSDMap Expt.23

Label r (Å) Pop. (%) r (Å) Pop. (%) r (Å) Pop. (%) Pop. (%) r (Å)

ENT 16.6 7.8 16.3 5.6 16.1 5.9
Xe1a 14.1 8.6 15.7 6.9 14.1 15.3a 40.3b 13.5
Xe1b 11.9 10.8 10.2 8.7 11.2 11.6 19.6
Xe2 6.6 9.7 . . . . . . 6.0 8.9 7.5a 6.4
DS2 5.4 14.2 6.0 21.3b 6.0 15.6 9.6
EXT 8.1 12.8 5.6 6.1 5.9 7.2 11.2a

Xe3 9.3 6.3 9.8 6.4 10.1 9.1b 0.2 10.9
IS1 12.9 8.5 13.9 11.8a . . . 0.8
IS3 11.1 2.7 . . . . . .

Xe4 15.8 7.2 16.0 4.7 14.8 3.1a 10.2 15.8
Xe5 11.6 4.4 8.9 6.5 8.7 1.7
PDS2 5.1 4.6 6.7 3.4 5.7 3.4 4.6
WAT . . . 5.5 . . . 4.2 3.4c

aTwo clusters were merged.
bThree clusters were merged.
cFive clusters were merged.

MCL applied to the network described above with
granularity p = 1.6 yields 2358 clusters (i.e., states) with
different populations. A large number of clusters with low
population are found by the algorithm due to finite size
sampling. This can be observed cumulatively representing the
population of the states (Figure 3). As such, only the 16 most
populated clusters representing ≈ 84% of the total number of
snapshots were retained. The 17th cluster in the ranked list,
which is the first discarded, has a negligible population of
0.7%.

Clustering from LSDMap: Clustering of the data with
LSDMap leads to ≈ 99% of the analyzed microstates assigned
to 16 clusters. We did not cluster 100% of microstates
because some of the events are in low populated minima
of the LSDMap free energy landscape and increase noise
(Figure 4). The 1st and 2nd DC characterize the motion of
O2 inside the protein while the higher-order DCs correspond
to O2 diffusing out of the protein towards water. The

FIG. 3. Cumulative population of the MCL clusters. The 16 most populated
clusters—before the gray vertical line—represent 84% of the total number of
snapshots contained in the O2 set of trajectories.

free energy profile as a function of the 1st and 2nd DC
is shown in Figure 5. The barriers indicated qualitatively
agree with previous free energy simulations.25 However,
it should be pointed out that connectivity along config-
urational coordinates—as exhibited in umbrella sampling
simulations—may lead to very different free energy land-
scapes compared to connectivity along diffusional coordi-
nates. In other words, depending on the collective variable
used for projecting low-dimensional representations of the
full free energy surface, the shapes and barriers may consider-
ably vary as was previously found for protein folding.77

Figure 4 reports a two-dimensional representation of the
data. Direct inspection of the clustered data suggests that
the minimum at negative 1st DC corresponds to DS2/EXT

FIG. 4. LSDMap free energy profile and clustering plot. The color dots show
the configurations in different clusters with respect to 1st and 2nd DC.
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FIG. 5. LSDMap free energy as a function of the 1st DC (top) and the 2nd
DC (bottom).

states (reactive site), whereas the minimum at positive values
corresponds to a large basin involving ENT, Xe1a, and IS1.
Hence, the 1st DC corresponds to the transition between the
entrance of channel I and the reactive site. The free energy
barrier is about 2 kcal/mol and is consistent with experiments
on O2 in flavoenzymes, which suggests that the barriers are
sufficiently low to overcome at room temperature.38 This
is also in agreement with the computational results from
previous free energy simulations (umbrella sampling) for this
migration pathway.25 States ENT, Xe1a, and IS1 are also
found to overlap nicely with facile exchanges between these
pockets separated by barriers of ≈ 1 kcal/mol. States 11, 12,
and 13 at the negative values of 2nd DC are near the other
exit route of O2 from the protein. Therefore, the 2nd DC
corresponds to the transition from states including Xe1, Xe5,
Xe4, and EXT (minimum at positive 2nd DCs) towards water
(minimum at negative 2nd DCs). These are consistent with
the four exit routes observed in a previous work of the protein
network,25 in which the ligand leaves the protein in a multiple
step process with barrier between 2 and 4 kcal/mol.

Comparison: Table I summarizes the results of the
three clustering methods. The 13 clusters found by k–means
(including the solvent state WAT) are reported with the
distance to the Fe atom of the heme group and the popu-
lation of each cluster. k–means clustering starts from initial
guesses for the cluster centers which are then continuously

updated as clustering proceeds. The initial guesses were the
experimentally and computationally characterized pockets
from previous work. Hence, the k–means centers and clusters
are taken as the reference to be compared with the MCL
and LSDMap methods. It is now of interest whether less
biased methods, such as MCL and LSDMap, find states
at comparable protein locations. In order to investigate the
dependence of the k–means method on the initial guess,
k–means clusterings without pre-assigned cluster centers
(“k–means without guess” KMWG) were carried out using
the same cutoffs as for k–means with a guess for the
centers: the outer cutoff (rout

c = 6.12 Å) decides whether or
not a microstate belongs to the cluster and the inner cutoff
(r in

c = 1.7 Å) decides whether or not a microstate contributes
to updating of the cluster center. Thus, a new cluster with
its center at the microstate coordinate is created when a
microstate is separated from any other center by more than
rout
c . As for the original algorithm, cluster centers are updated

by averaging the coordinates of the microstates within r in
c

around the current center. At the end of every cycle if the
clustering is not converged, empty clusters are removed,
while clusters with centers at a distance less than rout

c are
lumped together, with a new center defined as the average
of the other two. The procedure is repeated until convergence
is reached. This results in a total of 267 clusters among which
only 17 have a population larger than 1%.

These 17 clusters were analyzed and compared to the
k–means clustering with initial guess in the same fashion as
was done for MCL and LSDMap. The results are summarized
in Table I. The two k–means methods yield similar results.
KMWG allows to more easily assign individual events to
a specific cluster for wide states such as ENT or Xe4 but
lacks resolution for states close to each other as for Xe2,
DS2, and EXT which are lumped together in one state and
leads to the large population of DS2 and the non-existence
of Xe2 which is not sufficiently separated from DS2. This
could probably be improved by modifying the two cutoffs.
However, the same parameters were employed for a one-to-
one comparison between KM and KMWG, respectively. A
comparison between the two clusterings suggests that using
as a guess the experimentally and computationally known
docking sites of the protein is a meaningful and beneficial
procedure for this system.

In the following, the k–means, MCL, and LSDMap
clusterings are compared. This is done by comparing the
assignment of each frame to a specific cluster within a given
clustering algorithm. Taking the k–means clustering as a
reference, it is important to note that the frames of a k–means
cluster can correspond to two or three different clusters in
MCL and LSDMap, respectively, see Figure 6. Considering the
Fe–O2 distance, the locations and the populations of the Xe1b,
Xe2, DS2, EXT, IS3, Xe4, and PDS2 states agree to within
a few percent between k–means and MCL and k–means and
LSDMap, respectively, as can be seen in Table I. This is also
evident from the black squares at the intersections between
these states in Figure 6. Three states—ENT, Xe1a, and IS1—
are merged in one minimum with LSDMap. This shows that
they are diffusionally similar but less so topologically. Within
LSDMap, these states can be further separated by considering
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FIG. 6. Projection of the MCL (left) and LSDMap (right) clusters on the k–means clusters. For each MCL/LSDMap cluster (row), the projection is normalized
on the maximum component. The scale is provided on the side of each plot.

higher-order DCs which correspond to more rapid motions.
Similarly, MCL clustering finds that Xe1a and IS1, though
structurally different, are in the same macrostate (Figure
6). This means that these states interconvert rapidly so that
they appear as one cluster form a kinetic point of view.
This is consistent with the small ≈ 1 kcal/mol energy barrier
between these states.25 Five distinct states defined by LSDMap
correspond to WAT because the MD data with O2 in the
solvent are less sampled and disconnected. The main difference
between k–means and LSDMap is that Xe5 disappears in
the LSDMap analysis. This state is primarily sampled in
the trajectory excluded from LSDMap analysis because most
of the frames in that trajectory correspond to O2 in water
(see Sec. II). The other contributions of Xe5 originate from
Xe1b and Xe2 in LSDMap, which suggests that these states
are kinetically close. This is consistent with the results from
MCL in which Xe5 from k–means contributes to a significant
amount of Xe2 and Xe1b (Figure 6).

In Figure 6, the overlapping population between MCL
clusters (left hand side) or LSDMap clusters (right hand
side) and k–means clusters is shown. For MCL (see above)
the clusters match nicely with those found by the k–means
method. They are all defined with a single major component.
This confirms that the computationally and experimentally
determined pockets are a meaningful starting point for cluster
centers. The only exceptions are ENT, Xe1a, and IS1 which
appear lumped in the MCL approach, whereas they are well
defined pockets in Cartesian space.

The population distributions p(rFe−O2) of the most impor-
tant macrostates are explicitly reported in Figure 7. For
this, the distance between the Fe and the free O2 ligand
was determined for every snapshot belonging to a particular
cluster when using a specific clustering scheme. The data
are arranged according to decreasing population as reported
in Table I from left to right and top to bottom. The first
observation is that all states found from k–means (red) and
MCL (blue) overlap favourably (see also below). Therefore,
the geometrical definition of the states found from k–means
and MCL largely coincide. More detailed analysis of the

most populated cluster—Xe1a and IS1—reveals that a small
population at large Fe–O2 separation (≈ 18 Å) in k–means
is present. This part of the distribution structurally belongs
to ENT. This is not the case for MCL since the similarity is
based on kinetics rather than geometrical criteria. Conversely,
LSDMap does not find separate clusters for the Xe1a and IS1
states. Instead, the most populated state contains almost all
of Xe1a, IS1, and ENT, and small portions of several other
states (see Table I and Figure 6). This is an entropic minimum
containing quite heterogeneous structures, but the time scales
of the motions inside this minimum are shorter than those
corresponding to the first three DCs used in clustering.
Structures with low Cartesian proximity are clustered for
this state (a similar example is the unfolded state in protein
folding). Therefore, a much broader structure distribution of
this minimum as a function of the Fe–O2 separation is found
than with Xe1a/IS1 from k–means and MCL in Figure 7. On
the other hand, k–means, MCL, and LSDMap largely overlap
for clusters DS2, EXT, Xe1b, and Xe2. This could be further
quantified by determining the overlap integral between the
distributions. The fact that LSDMap does not detect Xe3 as
a separate state is related to the very diffusive and dynamical
nature of this site and its implied role as a hub.

A more quantitative analysis is carried out for the
combined Xe1a and IS1 state (see left upper panel in
Figure 7). For this, all events found by k–means and MCL,
respectively, are considered. The total number of events is
113 920 out of which 77 268 are found by both methods.
Hence, the two methods overlap for 68% of the events. The
remaining 20 386 and 16 266 events are found by k–means
and MCL, respectively. This is graphically illustrated in
Figure 8 where events for the overlapping (red), k–means-
only (blue), and MCL-only (green) distributions are reported.
This representation also highlights a limitation in Figure
7 which suggests a somewhat larger overlap between the
k–means and MCL-clustered data due to working with a one-
dimensional descriptor (Fe–O2 distance).

Contrary to k–means and KMWG, MCL, and LSDMap
do not make assumptions concerning the spatial location of
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FIG. 7. Population density as a function of the Fe–O2 distance. For each cluster, the distributions for k–means, for MCL, and for LSDMap are plotted as an
histogram. Only the most populated macrostates are shown.

the cluster centers relative to the structurally known pockets.
As one of the major conclusions of the present work—and
to answer the first question formulated in the Introduction—
it is found that the majority of cluster centers (“states”)
found from k–means, MCL, and LSDMap coincides with
the known Xe pockets from the X-ray structure and from
previous simulations. These methods verify the ability of the
current MD simulation and various analyses to capture the
major binding sites of the system from a kinetic point of
view in addition to the structures. Also, the global minimum
found in LSDMap corresponds to three structural pockets:
ENT, Xe1a, and IS1 (see Figure 7). A similar correspondence
is found for the MCL clustering for which Xe1a and IS1
are lumped together. These three states form a single basin

from a free energy point of view which is consistent with the
previous observation25 of rapid exchange between those sites.
Finally, all three methods find structurally related clusters
but the difference is in the population, i.e., “size,” of the
clusters. This answers the second question put forward in the
Introduction.

It is important to highlight that differences in the cluster-
ing primarily reflect the fact that different clustering schemes
are sensitive to different underlying physical processes in
the original trajectories. Each clustering (k–means, KMWG,
MCL, and LSDMap) was stringently tested for convergence
in its own right. Also, the underlying MD data are nearly
converged, as a recent analysis of the coupled ligand-protein
dynamics has revealed.78
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(a) (b)

FIG. 8. Three-dimensional comparison of the Xe1a/IS1 states between k-means and MCL methods. (a) The overlapped structures of the two methods are shown
in red. 77 268 of 113 920 structures (68%) are found in both methods. (b) The remaining non-overlapped structures of the two methods are shown in blue (18%,
k-means only) and green (14%, MCL only).

B. Coarse grained dynamics

As a measure of the similarity between the original MD
trajectory and the kinetic models based on k–means, MCL,
and LSDMap clustering, the FPT distributions to the target
state are studied. For this, the states DS2, EXT, and Xe1a are
considered. The FPT for the MD trajectory was calculated as
a distribution of times to reach a given target state from any
time frame of the trajectory. For the networks, the FPT was
obtained by running a random walk with 106 steps on the TM.

Figure 9 reports the FPT-distributions for the MD trajec-
tory (red curve) and the random walk on the network (grey
and black curves). The panels corresponding to clustering
methods based on k–means, MCL, and LSDMap are denoted
by KM, MCL, and LSD, respectively. Typically, only the short-
est component of the population decay is accounted for by the
random walk, whereas the slower components are not correctly
reproduced with a one-dimensional descriptor. Overall, FPT-
distributions from the MCL-clustering better trace the MD
data. The standard deviation (grey shading) of the FPT from
MCL clustering is significantly larger than that for the other
two. This might be due to the significantly larger number of
nodes in the MCL network, which is 2358, compared to 14 and
16 for k–means and LSDMap, respectively.

To answer the third question formulated in the Intro-
duction, the clustering and FPT derived from sampling the
transition matrices do differ quite significantly from the FPT
distributions based on the MD simulations, depending on the
state considered. None of the clusterings is able to faithfully
capture all aspects of the dynamics from the atomistic
simulations when using a one-dimensional descriptor. MCL
correctly describes the short-time dynamics while missing
certain features on the several hundred picosecond time scale.
K-means and LSDMap are less suited to follow the kinetics.

One of the reasons for this is the fact that only a one-
dimensional descriptor was used.

In order to further explore this point and to quantify the
sensitivity of the ensuing coarse grained dynamics on the
parameter p employed in MCL clustering, a two-dimensional
clustering including the protein-RMSD has been carried out.
The clustering using two descriptors (ligand position and
protein-RMSD) has been described in detail before.78

Two clusterings using a two-dimensional descriptor (the
O2 coordinates and the protein-RMSD relative to the X-
ray crystal structure (Protein Data Bank entry 1IDR)) with
MCL were carried out, one for p = 1.12 and the other for
p = 1.13. The effect of a different granularity parameter p is
to modify the barrier separating two basins from each other,
as illustrated in Figure 10(a). This leads necessarily to a
different partitioning of the time frames between the clusters
and thus to different clusters and their populations, as is
schematically shown in Figure 10(b). With increasing p, state
10 (left part of panel (b)) decomposes into states 16, 32, and
46 (the numbering is arbitrary, right part of panel (b)) because
the clustering becomes more sensitive to lower barriers. The
difference between clustering with p = 1.12 (squares) and
p= 1.13 is the fact that certain frames are not clustered at all
(squares with crosses) with the larger value for p, or that new
frames are included in the clustering (squares with circles).
The corresponding distribution functions P(ρ), where ρ is the
protein RMSD, are reported in Figure 10(c). There is almost a
one-to-one correspondence for the distribution functions from
clusterings with different p, as is evident in the left panel
of Figure 10(c): The sum of the probability distributions
P(ρ) for states 16, 32, and 46 with p = 1.13 (grey curve)
is almost identical to P(ρ) for state 10 with p = 1.12 (red
curve). The coarse grained dynamics from the two clusterings
is compared in Figure 10(d) (grey and red lines). The data
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FIG. 9. FPT distributions for the states DS2, EXT, and Xe1a for each of the clustering methods: k–means on the left panels, MCL in the middle, and LSDMap
on the right. Each panel contains the average FPT and standard deviation over 103 random walks each of length 106 on a given network (dark gray curve and light
gray region, respectively). The black curves depict an exemplary random walk on the network, while the red curves correspond to the FPT distributions based on
MD trajectories clustered according to k–means, MCL, and LSDMap clustering, respectively. Hence, even the FPT distributions from MD differ because they
are based on different clusterings. For the random walks, FPT distributions are normalized by the length of the random walk while for the MD trajectories FPTs
are normalized by the length of the trajectory.

reported are the FPT distribution averaged over 1000 RW
trajectories and the corresponding standard deviation for p=
1.12 (dark and light red) and p = 1.13 (dark and light grey).
The black line is the FPT distribution from the MD trajectory.
Both coarse grained dynamics faithfully reproduce the short-
time dynamics and favourably trace the rate of population
change at later times. Comparing the results from Figures
10(d) and 9 (panel DS2, MCL) suggests that including the
protein motion as a second descriptor has a non-negligible
effect on how accurately the coarse-grained model is able to
capture the real dynamics.78

IV. DISCUSSION

Ligand migration in TrHbN is an ideal test to compare
and benchmark different clustering schemes because the
cluster centers can be compared with experimental data and
results from independent simulations and because the ligand
migration network can be exhaustively sampled. This is in
contrast to protein folding problems where typically only
the structure of the native state is known and intermedi-
ates are difficult to characterize both, by experiment and
computation. Furthermore, time scales for protein folding
are sufficiently long to prevent one for carrying out a
statistically significant number of folding trajectories. Also,
ligand migration in trHbN involves about one dozen states

which makes it different from other common test systems
such as alanine dipeptide for which there are only a few states
available.17,27,71

In the present case, the network can be rigorously
sampled from atomistic MD simulations as the ligand migra-
tion barriers are known to be low25 and several potential
metastable states have been directly characterized in both
experiments and previous simulations. A comparative assess-
ment of the methods and particular practical aspects are
discussed in the following. For this it is important to recall
that the three clustering schemes are based on quite different
assumptions. While k–means requires initial guesses for the
cluster centers, MCL and LSDMap do not. However, with
the structural data at hand, such a guess is much better
defined compared to, e.g., the situation in protein folding
for which a guess for meaningful intermediate (on-pathway
intermediates) is much more difficult and potentially ill-
defined. Hence, we do not expect k–means to fail primarily
because of poor choices for the cluster centers in the present
application. On the other hand, k–means and LSDMap start
from a relatively small number of states (tens to hundreds),
whereas MCL starts from tens of thousands of states and
progressively reduces this number.

First, it is noted that all three methods find similar states.
Specifically, the ENT, Xe1, Xe2, IS1, Xe4, DS2, EXT, and
PDS2 states are found by all methods. The Xe3, Xe5, and IS3
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FIG. 10. Sensitivity of the first passage time distribution on the granularity parameter p in MCL for a two-dimensional extension of network analysis accounting
for coupling of ligand and protein degrees of freedom. A detailed description is given in the text.

states are not present for LSDMap. As discussed above, Xe3 is
too dynamic to be detected as a separate state with LSDMap,
whereas Xe5 is only populated in one of the 32 trajectories
which happens to be the one excluded from analysis with
LSDMap because it mainly samples O2 in water. This confirms
its role as a major hub which needs to acquire and release the
ligand(s) as they travel the network. It is also confirmed by the
small free energy barrier by which this state is separated from
the surrounding states, as was found from umbrella sampl-

ing simulations.25 Comparing k–means and MCL—the two
Cartesian-coordinate based clustering schemes—it is found
that structurally, Xe1a, Xe2, Xe3, and Xe4 compare within 1
Å or better to the experimentally determined positions. The
occupation of the most prominent states agrees favourably
for all three methods, as evidenced in Figure 7 and Table I.
Specifically, the comparison between k–means and MCL is
noteworthy, whereas certain populations found by LSDMap
are considerably larger (Xe1a) or smaller (Xe3) compared to
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the other two methods. It is found that clustering in diffusion
space leads to a large primary cluster (population of 40%)
which consists of three individual states found with k–means
or MCL. Adding the populations of ENT, Xe1a, and IS1 from
k–means or MCL yields a population of ≈ 25% which is
somewhat smaller than from LSDMap.

The dynamics of the states can also be compared from
each clustering scheme. Using the states found from each
clustering algorithm, the dynamics of the DS2, EXT, and
Xe1a state from k–means and MCL largely overlap on the
500 ps time scale, whereas LSDMap gives somewhat slower
dynamics. The main differences primarily occur for the long-
time behaviour, see Figure 9. A network model that correctly
describes the original MD kinetics presents a good match
between the first-passage time distribution obtained directly
from the MD trajectory and the one calculated from the
network dynamics. This indicates that the network model
minimizes the re-crossings on top of the barriers and that the
original MD dynamics can be mapped into a Markov process.
Our results suggest that the first-passage-time distributions
determined from the transition matrices best cover the
explicit MD results for MCL clustering. Conversely, k–means
and LSDMap fail to capture the long-time dynamics.

In an effort to elucidate the findings from the present
work for the non-expert of these types of data analysis, a brief
list is compiled in the following.

• K-means and KMWG: This approach is highly intu-
itive. Once given the position of the cluster centers,
all the snapshots of a trajectory are grouped to the
closest centers. While in most cases clusters centers
are randomly chosen (hence requiring thousands of
centers to work with), the pre-knowledge of the
binding pockets in the present case allowed us to select
those as initial centers for the clustering. As it was
illustrated in the paper, this approach gave a very nice
characterization of the pockets. One caveat is that this
method is purely geometrical, no information on the
dynamics is used to group the snapshots. This leads to
artifacts when considering the dynamics of the found
clusters. In fact, small mismatches at the top of the
barrier easily lead to re-crossings and a faster network
dynamics. Hence, k–means is certainly an efficient
method to group the snapshots of a MD trajectory into
a set of pre-determined states (like in our case) but its
use in building accurate/meaningful kinetics models is
limited.

• MCL: The main advantage of this method is that it
uses dynamics information to identify the states. As
illustrated in the main text, MCL correctly identified
the binding pockets without any a priori knowledge
of their positions. Moreover, being based on the dy-
namics, it provided the best match to the original MD
trajectory when it came to the comparison of the long
time behavior of the first-passage-times distributions,
see Figure 9. In our opinion, MCL has two main
drawbacks. First, it requires a discretization of the
original MD trajectory into a large set (i.e., thousands)
of microstates or clusters of small sizes. For this step,

many approaches can be used, like RMSD clustering73

and k–means (with thousands of randomly placed
centers) to a simple space discretization as in the
present case. This step can be highly automatized,
but in some cases results can be sensitive to the
initial discretization step73 or it is difficult to be
performed.79,80 Second, MCL requires a parameter p
to be tuned which represents the level of granularity of
the clustering. The smaller the parameter the higher
the barriers separating the states. An advantage of
MCL is that it assures that the found clusters are
split along the barriers separating them, i.e., molecular
states are never artificially split into two,71 making the
choice of this parameter only a question of the level of
detail needed for the analysis.

• LSDMap. LSDMap uses short geometric distance
(RMSD) to approximate local kinetic information
(the “ease” with which one frame of structure can
diffuse into another) and then merge them to extract
a set of global, but geometrically unspecified reaction
coordinates. LSDMap is largely independent of a
geometrical reaction coordinate. The main limitation of
using LSDMap as a clustering method is that it does not
provide the definition of clusters directly, but instead a
set of reaction coordinates characterizing different time
scales of motions of the system. Here, on a first trial
of using LSDMap to build TN, we used the clustering
method ToMATo74 on the reduced dimensionality space
defined by LSDMap. The dynamics of the global
minimum (Xe1a) is well characterized by the first
two DCs, but the dynamics of some other states may
require higher-order coordinates. The number of DCs
used for multiple-minimum system and the choice of a
topological clustering method on the DC space intro-
duce another level of complexity. LSDMap involves the
eigenvalue decomposition of an N ×N matrix, with N
is the number of frames for the analysis, and therefore is
limited by the capacity of the computational resources.
Here, only one-fifth of the entire data set was used for
the analysis. However, it is found that clusters defined
in this manner are largely consistent with the other two
methods. The main advantage of LSDMap is that it
provides a set of reaction coordinates decoupling the
motions on different time scales, with the lower-order
DCs corresponding to the slower motions. Therefore,
for a system with a separation of time scales, the
method serves as a meaningful way to obtain a low-
dimensional free energy projection by using the first
few DCs. Free energy barriers (e.g., barrier height
of the migration pathway in this study) are usually
well preserved as the rapid degrees of freedom are
decoupled from the slow ones. The clusters on the
free energy landscape also present a diffusion point
of view on the stability of the states which sometimes
differs from the structural view (ENT, Xe1a, and IS1).
In addition, a simple visualization of relative position of
the (meta)stable states in two dimensions help achieve
a better understanding of the migration pathways and
mechanisms of the system.
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V. CONCLUSIONS

Starting from an extensive sampling of the O2 migration
in TrHbN, three different clustering schemes found largely
identical docking sites (Xe1a, Xe1b, Xe4, and EXT) within
the protein, which are also known from experiment and
previous simulations.23,25 The clusterings differ regarding
states which are more diffusive or kinetic in nature and
can be considered metastable from the diffusion point of
view (LSDMap). All three clustering schemes find similar
geometrical characterization of the states. However, the
population of the states together with the kinetics between
the states can differ considerably.

For a more complete assessment of the ligand dynamics,
including the protein conformational degrees of freedom is
likely to be relevant but outside the scope of the present work.
The fact that protein and ligand dynamics is coupled to some
degree is also suggested by previous work which found that
the two cannot be easily separated for carbon monoxide in
myoglobin.42
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