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Introduction 

The choice of the grasshopper Omocestus viridulus as a study system offered the 

opportunity for investigations in two distinct research fields of ecology. In the first chapter, the 

focus lies on nitrogen limitation and nutrient balancing, aspects of plant-herbivore interaction. 

An evolutionary ecological perspective is adopted in chapters two and three that deal with life 

history adaptation. 

The basic question underlying my experimental work on plant-herbivore interaction is about 

the nature of the control of herbivore population densities. It is generally agreed that under 

most natural conditions herbivores utilize only a relatively small fraction of the biomass 

produced by terrestrial plant communities, resulting in a ‘green world’ (Hairston et al. 1960; 

Polis 1999). This observation has inspired two major lines of reasoning. On the one hand, it 

has been suggested that predators suppress herbivore populations to relatively low 

densities, thereby releasing plants from herbivore attacks (‘top-down control’) (e.g. Hairston 

et al. 1960, Fretwell 1987, Oksanen and Oksanen 2000). On the other hand, ‘bottom-up’ 

approaches imply that plants themselves are relatively well defended against herbivores. 

Such defence may be structural, due to defence chemicals and/or low nutritional quality (e.g. 

Ehrlich and Birch 1967, Feeny 1976, Coley et al. 1985, Myers and Bazely 1991, Augner 

1995). A specific version of the argument that the availability of nutritional requisites limits 

herbivore abundance is offered by the nitrogen limitation concept (Mattson 1980, White 

1993). According to this concept, terrestrial herbivores face a relative shortage of nitrogen 

(N) that arises from the difference in elemental tissue composition (stoichiometry) between 

plants and animals. As a result, plant tissue should represent a poor food base causing high 

mortality in herbivores. 

Over the recent years, it has become clear that both top-down and bottom-up forces are 

important (Cornell and Hawkins 1995, Olff et al. 1999, Polis 1999). However, the degree and 

consistency to which predators and resources control herbivore abundance in different 

ecosystems remain little understood (Hunter and Price 1992, Power 1992, Ritchie and Olff 

1999, Dyer and Letourneau 2003). This motivated my examination of the applicability of the 

N limitation framework to grasshopper herbivores. I carried out a series of experiments using 

food manipulated in its N content and quantified key aspects of grasshopper performance 

and feeding behaviour. The basic expectation based on N limitation was a high susceptibility 

of herbivore performance to variation in plant tissue N content - however, I will make the 

case that this view of population control is overly simplistic. Since the notion of nutrient 

limitation is relative and meaningful only within the real ecological context of a given species, 

particular care was taken to choose realistic experimental conditions, e.g. by using natural 

food plants (instead of artificial diets) and outdoor replication. 
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As pointed out previously (Jones and Lawton 1995, Polis and Strong 1996, Polis 1999, 

Schmitz et al. 2000), it is essential to learn more about species specific responses to defined 

ecological factors before reliable generalizations about trophic interactions at the community 

level can be made. Since grasshoppers represent the top invertebrate herbivores in many 

grassland ecosystems (Chapman and Joern 1990, Ingrisch and Köhler 1998), the present 

investigation of N limitation provides a valuable contribution to this issue. Knowledge about 

herbivore responses to plant tissue N is also useful in the light of the tremendous human 

increase in the level of N available to primary producers currently taking place (Vitousek et 

al. 1997, Kaiser 2001), and has implications for the further development of ecological 

stoichiometry and nutrient balance theory (Sterner and Elser 2002, Raubenheimer and 

Simpson 2004). 

 

Fig. 1. Annual life cycle of Omocestus 

viridulus. The pre-reproductive life 

span (grey bars) includes embryonic 

(egg) development, nymphal 

development and adult maturation. 

During the reproductive period (black 

bars), the females produce multiple 

egg pods. With increasing altitude, a 

decrease in season length limits the 

reproductive period. 

The starting point of my life history studies (Chapters two and three) was the impressive 

altitudinal distribution of Omocestus viridulus. In Switzerland, this annual grasshopper occurs 

from roughly 400 m to above 2500 m altitude. This altitudinal gradient coincides with a 

dramatic decline in temperature, an ecological factor of prime importance to ectotherm life 

cycles (Johnston and Bennett 1996). As a result, a shorter thermally effective growing 

season is available to populations occurring at high elevation. In contrast to low elevation 

conspecifics, high altitude grasshoppers might therefore experience seasonal time 
constraints on the life history in the sense that a short growing season trades off time 

required to reach maturity with time available to reproduction (Fig. 1). As a response to 

selection imposed by such time constraints, life history theory predicts the evolution of 

accelerated development (Rowe and Ludwig 1991, Stearns 1992, Abrams 1996, Roff 2002). 

High altitude 

Low altitude 

The objectives of the investigation presented in Chapter two were, first, to assess in the field 

whether seasonal time constraints occur in the species. Secondly, common garden 

experiments using multiple grasshopper populations from the species’ entire altitudinal range 

served to test the hypothesis that intrinsic developmental rates increase with elevation. 

This investigation thus represents a test of the predictive power of life history theory with 

natural populations. Likewise, it provides a case of adaptive population divergence in relation 
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to spatially divergent selection (Endler 1986, Mousseau et al. 2000, Hendry and Kinnison 

2001, Kawecki and Ebert 2004), and therefore contributes to understanding ecological forces 

creating and maintaining genetic biodiversity. Further, the parallel analysis of development 

rates in the field and laboratory made it possible to disentangle the effects of genetic and 

environmental responses to local climates. As will be illustrated, these forces can 

counterbalance each other (‘countergradient variation’, Conover and Schultz 1995) and lead 

to cryptic adaptation (see also Merilä et al. 2001). Finally, investigations on adaptive and 

phenotypic responses of a species to a wide range of climates can shed light on the 

determinants of species range borders (Hoffmann and Blows 1994, Holt 2005) and how they 

might be altered by global change (Clarke 1996, Parmesan et al. 2005). 
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Chapter three focuses on the same set of altitudinal grasshopper populations and largely 

represents an extension of the analysis detailed in Chapter two. However, here the trait of 

main interest is the intrinsic growth rate. This trait is centrally relevant to life historians 

because it mediates the relationship between development time (a life history trait) and body 

size (usually strongly correlated with life history traits, e.g. Roff 2002) across ontogeny. 

Traditionally, life history theory considers growth rate a constant character within a species, 

causing a strong positive correlation between development time and body size (Roff 1980, 

Stearns 1992, Zonneveld 1996; Fig. 2). In contrast, it has sometimes been argued that 

intrinsic growth rate itself should be viewed 

as a trait responsive to selection. 

Organisms facing time constraints should 

thus evolve faster growth, thereby 

decoupling development time from body 

size (Abrams et al. 1996, Arendt 1997; Fig. 

2). Surprisingly, the latter view has 

received little empirical attention despite its 

importance to life history theory (Roff 

2000). As I studied adaptive divergence in 

development time in relation to seasonal 

time constraints (see above), I was 

therefore interested in potential concurrent 

adaptive change in growth rates, and in the 

resulting among-population body size 

pattern. To this end, I analyzed grasshopper 

additionally provided insights into sex-specifi

involved in altitudinal life history adaptation in 
Fig. 2. Ontogenetic responses to time constraints. 

Organism A represents the ancestral state. Invariant 

growth rates within the species assumed, selection for 

earlier maturity (shorter development) leads to a 

correlated decrease in body size (B). In contrast, 

organism C evolved faster growth that perfectly buffers 

body size change. 
ontogenies under laboratory conditions, which 

c growth, and into the proximate mechanisms 

O. viridulus. 
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Chapter 1 

Grasshoppers cope with low host plant quality by compensatory 
feeding and food selection: N limitation challenged 

Abstract 

The effect of low host plant nitrogen (N) content on herbivore performance has rarely been 

studied together with the herbivore’s feeding behaviour. We explored this relationship with 

juvenile Omocestus viridulus (Orthoptera: Acrididae) grasshoppers using fertilized and 

unfertilized host grasses. Due to lower growth rates, grasshoppers reared on N-poor grasses 

exhibited slightly prolonged development and smaller adult size, while mortality was similar 

among the fertilizer treatments. This was found both in the laboratory and in outdoor cages 

under natural climatic conditions. A parallel analysis of feeding behaviour revealed that the 

grasshoppers counterbalance N shortage by compensatory feeding, and are capable of 

selectively feeding among grasses of contrasting nutritional quality when given a choice. This 

indicates a striking ability of O. viridulus to regulate nutrient intake in the face of imbalanced 

food sources. Although the species exploits a relatively very poor autotroph nutrient base in 

the wild, as underpinned by N analysis of natural host grasses and grasshopper tissue, our 

data suggest that natural food quality imposes no relevant constraint on the herbivore’s 

performance. Our study thus challenges the importance of simple plant-mediated control of 

herbivore populations, such as N limitation, but supports the view that herbivores balance 

their intake of N and energy. 

 

Introduction 

By virtue of a large mismatch in tissue nitrogen contents between terrestrial autotrophs and 

consumers (Elser et al. 2000), nitrogen is often considered the key nutrient required by 

herbivorous arthropods (Mattson 1980, Bernays and Chapman 1994, Schoonhoven et al. 

1998). This has led to the nitrogen limitation concept, which holds that the natural nitrogen 

(N) content of food plant tissues generally impairs consumer performance (White 1993). 

Although in some cases specific biochemicals rather than bulk N seem to constrain 

herbivores (Behmer and Joern 1993, Anderson et al. 2004), consumer survival, growth 

and/or fecundity often respond positively to increased N (or protein) availability (Smith and 

Northcott 1951, Slansky and Feeny 1977, Lincoln et al. 1982, Ravenscroft 1994, Joern and 

Behmer 1997, Wheeler and Halpern 1999). The notion of N limitation thus rests on 

substantial empirical evidence and has lately been extended to the level of carnivorous 

arthropods (Denno and Fagan 2003). However, studies with crustaceans (Cruz-Rivera and 
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Hay 2000) and bugs (Di Giulio and Edwards 2003) recently demonstrated that some 

herbivores are able to overcome N shortage while close relatives are indeed strongly N 

limited. This suggests that predictions based on N limitation may not account for the diversity 

of herbivore responses to low N resources. 

Over the recent years, an alternative to the strictly one-dimensional view of N limitation has 

emerged, the nutrient balance (or ‘geometric’) framework (Raubenheimer and Simpson 

1999, 2004, Simpson and Raubenheimer 2000). This concept emphasizes the simultaneous 

regulation of the intake of nitrogenous nutrients and carbohydrate-derived energy by 

herbivores. Experimental work on nutrient balance, focused primarily on insect herbivores 

(but see Mayntz et al. 2005) and artificial diets, has shown that both protein and 

carbohydrate need to be ingested in a specific amount over a given period to sustain optimal 

growth and development. This nutritional target can be effectively stabilized over a wide 

range of food protein and carbohydrate compositions due to the interplay of several 

behavioural mechanisms. These include selection among unbalanced but complementary 

resources (Waldbauer and Friedman 1991, Chambers et al. 1995, Behmer et al. 2001, Lee 

et al. 2002), compensatory feeding by adjusting the total amount of food ingested (Abisgold 

and Simpson 1987, Raubenheimer and Simpson 1993), and post-ingestive regulation 

(Zanotto et al. 1993, 1997). Central to studies of nutritional balancing is the premise that 

animals must trade-off the costs of overeating excess nutrients against undereating those in 

deficit in the diet, as recently modelled and tested by Simpson et al. (2004). 

 The objective of the present study is to explore the feeding behaviour and performance of 

Omocestus viridulus (L.) grasshoppers in relation to natural host grasses of contrasting N 

contents, and to evaluate the results against predictions provided by the nitrogen limitation 

hypothesis as well as its alternative, the nutrient balance framework. For several reasons, 

the grasshopper species chosen is particularly suited for this task. First, O. viridulus feeds 

exclusively on grasses. Among insects consuming plant foliage, strict grass-feeders exploit a 

particularly poor nutritional environment, due to generally lower leaf N contents in grasses 

compared to herbs (Bernays and Barbehenn 1987). Grass-chewers are found mainly in the 

major insect orders Lepidoptera, Coleoptera and Orthoptera. Orthopterans, including 

grasshoppers, display substantially elevated tissue N contents compared to the other, more 

derived orders (Fagan et al. 2002). Grass-feeding grasshoppers thus represent excellent 

models to investigate whether organisms with relatively high N demands and naturally 

confined to poor food sources are N limited, and if and how they balance their nutrient intake. 

Furthermore, plant secondary compounds, which may confound interpretations based on 

nutrients, are of little importance in grasses (Bernays and Barbehenn 1987). In addition, the 

species is a representative of a large group of grass-feeders that often constitute the top 

arthropod grazers in grassland ecosystems (Blumer and Diemer 1996, Ingrisch and Köhler 
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1998). Consequently, the significance of bottom-up (plant-mediated) constraints to this 

grazer is of high interest to food web theory. 

Specifically, we examined the relative impact of high and low N food on juvenile survival, 

growth and development. This was done both in the laboratory and under natural outdoor 

conditions using cages. Given that natural conditions can strongly influence insect responses 

to food quality (Hunter and McNeil 1997), and that hardly any experimental work dealing with 

nutrient limitation has been conducted outside the laboratory (Ravenscroft 1994), the outdoor 

replication clearly increased the scope of our study. We focused on juvenile stages, as high 

N requirements for tissue growth render juvenile arthropods particularly susceptible to 

inadequate food quality (Scriber and Slansky 1981, White 1993, Zalucki et al. 2002). 

Separate experiments were carried out to reveal possible compensation of low food N 

through adjustment of consumption rates, and to establish if the animals are capable of 

selecting among food sources of contrasting nutritional quality. Although such behavioural 

responses have been reported for several arthropods, mostly using artificial diets (Simpson 

and Simpson 1990; but see Wright et al. 2000), they have rarely been combined with 

performance experiments (Slansky and Feeny 1977, Cruz-Rivera and Hay 2000, 

Raubenheimer and Simpson 2004, Simpson et al. 2004). Hence, their ecological significance 

mostly remains unexplored. Finally, we determined N contents of grasshopper tissue and 

grass samples from the field. This allowed quantifying the discrepancy in tissue N between 

resource and consumer, and evaluating experimental N levels against those naturally 

occurring. 

 

Materials and Methods 

Host grass sampling in the field 

In order to investigate naturally occurring host N contents, a total of 22 samples from 13 

grass species (including one sedge) were taken in 2002 and 2003. We sampled six 

grassland sites in northeastern Switzerland where O. viridulus occurs. Only grass species 

with relatively high dominance at a site were considered, and all species had been observed 

to be readily consumed by O. viridulus in the wild in a preliminary foraging study. At each 

site, grass sampling took place during the end of grasshopper juvenile development 

(June/July), thus taking into account the herbivore’s phenology. For a sample, we cut 20 – 

40 g fresh weight of leaf blades from several individual plants. 

 

Study organism 

All experiments were conducted with the first offspring generation of Omocestus viridulus 

(Acrididae: Gomphocerinae), a grass-feeding grasshopper widespread in central Europe. It 
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displays one generation a year and has four nymphal (juvenile) stages. Males exhibit slightly 

faster nymphal development and smaller body size compared to females. We caught ten 

males and females from each of three locations in northeastern Switzerland in July 2003. 

The animals were kept in groups in cages in the greenhouse and allowed to reproduce until 

death. A field-cut grass mixture served as food. Egg pods were put individually in plastic 

tubes containing moist vermiculite. Subsequently, they were incubated for one month in a 

climate chamber set to 25 °C, followed by four month at 5 °C for diapause. Further incubation 

with 14 h days at 27 °C (night 8 °C) for 2 – 3 weeks yielded hatchlings for experiments. To 

obtain experimental grasshoppers in the last (4th) nymphal stage, hatchlings were 

transferred to 32 °C (fluctuating diurnally, see below) and raised in groups in cages on a 

grass mixture from the greenhouse. 

 

Experimental host grass 

The four Poaceae Dactylis glomerata, Festuca pratensis, Holcus lanatus and Trisetum 

flavescens were grown from seeds in the greenhouse. A mixture of the four species, all of 

which belong to the grasshopper’s natural diet, was utilized in all trials to mimic natural 

conditions. Each species was sown separately in pots of 16 cm diameter and 13 cm height. 

As substrate we used a sand-soil mixture (volume ratio 11:6). Four weeks after germination 

the grass was assigned one of two treatments: the high N treatment involved an application 

of 0.1 l of a standard fertilizer solution (Wuxal, 0.4 %; Maag Agro, Dielsdorf, Switzerland), 

corresponding to 40 mg N, every five days. The low N treatment pots received no N fertilizer, 

but 0.3 l of a modified Hoagland solution was applied weekly. This solution contained all 

plant nutrients in balanced proportion except for N and was used to make sure that N was 

the only element in short supply. Furthermore, all pots were maintained moist by watering 

every other day. The grasses were grown in five temporal series separated by one week and 

used 8 – 9 weeks after germination. For a later N analysis, we drew one sample per species 

and treatment from three series. 

 

Grasshopper performance 

Juvenile development on high and low N grass was studied in a climate chamber set to a 

16 h light phase at 32 °C. We chose this temperature taking into account the high 

temperature demands of grasshoppers (Ingrisch and Köhler 1998), which are met in the field 

by absorption of solar radiation (Begon 1983). Night temperature was 10 °C and relative 

humidity 40 % throughout. Fresh hatchlings from one population were randomly assigned to 

an N treatment and individually transferred to plastic containers of 19 cm height and 8 cm 

diameter. As food, two leaf blades per grass species of the corresponding treatment were cut 

from the greenhouse pots, offered in small water-filled glass vials, and replaced every third 
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day. Twice daily, we examined each container, noted new moults, and collected nymphal 

skins until the grasshoppers reached the adult stage. Hind femur length (henceforth referred 

to as body size) of nymphal skins and adults was measured using a stereomicroscope. The 

linear regression slope of body size against development time across the five stages 

(nymphal 1 – 4, adult) served as an estimate of individual growth rate. Family (= clutch) 

means of growth rate, adult body size and development time were analysed as general linear 

models (GLM) with sex and N treatment as fixed factors. Data from 9 – 13 families per sex 

by treatment combination were available (39 in total). To analyse individual survival to 

adulthood, we chose Fisher’s exact test because expected values in two cells were slightly 

below five. Here, sample size was 38 and 39 animals for the high and low N treatment, 

respectively. SPSS 11.5 was used for statistics throughout. 

To study juvenile performance under natural climatic conditions, we established grass of 

contrasting N supply in a similar way as outlined above. Before the experiment started, the 

soil substrate in each grass pot was cut into quarters. Within each N treatment, soil quarters 

from each of the four grass species were reassembled in new pots, yielding high and low N 

grass mixtures. Subsequently, we equipped every pot with a steel frame of 45 cm height and 

15 cm diameter that was coated with a nylon stocking. To launch the experiment, six 

grasshopper hatchlings from one population were introduced in each of these resulting 

cages. After this, we placed the cages outdoors in an open area at the Swiss Federal 

Research Station for Agroecology and Agriculture. This was done between May 10 and 14 

2004, corresponding to the species’ natural hatching period (Berner et al. 2004). Animals of 

both sexes were used, and their allocation was random. The setup comprised six high N and 

seven low N cages. During the whole experimental period, the high N pots received 0.1 l of 

the standard fertilizer solution every 6 – 8 days. The low N treatment involved an application 

of 0.1 l of the fertilizer solution diluted to 1/3 with the modified Hoagland solution every ten 

days. In addition, the pots were watered if required. Some nutrient loss owing to rain washout 

certainly occurred but was not controlled for. For later N analysis, two grass samples were 

drawn per treatment both in the beginning and after ca. 2/3 of the experimental period. In 

order to standardize the microclimate in the cages, we cut back the grass to 25 cm height 

weekly. As indicated by hourly data logger (“StowAway TidbiT”, Onset Computer 

Corporation, Bourne, MA, USA) measurements over several weeks within and outside two 

additional cages (without grasshoppers), cage temperatures did not systematically deviate 

from ambient temperatures. For each individual, we determined total nymphal development 

time with a resolution of 3 – 4 d and adult body size. Cage means of development time and 

size for each sex were analysed using GLM, with treatment and sex as fixed factors. Survival 

expressed as the raw number of resulting adults per cage was analysed with a two-sample t 

test. 
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Feeding behaviour 

Food consumption on high and low N hosts was investigated in the laboratory using females 

from one population on day two of their final nymphal stage. We used the same chamber 

conditions and containers as above. The animals were starved for 3 h prior to the experiment 

to empty their guts. Each grasshopper was offered eight freshly cut leaf blades, two per 

grass species, of either treatment (non-choice setting). This was enough plant material so 

that the animals could not deplete it completely during the trial, and its fresh weight was 

determined immediately after cutting (all eight blades pooled). The grasshoppers were then 

allowed to feed for an entire light phase, subsequently starved for 3 h, frozen and dried at 

45 °C for 72 h. Individual food consumption in terms of dry weight was calculated 

gravimetrically. For this, we converted initial grass fresh weight to dry weight using a multiply 

determined constant for each N treatment, and subtracted the dry weight of the grass 

leftovers. Consumption on a fresh weight basis could be estimated directly. We analysed 

consumed dry and fresh matter using GLM with treatment as fixed factor and nymphal dry 

mass as continuous covariate (ANCOVA approach; Raubenheimer and Simpson 1994, 

Raubenheimer 1995). Sample size was 22 and 23 for the low and high N treatment, 

respectively. Two random samples, each of 20 dried nymphs, were retained for analysis of 

grasshopper tissue N content. 

The occurrence of food selection behaviour was investigated with nymphal females (age as 

above) under the laboratory conditions already described. Containers of 11 cm in diameter 

and 15.5 cm high were utilized. They were provided with two water-filled glass vials, each 

containing 12 blades (three per species) of high or low N grass, resulting in a choice setting. 

In the middle of the containers, we inserted a vertical cardboard wall of 10 cm height to 

separate the vials. This allowed attributing grass leftovers to the corresponding N treatment, 

but did not impede grasshopper movement. One animal was introduced per container and 

left to feed for 44 h (28 h light phase). For each of the 16 individuals studied, we 

gravimetrically assessed the dry mass of high and low N grass consumed. A paired-samples 

t test was used for analysis. 

 

Nitrogen analysis 

Plant material destined for N analysis was oven-dried for 72 h at 50 °C. All samples were 

ground in a sample mill equipped with a 0.5 mm screen (Cyclotec 1093, Foss Tecator, 

Sweden). N content was determined by combustion at 900 °C in an elemental analyzer (vario 

MAX CN, Elementar, Hanau, Germany). Some samples analysed in duplicate showed that 

measurement error was negligible (mean 1.6 %, maximum 3.9 %). 

 

Results 
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Nitrogen contents 

Grass species
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4 Fig. 3. Nitrogen contents of host grasses 

collected in the field. The species are from 

left to right Agrostis capillaris, Bromus 

erectus, Carex sempervirens (Cyperaceae), 

Deschampsia caespitosa, Dactylis 

glomerata, Festuca arundinacea, F. 

pratensis, F. rubra, Holcus lanatus, Nardus 

stricta, Poa alpina, Phleum alpinum, 

Trisetum flavescens. 

In grass samples from the field, tissue N on a dry weight basis ranged from 1.76 % to 3.7 % 

with a median of 2.19 % (Fig 3). There was considerable within-plant species variation 

across sites: Dactylis glomerata samples, for instance, differed by more than 40 % (2.2 % – 

3.2 % N). Such difference partly arises from fertilization, as the three samples with the 

highest N content stemmed from a manured meadow. 

Fertilizer application caused a consistent increase of N content in grass leaves used in the 

laboratory trials (Fig 4). Averaged across the four grass species, N content in fertilized grass 

was 2.7-fold higher than in unfertilized grass (4.3 % vs. 1.6 % N respectively). In the outdoor 

cages, fertilization increased leaf N roughly twofold from 1.2 % to 2.5 % N (Fig 4). Finally, N 

accounted for 11.3 % of grasshopper tissue dry weight. 
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5Fig. 4. Nitrogen contents of unfertilized (○) 

and fertilized (●) experimental grasses 

used in the laboratory (4 species, left) and 

outdoors (mixture, right). The horizontal bar 

in the scale indicates the median N content 

of field samples (from Fig. 3). Some error 

bars are hidden by their symbol. 

 

Grasshopper performance 

In the laboratory, grasshopper survival to adulthood was somewhat higher on unfertilized 

than on fertilized grass (37 of 39 [95 %] vs. 32 of 38 [84 %], respectively). The difference, 

however, was non-significant (p = 0.154). Juvenile mortality occurred mainly during the first 

nymphal stage. Growth rates of animals developing on low N grass were reduced as 

compared to those on high N food (F1,35 = 62.7, p < 0.001; Fig. 5). Consequently, juvenile 

development of grasshoppers fed low N grass was prolonged by 2.4 d (13 %) on average 

(F1,35 = 45.5, p < 0.001). Moreover, these animals reached 5 % smaller adult body size (F1,35 
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= 22.8, p < 0.001). The sexes responded similarly, as no sex by treatment interaction was 

significant (all p > 0.12). 

Fig. 5. Growth from the first 

nymphal stage to adult of male 

and female grasshoppers reared 

on unfertilized and fertilized 

grass in the laboratory, based 

on family means. Some error 

bars are hidden by the data 

point. 

The outdoor cage experiment yielded very similar results. Juvenile survival did not 

significantly differ between the N treatments (t11 = -1.125, p = 0.285) and was close to the 

laboratory survival rates (high N: 28 of 36 [81 %], low N: 37 of 42 [88 %]). Grasshoppers in 

unfertilized cages reached adulthood 3.6 d (7 %) later on average (F1,21 = 5.566, p = 0.028) 

and attained ca. 4 % smaller size (F1,21 = 20.5, p < 0.001), with similar responses in the 

sexes (interactions p > 0.26). We consider these differences marginal. 

 

Feeding behaviour 

On a dry weight basis, the overall mean food consumption of grasshoppers feeding on low N 

grass was 82 % higher than on fertilized grass (F1,42 = 48.8, p < 0.001; Fig 6). In terms of 

fresh weight, the consumption was still 40 % higher (F1,42 = 15.1, p < 0.001). This indicates 

that grasshoppers compensated for lower nutritional quality by eating more. 

Fig. 6. Dry matter consumption over a 

16 h trial period by female O. viridulus 

4th stage nymphs feeding on low or high 

N grass. Consumption, adjusted for 

nymphal weight, is significantly higher 

on unfertilized grass. 
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The food selection experiment revealed a striking preference for fertilized grass (paired t15 = -

8.99, p < 0.001; Fig 7). When there was a choice, individual grasshoppers consumed an 

average of 39 mg high N grass (dry weight) during the test period, as opposed to only 8 mg 

low N grass. 
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Fig. 7. Dry matter consumption over a 28 h period 

by female O. viridulus nymphs offered unfertilized 

and fertilized grasses simultaneously. Each line 

represents one individual. A clear preference for 

high N grass is evident. The two negative values 

in the data set point to some estimation error 

associated with the gravimetrical method applied. 

Discussion 

Our analyses revealed that O. viridulus’ natural host grasses contain around 2 % tissue N, a 

relatively low value typical of grasses (Bernays and Barbehenn 1987). Further, qualitative 

inspection of the database compiled by Fagan et al. (2002) suggests that with 11.3 % O. 

viridulus does not differ in tissue N content from other grasshopper species that generally 

exhibit N demands particularly high for herbivores. Along the lines of N limitation, we 

therefore expected high susceptibility of juvenile performance to experimentally modified host 

plant quality. 

Surprisingly, survival in the laboratory of O. viridulus nymphs feeding on low N grass was not 

lower than on fertilized grass despite a nearly threefold difference in grass tissue N content. 

Grasshoppers attained almost the same body sizes on both N treatments, although reduced 

growth rates on low N grass prolonged development to some extent. Grasshopper survival in 

the wild is known to be severely reduced by wet weather periods (Joern and Gaines 1990, 

Ingrisch and Köhler 1998), at least partly due to fungal infection (Streett and McGuire 1990). 

Whether these sources of mortality interact with food quality has to our knowledge never 

been investigated. We observed no such effect, as the outdoor experiment yielded results 

highly consistent with those from the benign laboratory environment. This finding is striking 

for two reasons. First, the low N grass employed outdoors was of extremely poor quality 

(1.2 % N), containing only about half as much N as grass from the field, whereas the 

fertilized treatment (2.5 %) matched natural levels. Secondly, rainfall was roughly 20 % 

above average during the trial period (MeteoSwiss, pers. comm.), indicating rather 

unfavourable climatic conditions. The weak performance differences in response to the 

tremendous difference in food plant N, exhibited under strikingly different rearing 

environments, leads us to conclude that naturally occurring grass N contents impose few 

constraints upon juvenile survival, growth and development of O. viridulus. Our results 

disagree with the simplistic claim that natural autotroph tissue N inherently limits herbivore 

performance (Mattson 1980, White 1993). 
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In several respects, however, our data are consistent with the view that herbivorous insects 

balance their nutrient budget. One means to stabilize nutrient intake, and thus growth and 

developmental performance, is through compensatory feeding. Indeed, dry weight food 

consumption of O. viridulus nymphs exposed to low N grass was almost twice as high as on 

fertilized grass. However, differing water contents of food plants may result in differential dry 

weight consumption even if fresh weight intake is similar (Wheeler and Halpern 1999), and 

thus may lead to the erroneous inference of compensatory feeding. The fact that our 

experiments also revealed a 40 % increase of fresh matter consumption on low quality grass 

indicates that elevated food intake is a real behavioural response of O. viridulus to low grass 

N content. Similar intake adjustment in response to nutrient dilution or imbalance has been 

documented for crustaceans (Cruz-Rivera & Hay 2000), slugs (Rueda et al. 1991), and other 

insects (e.g. Slansky and Feeny 1977, Karowe and Martin 1989, Raubenheimer and 

Simpson 1993, Stockhoff 1993, Obermaier and Zwölfer 1999, Jones and Raubenheimer 

2001). This suggests that compensation is a common phenomenon in invertebrates. To 

compensate for protein dilution of artificial diets, the grasshoppers Locusta migratoria 

(Simpson and Abisgold 1985) and Melanoplus differentialis (Yang and Joern 1994) increased 

feeding frequency while meal size remained constant. Although we did not observe feeding 

behaviour directly, it is very probable that the same behavioural response holds for O. 

viridulus on the natural hosts used. 

Two further issues arising from the compensation experiment deserve discussion. On the 

one hand, it is evident that compensation was not fully successful in the grasshoppers fed 

low N grass, as these animals exhibited somewhat prolonged nymphal development and 

slightly decreased body size. Similar developmental responses when exposed to highly N 

deficient artificial foods have been reported previously for locusts (Raubenheimer and 

Simpson 1993) and caterpillars (Lee et al. 2002). Most probably, the degree of N dilution in 

the low N grass exceeded the digestive capacity of the grasshoppers; hence, nitrogen could 

not be derived from the food at a rate needed to maintain nutritional homeostasis and thus 

optimal growth. On the other hand, we can assume that growth occurred at a close to optimal 

rate in grasshoppers fed high N grass. Nevertheless, our data suggest that here mortality 

was higher compared to the low N treatment, although the trend was not significant. A 

possible explanation accounting for this pattern lies in the fact that compensatory feeding 

implies a trade-off in that one nutrient is always ingested in excess of the physiological 

requirements unless the nutrients are perfectly balanced (Zanotto et al. 1993, 1997, Simpson 

et al. 2004). Using the conversion constant of 6.25 to estimate crude protein from total N 

(Allen 1989), we obtain an average protein content of 27 % for the high N grass. Although we 

did not measure carbohydrate levels, it is highly probable that our high N grass was N-biased 

relative to the grasshopper’s nutritional needs, since L. migratoria grasshopper nymphs 

performed best on artificial food containing only 19 % dw protein and 23 % carbohydrate 
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(Chambers et al. 1995). O. viridulus nymphs fed fertilized grass thus ingested N in excess of 

physiological demands to satisfy their carbohydrate requirements, which likely entailed N 

loading and a survival cost. This view is supported by the finding that high growth rates 

associated with high N supply came at the expense of juvenile survival in butterflies (Fischer 

and Fiedler 2000) and locusts (Raubenheimer and Simpson 2004). However, further detailed 

experiments are needed to clarify these relationships in our species, and to exclude 

alternative explanations such as an intrinsic trade-off between growth rate and survival 

(Arendt 1997). 

The above results show that compensatory feeding enables grasshoppers reaching or 

approaching their nutrient target when exposed to highly unbalanced natural food. However, 

compensation not only implies surplus consumption and processing of non-limiting food 

components, but also greater feeding effort that can increase predation risk (Loader and 

Damman 1991, Werner and Anholt 1993, Eklöv and Halvarsson 2000). Hence, given an 

appropriate choice of foods, it is generally a better response to stabilize nutrient intake by 

food selection. Indeed, some experiments have demonstrated the ability of herbivores to 

achieve an optimal nutrient balance by switching between unbalanced but complementary 

synthetic foods (Chambers et al. 1995, Behmer et al. 2001, Lee et al. 2002). As argued 

above, our high N grass was N-biased to some degree relative to the grasshoppers’ 

nutritional needs. In contrast, the low N grass was strikingly N-deficient but likely provided an 

ample carbohydrate source, given that sugar and starch contents of grass leaves increase 

with decreasing plant N supply (Bernays and Chapman 1994, Marschner 1999). If the 

grasshoppers optimized N and carbohydrate intake simultaneously, we would therefore 

expect the animals to feed predominantly on high N grass, but complement their diet with 

energy-rich low N grass. The results from our food selection experiment are entirely 

consistent with this nutrient balancing view. However, did the animals really select for 

nitrogen and carbohydrates, or is the observed selection pattern due to other plant 

characters changing with N supply, such as water content or leaf toughness? In general, 

turgescent plant tissues exceed grasshopper water demands (Bernays and Barbehenn 

1987). Furthermore, O. viridulus did not discriminate against grasses like Bromus erectus or 

Festuca arundinacea in a preliminary choice trial. The leaves of these species proved 

particularly tough in a subsequent analysis (Berner, unpubl. data), confirming that physical 

leaf properties are unlikely to influence grasshopper feeding behaviour (Bernays and 

Chapman 1970, Heidorn and Joern 1984, Chapman 1990). Therefore, we believe that our 

inference of food selection balancing the intake of key nutrients is valid. 

The selection pattern observed raises the question about the proximate control of food 

choice behaviour in O. viridulus. Two different, mutually not exclusive mechanisms likely 

provide the answer. The first mechanism involves the modulation of taste receptor 

responsiveness by blood nutrient concentration. As shown for locusts (Simpson and 
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Simpson 1990, Simpson et al. 1995; see also Cook et al. 2000), increasing levels of amino 

acids in the blood reduce the stimulatory responsiveness of the corresponding taste 

receptors on the mouthparts and legs. Hence, a protein-deficient individual (exhibiting a low 

blood amino acid level) will readily start feeding on a protein-rich food source. The same 

food, however, is less attractive and may not stimulate feeding when the animal’s blood 

amino acid level is high. Since the same mechanism applies to carbohydrates, nutrient 

regulation based on the herbivore’s nutritional status may cause selective feeding. On the 

other hand, a learned association of food quality with an environmental cue via nutritional 

feedback may underlie the documented food selection (Simpson and White 1990, Waldbauer 

and Friedman 1991, Bernays 1995). Food selection based on associative learning in insects 

commonly involves olfactory stimuli, but visual cues are used as well (Raubenheimer and 

Tucker 1997). It is possible that the O. viridulus individuals learned the spatial location of the 

food sources rich in N and carbohydrate, as reported for locusts (Dukas and Bernays 2000). 

Overall, the present study illustrates that natural food imposes no relevant nutritional 

constraint on the performance of O. viridulus grasshoppers. The species is capable of 

behaviourally stabilizing its nutrient intake over an impressive range of food qualities. Our 

study using real plants thus corroborates a body of work that has documented nutrient 

balancing in herbivores based on synthetic diets. However, our data challenge the general 

utility of simple bottom-up approaches to consumer population dynamics, such as N 

limitation. 
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Chapter 2 

Grasshopper populations across 2000 m of altitude: is there life 
history adaptation? 

Abstract 

Life history differentiation along climatic gradients may have allowed a species to extend its 

geographic range. To explore this hypothesis, we compared eleven Omocestus viridulus 

(Orthoptera: Acrididae) populations along an altitudinal gradient from 410 m to 2440 m in 

Switzerland, both in the field and laboratory. In situ temperature records indicated a striking 

decline in available heat sums along the gradient, and field populations at high altitudes 

reached egg hatching and adulthood much later in the year than at low elevation. The 

reproductive period at high altitude is thus severely limited by season length, especially 

during a cool year. However, controlled environment experiments revealed that intrinsic rates 

of embryonic and juvenile development increased with the populations’ altitude of origin. This 

countergradient variation is largely genetic and conforms to predictions of life history theory. 

No corresponding differentiation in the overwintering egg stage, a pivotal determinant of 

phenology, was found. This trait seems conserved within the gomphocerine grasshopper 

subfamily. Although we found evidence for altitudinal adaptation in development, the 

potential of O. viridulus to adapt to cool alpine climates appears restricted by a phylogenetic 

constraint. 

  

Introduction 

The seasonal recurrence of adverse climatic conditions is a principal force shaping 

ectotherm life cycles in temperate regions. Growth, development, reproduction and 

dormancy need to be coordinated and timed in relation to the available growing season 

(Taylor and Karban 1986, Danks 1994). The set of adaptations, which synchronizes the life 

cycle with the growing season, is reflected in the organisms’ phenology (Tauber et al. 1986). 

The length of the growing season generally declines with increasing latitude and altitude. 

Thus, geographically widespread species have to cope with a variety of climatic conditions, 

which can basically be achieved in two – not mutually exclusive – ways. Firstly, a generalist 

genotype may display plastic responses in relation to environmental conditions (Gotthard and 

Nylin 1995, Schlichting and Pigliucci 1998). Phenotypic plasticity in traits relevant to seasonal 

timing has been documented and interpreted in adaptive terms in several insect species 

(Tanaka and Brookes 1983, Nylin 1994, Blanckenhorn 1997, Kingsolver and Huey 1998). 

Secondly, spatial variation in selection pressures may give rise to genetic differentiation 
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between populations due to natural selection. Prerequisites are heritable genetic variation 

and restricted gene flow between local populations (Slatkin 1987). Both responses, local 

adaptation and phenotypic plasticity, may allow a species to extend its distribution across a 

range of altitudes and latitudes. Several studies of ectotherms report genetic life history 

differentiation in relation to systematic geographic variation in climate (Masaki 1967, Berven 

and Gill 1983, Dingle et al. 1990, Ayres and Scriber 1994, Blanckenhorn and Fairbairn 1995, 

Telfer and Hassall 1999, Merilä et al. 2000; but see Lamb et al. 1987). However, almost all 

studies focus on latitude, whereas evidence for altitudinal life history adaptation in animals is 

exceedingly scarce. This distinction matters indeed: altitudinal changes in climate typically 

occur on a particularly small spatial scale, where continuous gene flow is likely to impede 

genetic differentiation unless strong local selection is acting. 

An insect species with a remarkable altitudinal distribution is the grasshopper Omocestus 

viridulus (L.) (Acrididae: Gomphocerinae). In Switzerland, it occurs in grasslands from below 

400 m to above 2500 m (Thorens and Nadig 1997), making it a suited system for the study of 

altitudinal adaptation. Over the whole range, it displays an annual life cycle, which includes 

egg hatch in spring, four larval instars followed by adult molt in summer, and reproduction 

until autumn. The species overwinters as an egg in embryonic diapause (Ingrisch and Köhler 

1998). This dormant phase is characterized by suppressed development, reduced 

metabolism, and high tolerance to harsh environmental conditions (Danks 1987, Leather et 

al. 1993). The developmental stage during diapause strongly influences later phenology, as it 

determines how many developmental steps an embryo has to pass through before hatch in 

spring. In addition, seasonal timing can be achieved through adjustment of development 

rates (Danks 1987). Higher rates of embryonic and larval development allow reaching 

adulthood, and thus the subsequent reproductive phase, sooner. The diapause stage, as 

well as embryonic and larval development rates, can be identified as chief traits determining 

phenology, and are therefore of high significance to geographic life history adaptation. 

Along the altitudinal gradient, O. viridulus faces a decline in the length of the growing 

season, which is likely to require phenological adjustment. Moreover, the species is 

sedentary (Ingrisch and Köhler 1998) and most populations are separated to some extent by 

migration barriers, suggesting rather low levels of gene flow. For these reasons, we 

hypothesize that local life history adaptation, rather than phenotypic plasticity, allowed the 

grasshopper to extend its distribution to the wide range of altitudes. In this case, the species 

would represent a fine-grained patchwork of local demes, which are differentiated in traits 

relevant to seasonal timing. We address the hypothesis by both field and laboratory 

approaches. In a first step, the natural temperature regimes and their effect on field 

phenologies along the gradient are explored. In a second step, we compare populations with 

respect to developmental rates and diapause characteristics in common laboratory 
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environments. The latter approach serves to remove environmental variation and reveal 

genetic differences in life histories, if they occur. 

 

Materials and methods 

Study populations 

The present investigation includes a total of eleven Omocestus viridulus populations. The 

study sites were chosen to form a transect from the Swiss lowland into the Alps, covering an 

altitudinal gradient of 2000 m (Fig. 8). Distribution data were provided by the Swiss center of 

cartography of the fauna (CSCF). We considered only sites where large populations had 

been reported over several years. Some 110 km separate the furthermost sites. Although 

this spatial scale is relatively small, the study populations can be viewed as reasonably 

independent, as most populations of this widespread species are isolated to some degree by 

natural and human dispersal barriers (e.g. forests or farmland). 

Fig. 8. The rectangle in the outline 

map shows the location of the study 

area in Switzerland. The sampling 

sites and corresponding altitudes are 

1) Neerach 410 m, 2) Birchwil 540 m, 

3) Schönenberg 670 m, 4) Bäretswil 

830 m, 5) Bendel 1055 m, 6) Näfels 

1350 m, 7) Speer 1610 m, 8) 

Flumserberg 1850 m, 9) Gamserrugg 

2060 m, 10) Pizol 2215 m, 11) Hörnli 

2440 m. The triangle denotes the city 

of Zürich (47°22’ N / 8°31’ E).  

Field studies 

To estimate the length of the growing season in the field, temperatures were recorded hourly 

during the 2002 season at sites 1, 5, 7 and 10 (see Fig. 8) by means of data loggers 

(“StowAway TidbiT”, Onset Computer Corporation, Bourne, MA, USA). We were primarily 

interested in the conditions the embryos (eggs) experience. Since O. viridulus lays its 

clutches into the top soil layer or at the base of grass tussocks (Ingrisch 1983; Berner, 

personal observation), we positioned the loggers’ sensors at 1 cm soil depth under natural 

vegetation cover. Two loggers were used per site, and their measurements averaged for all 

calculations. Two different indices of season length were computed: one index uses the date 

at which 11 °C was exceeded for the first time. This date roughly corresponds to the initiation 

of postdiapause embryonic development, which is inhibited at temperatures below ca. 11 °C 

(Wingerden et al. 1991). The second index uses the cumulative degree hours above 14 °C 

between the first appearance of larvae at each site and the end of the year. This 
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approximates the season length for larvae and adults. 14 °C was chosen based on a study 

by Hilbert and Logan (1983), because postembryonic development thresholds were 

unavailable for the species. However, grasshoppers are known to increase body temperature 

by basking (Begon 1983, Chappell 1983). Hence, the latter index must be viewed as a 

relatively crude, but still informative, estimate of the thermally effective season length. 

Field phenologies were studied at the same sites and in the same year as the 

temperature records. Each site was visited in regular intervals of six to eleven days over the 

growing season. We censused by direct observation along transects, noting the stage (larval 

instars 1-4, adult) of each grasshopper. (The insertion of an additional larval instar reported 

from other gomphocerine grasshoppers (references in Ingrisch and Köhler 1998), occurred 

neither in the field nor laboratory.) Although males reach adulthood slightly earlier than 

females in this species, the sexes were pooled post hoc for simplicity. This did not influence 

the results substantially. As 2002 was a rather cool and cloudy year and 2003 was 

particularly sunny, we also checked the stage composition at site 1 in late June and site 10 in 

mid July 2003. These snapshots during the second year allowed a comparison of 

phenologies between climatically rather different seasons. 

 

Breeding techniques and laboratory experiments 

To establish breeding populations, ca. 14 individuals of each sex were caught at the 

beginning of the reproductive period at each of the eleven sites. The populations 2, 5, 7 and 

10 were sampled in 2001, all others in 2002. The animals were kept in groups in cages in a 

greenhouse under natural photoperiods until death. Field-cut grass (largely of Dactylis 

glomerata and Agropyron repens) was provided as food. Egg pods were collected twice a 

week as they were laid, put in plastic vials containing moist vermiculite, and incubated at 

25 °C for 35 days which allows the embryos to reach the diapause stage (Wingerden et al. 

1991). After this, the clutches were stored at 5 °C. 

Postdiapause embryonic development time was studied in a climate chamber set to a 

photoperiod of 14 h at 27 °C. Night temperature was 8 °C. All eggs had spent at least three 

month at 5 °C, which is enough to break diapause (Ingrisch and Köhler 1998). The vials were 

inspected twice daily for newly hatched larvae, until no further hatch occurred. Individual 

hatch dates were noted and converted to degree hours with 11 °C as threshold. We tested 

clutch medians in a general linear model (GLM), with study year as a fixed factor and altitude 

of origin (= populations) as a continuous covariate. Effective sample size varied between 18 

and 79 clutches per population. To verify the robustness of our 27 °C results, a subset of the 

clutches laid in 2002 was incubated at 19 °C, but otherwise treated and analyzed in the same 

way. Here, sample size varied between 14 and 48. 

To investigate larval development time, hatchlings were immediately transferred to another 

climate chamber with a 16 h photoperiod at 32 °C and a night temperature of 10 °C. This 
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experiment was conducted with the seven 2002 populations only. Larvae were kept 

clutchwise in plastic containers (19 cm high, 8 cm in diameter) in groups of six at most. Small 

pots with a grass mixture provided food. Adult emergence was checked twice daily, and 

individual degree hours for larval development were determined using 14 °C as threshold. 

We analyzed clutch medians using GLM. Altitude was entered as a covariate, and sex as a 

fixed factor, since the sexes differed in development time. 

To assess diapause stages, ten random clutches from each of six populations (1, 2, 4, 7, 8, 

9) were removed from the cold. The outer layer (chorion) of every single egg in the clutch 

was scraped off with a fine blade under a stereomicroscope so that the embryo could be 

seen and assigned a developmental stage. We used the classification system of Cherrill 

(1987), which divides the continuous process of differentiation to the fully developed embryo 

into twenty discrete morphological steps. Based on individual eggs, the clutch median stage 

was determined and treated as one data point. Differences between populations were tested 

using one-way ANOVA and a distribution-free Kruskal-Wallis test. All statistics were 

performed with SPSS 11.1. 

 

Results 

Temperature regimes 

Daily mean temperatures of the top soil layer display a sharp decline with altitude (Fig. 9). 

Over the summer months, mean temperatures at 2215 m remain approximately 7 °C below 

those at 410 m. Moreover, snow cover maintains spring temperatures around zero at the 

high elevation sites, most dramatically at 2215 m. Indeed, the very first hourly temperature 

record above the estimated embryonic threshold of 11 °C occurs as late as on the 31st of 

May at 2215 m (Table 1). At the low elevation sites this threshold is exceeded almost three 

month earlier. Season length estimated as degree hours above 14 °C shows a more than 

tenfold reduction from 410 m to 2215 m altitude (Table 1). Hardly any hourly records above 

14 °C were made after the end of August at the highest site. Roughly speaking, 
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postembryonic development was possible during seven months at low altitude, whereas only 

three months were available at the highest site in 2002. 

Table 1. Indices of the 2002 season length at four 
altitudes, based on hourly temperature records at 1 cm 
soil depth 

Altitude (m) Date of first record 
> 11 °C 

Degree hours > 
14 °C* 

0410 8 March 12’536
1055 8 March 10’019
1610 5 April 3’182
2215 31 May 904

* From the onset of larval hatch to the end of the year 

 

Field phenologies 

The phenology curves in Fig. 10 indicate a marked delay in the emergence of first instar 

larvae at the high elevation sites, where the first hatchlings appeared three (1610 m) and 

seven (2215 m) weeks later than at the lowest location. The delay carries over to the adults: 

the graphically estimated dates at which each population reaches an adult frequency of 75 % 

are June 26 (410 m), June 31 (1055 m), July 23 (1610 m) and August 19 (2215 m). 

Consequently, adult emergence at the highest site is delayed by almost two months 

compared to the lowland site. During the 2002 season lowland grasshoppers had already 

started reproducing when first instar larvae just started hatching at high altitude. In 

accordance with the temperature regimes, the difference in phenology between the sites at 

410 m and 1055 m is small. 

Fig. 10. Field phenologies of O. 

viridulus at four altitudes during the 

season of 2002. The vertical line 

represents the first observation of 

hatchlings. 
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The comparison of 2002 (cool year) and 2003 (warm year) reveals a small difference in the 

low elevation phenology (Table 2). The greatest majority of the 410 m population reaches 

adulthood by late June in both years. At 2215 m, however, the phenological difference 

between the two seasons is much larger. Clearly, the high altitude grasshoppers are delayed 

in both 2002 and 2003 relative to the lowland, but the phenological delay is more pronounced 

in the cooler year of 2002.  

Table 2. Frequency (%) of O. viridulus instars in the years 2002 and 
2003 at low and high elevation. Note that the two populations were 
censused on different dates 

 410 m, late June  2215 m, mid July

 2002 2003 2002 2003 
2nd instar - - 21 -
3rd instar 3 - 64 9 
4th instar 18 3 15 31 
Adult 79 97 - 60 
 

 

Laboratory experiments 

There is a clear relationship between embryonic development time in the laboratory at 27 °C 

and a population’s altitude of origin (Fig. 11): high altitude embryos complete development 

faster, resulting in earlier hatching of the first instar larvae (F1,431 = 50.9, p < 0.001). However, 

the maximal difference between populations in development time amounts to some ten 

percent only. Expressed in real time, the population averages declined from 14.1 to 12.3 

days. The year factor is also significant because temperature conditions differed slightly 

between the years (different climate chamber types; F1,431 = 40.5, p < 0.001). Faster 

development of the high altitude embryos was also found at the lower experimental 

temperature of 19 °C. The correlation of population averages of embryonic development time 

at the two incubation temperatures yields coefficients of 0.85 (Pearson’s r, p = 0.015) and 

0.93 (Spearman’s rank, p = 0.003). 
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postdiapause embryonic development. Data from 
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calculated using 11 °C as threshold. 

The duration of development through all larval instars to adults clearly gets shorter with 

altitudinal origin (Fig. 12; F1,223 = 51.9, p < 0.001), similar to embryonic development. As in 
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the field, males always reach adulthood earlier than females (F1,223 = 16.1, p < 0.001), but the 

altitudinal response is similar in the sexes, as indicated by a nonsignificant interaction (F1,223 

= 1.3, p = 0.26). Again, the difference between the fastest and slowest population is only 

about ten percent. In real time, the population averages for larval development ranged from 

23.6 to 20.9 days in males and from 25.2 to 22.3 days in females for low and high altitude, 

respectively.  
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64 Fig. 12. Physiological time required by female (○) 

and male (●) grasshoppers from different altitudes 

for larval development. A threshold of 14 °C was 

used for calculation. 

The stage of embryonic diapause does not significantly differ between the populations, and 

no altitudinal trend is evident (Fig. 13; ANOVA F5,54 = 1.34, p = 0.26; Kruskal-Wallis χ2
5 = 

8.09, p = 0.15). In all O. viridulus populations studied, the vast majority of embryos diapauses 

at developmental stage nine, which corresponds to stage IVd of Cherrill (1987). The embryos 

are then arrested just before the onset of embryonic rotation. Most clutches contained some 

retarded eggs, but no single embryo developed further than stage nine. 

Fig. 13. Embryonic developmental stage at diapause in 

O. viridulus populations from six altitudes. Plotted are 

clutch medians (N=10 per population). 

 

Discussion 

Our laboratory study documents increasing rates of embryonic and juvenile development in 

O. viridulus with increasing altitude. As a consequence, high altitude grasshoppers attain 

adulthood in shorter time than their low altitude counterparts when grown in a common 

environment. In contrast, the diapause stage, another key determinant of phenology, shows 

no difference among the populations. The field work indicates a time constraint on the life 

cycle of high altitude animals. The cooler high elevation temperature regimes substantially 
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delay larval hatch and adulthood. In a cloudy year like 2002, the reproductive life span of 

alpine grasshoppers is thus severely truncated and reproductive success very poor. 

Moreover, a considerable fraction of the produced eggs may fail to reach the overwintering 

stage due to insufficient late season heat. This was shown to entail delayed hatching in 

Chorthippus brunneus (Cherrill and Begon 1991) and survival costs in Camnula pellucida 

(Pickford 1966). Certainly, cool and cloudy years are severe selection events at the species’ 

upper range margin. Only during particularly sunny seasons like 2003 is the reproductive 

period sometimes terminated by intrinsic senescence at both low and high elevation. Thus 

the variance in the available season length increases with altitude. 

Under such a seasonal time constraint, annual organisms face the problem of optimally 

allocating time to development and reproduction. Life history models predict that decreased 

season length will favor faster development and hence decreased time to maturity (Cohen 

1976, Roff 1980, 2002, Rowe and Ludwig 1991, Abrams et al. 1996). In Omocestus viridulus 

with its wide altitudinal distribution, therefore, we expected differences in traits determining 

postdiapause development time. The higher rates of development exhibited under laboratory 

conditions by the alpine populations thus conform well to the theoretical prediction. A genetic 

basis to the acceleration of development is strongly suggested because, firstly, maternal 

influence on offspring embryonic development appears negligible in the related Chorthippus 

parallelus (Köhler 1983). Secondly, our field records indicate that the temperatures used in 

the laboratory may be experienced by all populations in the field. Absorption of solar 

radiation may allow even high altitude larvae to rise body temperature well above 32 °C. 

Furthermore, embryonic development rates were found to increase with altitude at incubation 

temperatures of both 19 °C and 27 °C. Strong genotype by environment interactions are thus 

excluded. For these reasons we suggest that the observed developmental differences are 

robust and reflect an adaptive strategy. Increased embryonic and larval development rates 

allow high altitude animals to reach maturity relatively faster, and hence prolong reproductive 

life span when time is short. The hypothesis of within species life history differentiation on a 

small spatial scale is thus confirmed. Apparently the level of gene flow between the O. 

viridulus populations is too low to counteract local adaptation. 

O. viridulus agrees well with some other ectotherms in which differentiation of development 

along gradients in season length has been documented (Masaki 1967, Berven and Gill 1983, 

Dingle et al. 1990, Ayres and Scriber 1994, Telfer and Hassall 1999). The shortening of 

development time proves a common adaptive response to seasonal time constraints. 

Intraspecific differentiation in traits related to phenology may be quite frequent in annual 

ectotherms with relatively long development times covering wide geographic ranges. 

However, our field surveys make it clear that the cool climates at high elevation retard 

grasshopper phenologies despite higher intrinsic rates of development in those populations. 

Thus, the high elevation grasshoppers are only partly able to compensate the delaying 
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environmental influence on time to adulthood. This agrees with the relatively modest level of 

differentiation found in the laboratory. As the genetic response along the altitudinal gradient 

is opposed to the phenotypic response to the environmental conditions, O. viridulus provides 

an example of countergradient variation (Conover and Schultz 1995). A merely phenotypic 

comparison of development times within the species would have failed to demonstrate 

altitudinal differentiation. 

At the proximate level, increased development rates may be associated with metabolic 

temperature compensation (Danks 1987). Hadley and Massion (1985) for example report 

increased metabolic rates in high altitude populations of the grasshopper Aeropedellus 

clavatus. Likewise, latitudinal differences in metabolism were found in the butterfly Papilio 

canadensis (Ayres and Scriber 1994). However, physiological traits of O. viridulus 

populations have not been compared so far. 

A question arising from the observed patterns is why higher intrinsic rates of development did 

not evolve in the lowland populations. What could be the disadvantage of a similarly rapid 

development as at high elevation? On the one hand, adverse climatic conditions early in the 

season are likely to select against precocious larval emergence. Carrière et al. (1996), for 

example, demonstrate a mortality cost associated with precocious larval hatch in Gryllus 

pennsylvanicus, due to unfavorable temperature conditions. Furthermore, trade-offs with 

other fitness components could maintain developmental rates below the physiological 

potential exhibited by the alpine populations (Schluter et al. 1991, Stearns 1992, Roff 2002). 

For instance, Tatar et al. (1997) found increased senescence in Melanoplus sanguinipes 

grasshoppers from high elevation sites compared to the slower developing low altitude 

animals. Likewise, given that juvenile development time, adult size, and fecundity are often 

correlated positively (Roff 1980, 2002, Rowe and Ludwig 1991, Honek 1993), a shortened 

juvenile development will negatively affect fecundity. According to Orr (1996) this is the case 

in M. sanguinipes. Most probably, elevated rates of development bear fitness costs and are 

selected against in the absence of a seasonal time constraint on the life cycle, as is the case 

at low elevation. However, low altitude seasons appear still too short for two generations, as 

the species exhibits an annual life cycle throughout its range. 

Besides embryonic and larval development rates, the stage of overwintering strongly 

determines time to adulthood. Central European grasshoppers of the gomphocerine 

subfamily are believed to show an obligatory diapause during embryonic development. 

According to some studies, the dormant stage is inserted shortly before embryonic rotation 

(Köhler 1991, Ingrisch and Köhler 1998). This stage has been designated IVd by Cherrill 

(1987). However, geographic variation in diapause stage within an insect species is possible 

in principle (references in Tauber et al. 1986), but has not been investigated to date in any 

European grasshopper. In O. viridulus we found no such altitudinal differentiation: in all 

populations, most clutches mainly contained embryos arrested at the aforementioned stage, 
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and no embryo developed further. Thus, the species displays an obligatory diapause and is 

uniform with respect to the stage of dormancy, conforming to other members of the 

subfamily. This finding stands in striking contrast to other orthopteran studies, which 

document intraspecific variation in embryonic diapause stage and/or expression along 

gradients in season length (Mousseau and Roff 1989, Groeters and Shaw 1992, Dingle and 

Mousseau 1994, Tanaka 1994, Bradford and Roff 1995). The catantopine grasshopper 

Melanoplus sanguinipes, for example, occurs from sea level to above 3800 m (Chappell 

1983) and displays enormous variation in embryonic diapause stage within its North 

American range. High elevation populations overwinter almost completely developed and 

attain the hatching state at low heat sums. This is interpreted as an effective means to 

decrease postdiapause development time under short seasons (Dingle et al. 1990, Dingle 

and Mousseau 1994). In M. sanguinipes, adult emergence at above 2600 m and at sea level 

happens roughly at the same time! Not surprisingly, another catantopine, M. frigidus, is the 

highest reaching species in the Alps (Carron 1996). This grasshopper subfamily illustrates 

the importance of flexibility in the overwintering stage for altitudinal adaptation. In this light, 

the lack of variation in the stage of diapause within O. viridulus likely represents a 

phylogenetic constraint (Gould 1989, Stearns 1992, Schlichting and Pigliucci 1998) to 

altitudinal range expansion. The stage of dormancy as a conserved trait within the 

gomphocerine lineage precludes tuning of development in a way expected to be optimal 

under seasonal time constraints. However, this has to be confirmed by investigating other, 

closely related species. 

To summarize, O. viridulus exhibits altitudinal differentiation in development as an adaptive 

response to selection imposed by local climates. However, the potential for altitudinal 

adaptation is limited by the invariant stage of overwintering diapause, probably indicating a 

phylogenetic constraint within the gomphocerine grasshopper lineage. As a consequence, 

the degree of climatic compensation displayed by field populations along the altitudinal 

gradient is rather low as compared to other ectotherms. 
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Chapter 3 

Grasshopper ontogeny in relation to time constraints: adaptive 
divergence and stasis 

Abstract 

Life history theory generally predicts a trade-off between short juvenile development and 

large adult size, assuming invariant growth rates within species. This pivotal assumption has 

been explicitly tested in few organisms. We studied ontogeny in 13 populations of 

Omocestus viridulus grasshoppers under common garden conditions. High altitude 

populations, facing short growing seasons and thus seasonal time constraints, were found to 

grow at a similar rate as low altitude conspecifics. Instead, high altitude grasshoppers 

evolved faster development, and the correlated change in body size led to an altitudinal size 

cline that mediated a trade-off with female fecundity. Moreover, an additional juvenile stage 

occurred in low but not high altitude females. This difference is likely due to the evolution of 

lowered critical size thresholds in high altitude grasshoppers to accelerate development. In 

contrast, we found a strikingly lower growth rate in males than females that we interpret as 

the outcome of concurrent selection for protandry and small male size. Further, our data 

revealed that within populations, large grasshopper individuals developed faster than small 

individuals, suggesting within-population genetic variation in growth rates. We provide 

evidence that different time constraints (seasonal, protandry) can lead to different 

evolutionary responses in intrinsic growth, and that correlations among ontogenetic traits 

within populations cannot generally be used to predict life history adaptation among 

populations. Moreover, detailed comparisons of ontogenetic patterns can shed light on the 

developmental basis underlying phenotypic evolution. 

 

Introduction 

Populations within a species experience seasonal time constraints on their life history if a 

relatively short available growing season restricts the reproductive life span. Life history 

models predict that populations facing seasonal time constraints should evolve accelerated 

development (earlier maturity) to ensure an appropriate reproductive period (Roff 1980, 

2002; Rowe & Ludwig 1991; Abrams et al. 1996). Indeed, a number of empirical studies 

document faster development in high latitude or altitude ectotherm populations that 

experience relatively short growing seasons (e.g. Berven & Gill 1983; Dingle, Mousseau & 

Scott 1990; Blanckenhorn & Fairbairn 1995; Laugen et al. 2003; Berner, Körner & 

Blanckenhorn 2004). A common assumption of life history models dealing with time 
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constraints is a constant, maximal or at least optimal intrinsic growth rate within species. As a 

consequence, accelerated development (and thus a shorter growth period) results in smaller 

size. The decline in body size along gradients of declining season length (‘the converse to 

Bermann’s Rule’; Park 1949; Mousseau 1997; Blanckenhorn & Demont 2004) found in some 

insects lends support to this view (Masaki 1967; Mousseau & Roff 1989; Orr 1996; Telfer & 

Hassall 1999).  

An analogous argument applies to protandry, the faster development of males relative to 

females. In arthropods, protandry is generally viewed as the outcome of sexual selection on 

males to mature first to maximize matings (reviewed by Morbey & Ydenberg 2001). Similar 

growth rates among the sexes assumed (Thornhill & Alcock 1983; Zonneveld 1996), 

protandry implies a shorter male growth period that leads to sexual size dimorphism with 

males smaller than females, a common pattern in arthropods (e.g. in many butterflies: 

Wiklund & Forsberg 1991). Hence, both seasonality and sexual selection might impose time 

constraints on the life history that lead to adaptive divergence in developmental timing 

between populations of a species as well as between the sexes. These changes in 

development time typically entail correlated changes in body size (time-size trade-off). 

However, the general assumption of constant growth rates within species that 

underlies the above reasoning might not be true. For instance, northern butterfly populations 

facing relatively short growing seasons exhibit faster development, but buffer body size 

change through faster intrinsic growth (Ayres & Scriber 1994; Nylin 1994). Similarly, 

accelerated growth in males sometimes allows protandry without concurrent female-biased 

size dimorphism (e.g. Wiklund & Forsberg 1991; Nylin et al. 1993; Lounibos et al. 1996). 

Furthermore, growth rate has been found to respond to artificial selection in laboratory 

populations (Bradshaw & Holzapfel 1996; Prasad et al. 2000; D’Amico, Davidovitz & Nijhout 

2003). An important issue emerging from these studies is that intrinsic growth rate, because 

it mediates the relationship between development time (or time to maturity, a fitness 

component) and body size (a pivotal morphological character generally correlated with many 

fitness components; Peters 1983; Blanckenhorn 2000; Roff 2002), should itself represent an 

adaptively flexible trait optimized by natural selection (Abrams et al. 1996; Arendt 1997). 

Despite its importance to life history theory (Stearns 1994; Higgins & Rankin 1996; Cueva del 

Castillo & Nuñez-Farfan 1999; Roff 2000), this hypothesis (or assumption) has received very 

limited attention to date, and thorough empirical tests are restricted to some temperate 

butterflies (Nylin et al. 1993; Nylin 1994 and references therein; Fischer & Fiedler 2001). 

Moreover, these studies emphasize that the role of growth rate for life histories should be 

explored by adopting an explicitly ontogenetic approach that integrates development time, 

growth rate, and body size (Higgins & Rankin 1996). 

The prime objective of our study was to explore the evolution of growth rates and body size 

in relation to time constraints in the grasshopper Omocestus viridulus (L.). In particular, we 
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evaluated the conflicting views that growth rates are constant within species (causing a time-

size trade-off), or that growth rates are flexibly adjusted by selection. The chosen species is 

particularly suited for this task because two different types of time constraints occur. On one 

hand, a recent study has documented adaptive divergence in development time in response 

to seasonality (Berner et al. 2004). Populations occurring at high altitude face a substantially 

truncated growing season and consequently display accelerated intrinsic development rates 

relative to low altitude populations. It is unknown, however, whether the strongly time-

constrained high altitude grasshoppers also evolved relatively faster growth that would, at 

least in part, buffer concomitant body size reductions. On the other hand, O. viridulus males 

develop faster than females (Berner et al. 2004). This protandry is very probably the direct 

result of sexual selection: in this species, female reproductive quality declines relatively 

rapidly with age (Berner, unpubl. data), a condition favouring protandry (Morbey & Ydenberg 

2001). Nevertheless, the relationship between development time and body size among 

males and females remains unclear because sex-specific growth has not yet been explored 

in this or in any related species. A further convenient property of our study system is that it 

develops through discrete juvenile stages typical of hemimetabolous insects. This permits 

the accurate determination of the three-dimensional relationship between time, growth rate 

and size over the whole developmental period, a precondition for meaningful ontogenetic 

comparisons (Klingenberg & Spence 1993). 

Our investigation is based on a suite of common garden experiments. Specifically, we 

included multiple grasshopper populations from different altitudes to study ontogenetic 

responses to seasonal time constraints and sex-specific growth. This approach enabled us to 

address a further important issue. There has been long standing interest and controversy as 

to whether among-population (or higher level) evolutionary divergence reflects corresponding 

within-population trait correlations (Sokal 1978; Houle 1991; Armbruster & Schwaegerle 

1996; Phelan et al. 2003; Bégin & Roff 2004). For this reason, we not only compared 

developmental variation among O. viridulus populations (and the sexes), but also among 

individuals within populations, expecting congruence in ontogenetic patterns. For instance, a 

positive correlation between development time and body size (due to fixed growth) among 

populations should mirror a positive time-size correlation among individual grasshoppers 

within populations.  

As described above, life history adaptation in response to seasonality often involves 

divergence in body size between populations. This might cause another life history trade-off 

if body size itself is correlated with fecundity (Schluter, Price & Rowe 1991; Roff 2002). In 

relation to seasonal time constraints, this trade-off has rarely been scrutinized (but see 

Blanckenhorn & Fairbairn 1995). We therefore additionally examined the relationship 

between body size and fecundity characters (clutch size, offspring size) in grasshopper 

females. 
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Materials and methods 

Study organism and source populations 

Omocestus viridulus (Orthoptera: Acrididae) is an annual grasshopper widespread in central 

Europe. The literature indicates four nymphal (juvenile) stages (Ingrisch & Köhler 1998; 

Berner et al. 2004), but five stages can occur in females (see Results). All our experiments 

were carried out with F1 progeny of grasshoppers sampled from 13 field populations in 

northeastern Switzerland in one of three consecutive years. The sampling sites cover an 

altitudinal gradient of 2000 m (Table 3; details in Berner et al. 2004). At each site, ca. 14 

adults per sex were caught at the onset of the reproductive period. They were kept in groups 

in cages in the greenhouse (three cages per population), fed field-cut grass and allowed to 

reproduce during 4 – 5 weeks. Because the grasshoppers were kept in groups, it was not 

possible to attribute the produced egg pods to the corresponding females. Nevertheless, 

because few females were kept in a single cage, and due to relatively long clutch laying 

intervals in the species (2 – 4 d), it was possible to verify that all females produced roughly 

equal number of clutches. Egg pods were collected twice a week as they were laid, put 

individually in plastic tubes containing moist vermiculite, and incubated at constant 25 °C for 

35 d followed by four months at 5 °C (egg diapause). Subsequent incubation in a climate 

chamber with a 14 h light period at 27 °C and 8 °C night temperature yielded grasshopper 

nymphs for experiments. Hind femur length, henceforth body size, of field animals from all 13 

populations was measured under a stereomicroscope and analyzed as a general linear 

model (GLM) with sex as a fixed factor and altitude of origin (= population) as continuous 

covariate. All statistics were performed with SPSS 11.5. 

Table 3. Localities of origin, altitude, geographic situation, and sampling year of the studied 
grasshopper populations 

Number Locality Altitude (m) Latitude (N) Longitude (E) Year 

01 Neerach 0410 47° 29' 51'' 8° 28' 38'' 2002 
02 Birchwil 0540 47° 27' 34'' 8° 37' 23'' 2003 
03 Schönenberg 0670 47° 11' 51'' 8° 38' 08'' 2002 
04 Bäretswil 0830 47° 20' 57'' 8° 50' 58'' 2002 
05 Rothenthurm 0910 47° 06' 58'' 8° 40' 11'' 2003 
06 Bendel 1055 47° 16' 10'' 9° 10' 21'' 2001 
07 Näfels 1350 47° 06' 42'' 8° 59' 30'' 2002 
08 Speer 1610 47° 11' 30'' 9° 07' 06'' 2001 
09 Flumserberg 1850 47° 04' 21'' 9° 16' 17'' 2002 
10 Elm 1860 46° 55' 32'' 9° 08' 16'' 2003 
11 Gamserrugg 2060 47° 09' 27'' 9° 20' 02'' 2002 
12 Pizol 2215 46° 58' 43'' 9° 25' 20'' 2001 
13 Hörnli 2440 46° 46' 15'' 9° 37' 17'' 2002 

Grasshoppers reared in clutch groups 
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Newly hatched nymphs were immediately put into rearing containers of 19 cm height and 

8 cm diameter and transferred to a climate chamber set to a light period of 16 h at 32 °C and 

night temperature of 10 °C. Day temperature was chosen taking into account the high 

temperature requirements of grasshoppers (Begon 1983; Ingrisch & Köhler 1998). The 

nymphs were kept in clutch groups of up to six individuals. Water-filled glass vials containing 

a standardized grass mixture grown in the greenhouse provided food. They were replaced 

every third day. First-stage nymphal exuviae (shed skins) were collected once the nymphs 

had molted to the second stage, dried for 24 h at 45 °C and weighed to the nearest 

microgram using a microbalance (MX5, Mettler Toledo, Greifensee, Switzerland). First-stage 

exuviae consist entirely of maternally invested tissue. They thus represent an appropriate 

measure of offspring (or egg) size (Köhler, pers. comm.) and are hereafter referred to as 

such. To study its relationship with female size among the 13 populations, mean offspring 

size based on clutch medians (N = 21 – 36 per population) was regressed against average 

body size of parental females. 

At the end of nymphal development, the rearing containers were inspected twice daily. Adults 

were removed from the experiment continuously, their total development time noted and 

adult body size determined. (Unfortunately, development time was not recorded for the 2001 

populations 6, 8 and 12.) The relationship between laboratory (F1) adult size and altitude was 

investigated as for the field animals, although here clutch averages (N = 10 - 27 per 

population and sex) were used instead of individual values. Moreover, study year was 

introduced as an additional blocking factor to account for potential differences in climate 

chamber conditions. Growth rates, expressed as adult size divided by total juvenile 

development time, were analyzed both among populations and among individuals within 

each population. In the former case, population mean adult size was treated as response 

variable in a GLM with sex and study year as fixed factors and average development time as 

covariate. In the latter case, clutch average body size was entered as response variable, sex 

as a fixed factor, population as a random factor, and development time as covariate. Here, 

sample size per population and sex was 10 - 22. 

 

Grasshoppers reared individually 

In order to examine ontogenetic trajectories in detail using data from all developmental 

stages (1st nymphal to adult), a portion of nymphs from one low and one high altitude 

population (populations two and 10, respectively) were reared individually under otherwise 

similar conditions. This experiment also allowed us to explore the effect of rearing density (in 

groups vs. singly) on individual ontogeny. Here, containers were inspected twice daily 

throughout the experiment, moults noted and all nymphal exuviae collected for size (i.e. hind 

femur) measurement. For each animal with four nymphal stages, stage-specific growth rates 

were calculated by dividing size increment by stage duration. Growth rate, stage duration 
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and body size of each stage were analyzed using GLM with population and sex as fixed 

factors. Sample size was 8 - 11 clutches per population and sex. As above, growth was 

additionally analyzed within populations. Here, clutch mean adult size was treated as 

response variable, population and sex as fixed factors and total development time as 

covariate. Sample size was 8 – 13 clutches per population and sex. 

For a comparison of growth rates between low altitude females (population two) undergoing 

four and five nymphal stages, the linear regression slope of body size against development 

time across all developmental stages served as an estimate of an individual’s growth rate. 

This cruder procedure was chosen because here the nymphal stages were not homologous 

across the two developmental pathways. Direct comparison of stage-specific data was thus 

inappropriate. Clutch means (N = 4 for females with five stages) of growth rate, development 

time, adult size were analyzed with sex and nymphal stage number as fixed factors. 

 

Female fecundity 

The influence of female body size on clutch size was examined using individuals from the 

clutch group growth experiment. Upon reaching adulthood, virgin females selected at random 

from populations 1, 3, 4, 9, 11 and 13 were individually put in rearing containers together with 

a random male from the same population. Only one female from any clutch was used. Under 

similar laboratory conditions as above, the grasshoppers were allowed to reproduce. All 

containers were inspected every other day and new egg pods (clutches) removed. They 

were subsequently dissected for egg count under a stereomicroscope. The females were 

allowed to produce up to three egg pods, but for each individual only the one clutch 

containing the highest number of eggs entered the analysis (usually the first clutch). Clutch 

size certainly represents an informative index of fecundity in this system, as during years with 

unfavourable climatic conditions high elevation grasshopper females produce a few clutches 

at best (Berner et al. 2004). Female body size was determined at the end of the experiment. 

Clutch size was analyzed using GLM with the corresponding female’s size as covariate and 

population as random factor. The sample comprised 47 females. 

 

Results 

Comparison among populations 

We found a strong positive association between juvenile development time and adult size 

across Omocestus viridulus populations (F1,15 = 28.3, P < 0.001, overall correlation r = 0.85; 

Fig. 14). Additionally, given similar developmental time, females attained significantly larger 

size than males (sex effect F1,15 = 52.5, P < 0.001), indicating higher growth rates in the 
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female sex. The regression slopes did not statistically differ among the sexes and years (all 

interactions P > 0.13). 
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Fig. 14. Relationship between total juvenile 

development time and adult size in male 

and female Omocestus viridulus progeny 

from 10 populations sampled in 2002 (filled 

symbols) or 2003 (open symbols). Shown 

are population averages based on clutch 

means. The small numbers refer to the 

populations from Table 3. 

Table 4. Comparison of ontogeny among individually reared male and female grasshoppers 
from populations two (low altitude) and 10 (high altitude), based on clutch means*. Results with 
P < 0.05 are bold-faced. Population by sex interactions are not shown, as all P were > 0.075. 

Trait Factor Development stage F1,32 P 

Growth rate Population 1st 0.02 0.887 
  2nd 1.36 0.253
  3rd 3.62 0.066
  4th 0.18 0.678
 Sex 1st 6.71 0.014 
  2nd 11.57 0.002 
  3rd 78.94 < 0.001 
  4th 296.93 < 0.001 
Stage duration Population 1st 5.76 0.022 
  2nd 10.95 0.002 
  3rd 16.74 < 0.001 
  4th 27.14 < 0.001 
 Sex 1st 0.22 0.646
  2nd 4.61 0.039 
  3rd 6.85 0.013 
  4th 7.96 0.008 
Body size Population 1st 3.80 0.06 
  2nd 11.90 0.002 
  3rd 21.81 < 0.001 
  4th 57.74 < 0.001 
  Adult 44.86 < 0.001 
 Sex 1st 3.80 0.06
  2nd 19.31 < 0.001 
  3rd 70.85 < 0.001 
  4th 250.08 < 0.001 
  Adult 542.68 < 0.001 
* all data from individuals with four nymphal stages 

 
 
 

 

 

 
A more detailed analysis of ontogenies based on individual stage-specific data from two 

populations confirmed these findings: within the sexes, high and low altitude grasshoppers 

exhibited similar growth rates in all stages (non-significant population effects, Table 4; Fig. 

15). However, high altitude animals showed shorter nymphal stages and reduced body size. 

As an exception, nymphal size at first stage did not significantly differ between the two 

populations and sexes, indicating comparable size at the onset of ontogeny. Females 

displayed elevated growth rates in all nymphal stages compared to males. 
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Fig. 15. Growth trajectories of male and female 

grasshoppers from low altitude (population 2, 

solid symbols) and high altitude (population 10, 

open symbols). Grey symbols refer to lowland 

females with five nymphal stages. Displayed 

are population averages of clutch means for all 

developmental stages. 
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Unexpectedly, some 30 % (five out of 17) of low altitude females included an additional (fifth) 

nymphal stage in their juvenile development. These animals exhibited growth rates similar to 

lowland females undergoing the usual four stages (F1,9 = 2.4, P = 0.155, Fig. 15). As a 

consequence, the insertion of an additional nymphal stage prolonged development by 3.9 d 

(20 %) on average (F1,9 = 77.7, P < 0.001) and led to 12 % larger adult size (F1,9 = 39.9, P < 

0.001). These differences are substantial. The occurrence of a fifth nymphal stage was 

unknown in this species, but has been reported for related grasshoppers (Ingrisch & Köhler 

1998). As in these species, O. viridulus females with five stages inserted a pure growth stage 

(during which no visible differentiation occurred) before the penultimate developmental stage.  

Resulting from uniform growth rates but differential development time, an altitudinal 

body size cline was evident for both field grasshoppers (F1,384 = 389.5, P < 0.001) and their 

laboratory reared offspring (F1,454 = 203.4, P < 0.001; Fig. 16). The smallest high altitude field 

females were, on population average, 16 % smaller that the largest low altitude females. In 

field males and in both sexes in the laboratory, this difference was 12 %. Moreover, field 

grasshoppers attained larger size than those raised in the laboratory, which can be attributed 

to the direct developmental influence of somewhat cooler average temperatures experienced 

by field animals (‘temperature-size rule’, van der Have & de Jong 1996; Atkinson & Sibly 

1997). 
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Growth rates within populations 

Contrary to the positive correlation of development time and adult size observed among 

populations, relatively large male and female grasshoppers reached adulthood faster than 

small conspecifics within the 10 populations considered (effect of development time on body 

size F1,268 = 64.5, P < 0.001, overall mean correlation coefficient r = -0.454). The slopes did 

not significantly differ between the sexes and populations (all interactions P > 0.28). Data 

from two populations (two and 10) suggested that this ontogenetic pattern was not 

dependent on rearing density, as a negative correlation between development time and body 

size was also expressed in grasshoppers reared singly (F1,39 = 6.95, P = 0.012). For the sake 

of clarity, Fig. 17 displays individual growth patterns of females from populations two and 10 

only, reared both singly and in groups. 
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Clutch size and offspring size 

Clutch size in the laboratory increased as a function of body size of grasshopper females 

(F1,39 = 9.01, P = 0.005; Fig. 18). Clutches produced by the smallest individuals from high 

altitude sites contained only half as many eggs on average as those from the largest lowland 

conspecifics. (As both the population effect and the population by size interaction were non-

significant [all P > 0.36], the data are pooled in Fig. 18) In contrast, no phenotypic correlation 

could be detected between average female size and offspring size among the 13 study 

Fig. 18. Clutch size in relation to body size in 

O. viridulus females reared in the laboratory. 
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populations (F1,11 = 0.26, P = 0.62; Fig. 19). (Regression against a population’s altitude 

instead of mean female size also yielded no correlation [F1,11 = 0.096, P = 0.76]). 

Nevertheless, mean offspring size differed by up to 15 % between populations. Moreover, 

there was considerable scatter within populations, resulting in large standard errors. 

Fig. 19. Offspring size (expressed as first-

stage exuvia weight) in relation to maternal 

body size across 13 O. viridulus field 

populations. Shown are population averages 

based on clutch medians (N = 20 - 36 per 

population). 
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Discussion 

Growth rates among and within populations 

A previous study demonstrated accelerated juvenile development in high altitude populations 

of Omocestus viridulus as an adaptive response to seasonal time constraints (Berner et al. 

2004). Is this fast development due to fast intrinsic growth? Our results here clearly 

demonstrate that this is not the case, as growth rates are largely invariant among the studied 

grasshopper populations; instead, the grasshoppers can grow larger only by means of 

prolonging their development time. This species thus exhibits a trade-off between 

development time and body size. As a consequence, body size among populations 

decreases with altitude, providing an example of a converse altitudinal Bergmann size cline 

(Mousseau 1997; Blanckenhorn & Demont 2004). Our findings disagree qualitatively with the 

prediction that higher growth rates should evolve in populations facing seasonal time 

constraints (Abrams et al. 1996). Rather, the documented stasis in growth rate confirms a 

fundamental assumption of life history theory (e.g. Roff 1980; Rowe & Ludwig 1991). 

However, studies with temperate butterflies showed that in this group adaptive divergence in 

growth rates in relation to seasonality is frequent (Ayres & Scriber 1994; Nylin 1994 and 

references therein). Whether the potential for intraspecific evolution of growth rate is 

contingent on phylogenetic affiliation thus seems an interesting question (Stearns 1994) that 

would, however, require comparable data from many other taxa. 

Based on the conserved growth rate found among populations, we expected a similarly 

strong positive association between development time and body size among individuals 

within each population. Surprisingly, we found an opposite pattern with large males and 

females completing juvenile development faster than small individuals of the same 

population. However, this correlation is phenotypic and evolutionarily relevant only if it 
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mirrors an underlying genetic correlation of the same sign (Reznick 1985; Roff 2000). Is 

there indication that this is the case in O. viridulus? Or is the trend attributable to 

environmental or maternal effects? On one hand, rearing density seems unlikely as a 

confounding environmental factor because a negative time-size correlation was evident in 

individuals reared both in groups and singly (cf. Wall & Begon 1987). On the other hand, 

relatively large offspring often grow faster (Fox & Czesak 2000) and the pattern might thus 

be ascribed to differences in offspring size, a maternal effect (Wall & Begon 1987; Mousseau 

& Dingle 1991). In order to test this possibility, we ad hoc analyzed linearly estimated 

individual growth rates from populations two and 10 with population and sex as fixed factors 

and offspring size as covariate. This analysis revealed no relationship between offspring size 

and growth rate (F1,52 = 1.64, P = 0.21). Maternal influence on growth rate via offspring size is 

therefore unlikely. 

In addition and most importantly, phenotypic correlations between development time and 

adult size have been shown to generally represent reliable (albeit conservative) estimates of 

underlying genetic correlations (Roff 1996, 2000). For these reasons, our data suggest 

genetic variation in growth rates among individuals of O. viridulus, as seen in some other 

systems (Ueno 1994; Klingenberg & Spence 1997; Simons, Carrière & Roff 1998). This 

result is intriguing in view of the stasis in growth rate found among grasshopper populations, 

because we would expect the rapid fixation of alleles associated with fast growth in time-

constrained high elevation populations. However, genetic variation in growth detected in the 

laboratory might disappear under more variable natural conditions (Simons & Roff 1996), and 

therefore not be available to selection. This issue clearly deserves further empirical 

treatment. In any event, our data caution against the prediction of among-population 

ontogenetic evolution based on the association between time, size and growth at the within-

population level. 

 

Developmental pathways and proximate cause 

An unexpected difference between high and low elevation grasshopper ontogenies was the 

tendency of some females to develop through five nymphal stages. This alternative 

developmental pathway occurred in low altitude O. viridulus females but was absent at high 

elevation. Although proved directly only for two populations where individual ontogenies were 

carefully tracked, inspection of body size patterns suggests that this difference between low 

and high altitude females might be general: adult females with five nymphal stages are much 

larger than four-stage conspecifics. Variance in female size should thus be greater in low 

altitude populations where both pathways exist. Such a tendency is suggested in some field 

populations (but absent in laboratory females where sample sizes were variable; see Fig. 

16). In further support, Telfer and Hassall (1999) report an analogous latitudinal decline in 

the occurrence of an additional nymphal stage in a related grasshopper. 
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Variation within populations in the number of developmental stages is generally interpreted 

as a plastic ontogenetic response to the available season length mediated by temperature 

and/or photoperiodic cues (Tanaka & Brookes 1983; Bellinger & Pienkowski 1987; Telfer & 

Hassall 1999; Fischer & Fiedler 2001). Nevertheless, we tested ad hoc for a possible 

relationship between developmental pathway and offspring size among females of the low-

land population two and obtained an interesting result: females undergoing five stages were 

significantly smaller at hatching (5 % on average) than four-stage individuals (t test: t15 = 

4.453, P < 0.001, two-tailed). This strongly suggests that in O. viridulus, the insertion of an 

additional nymphal stage is mediated by small offspring size. The developmental pathway 

thus seems at least partly determined by maternal influence. 

Our finding that the five-stage pathway is probably induced by small offspring size in low but 

not high altitude populations is important. It may provide the key to understanding the 

proximate mechanism that underlies both the evolution of fast development at high altitude 

and the positive time-size correlation among populations. Generally, arthropod molting is 

bound to stage-specific critical size (or weight) thresholds during sensitive phases (Nijhout 

1981; Tanaka 1981; Woodring 1983; Davidovitz, D’Amico & Nijhout 2003). These thresholds 

regulate the relationship between development time and body size during ontogeny in a 

pleiotropic fashion: lower critical size causes earlier moulting at smaller size. Failure to reach 

a certain critical size can sometimes induce an additional juvenile stage that permits further 

growth but prolongs development (Nijhout 1981; Tanaka 1981). Consistent with this notion, 

our data indicate that some low altitude nymphs exhibited subcritical size during their second 

stage and subsequently inserted an additional growth stage. Given that similarly small 

hatchlings also occurred at high altitude, the absence of the five-stage pathway from high 

altitude populations likely represents a side effect of reduced critical size thresholds. It is very 

probable that such a decrease in critical size arose in response to selection for fast 

development under seasonal time constraints at high elevation. Owing to the pleiotropic 

nature of size thresholds, body size thus declines along with development time over the 

altitudinal gradient, which explains the positive time-size correlation among populations. 

Consistent with our data, adaptive divergence in development time through shifts in critical 

size thresholds does not require changes in growth rates. 

However, comparable evidence from other systems, against which the proposed scenario of 

adaptive evolution in critical size could be evaluated, is sadly lacking. At least in partial 

support of our view, body size evolution among laboratory populations of Manduca sexta 

moth involved a shift in critical weight (D’Amico et al. 2003). Our analysis illustrates that 

comparisons of ontogenetic patterns can provide insights into developmental mechanisms 

underlying adaptive divergence, and thus link development, ecology and evolution 

(Amundson 2001; Brakefield, French & Zwaan 2003). 
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Protandry and sex-specific growth 

Protandry is necessarily associated with female-biased size dimorphism if the sexes grow at 

similar rates (Zonneveld 1996). However, there is often conflicting selection for protandry and 

large size in males (Thornhill & Alcock 1983; Wiklund & Forsberg 1991; Cueva del Castillo & 

Nuñez-Farfan 1999) promoting the evolution of faster growth in males than females. This has 

been found in a number of species including spiders (Gunnarson & Johnsson 1990; Uhl et al. 

2004), flies (Lounibos et al. 1996; Blanckenhorn 1998) and butterflies (Wiklund, Nylin & 

Forsberg 1991; Nylin et al. 1993; Fischer & Fiedler 2001). In striking contrast, O. viridulus 

males grow considerably slower than females, especially during the last stage, which causes 

pronounced sexual size dimorphism. Slower relative growth in males is uncommon (Fairbairn 

1990; Bradshaw & Holzapfel 1996) and of particular interest because it suggest selection 

against large male size, an issue that has received relatively little attention so far (but see 

Blanckenhorn 2000). A likely explanation for slow male growth in our species builds on the 

fact that small males have lower metabolic demands than large males and may therefore 

spend less time foraging (Reiss 1989; Blanckenhorn, Preziosi & Fairbairn 1995). This allows 

increased mate pursuit and courting activity. Our species is characterized by scramble 

competition for females (Ingrisch & Köhler 1998; Berner, pers. observ.). Higher mate search 

and courting effort by males thus likely correlates with increased mating success. This 

suggests that male O. viridulus experience both protandry selection and selection for small 

size. Probably, slow relative growth in males is the outcome of simultaneous optimization of 

development time and body size. 

It is evident that extensive experimental work would be needed to disentangle and quantify 

the different selection pressures shaping male and female ontogenies in this species. 

Nevertheless, our study lends support to the notion that sex-specific growth trajectories 

enable the independent optimization of development time and body size in both sexes. This 

finding contrasts to the uniform growth documented at the population level. 

 

Clutch size and egg size 

Development time and body size are correlated positively and decline with elevation across 

grasshopper populations. Since small female size can limit reproductive output, this raises 

the important question of whether body size mediates a life history trade-off between 

development time and fecundity (Schluter et al. 1991; Roff 2002). Indeed, we found a 

positive phenotypic correlation between female size and clutch size in O. viridulus. Our result 

is not surprising because this is the rule in insects (Honek 1993). Similar positive genetic 

correlations between female size and fecundity are frequent and reliably estimated using 

phenotypic data (Roff 2000). Hence, small body size incurs a substantial fecundity loss to 
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high altitude grasshopper females, and altitudinal adaptation therefore involves a real life 

history trade-off. 

As regards offspring size, general predictions are rendered difficult by the fact that this trait is 

both a maternal and offspring phenotype (Bernardo 1996). On one hand, small female size 

might limit offspring size. However, consistent with theoretical work (Parker & Begon 1986), 

our data provide no indication of such a tendency. On the other hand, based on the 

assumption that large offspring grow faster and attain maturity earlier than small offspring 

(Fox & Czesak 2000), theory predicts the evolution of larger progeny in populations 

experiencing seasonal time constraints (Parker & Begon 1986; Sibly & Monk 1987; Roff 

2002). This idea is supported by studies showing a positive correlation between egg size and 

latitude among populations (Ayres & Scriber 1994; Telfer & Hassall 1999). In O. viridulus, we 

found no evidence for larger offspring in time-constrained high altitude grasshopper 

populations. A confounding influence of female age (offspring size commonly increases with 

maternal age in Orthoptera; Fox & Czesak 2000; Cherrill 2002) is very unlikely to affect our 

data set because we sampled grasshoppers at similar phenological stages at all sites. We 

therefore conclude that the fast development displayed by high altitude grasshoppers is 

certainly not attributable to larger offspring. 

 

Implications 

We presented a detailed analysis of grasshopper ontogenies at the level of multiple 

altitudinal populations, the sexes, and individuals. Three important issues emerged. First, the 

evolutionary response of growth rate to different types of time constraints can greatly differ. 

We found stasis in growth rate among grasshopper populations in the face of selection 

imposed by seasonality, ultimately causing a life history trade-off. In contrast, males and 

females evolved strikingly divergent growth rates in relation to putative selection for 

protandry, facilitating independent adjustment of development time and body size. Second, 

ontogenetic evolution at the among-population level cannot necessarily be extrapolated from 

within-population trait associations. The sign of the time-size correlation was positive among 

populations, but negative among individuals within populations. Third, our work illustrates 

that detailed comparisons of ontogenetic pathways can provide valuable insights into the 

developmental basis of phenotypic evolution. Adaptive ontogenetic divergence among O. 

viridulus populations is probably due to shifts in critical size thresholds. Clearly, our 

understanding of life history evolution will greatly benefit from similar studies in diverse taxa 

integrating time, size and intrinsic growth at different levels. 
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Summary 

The role of plant-mediated constraints to herbivore populations in terrestrial ecosystems 

remains relatively poorly understood. One aim of this study was therefore to explore the 

effects of low host plant nitrogen (N) content on herbivore performance and feeding 

behaviour, and thereby to evaluate the utility of the N limitation and nutrient balance 

concepts. The grass-feeding grasshopper Omocestus viridulus (Orthoptera: Acrididae) 

provided a well-suited model system as the species exhibits high tissue N demands (11.3 % 

N dw) compared to other herbivores, and uses a relatively poor food source in the wild 

(median N content: 2.2 % dw). Using N-poor soil and fertilizer, natural host grasses of 

contrasting N contents (high vs. low N) were grown in pots in the greenhouse. Juvenile 

performance experiments were then carried out with first generation (F1) offspring of 

grasshoppers caught in the field at three sites in Switzerland. The experiments were 

conducted both in a climate chamber and in outdoor cages under natural climatic conditions. 

I consistently found lower growth rates in grasshoppers reared on low N grasses, leading to 

somewhat prolonged development (13 % in the laboratory, 7 % outdoors) and slightly (4 – 

5 %) smaller adult size. Juvenile mortality was low (always < 20 %) and similar among the 

food N treatments. As N contents differed strongly between the experimental grass 

treatments (e.g. 1.6 % vs. 4.3 % N dw in the climate chamber trial), my results suggest that 

natural food quality imposes no relevant nutritional constraint on grasshopper performance. 

Separate laboratory experiments on feeding behaviour served to investigate how 

grasshoppers cope with low quality food. First, female last-instar nymphs were allowed to 

feed singly on either high or low N grass (non-choice setting) over a 16 h period. The food’s 

initial fresh weight was known and converted to dry weight using constants. Individual food 

consumption was subsequently calculated by subtracting the dry weight of the food leftovers 

from the initial dry mass (gravimetrical method). This experiment showed that grasshoppers 

facing N-poor grass displayed substantially elevated food consumption (82 % higher on 

average) compared to conspecifics fed N-rich food. The animals thus compensated for lower 

nutritional quality by eating more. In a choice experiment, single grasshopper nymphs were 

offered high and low N grass simultaneously during a 28 h period. Individual consumption of 

both foods was calculated gravimetrically and revealed a striking preference for fertilized 

grass. On average, N-poor grass only accounted for some 20 % of the total ingested plant 

dry mass. It is argued that the proportion of consumed high N (protein-rich) and low N 

(energy-rich) grass likely represents the outcome of nutrient balancing. Proximately, the 

observed food selection can be explained by the modulation of taste receptor 

responsiveness via metabolic feedback, and/or associative learning of the spatial location of 

the different food sources. Overall, my results disagree with simple bottom-up predictions of 

herbivore population control, such as N limitation. Rather, this investigation provides 
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evidence for a high ability of arthropod herbivores to balance their nutrient intake, and thus 

corroborates a body of work performed with synthetic diets. 

Another set of experiments using the same study organism was aimed at exploring the 

hypothesis that life history differentiation along a climatic gradient may have allowed a 

species to extend its geographic range. To this end, a total of eleven O. viridulus populations 

from eastern Switzerland were selected to span the species’ entire altitudinal range (410 – 

2440 m). Temperature measurements and phenological surveys repeated in regular intervals 

at four field sites allowed quantifying the decline of available heat sums with increasing 

elevation, and its immediate effect on development rates. During the relatively cool season of 

2002, embryonic development at 2215 m altitude started nearly three month later than at 

410 m, and nymphal hatching and adult emergence were delayed by roughly two month. 

This implied a strong truncation of the reproductive period in high altitude animals, a situation 

predicted by life history theory to promote the evolution of shortened time to maturity (faster 

juvenile development). During the following, climatically favourable year, the phenological 

delay in the field of high altitude relative to lowland populations was less pronounced. This 

suggested that the variance in available season length increases with altitude, and that the 

strength of natural selection owing to time constraints at high elevation fluctuates 

considerably. In order to investigate adaptive (genetic) divergence in grasshopper life history, 

several traits determining development time (or time to maturity) were compared across the 

eleven study populations under common garden conditions, using offspring of field-caught 

animals. Embryonic development rates were found to increase according to the population’s 

altitude of provenance, with embryos from highest altitudes completing development some 

ten percent faster than lowland animals. This was found both at 27 °C and 19 °C incubation 

temperature, genotype by temperature interactions thus proved unimportant. Similarly, 

nymphal development accelerated with elevation of origin, the maximal difference between 

high and low altitude populations again amounting to roughly ten percent. In contrast, the 

stage of embryonic overwintering diapause, a pivotal determinant of developmental timing in 

annual organisms, was constant across six inspected populations from different altitudes. 

Embryonic development was always arrested just before the onset of embryonic rotation. 

This result agrees with data from other members of the same subfamily (Gomphocerinae), 

but disagrees with life history responses to seasonal time constraints reported for other 

Orthoptera. The documented lack of flexibility (genetic variation) in the diapause stage is 

therefore best understood as a phylogenetic constraint. This investigation offers strong 

support for the hypothesis of life history adaptation to local climates, although the degree of 

differentiation in intrinsic development rate among the populations is relatively modest and 

essentially limited by the conserved diapause stage. As a result, the immediate influence in 

the wild of decreasing temperatures along the altitudinal gradient overwhelms the genetic 

response observed in the laboratory, thus providing an example of cryptic evolution. 
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Life history theory generally predicts a trade-off between short juvenile development and 

large adult size, assuming invariant growth rates within species. This basic assumption has 

been explicitly tested in few organisms. The relationship between growth rate, juvenile 

development time and body size was examined in O. viridulus grasshoppers from 13 

populations from different altitudes (including the populations mentioned above). All 

experiments were performed with first generation offspring at 32 °C in the climate chamber. I 

hypothesized that time constraints imposed by the altitudinal decline in season length, and 

arising from the advantage of earlier emergence of males relative to females (protandry), 

should have favoured increased intrinsic growth rates in high altitude animals and in the male 

sex. However, growth rates were similar across the populations. Instead, accelerated 

development with increasing elevation resulted in an altitudinal body size cline, with animals 

from the highest sites exhibiting roughly 12 % smaller adult size on average compared to 

lowland conspecifics. This size pattern was also observed in field animals. As I found a 

positive correlation between female body size and the number of eggs per clutch (but not 

offspring size), adaptation of O. viridulus to alpine climates involves a life history trade-off 

between time to maturity (development time) and fecundity, mediated by body size. An 

additional (fifth) nymphal stage, inserted before the penultimate nymphal stage and leading 

to an extended (by 20 %) developmental period and 12 % larger adult size, occurred in some 

females from low altitude. Individuals with five as opposed to four nymphal stages displayed 

significantly (5 %) smaller hatchling size, indicating that the insertion of the additional stage is 

contingent on maternal investment in the egg. It is argued that the absence of the five-stage 

developmental pathway from high elevation populations likely represents a side effect of the 

evolution of lower critical size thresholds in high altitude grasshoppers to accelerate 

development. Contrary to expectations, males were found to grow at substantially lower rates 

than females. This finding suggests that O. viridulus males not only experience protandry 

selection, but simultaneous selection for small size associated with reduced energetic 

requirements during mate search. Relatively slow growth in males probably allows the 

independent optimization of development time and body size among the sexes. My data 

further revealed that within populations, large individuals consistently developed faster than 

small individuals, resulting in a negative correlation between development time and size. This 

pattern could neither be ascribed to sib competition, as it was expressed in individuals both 

reared in groups and individually, nor to small hatchling size, a maternal effect. Hence, 

genetic variation in growth rate among individuals within populations seems probable. This 

study illustrates that the evolutionary response of intrinsic growth rate to different types of 

time constraints can greatly differ. I found stasis in growth rate among grasshopper 

populations in relation to seasonality, but highly divergent growth between the sexes owing 

to protandry selection. Further, ontogenetic evolution at the among-population level cannot 

necessarily be predicted based on within-population trait associations. The sign of the time-

44 



size correlation was positive among populations, but negative among individuals within 

populations. Finally, I illustrate that detailed ontogenetic comparisons can shed light on the 

developmental cause (here a shift in critical size thresholds) underlying phenotypic evolution. 
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