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Abstract

Inverse scattering problems are used in a vast number of applications, such as geophysical
exploration and medical imaging. The goal is to recover unknown media using wave prop-
agation. The inverse problem is designed to minimize simulated data with observation
data, using partial differential equations (PDE) as constrains. The resulting minimiza-
tion problem is often severely ill-posed and contains a large number of local minima. To
tackle ill-posedness, several optimization and regularization techniques have been explored.
However, the applications are still asking for improvement and stability.

In this thesis, a nonlinear optimization method is proposed for the solution of inverse
scattering problems in the frequency domain, when the scattered field is governed by
the Helmholtz equation. The time-harmonic inverse medium problem is formulated as
a PDE-constrained optimization problem and solved by an inexact truncated Newton-
type method. Instead of a grid-based discrete representation, the unknown wave speed
is projected to a particular finite-dimensional basis, which is iteratively adapted during
the optimization. Truncating the adaptive eigenspace (AE) basis at a (small and slowly
increasing) finite number of eigenfunctions effectively introduces regularization into the
inversion and thus avoids the need for standard Tikhonov-type regularization. We actually
show how to build an AE from the gradients of Tikhonov-regularization functionals.

Both analytical and numerical evidence underpin the accuracy of the AE representation.
Numerical experiments demonstrate the efficiency and robustness to missing or noisy data
of the resulting adaptive eigenspace inversion (AEI) method. We also consider missing
frequency data and apply the AEI to the multi-parameter inverse scattering problem.
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Chapter 1

Introduction

1.1 Applications of the Inverse Scattering Problem

Inverse scattering problems occur in a wide range of applications such as radar [79, 2] and
sonar technology [54], non-destructive testing, geophysical exploration [80, 36, 86], and
medical imaging [1, 5, 91, 61, 85]. By illuminating an unknown body, the scatterer, with
waves of various directions or wavelengths, one attempts to obtain information about that
body from the scattered waves recorded at some distance. The scatterer is a penetrable,
bounded inhomogeneity inside the medium characterized by one or several varying physical
parameters and the inverse problem consists in estimating these parameters from scattering
data. This problem is also known as inverse medium problem or inverse scattering problem.

In general, inverse medium problems are solved by the following strategy: A known
acoustic source produces a wave which travels through the medium. The wave collects
information about the medium by propagating through its layers and features or by re-
flecting from them. The wave and its reflections are then measured at sensors outside the
medium. After collecting the data, the measurements are compared with a simulation of
the wave propagating through an estimated medium, which is chosen as an initial guess.
The misfit between the simulated data and the true measurements is minimized to reveal
the properties and structure of the medium.

Inverse medium problems occur in oil and gas exploration in geophysics or breast tumor
detection in medical imaging. In Fig. 1.1 we illustrate the inverse medium problem for
both applications. The left picture of Fig. 1.1 shows sound waves being shot into the ocean
from a boat and the measurements of the reflected waves being collected by hydrophones
behind it1. The inverse scattering problem is also known as full wave inversion (FWI)
in the geophysical community. On the right of Fig. 1.1 we illustrate the inverse medium
problem for the detection of a tumor in a human breast2. The breast is composed mainly of
fatty tissue, muscles and lymph nodes. The different kinds of tissues inside the breast have

1www.rigzone.com
2www.cancer.gov
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12 CHAPTER 1. INTRODUCTION

Figure 1.1: Illustration of the inverse medium problem. Seismology survey reveals the
layers of the Earth and searches for oil or gas (left). Inverse medium problem detects
possible tumor in a human breast, where different tissues inside the breast have different
wave velocities (right).

different wave velocities. This can be used to identify a possible tumor by sending acoustic
waves into the human breast and measuring their response outside of it, for example
with a medical ultrasound machine. Those measurements are compared with simulated
measurements made on an estimated model of the breast without a tumor. If the breast
differs from the estimated model, we obtain a misfit in the measurements. Then, we start
a process of fitting between the simulated and the true measurements by changing the
estimation of the model breast in such a way that the misfit between the measurements
will be as small as possible. The goal of the minimization process of the misfit is not only
to be able to reveal the existence of a possible tumor, but also its position, form and size.

1.1.1 PDE-Constrained Optimization

The propagation of waves through a medium can be described by the acoustic wave equa-
tion

ytt(x, t)−∇ · (u(x)∇y(x, t)) = f(x, t) , (1.1)

where u(x) > 0 represents the squared medium velocity, f(x, t) the source function, and
y(x, t) the pressure variation, i.e. the wave field. Hence, for a given medium and an acoustic
source, we get a solution y(x, t) which represents the wave at location x and time t.

Now, we assume that u(x) is unknown and would like to reconstruct the medium using
acoustic waves. Therefore, we perform an illumination of the medium with source term f
and denote by y the corresponding solution of (1.1). Given the measurements yobs at sensor
positions outside of the medium, we seek a reconstruction of the unknown squared wave
speed u, such that the solution y of (1.1) with f coincides with the measurements yobs.
To solve the inverse medium problem, we formulate it as a PDE-constrained optimization
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problem:

For F(u, y) =
1

2

∥∥Py − yobs∥∥2

L2 , (1.2)

minimize F(u, y) ,

such that y(u) satisfies (1.1) for a source f ,
(1.3)

where P is the projection at the sensor positions.

The amount of data in inverse medium problems tends to be large, especially when
data is available for all time. The acoustic source is known and by using Fourier transform
of the time variable, the source and the wave field can be represented by a sum of time
harmonic waves. This allows us to separate time and space dimensions and write f and y
as

y(x, t) = ŷ(x)e−iωt and f(x, t) = f̂(x)e−iωt , (1.4)

where ω > 0 denotes the time frequency. Using the ansatz (1.4) in (1.1) leads to the
Helmholtz equation

− ω2ŷ(x)−∇ · (u(x)∇ŷ(x)) = f̂(x) , (1.5)

which allows us to work in the frequency domain. By using (1.5) as the PDE constraint in
(1.3) instead of the time dependent counterpart (1.1), we avoid large-scale time-dependent
data. Still, the discovery of smaller features in the medium involves solving the Helmholtz
equation at high frequencies, which is notoriously difficult, especially in three space dimen-
sions.

1.2 Numerical Methods

Numerical methods for the solution of inverse scattering problems essentially fall into
two classes: qualitative and quantitative methods. Qualitative methods can estimate the
location and the shape of a scatterer, while quantitative methods are able to recover also
some physical properties of it.

1.2.1 Qualitative Methods

Qualitative methods [11] generally require little a priori knowledge about the scatterer and
allow to estimate its location and shape efficiently. Examples are the MUSIC (MUltiple
SIgnal Classification) algorithm [15, 51], the DORT (Decomposition of the Time Reversal
Operator) method [69, 12], the linear sampling method [16, 40], the probe method [68], and
the factorization method [51, 52]. These methods provide a criterion for deciding whether
a point lies inside or outside the scatterer only on the basis of far-field measurements of the
scattered field. Hence, they effectively determine the support of a scatterer and thus permit
to quickly detect material defects or obstacles, but do not provide any further quantitative
information about its physical characteristics such as the local speed of sound.
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To better understand the functionality of the qualitative methods, let us briefly describe
the linear sampling method [16, 40]. For a given domain, which contains an (unknown)
obstacle D, a grid of “sampling points” on the domain is chosen. The method uses the
far field operator to define a far field equation with a solution gz for a given grid point
z. In [10], it is shown and proven that gz satisfies different inequalities for points inside
D and for points outside of it. Hence, the method uses the inequalities to select a cut-off
constant C and uses it to decide if a grid point is inside D or not. If ‖gz‖ ≤ C, the grid
point z is inside D, otherwise z is outside. Moreover, from the far-field data it is possible
to distinguish between two different scatterers D1 and D2 in the domain.

1.2.2 Quantitative Methods

Quantitative methods, which we shall consider in this thesis, typically reformulate the in-
verse scattering problem as a PDE-constrained optimization problem, where the unknown
physical parameters are determined by minimizing an appropriate objective functional [81],
see for example (1.2)-(1.3). As the waves propagate through the medium and collect infor-
mation about it, we formulate the problem as an optimization problem which minimizes
the misfit between the solution of the simulated data and the true measurements. The
minimization process starts from an initial guess of the medium and updates it during the
optimization as close as possible to the exact parameter.

The optimization problem uses a metric to minimize the misfit of the data. In this the-
sis, we choose the L2-norm (nonlinear least squares), but other metrics may be considered,
for example, the Wasserstein metric [24], which is convex with respect to shifted or delayed
data. This is an advantage of the Wasserstein metric with respect to the minimization over
the L2-norm, whereas the latter is strongly non-convex. Recently, this metric was applied
successfully to the inverse time dependent problem in [25] and it may be an interesting
subject for future work.

Considering PDE-constrained optimization, at least two strategies are then available:
the full-space approach and the reduced-space approach. In the full-space approach the
parameter u and the state variable y are sought simultaneously and their dependency is
described by the constraints. This method is also denoted in the literature as “all-at-
once” approach. In the reduced-space approach, which we shall consider in this thesis,
the state variable y is eliminated from the objective functional as F(u) = F(y(u), u),
taking advantage of the linearity of the underlying Helmholtz equation and uniqueness of
its solution under appropriate boundary conditions [35, 59, 32, 86].

To solve the optimization problem numerically, we have to discretize it at some point.
Here again, two approaches are possible: optimize-then-discretize, where the continuous
optimality conditions are formulated and then discretized in order to be solved. The second
approach is discretize-then-optimize, where we discretize the problem first, which results in
a finite dimensional optimization problem [46]. In the discretize-then-optimize approach it
is easier to apply advanced algorithms from state-of-the-art optimization methods.
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1.2.3 Optimization Strategies for the Inverse Helmholtz Problem

The inverse scattering problem as a PDE constrained optimization, using the Helmholtz
equation, has been an area of research for over 30 years now [80]. The problem is known to
be severely ill-posed. In the last three decades many applications [70, 37, 87], optimization
methods [35, 71, 27] and algorithms [59, 45] have been applied to it. However, the problem
remains challenging and optimization techniques do not always yield the expected result.

Solving the inverse problem using standard optimization techniques, for instance stan-
dard Newton or quasi-Newton methods from nonlinear optimization [65, 44], usually leads
to unreasonable solutions and likely ends in a false local minimum. For inverse medium
problems, however, the exact solution of the Newton equations at each iteration may be
prohibitively expensive due to the very large number of (unknown) parameters. In recent
years, inexact truncated Newton methods [22, 19], where at each (outer) iteration the
(quasi-)Newton equations are solved by using only a few (inner) Krylov subspace itera-
tions, have proved to be particularly effective for large-scale inverse medium problems [59].
Moreover, appropriate safeguards [22, 63] guarantee convergence.

At higher frequencies, waves detect and carry more detailed information about the
scatterer [14]. Yet, solving the inverse problem directly with a high frequency, may dra-
matically increase the number of local minima. To prevent the optimization process from
converging to a false local minimum, a frequency continuation strategy [14, 6, 71] is ap-
plied. This strategy is denoted in the literature also as frequency stepping. The principle
of frequency stepping is to solve the inverse problem for a sequence of increasing frequen-
cies ω, initializing each optimization run with the solution obtained from the previous
lower frequency. In doing so, we reduce the risk of converging to a false local minimum
by obtaining improving solutions for the optimization problem and we are still able to use
highest frequency to reveal more details about the medium.

The number of linear systems to be solved in each optimization step grows linearly
with the number of sources. For some applications the number of sources can reach several
thousands. Thus, the cost of solving such a high number of linear systems may become
prohibitive. To limit the computational cost without ignoring any of the available data, the
sample average approximation (SAA) approach [38] uses “super-shots” as sources for the
optimization. “Super-shots” are linear combinations of simultaneous sources determined by
random vectors with zero mean and identity covariance. This yields a stochastic method,
which needs to evaluate the mean of the misfit and uses the Monte Carlo approximation to
do so. In this thesis, we combine our method with the SAA approach in several numerical
experiments.

1.3 Regularization Techniques

By implementing all strategies, optimization methods and safeguards mentioned above,
the solution of the inverse problem is improved, but often remains unsatisfactory as the
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numerical solution usually contains perturbation and artifacts, especially on the source
and receiver locations. To tackle this issue, the problem needs to be regularized. The term
regularization method refers to any method which yields a stable approximate solution to
an ill-posed problem [11]. In the following, we introduce some important regularization
methods.

1.3.1 Regularization by Filtering and Discretization

In regularization by filtering [88, 41] the idea is to filter the information and to extract only
useful information from an ill-posed problem. This regularization is based on the Singular
Value Decomposition (SVD) of a matrix H, whose inversion is needed for the solution of
an ill-posed inverse problem. Here, H typically denotes the Hessian matrix. As we invert
H, the smallest singular values σi cause instabilities of order σ−1

i in the solution. The
regularization method then filters the right and left singular vectors related to those small
values. More generally, the concept of reducing the dimension of the solution space is also
referred to as regularization by discretization [50].

For very large and ill-posed systems one cannot always implement regularization by
filtering, because it requires the computation of the Hessian and its singular value decom-
position, which can be prohibitively expensive for large systems.

1.3.2 Tikhonov Regularization

Tikhonov regularization [82, 31, 23] can tackle ill-posedness with a small computational
cost, even for very large systems. Several Tikhonov regularization functionals exist and
they can be easily applied to the inverse problem by adding a penalty functional to (1.2).
Among the Tikhonov-regularization functionals, we have the L2 and the Sobolev H1-
penalty functionals [31, 88]. The L2-penalty term penalizes directly the quantity of the
reconstructed medium. The Sobolev H1-penalty functional penalizes strong variations in
the solution and is mainly suitable for smooth media. Unlike the H1-penalty functional,
Total Variation (TV) regularization [74], which was originally introduced for noise removal
in digital image processing, can reconstruct media with discontinuities; it is able to remove
unwanted noise, while preserving important details. TV can reconstruct nearly piecewise
constant images with high quality [20] and has been implemented for inverse scattering
problems successfully, see for example [55, 28].

Tikhonov regularization functionals are usually multiplied with a positive scalar α,
which controls the trade-off between the misfit of the data and the regularization functional.
If α is too high, the solution u will essentially minimize only the penalty function and
if α is too small, the optimization process will essentially ignore the penalty function.
In penalized TV-regularization [89] or in other regularization approaches [21], one adds
another parameter ε to the penalty functional, which yields a differentiable functional that
allows solutions with strong variability or discontinuities. Here, as for α, the parameter
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ε must be well chosen to enable the penalty functional to regularize the inverse problem
properly. If not, this may lead to unreasonable solutions or solutions whose discontinuities
are smoothed out. Finding the right parameters, which are suitable for the reconstructions
of all profiles, is not always easy [4].

At least two strategies are then available for the choice of the parameters: the a pos-
teriori parameter selection and the a priori parameter selection. In the a posteriori case,
the parameter depends on the misfit data, but not on any preceding information about
the optimal solution. A standard a posteriori parameter choice for α is called Morozov’s
discrepancy principle [62]. A priori parameter selection includes prior information on the
parameter u (or on the noise level), which cannot be recovered from the misfit data. For
example, if we know in advance that the profile contains discontinuities, we can choose the
parameter α in order to preserve them in the reconstruction, as in multiplicative regular-
ization [84].

1.3.3 Size Reduction and Adaptive Regularizations

In [13], regularization by size reduction of admissible parameters is introduced. The set of
admissible parameters can be set in two ways: the first tightens existing constraints while
the second limits the space of admissible parameters to a subspace, spanned by global
functions. For example, if we know a priori that our solution is smooth, we may choose a
subspace V of smooth global functions and restrict the search space to V .

Another regularization, the adaptive regularization, is introduced in [13]. When a priori
information is available but contradicts the information coming from measurements, the
regularization shifts the parameter far from its desired value to accommodate both. Adap-
tive regularization progressively agrees with the measurements as much as possible, taking
into account a priori information about u and the model. According to [13], adaptive
regularization is the most desirable regularization. This area of research is very active and
new papers introduce new adaptive regularization techniques. In [83], a two stage adaptive
regularization is introduced for inverse Helmholtz problems, where frequency-stepping is
available only at high frequencies. There, even if a priori information on discontinuities
in the profile is given, the choice of regularization considers the frequency data limitations
and promotes a very smooth solution at the first one or two frequencies. After obtaining
a smooth solution, the penalty functional is adapted in order to resolve sharp features in
the model.

In this thesis, we combine the space reduction regularization with the adaptive regular-
ization. We call this combination the Adaptive Eigenspace (AE): Starting the optimization
at the lowest frequency with an initial guess far from the true solution, we first restrict
the search to a smooth initial solution. In doing so, we restrict the set of admissible pa-
rameters to a subspace spanned by the eigenfunctions of the Laplacian that correspond to
the smallest eigenvalues since they are smooth and not highly oscillatory. Using available
a priori information about the parameter, we choose the most suitable Tikhonov penalty
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functional R(u). Through the variation of R(u) we compute the related gradient ∇uR(u).
Next, we compute the first K eigenfunctions of ∇uR(u) as a basis for the admissible pa-
rameters subspace VK . The dimension K adapts itself at every frequency step, such that
for increasing frequency ω the subspace VK has a larger dimension, which depends on ω.
This is called the AE basis and we will introduce it in the next section.

1.4 Adaptive Eigenspace (AE)

We consider the adaptive eigenspace inversion (AEI) as formerly presented in [18] for the
time-dependent visco-elasticity equation and then for the time-dependent wave equation
in [17]. In the AEI method the unknown wave speed is projected onto a particular finite-
dimensional basis of eigenfunctions instead of a grid-based discrete representation. This
basis is iteratively adapted during the optimization and reduces the number of control
variables dramatically. Instead of a standard nodal basis, in [18, 17] a basis of eigenfunc-
tions {φm}Km=1 is being used to represent the parameter u(x), where the eigenfunctions φm
are given by −∇ ·

(
1

max{|∇u(x)|, ε}
∇φm(x)

)
= λmφm(x), ∀x ∈ Ω,

φm(x) = 0, ∀x ∈ Γ.
(1.6)

The parameter ε > 0, which ensures that the denominator of µ does not vanish, is typically
set to a very small value.

1.5 Multi-Parameter Inverse Problem

In recent years, research on multi-parameter inverse problems has become very popular,
even though it was already introduced in 1984 [80]. The major interest in this area of study
is in geophysics [66, 72, 90, 30], where the reconstruction of the two parameters density
and bulk-modulus is crucial in oil and gas exploration.

The multi-parameter inverse Helmholtz has two further major challenges. The first
one is the “cross-talk” between parameters: optimizing on several parameters appearing
in the same equation can create an undesirable side-effect, so-called “cross-talk”, i.e. the
parameters create artifacts in each other [66]. The gradients of the parameters are coupled,
meaning that each parameter appears and affects the gradient in the direction of the other
parameter [67]. Even if a parameter reached the true solution and thus its gradient was
zero, a perturbation in the other parameter may cause a non-zero gradient in the direction
of the first parameter. The second problem is related to the ill-posedness, which is more
extreme than in the one-parameter inverse problem. The two challenges mentioned above
lead to a very difficult inverse problem. In this thesis, we illustrate the “cross-talk” and
the coupled gradients and use the AEI to tackle the ill-posedness and reduce non-physical
side-effects.
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1.6 Thesis Outline

This thesis is organized in three parts. In Part I, we introduce optimization techniques
and issues regarding the inverse scattering problem. In Chapter 2, we first introduce
the Helmholtz equation and its discretization with Finite Element (FE) [49, 9] and Fi-
nite Difference (FD) [78] methods. Afterwards, we give the formulation for the full-space
and reduced-space approaches for the inverse problem and present the Newton method
and some quasi-Newton methods for their solution. We illustrate how solving the prob-
lem using standard optimization techniques usually leads to non-reasonable solutions and
we thus present relevant optimization-techniques, such as inexact truncated Newton-like
methods, safeguards and frequency-stepping. In Chapter 3, we illustrate the ill-posedness
of the problem and propose some tools to reduce the instability of the problem. We imple-
ment Tikhonov penalty functionals and show some numerical examples illustrating their
improvement over the solutions.

In Part II, we introduce the AE basis as a regularization technique. In Chapter 4, we
describe our AEI approach, which combines state-of-the-art techniques from large-scale
nonlinear optimization, such as inexact truncated Newton-like methods and frequency
stepping [14, 6, 59], with an adaptive eigenspace representation of the parameter u for
regularization. Next, in Chapter 5, we present both analytical and numerical evidence
which underpins the remarkable accuracy of our particular choice of basis functions. In
particular, we show how adapting the dimension of the eigenspace basis effectively builds
regularization into the inversion. We subject our AEI method in Chapter 6 to a series
of numerical tests that demonstrate not only its accuracy and robustness with respect to
missing or noisy data, but also its versatility by combining it with a sample averaging
approximation [38]. In Chapter 7, we solve the AEI with a single frequency and for limited
frequency data. We show the ability of the AE to deal with missing data and to regularize
the problem even starting with an high frequency. In Chapter 8, we introduce some other
AE bases, which result from eigenspaces of gradients of typical penalty-terms. We show
how to use the new bases in order to solve a seismic profile which is based on the Marmousi-
profile [48, 77, 92, 39].

In Part III, we introduce the multiparameter inverse Helmholtz problem. We illustrate
the main difficulties in solving it: the coupled gradients [67], the ill-posedness and the
cross-talk between parameters [72, 90]. Next, we show some numerical results, applying
the AE bases to each parameter separately and comparing the results to a nodal basis quasi-
Newton method. The numerical results demonstrate the ability of the AEI to build different
regularization for each parameter and reduce the cross-talk between the parameters.
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1.7 Main Contributions

The main contributions of this thesis are as follows:

1. We extend the AE approach to the inverse Helmholtz problem and combine it with
state-of-the-art techniques from large-scale nonlinear optimization, such as inexact
truncated Newton-like methods. We deal with information from different frequencies
by applying a frequency continuation strategy and adapting the dimension of the
basis with respect to the frequency.

2. We show how truncating the adaptive eigenspace (AE) basis at a small and slowly
increasing finite number of eigenfunctions effectively introduces regularization into
the inversion and thus avoids the need for standard Tikhonov-type regularization.

3. We establish the relationship between standard Tikhonov penalty functionals and
the elliptic partial differential equation satisfied by the AE basis functions. This
new understanding of the AE basis enables us to consider other AE bases which are
derived from different regularization functionals.

4. Our AEI method may be used for other ill-posed problems, where the frequency
continuation strategy is unavailable. In this thesis, we show how to deal with a
single frequency and how to choose the basis for even more complex problems, such
as multi-parameter inverse scattering problems.
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Chapter 2

Inverse Scattering in the Frequency
Domain

We consider a time-harmonic problem in unbounded space with applications for example
in seismic or medical imaging. We use the frequency counterpart of the wave equation
through the Fourier transform, which yield the Helmholtz equation. We would like to
discover what is inside a medium using acoustic waves. To do so, we formulate the inverse
medium problem as PDE-constrained optimization problem.

2.1 Forward Problem

We formulate the inverse medium problem as PDE-constrained optimization problem,
where the wave field solves the time independent Helmholtz equation. To solve the in-
verse problem we need to solve several times the forward problem. The model problem for
time dependent acoustic waves is given by (1.1). Using the ansatz of (1.4) in (1.1) leads
to the Helmholtz equation, as in (1.5). For the sake of simplicity, we now drop the hat
notation from the Fourier transform:

− ω2y(x)−∇ ·
(
c2(x)∇y(x)

)
= f(x) . (2.1)

Here, c > 0 represents the medium velocity, f the source function, y the pressure variation,
i.e. the wave field, and ω the time frequency. In the following, we will also denote by u the
squared medium velocity, u = c2.

For numerical simulations on unbounded domains, the infinite exterior must be trun-
cated by an artificial boundary. Then, special boundary conditions are implemented to
mimic the unbounded exterior. Two well-known approaches are Perfect Matched Layers
[34, 8, 76] and absorbing boundary conditions [26, 7]. Here, we opt for the Sommerfeld

23
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boundary condition, which is among the second kind.
−ω2y − ∇ · (c2∇y) = f, in Ω,

∂y

∂n
− iky = 0, on Γ = ∂Ω,

(2.2)

where k(x) =
ω

c(x)
is the wavenumber at time frequency ω.

Equation (2.2) can be discretized by different kinds of methods, such as Finite Volumes,
Finite Differences, Finite Elements, Spectral Elements and so forth. The discretization of
the continuous problem yields a problem with a finite number of unknowns, which can be
solved on a computer. In this thesis we concentrate on Finite Element (FE) and Finite
Difference (FD) methods. In either discretization method, for a given c(x), we get a linear
system for the forward problem A(c2) y = f , which corresponds to the Helmholtz problem.

2.1.1 Finite Element Discretization

The Finite Element discretization uses an equivalent variational formulation of the problem.
In the FE method, we divide the domain into smaller simpler finite parts which are called
finite elements. In 2D, one usually uses squares or triangles, see Fig. 2.1. We then discretize
the variational formulation of the problem on a finite dimensional subspace of piecewise
polynomial functions. The resulting finite-dimensional problem can be represented in a
large linear system. The FE method is very flexible and efficient for complicated geometries
and for mesh adaptation [49].

Figure 2.1: A Finite Element triangular mesh for a kite-shaped domain.

To obtain the semi-discrete problem of (2.2), we start from its weak formulation. Mul-
tiplying (2.2) with the complex conjugate v̄ of a test function v ∈ H1(Ω), integrating over
Ω and using integration by parts, we find the following variational formulation:

Find u ∈ H1(Ω) such that

a(y, v)− ω2(y, v)L2 − iω b(y, v) = (f, v)L2 (2.3)
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for all v ∈ H1(Ω), where (·, ·)L2 denotes the L2(Ω) hermitian product, the sesquilinear form
a(·, ·) is given by

a(y, v) =

∫
Ω

c2(x)∇y(x)∇v̄(x)dx .

and the sesquilinear form b(·, ·) is given by

b(y, v) =

∫
Γ

c(x)y(x)v̄(x)dx .

The weak problem (2.3) has a unique solution [57, 29]. Let Vh ⊂ H1(Ω) be a finite
dimensional subspace of piecewise polynomial functions of degree p. Restricting (2.3) to
Vh leads to the semi-discrete Galerkin formulation of (2.2): Find yh ∈ Vh such that

a(yh, v)− ω2(yh, v)L2 − iω b(yh, v) = (f, v)L2 (2.4)

for all v ∈ Vh. Let now {ϕi}Ni=1 denote a nodal Lagrangian basis of Vh. For yh =
N∑
j=1

Yjϕj

the semi-discrete formulation (2.4) is equivalent to

N∑
j=1

Yja(ϕj, ϕi)− ω2

N∑
j=1

Yj(ϕj, ϕi)L2 − iω
N∑
j=1

Yjb(ϕj, ϕi) = (f, ϕi)L2

for all i = 1, . . . , N .
We finally get to the following system

KY − ω2M Y − iωBY = R, (2.5)

where the vector R ∈ RN×1 and the matrices M ∈ RN×N , K ∈ RN×N and B ∈ RN×N are
given by

Ri = (f, ϕi) , Mi,j = (ϕj, ϕi) , Ki,j = a(ϕj, ϕi) , Bi,j = b(ϕj, ϕi) , (2.6)

for i, j = 1, . . . , N . The matrix M is sparse, symmetric and positive definite, the matrix
K is sparse, symmetric and positive semi-definite and the matrix B is sparse, symmetric
and has low rank.

2.1.2 Finite Differences Discretization

Another method which is used for the discretization of partial differential equations is the
Finite Differences method (FD). In the FD method, derivatives in the partial differential
equations are approximated using linear combinations of function values at grid points.
The discretization with the FD method is less flexible for complicated geometries and
mesh-adaptation in comparison with the FE method, but the discretization of the problem
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(2.2) can be very efficiently computed, which reduces remarkably the computational time
of the program. For the FD formulation, we use the strong formulation of the problem.

For simplicity, we separate the real and imaginary parts of the solution y and the source
f and write them as

y = yr + iyi , f = f r + if i .

We compute the finite differences for both parts of y and obtain two real valued systems
instead of one complex-valued system. For example in the 2D case, the real part yr of y
satisfies

−
(
c2
i+ 1

2
,j

yri+1,j − yri,j
h

)
x1

−
(
c2
i,j+ 1

2

yri,j+1 − yri,j
h

)
x2

− ω2yri,j = f ri,j , (2.7)

where
yri+1,j−yri,j

h
is the second order approximation of the derivative of yr w.r.t. x1 at xi+ 1

2
,j

and
yri,j+1−yri,j

h
is the second order approximation of the derivative of yr w.r.t. x2 at the grid

point xi,j+ 1
2
, see Fig 2.2. We continue with the discretization for the second derivative and

get:

−
(
c2
i+ 1

2
,j

yri+1,j − yri,j
h2

− c2
i− 1

2
,j

yri,j − yri−1,j

h2

)
−
(
c2
i,j+ 1

2

yri,j+1 − yri,j
h2

− c2
i,j− 1

2

yri,j − yri,j−1

h2

)
− ω2yri,j = f ri,j

(2.8)

or

− 1

h2

[
c2
i+ 1

2
,j
yri+1,j + c2

i− 1
2
,j
yri−1,j + c2

i,j+ 1
2
yri,j+1 + c2

i,j− 1
2
yri,j−1

]
+

1

h2

[
c2
i+ 1

2
,j

+ c2
i− 1

2
,j

+ c2
i,j+ 1

2
+ c2

i,j− 1
2

]
yri,j − ω2yri,j = f ri,j .

(2.9)

For the imaginary part yi the system is similar. Note that y and u are discretized on
different grid points. This kind of grid is called staggered grid and is illustrated in Fig. 2.2.
We notice that on Ω\Γ the systems for yi and yr are not coupled.

For the Sommerfeld boundary conditions we use again second order FD. The boundary
condition reads

∂y

∂n
− iky = 0, on Γ , (2.10)

and is discretized on the upper boundary of Γ by

yN+1,j − yN,j
h

− i
ω

cN+ 1
2
,j

yN,j = 0, on Γ . (2.11)

We separate y in its imaginary and real parts on the boundary as well and get
yrN+1,j = yrN,j −

ω h

cN+ 1
2
,j

yiN,j, on Γ ,

yiN+1,j = yiN,j +
ω h

cN+ 1
2
,j

yrN,j, on Γ .
(2.12)

All computations on the other boundaries are analogue.
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2

Figure 2.2: Staggered grid used in the FD method.

We assume that the velocity c(x) on the boundary is given and hence, the parameter
cN+ 1

2
,j is known. On Γ the system (2.12) is coupled and the real part of y is dependent on

its imaginary part and vice versa. Hence, the discretized forward problem cannot be solved
for yi and yr independently. In order to simulate the Sommerfeld boundary conditions, we
apply (2.12) in (2.9) for all boundary points of the FD mesh discretization.

2.2 Inverse Problem

Now, we would like to reconstruct the medium using acoustic waves. Therefore, we perform
Ns illuminations of the medium inside Ω with source term f = f`, ` = 1, . . . , Ns, and
denote by y` the corresponding solutions of (2.2). Given the measurements yobs` on Γ, or
part of it, we seek to reconstruct the unknown squared wave speed u = c2 inside Ω such
that every solution y` of (2.2) with f = f` coincides at Γ with the measurements yobs` ,
` = 1, . . . , Ns. In doing so, we assume that the wave speed c is known on the boundary Γ.
To solve the inverse medium problem, we formulate it as a PDE-constrained optimization
problem:

For F(u, y) =
1

2

Ns∑
`=1

∥∥Py` − yobs` ∥∥2

L2 , (2.13)

minimize F(u, y) , u ∈ S , y` ∈ V

such that y`(u) satisfies (2.2) for f = f`, ` = 1, ..., Ns.
(2.14)

The minimization problem above is strongly non-convex and severely ill-posed. To
tackle this issue, a regularization term R(u) is typically added and multiplied by a scalar
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α ∈ R. This method of adding an extra term to an ill-posed problem is called Tikhonov
regularization [88] and will be further discussed in Chapter 3. We then solve the inverse
problem (2.14) for

F(u, y) =
1

2

Ns∑
`=1

∥∥Py` − yobs` ∥∥2

L2 + αR(u) . (2.15)

Given measurements yobs` , ` = 1, . . . , Ns, different methods from PDE-constrained opti-
mization can be used to retrieve u by minimizing the misfit, stated either in the full-space
or in the reduced-space approach [32, 35].

2.2.1 Full-Space Approach

In the full-space approach all parameters are optimized in parallel. We consider the full-
space optimization problem

minimize F(u, y) , u ∈ S , y` ∈ V

such that y` satisfies (2.2) for f = f`, ` = 1, ..., Ns ,
(2.16)

with the Lagrangian L of the optimization problem (2.16)

L(u, y, λ) =
1

2

Ns∑
`=1

∥∥Py` − yobs` ∥∥2

L2 +
Ns∑
`=1

λT` (A(u)y` − f`) + αR(u) , (2.17)

where we recall that A(u) is the operator of the forward Helmholtz problem (2.2).

To optimize (2.16), the first derivatives of (2.17) must vanish. From the Karush-Kuhn-
Tucker conditions (KKT), we seek y`, u and λ`, ` = 1, , . . . , Ns such that

Ly` = P T (Py` − yobs` ) + AT (u)λ` = 0 ,

Lu = αRu +
∑Ns

`=1 G
T
` λ` = 0 ,

Lλ` = A(u)y` − f` = 0 ,

(2.18)

with

G` =
∂(A(u)y`)

∂u
and Ru =

∂R(u)

∂u
. (2.19)

Newton’s method yields the search direction of the optimization using the Hessian of the
Lagrangian L (2.17). For this purpose we introduce also the terms:

Ruu =
∂2R(u)

∂u2
, W` =

∂(AT (u)λ`)

∂u
, Q =

Ns∑
`=1

∂(GT
` λ`)

∂u
, ` = 1, , . . . , Ns.
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We now find the search directions δy = (δy1, . . . , δyNs), δu, δλ = (δλ1, . . . , δλNs) of the
optimization by solving the linear system:

P̃ W̃ ÃT

W̃ T αRuu +Q G̃T

Ã G̃ 0


 δy

δu

δλ

 = −

 LyLu
Lλ

 , (2.20)

where P̃ , Ã are the block-diagonal matrices with Ns blocks of the matrix P TP and the
matrix A respectively

P̃ =


P TP

P TP
. . .

P TP

 , Ã =


A(u)

A(u)
. . .

A(u)

 ,

the matrices W̃ and G̃ are given by

W̃ =


W1

W2
...

WNs

 , G̃ =


G1

G2
...

GNs


and the vectors Ly =

[
Ly1 ,Ly2 , . . . , LyNs

]T
, Lλ =

[
Lλ1 ,Lλ2 , . . . , LλNs

]T
.

The full-space approach optimizes a vast number of control variables, which can reach
several millions. Hence the search space is very large and solving (2.20) usually requires
efficient direct solvers. An attractive compromise is the reduced space approach, which
reduces the search space of the optimization to the medium variable u only by eliminating
y`, λ` [45].

2.2.2 Reduced-Space Approach

Following [35, 47], we reduce the search space by using the reduced-space approach. This
approach takes advantage of the dependence of the adjoint and state variables on the control
variable u. The state variable y` can be expressed as a function of u in the following way

y` = A(u)−1f` . (2.21)

Here again, A(u) is the operator of the forward Helmholtz problem (2.2). By the elimina-
tion of y` the optimization problem for the reduced space approach reads

minimize F r(u), u ∈ S , where (2.22)
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F r(u) =
1

2

Ns∑
`=1

∥∥PA(u)−1f` − yobs`
∥∥2

L2 + αR(u) (2.23)

without any additional constraint. To solve (2.22), we now need to compute the gradient
of F r and its Hessian. The corresponding gradient reads

∇uF r(u) =
Ns∑
`=1

(
∂y`(u)

∂u

)T
P T
(
PA(u)−1f` − yobs`

)
+ αRu. (2.24)

Using the chain rule we get

0 =
∂f`
∂u

=
∂(A(u)y`(u))

∂u
=
∂(A(u)y`)

∂u
+
∂(A(u)y`)

∂y`

∂y`
∂u

= G` + A(u)
∂y`
∂u

, (2.25)

where G` is as defined in (2.19). This yields(
∂y`(u)

∂u

)T
= −GT

` A(u)−T , ` = 1, . . . , Ns . (2.26)

We denote then by λ` the following term

λ` = A(u)−TP T
(
PA(u)−1f` − yobs`

)
, ` = 1, . . . , Ns , (2.27)

which appears in the computation of the gradient (2.24). The equations (2.21) and (2.27)
are compatible with the full-space approach and satisfy the third and first equations of
(2.18) for state and adjoint variables respectively.

From the Hessian in (2.20), we can derive the reduced-space Hessian and find an equa-
tion for the search direction δu. By considering the third row of (2.20), we get

δy` = −A(u)−1(Lλ` +G`δu) , ` = 1, . . . , Ns (2.28)

and the first row of (2.20), using (2.28), yields for ` = 1, . . . , Ns

δλ` = (A(u)−TP TPA(u)−1G` − A(u)−TW`)δu+ A(u)−TP TPA(u)−1Lλ` − A(u)−TLy` .
(2.29)

Finally by using the second row of (2.20) and (2.29), we get a linear system for the reduced
search direction δu(

αRuu +Q+
Ns∑
`=1

JT` J` −W T
` A(u)−1G` −GT

` A(u)−TW`

)
δu =

−αRu −
Ns∑
`=1

JT` (PA(u)−1f` − yobs` ) ,

(2.30)

where the Jacobian J` is given by J` = −PA(u)−1G` and y` = A(u)−1f` for ` = 1, . . . , Ns.
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In this thesis we shall consider only the reduced space approach and hence for simplicity,
we denote from now on F = F r as the reduced space objective function (2.23).

The solution of the Hessian involves solving a large number of linear systems. To re-
duce the computational cost but still get useful results, we consider quasi-Newton methods.
They are based on the Newton method, but do not require the Hessian, only an approxi-
mation of it. The approximations of the Hessian in the quasi-Newton methods are cheaper
than the full Hessian needed for Newton’s method. In the following, some quasi-Newton
methods are presented.

The Gauss-Newton Method

The Gauss-Newton (G-N) method is a quasi-Newton method, which keeps the first deriva-
tives appearing in the Hessian, but ignores the second derivative terms. In many situations
the G-N approximation is very close to the full Hessian and thus holds a similar convergence
rate as the Newton method [65].

Here we describe the G-N method for the optimization problem (2.22). Actually, if we
aim for the G-N approximation in the reduced-space approach, the second-order part of
(2.30) can be neglected: instead of solving (2.30), in the G-N method we write

Ns∑
`=1

JT` J` δu = −
Ns∑
`=1

JT` r` , (2.31)

with the Jacobian J` defined by J` = −PA(u)−1G` and the residual r` = (PA(u)−1f`−yobs` ),
` = 1, . . . , Ns. The Hessian can be approximated by JT` J` in (2.30), together with the
regularization term. Hence we solve the linear system(

αRuu +
Ns∑
`=1

GT
` A(u)−TP TPA(u)−1G`

)
δu = −αRu−

Ns∑
`=1

JT` (PA(u)−1f`−yobs` ) . (2.32)

Note that we do not approximate the Hessian of the regularization, which appears in (2.30),
because it is cheap to compute.

Equation (2.32) involves the solution of fewer linear systems than in (2.30), and hence
is interesting in terms of computational cost. In [65], the advantages of the Gauss-Newton
method are discussed:

1. This approximation saves the computational effort by neglecting the second-order
part of (2.30) and thus, per iteration step, less linear systems need to be solved. In
the inverse Helmholtz problem, the use of the Gauss-Newton approximation can save
hundreds to several millions of linear system computations.

2. In many situations, especially close to the solution, the approximation JT` J` is a very
good approximation of the Hessian and so the Gauss-Newton method holds a similar
convergence rate as the full-Newton method.
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3. For a non-zero ∇uF and whenever the matrices J` have full rank, the search direction
δu provided by the G-N method, given by (2.31), is a descent direction and fulfills:

δuT ∇uF = δuT

(
Ns∑
`=1

JT` r`

)
= δuT

(
−

Ns∑
`=1

JT` J` δu

)

=−
Ns∑
`=1

δuTJT` J` δu = −
Ns∑
`=1

‖J`δu‖2 ≤ 0 .

Actually, the inequlity is strict, otherwise J`δu = 0 for ` = 1, . . . , Ns and since we
assumed that the matrices J` have a full rank, we get JT` J` δu = 0 for ` = 1, . . . , Ns

and hence ∇uF = 0.

4. Global convergence can be proved under some assumptions:

Assuming that there is a constant a > 0 such that

‖J`(u)z‖ ≥ a‖z‖ (2.33)

and for all u in a neighborhood N of the level set

U = {u | F(u) ≤ F(u0)} , (2.34)

where u0 is the starting value for the algorithm and U is bounded, the following
Theorem holds.

Theorem 2.2.1. Let k denote the iteration number. Suppose each residual function
r`,k is Lipschitz continuously differentiable in a neighborhood N of a bounded set
(2.34), and that the Jacbobians J`,k(u) satisfy the uniform full-rank condition (2.33)
on N . Then if the uk are generated by the Gauss-Newton method with the Wolfe line
search, we have

lim
k→∞

JT`,kr`,k = 0 .

Theorem 2.2.1 and its proof can be found in [65].

The BFGS Method

Another very popular quasi-Newton method is the Broyden-Fletcher-Goldfarb-Shanno
(BFGS) method. The BFGS method is a quasi-Newton method as it avoids the com-
putation of the Hessian. It computes iteratively low-rank approximations of the Hessian
at a low computational cost.

The idea of this method is based on the fact that

∇f(xk + sk) = ∇f(xk) +∇2f(xk)sk +O(‖sk‖2) , for ‖sk‖ → 0.
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If we choose

sk = xk+1 − xk and gk = ∇f(xk+1)−∇f(xk) (2.35)

it holds

∇2f(xk) sk = gk +O(‖sk‖2) .

Let Bk be the approximation of the Hessian ∇2f(xk). We search for Bk+1 the approxima-
tion of ∇2f(xk+1), such that the following equation holds

Bk+1 sk = gk .

To reduce the cost in computing Bk+1, we search for

Bk+1 = Bk + Uk ,

where Uk is a low rank matrix. Effectively we update Bk+1 iteratively through the following
formula

Bk+1 = Bk −
Bk sks

T
k Bk

sTk Bk sk
+
gkg

T
k

gTk sk
,

with an initial approximation of the Hessian B0. For the full derivation of the BFGS
method and the choice of Bk+1 we refer to [65].

The BFGS method has two key advantages. The first one is its convergence: if we
use the Wolfe line search conditions and under some assumptions on f , we get a super-
linear convergence. The second advantage is the computational cost: each iteration can be
performed at a cost of O(N2

u) operations [65].

In the inverse Helmholtz problem, we have to take into account that the cost of the
evaluations of the gradient ∇uF(uk) is added to the total cost of the BFGS method. Each
evaluation of a gradient involves the solution of Ns linear systems. Those computations
appear not only in the BFGS algorithm, but also in the Wolfe line search conditions,
which are essential for the success of the method. Another disadvantage of the method is
its large memory requirement. If only limited memory is available, we instead turn to the
limited-memory BFGS presented in the next subsection.

Limited-Memory BFGS

A variation of the BFGS method, which is very common for large scale problems, is the
Limited-Memory BFGS (L-BFGS). To save storage, the method uses only partial infor-
mation of the BFGS method, i.e. the newest which is likely more relevant, instead of the
complete one. At iteration k, the method approximates the inverse Hessian using the
j � Nu previous steps {sk, sk−1, . . . , sk−j} and gradient differences {gk, gk−1, . . . , gk−j}
given in (2.35). For inverse problems using L-BFGS method, it is common to choose
B0 = Ruu. Here, as in the BFGS method, the Wolfe conditions are used for the line search
[64].
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In this thesis there will be no need to use this method because we will use a special
basis which requires little memory as described in Chapter 4. Note that for a nodal basis
discretization, such as FE, FD and others, this method is very popular, see for example
[3, 59, 60].

2.3 Inexact Newton Methods for Inverse Helmholtz

Problems

We now introduce our model-problem and consider the profile u(x1, x2) shown in Fig. 2.3.
The profile u mimics a layered material with regions of different wave speed.

Figure 2.3: Exact profile u: two-dimensional view (left) and three-dimensional view (right).

We would like to reconstruct u using, naively, the standard optimization tools as de-
scribed in Section 2.2. For this reconstruction, we use the following settings: nine equis-
paced Gaussian sources are located along the upper boundary at (0.1, 0.8), . . . , (0.9, 0.8),
whereas the receivers are located on the four lateral boundaries of Ω = (0, 1)× (0, 1). We
use second-order finite differences on a 200× 200 mesh for the discretization of (2.2) and
optimize at a single frequency ω = 8. In each optimization step, we compute δu using
the reduced space Gauss-Newton (G-N) approximation for the Hessian, which is given in
(2.31). In Fig. 2.4 we present the numerical result for the G-N reconstruction. Although
the minimization problem reaches a minimum, F(u) = 1.45 · 10−9, the reconstruction is
poor and has a relative L2-error of more than two million percent. To get a more appro-
priate solution, the optimization needs to be stabilized. For this purpose we apply in the
following several relevant strategies.

In the inverse Helmholtz problem, computing the Hessian, or approximating it, can be
very inefficient or even impossible in terms of computational costs. In addition, as shown
in Fig. 2.4, the use of the exact Hessian or its G-N approximation can lead to an unstable
optimization. To overcome these difficulties, we turn to inexact Newton or quasi-Newton
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Figure 2.4: Ill-posedness of the inverse problem. Reconstruction of the profile described in
Fig. 2.3 without regularization with a relative L2-error of more than two million percent.
Two dimensional view (left) and three dimensional view (right).

methods. The robustness of inexact Newton or quasi-Newton methods depends on their
forcing term whose choice is critical for the optimization. In this section, we shall explain
what a forcing term is, what is its importance and how to choose it. In addition we will
show why the Hessian cannot be stored and how to overcome this problem.

We focus on the reduced-space approach and we wish to optimize (2.23) efficiently using
Newton or quasi-Newton methods. Therefore, we have to solve at each iteration

Hδu = −∇uF(u) , (2.36)

where H represents the Hessian or the quasi-Newton approximation of it, δu the search
direction and ∇uF(u) the reduced space gradient from (2.24). In the inverse Helmholtz
problem, computing the exact Hessian or its G-N approximation may be very costly and
involves solutions of a large number of linear systems, which is in many cases impossible.
For example, if we compute the G-N Hessian’s approximation, given Ns sources we need
to compute the term

A−1G` for ` = 1, . . . , Ns , (2.37)

which appears in both (2.30) and (2.32), with A ∈ RNy×Ny the discretization of (2.2),
G` ∈ RNy×Nu from (2.19), Ny and Nu are the degrees of freedom of the state variable y
and the parameter u respectively. To solve (2.37) we need to solve Nu linear systems for
each source ` = 1, . . . , Ns. This involves solutions of a large number of linear systems of
size Ny ×Ny per optimization step

O(Nu ·Ns) . (2.38)

The term in (2.37) is just one of the terms we need to compute in (2.30) or in (2.32).
Actually, even if Nu and Ns are not large, we need to compute several millions of linear
systems per optimization step. For example, in the previous experiment we needed to
compute 1, 447, 200 linear systems of size 400× 400 per optimization step.
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Hence, we turn to inexact Newton methods. We use the ability of Krylov-methods to
solve a linear system without needing to store the matrix explicitly; for a given vector p,
we only need to compute the product Hp. We consider now the G-N approximation of the
Hessian H (2.32). Its multiplication with a vector p, yields(

GT
` A
−TP TPA−1G` + αRuu

)
p. (2.39)

Since the multiplication G` p is a matrix-vector multiplication, it yields a vector. Hence,
the cost of solving A−1 (G` p) is actually solving a single linear system per source. The
second linear system which we solve is A−T

(
P TPA−1G` p

)
. Here, P TPA−1G` p is a vector

as well. Hence, using the G-N approximation, this involves solving of two linear systems per
source. A similar computation can be done for the full Hessian (2.20), where three linear
systems per source need to be solved. Algorithms which avoid the explicit computation of
a matrix are also denoted in the literature as matrix-free algorithms.

In the matrix-free inverse Helmholtz problem, we use the truncated Newton or truncated
quasi-Newton method, which is an inexact Newton method. The term “truncated” comes
from the fact that we solve the linear system (2.36) inexactly using conjugate-gradient
(CG) method and stop the inner iterations of the CG method before the exact solution for
δu is found.

Performing a large number of CG iterations may be expensive and result in a solution
which is close to the exact solution of the (quasi-)Newton method, but does not correspond
to the expected solution, see Fig. 2.4. On the other hand, performing a very small number
of iterations may yield inefficient search direction. Hence, we shall decide how many CG
iterations we should perform in order to get an efficient and inexpensive search direction
δu. To do so, we need to find a criterion which stops the CG iterations when a sufficient
δu is found. Such a criterion is called a stopping criterion. Note that we do not try to
reach the convergence of the CG method in order to compute δu exactly, but convergence
according to this criterion, as will be explained in the following.

Next, we choose the stopping criterion which is the most suitable for our inverse
Helmholtz problem and leads to a robust and efficient solution. We turn to the Eisenstat-
Walker stopping criteria [22] and its safeguards [22, 63], to find a suitable stopping criterion
for the inner CG iterations. The robustness of the inexact Newton or inexact quasi-Newton
methods depends on the chosen stopping criterion, and is essential for the success of the
optimization process.

A truncated Newton method is, according to [63], effective if

1. a small number of inner iterations is sufficient to produce a “good” step,

2. each inner iteration can be performed efficiently,

3. safeguards are implemented to guarantee convergence.

Now, we go through all previous conditions and show that our algorithm satisfies all three
of them:
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1. To optimize (2.23), we opt for a quasi-Newton method and use a standard truncated
G-N method. We solve (2.36) inexactly using the CG method and take advantage of
the ability of the CG method to solve the linear system without storing the matrix
H. This allows efficient inner iterations. Combining the CG method together with
the Walker-Eisenstat stopping criteria for inexact Newton methods [22] ensures a
sufficient step at a low cost. In [22], the linear inner iterations are stopped when

‖H(u)p+∇uF(u)‖ ≤ ηk‖∇uF(u)‖ , (2.40)

where ηk, with k the iteration number, is called the forcing term and refers to one of
the following choices

η
(1)
k =

‖∇uF(uk)−∇uF(uk−1)− αk−1H(uk−1)p‖
‖∇uF(uk−1)‖

,

η
(2)
k =

‖∇uF(uk)‖ − ‖∇uF(uk−1) + αk−1H(uk−1)p‖
‖∇uF(uk−1)‖

,

η
(3)
k = γ1

(
‖∇uF(uk)‖
‖∇uF(uk−1)‖

)γ2
, γ1 ∈ [0, 1) and γ2 ∈ (1, 2] .

(2.41)

For k = 0 and for each forcing term, we pick η
(i)
0 ∈ [0, 1], for i = 1, 2, 3. In this

thesis, we choose experimentally η
(i)
0 = 0.7 for all three choices in (2.41). The first

two forcing terms are related to the approximation of the gradient

∇uF(uk) ' ∇uF(uk−1) + αk−1∇uuF(uk−1)p ,

where αk−1 ∈ [0, 1] is the line-search step in the previous iteration. Therefore η
(1)
k and

η
(2)
k are getting smaller when the approximation of the gradient is getting better. In

(2.40), the smaller ηk, the more inner iterations are needed, in particular, when the
optimization is close to the expected minimum. We observe the same phenomenon
for η

(3)
k : the smaller the gradient, the smaller η

(3)
k and the more CG iterations must be

performed [59]. However, this third forcing term requires the adjustment of parame-
ters γ1 and γ2. A poor choice of the last two parameters can lead to an unsatisfactory
stopping criterion and affect the robustness of the method, thus, we prefer to work
with η

(1)
k or η

(2)
k .

In [59], the forcing terms are tested for the FWI problem. There, they conclude that

the forcing term η
(1)
k is the most suitable one to the FWI problem, especially for the

truncated Newton method. Numerical experiments with each forcing term in (2.41)
suggested that all three are suitable for the truncated G-N. We choose to use the
first term η

(1)
k or second one η

(2)
k , which prove to give good results and do not have

the inconvenience of the two extra parameters like in η
(3)
k .
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Theorem 2.3.1. Let F(u) : RNu → R be the objective functional with a gradient
∇uF(u), which is continuously differentiable in a neighborhood of u? and for which
∇uF(u?) = 0. Let the Hessian H(u?) be nonsingular, Lipschitz continuous at u?. If

u0 is sufficiently near u?, then {uk} with {ηk} given by η
(1)
k or η

(2)
k in (2.41) converges

to u? at least superlinear.

Theorem 2.3.1 and its proof can be found in [65]. Note that for η
(3)
k given in (2.41),

the convergence rate depends on the choice of γ1 and γ2.

2. Using the Krylov-methods, for example CG method, the linear system (2.36) can be
solved without storing the matrix explicitly. We showed for the G-N approximation
of the Hessian, using (2.39), that it involves solving two linear systems per source
times number of CG iterations. Similarly, using the full Hessian (2.30), we need to
solve three linear systems per source times number of CG iterations. In practice, the
extra linear system added in the case of the full-Hessian (2.20) might be expensive
in terms of computational costs (it may reach several thousands of linear systems).
Hence, we use the G-N approximation of the Hessian to solve less linear systems
and to speed up our optimization. In [59], it is concluded that the Gauss-Newton
method with the Eisenstat-Walker stopping criteria gives the best results in terms of
cost-performance ratio.

3a. To prevent the forcing terms from being too small or being larger than one, we im-
plement safeguards to modify η

(i)
k for i = 1, 2, 3 described in (2.41) as recommended

in [22, 63].

For the first two choices, η
(1)
k and η

(2)
k in (2.41), the following modifications will be

applied
η

(i)
k = η

(i)
0 if η

(i)
k > 1 for i = 1, 2 ,

η
(i)
k = max

(
η

(i)
k ,
(
η

(i)
k−1

)(1+
√

5)/2
)

if
(
η

(i)
k−1

)(1+
√

5)/2

> 0.1 for i = 1, 2 .

(2.42)

For the third choice η = η
(3)
k , since its condition in (2.41) is based only on the gradient

values of F , we implement another safeguard. The modification of η
(3)
k reads:η

(3)
k = η

(3)
0 if η

(3)
k > 1

η
(3)
k = max

(
η

(3)
k , γ1

(
η

(3)
k−1

)γ2)
if γ1

(
η

(3)
k−1

)γ2
> 0.1 ,

(2.43)

for γ1 and γ2 as in (2.41).

3b. At higher frequencies, waves detect and carry more detailed information about the
scatterer [14]. Yet the number of local minima of the full or reduced-space objective
functions in (2.16) or (2.23) may also increase. To minimize the risk of converging
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to a (false) local minimum, we apply frequency continuation strategy [14, 6, 71]. For
the lowest frequency we solve the inverse problem, then increase the frequency, solve
again, and so on, initializing each optimization process at each new frequency from
the previous optimal u at the lower frequency and obtain improving solutions for the
optimization problem. This strategy is also denoted in the literature as frequency
stepping.

2.4 Inexact (Quasi)-Newton Algorithm

We summarize the information above in the following algorithm.

Inexact (Quasi-)Newton Algorithm.
Input: initial guess u0 = 1, Output: u∗.

1. For ω = ω1, . . . , ωn

(a) Compute F(u0), ∇uF(u0)

(b) set η0 = 0.7

(c) for k = 0, 1, 2 . . . UNTIL ‖∇uF(uk)‖ ≤ tol

i. Solve Hδuk = −∇uF(uk) using CG UNTIL

‖Hδuk +∇uF(uk)‖ ≤ ηk‖∇uF(uk)‖
ii. Find step αk s.t. uk+1 := uk + αkpk

iii. Update F(uk+1), ∇uF(uk+1)

iv. compute ηk+1 using (2.41)

v. apply safeguards on ηk+1 using (2.42) or (2.43)

(d) u0 = uk+1

2. u∗ = uk+1

Remarks:

• Step 1(c)i is computed without storing the matrix H explicitly (matrix-free).

• In step 1(c)ii we can use the Armijo line-search method (Newton, Gauss-Newton
methods) or the Wolfe conditions (BFGS).

• In step 1(c)iv we use η
(1)
k or η

(2)
k , but it is also possible to use η

(3)
k and get very

good results. The values of γ1 and γ2 then need to be chosen carefully. For inverse
Helmholtz problems, we recommend the values of γ1 = 0.9 and γ2 = 1.1. In addition,
if we choose to use η

(3)
k , we need to use in step 1(c)v the safeguards described in

(2.43).
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2.5 Regularization Problems

Even when using the criteria of Eisenstat-Walker [22], their safeguards [22, 63] and fre-
quency stepping [14, 6, 71], we are still confronted with regularization problems. The
regularization problems are reflected in unwanted and non-reasonable perturbations in the
reconstruction of the medium. We repeat the simulation at the beginning of this section
and reconstruct u displayed in Fig. 2.3 at the frequencies ω = 8, 10, 20, . . . , 80, 90, using
frequency stepping. Here, we use η

(2)
k as forcing term and the corresponding safeguards

(2.42). The results are shown in Fig. 2.5. Through the criteria, the safeguards and the
frequency stepping, we get a great improvement over the solution. Still, it is not en-
tirely satisfactory, since we observe non negligible artifacts around the sources and on the
boundary where the receivers are.

Figure 2.5: Eisenstat-Walker criteria and frequency stepping. Reconstruction of the profile
described in Fig. 2.3 with relative L2-error= 24.55%. Two-dimensional view (left) and
three-dimensional view (right).

Unfortunately, the inexact Newton method and the frequency stepping are not able to
remove all artifacts of the ill-posed problem. The last example illustrates typical artifacts
and perturbations in the solution and the need for extra regularization when solving the
inverse problem. For this purpose, we show in the next chapter how to regularize the
optimization problem to prevent unreasonable solutions.



Chapter 3

Regularization of the Inverse
Problem

In Section 2.3, we introduced inexact Newton or quasi-Newton methods and used forcing
terms, safeguards and frequency stepping to enable an efficient and stable optimization.
Since the inverse problems (2.17) and (2.23) are generally ill-posed, an artificial regular-
ization term is typically added. The term regularization method refers to any method
constructing a stable approximate solution to an ill-posed problem [11]. For such large
scale of ill-posed inverse problems, several efficient methods exist. In Section 1.3, we pre-
sented some regularization methods for the FWI. In the following, we focus on an important
regularization-tool, the Tikhonov regularization [82, 31, 23]. We suggest some additional
a priori information on the control variable and add a regularization functional R(u) to
the minimization problem. The additional functional penalizes the optimization problem
in a case where the control u does not fit with the available information. For example,
if we have a priori information that the profile u is smooth, one may choose R(u) as a
functional which penalizes high derivatives in u. The Tikhonov regularization can tackle
the ill-posedness with a small computational cost and will be the regularization tool in this
chapter.

3.1 Tikhonov Regularization for Inverse Helmholtz

Problems

In this section, we consider Tikhonov regularization [82, 31, 23] and introduce some
Tikhonov regularization functionals. Tikhonov regularization is a very powerful regulariza-
tion tool, which requires only small computing cost. When a priori information about the
control variable is available, we may add to the misfit functional a regularization functional
R(u) to penalize parameters u, which do not fit with the information. The minimization

41
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problem

Find u ∈ S , s.t. u = argmin
v∈S

F(v) , (3.1)

then reads

Find u ∈ S , s.t. u = argmin
v∈S

{F(v) + αR(v)} , (3.2)

where α ∈ R≥0 is chosen to weigh the functional R(v) to the misfit functional F(v). The
choice of α is critical for the optimization (3.2): if α is too high, such that F(v)� αR(v),
the solution u of (3.2) will essentially minimize only R(v). If α is too small, such that
F(v)� αR(v) the optimization process will essentially ignore the additional information
in R(v). Hence, the parameter α must balance between the two functionals F(v) and R(v)
[84], namely

F(v) ≈ αR(v) .

It is important to keep the term αR(v) slightly smaller than F(v), because our final goal
is to minimize F(v), which needs to carry a higher weight in the optimization. Automatic
techniques for the choice of α exist. For example we can mention the L-curve criterion
[42], Morozov’s discrepancy principle [62], dynamic prior regularization parameter [4] and
more.

Tikhonov Regularization Functionals

For Tikhonov regularization, we can choose different kinds of penalty functionals R(u)
[88]. The standard Tikhonov L2-penalty functional is

RL2(u) =
1

2
‖u‖2

L2 . (3.3)

Another penalty functional is the Sobolev H1-penalty functional

R∇u(u) =
1

2

∫
Ω

d∑
i=1

(
∂u

∂xi

)2

dx , (3.4)

which penalizes strong variation in the solution. These two penalty functionals, can be
generalized [31] by

RD(u) =
1

2
‖Du‖2

L2 . (3.5)

Usually, D is a first or second space derivative operator, but other choices are possible. If
D is the identity operator, we have standard L2-Tikhonov regularization. The operator D
in the functional R(u) can give us information about the model. For example, in seismic
models, the profile is a layered material, which is represented by a non-smooth u in the
vertical direction, but smooth in the horizontal one. We can use the operator D to penalize
the derivatives only in one direction.
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Another regularization functional, for example, is the Gaussian regularization operator
[21], which is non-convex

RGauss(u) =
1

2

∫
Ω

1− exp

(
−|∇u|

2

σ2

)
dx , σ > 0 . (3.6)

Another non-convex regularization functional is the Lorentzian penalty term

RLorentz(u) =
1

2

∫
Ω

γ|∇u|2

1 + γ|∇u|2
dx , γ > 0 . (3.7)

Both penalty functionals in (3.6) and (3.7) penalize strong variation in the solution and
contain an extra parameter to allow discontinuities.

An important penalty functional is the penalized Total Variation (TV) [74, 89]. The pe-
nalized TV regularization was used originally in digital image processing, for noise removal.
The method was able to remove unwanted noise, while preserving important details. In
inverse Helmholtz problems, the penalized TV regularization is a good choice for discon-
tinuous and noisy data. Unlike the group of regularizations given by (3.5), the penalized
TV regularization uses the L1 norm and reads

RTV (u) =
1

2

∫
Ω

√
|∇u|2 + ε2 dx , ε 6= 0 . (3.8)

Note that the penalized TV-regularization functional is differentiable. This regularization
penalizes the gradient of u and allows discontinuities in the profile through the penalization
parameter ε as well.

Gradient of the Regularization Functionals

In the solution of the optimization of (3.2) through Newton-like methods, we need the
gradient of the functional R(u). We calculate ∇uR(u) through the variation of R(u):

d

dt
R(u+ tϕ)

∣∣∣
t=0

, (3.9)

where ϕ is the direction of the derivation and t ∈ R. Using (3.9) and the definition of a
gradient of an operator R, we calculate the gradients of the functionals (3.3), (3.4), (3.6),
(3.7) and (3.8):

∇uRL2(u) = u , (3.10)

∇uR∇u(u) = −∆u , (3.11)

∇uRGauss(u) = −∇ ·
(

∇u
σ2 exp (−|∇u|2/σ2)

)
, σ > 0 , (3.12)
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∇uRLorentz(u) = −∇ ·
(

γ∇u
(1 + γ|∇u|2)2

)
, γ > 0 , (3.13)

∇uRTV (u) = −∇ ·

(
∇u√

|∇u|2 + ε2

)
, ε 6= 0 . (3.14)

In all calculations of the gradients (3.10)-(3.14), we assume Neumann boundary conditions
for u.

The gradients (3.10)-(3.14) of the regularization functionals play a main role in parts
II and III of this thesis.

3.2 Numerical Experiments

Now, we present numerical results for the inverse problem (2.22) with the objective func-
tional (2.23) using the inexact (quasi-)Newton algorithm from Section 2.4. As regularisa-
tion we consider three different Tikhonov penalty functionals (3.3), (3.4) and (3.8). In all
cases we choose α proportional to the misfit functional [84] as

α = α̃
‖F(uk)‖
‖R(uk)‖

, 0 < α̃ < 1 . (3.15)

The model problem and the parameters settings for the following numerical experiments
are the same as in Section 2.5. The results for the L2-penalty functional, the Sobolev H1-
penalty functional and the penalized TV-regularization are shown in Fig. 3.1.

The L2-penalty functional is not able to remove most of the artifacts and the inverse
problem is not well regularized. In contrast, the Sobolev H1-penalty functional and the
penalized TV-regularization are able to remove the artifacts almost completely. However,
the discontinuities in the true profile u are smoothed out in the reconstructions.

An important set-up for Tikhonov regularization is the parameter α appears in (3.2).
As explained in Section 3.1, the parameter α is chosen to weigh the penalty functional R to
the minimization problem and its choice is critical for the reconstruction. Unfortunately,
finding the right parameter α for all profiles is difficult [4]. In penalized TV-regularization
(3.8), an additional parameter ε must be determined. The parameter ε allows solutions
with strong variability or discontinuities. Hence, a bad choice of ε might disturb the
reconstruction to resolve the discontinuities in the parameter.

In the bottom of Fig. 3.1, we see the reconstruction of the profile u with TV-regularization
using the optimal α and ε (α̃ = 0.3 in (3.15) and ε = 10). In Fig. 3.2 we illustrate four
results for TV-regularization with unsuitable choices for α and ε. Note however that those
values are a priori not unrealistic choices and they are fairly close to the optimal ones used
in Fig. 3.1, as we slightly change α̃ in (3.15).
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Figure 3.1: Reconstruction of the profile u with Tikhonov regularization. Two-dimensional
view (left) and three-dimensional view (right). From top to bottom: L2-penalty functional
with relative L2-error= 24.16%, Sobolev H1-penalty functional with relative L2-error=
9.25%, penalized TV-regularization with ε = 10 and relative L2-error= 10.02%.
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In all cases illustrated in Fig. 3.2 we get solutions where the discontinuities in the profile
u are not well reconstructed or smoothed out. In summary these numerical experiments
show that Tikhonov regularization is quite sensitive to the precise choice of α and ε.

Figure 3.2: Reconstruction of the profile u with penalized TV-regularization. Top: too
high value of α with α̃ = 0.4 in (3.15) (left) and too small value of α with α̃ = 0.1 (right).
Bottom: too large ε = 50 (left) and too small ε = 1 (right).

Hence, we aim for another way to regularize, where it is easier to choose the regu-
larization parameters. In Part II we use efficient and a priori determined regularization
parameters which avoid the need for standard Tikhonov-type regularization.



Part II

Adaptive Eigenspace for the Inverse
Helmholtz Equation
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Chapter 4

Adaptive Eigenspace Inversion (AEI)

In this chapter, we present the Adaptive Eigenspace Inversion (AEI) method for inverse
medium problems in the frequency domain. The method is a combination between two
regularization types: the first one is regularization by size reduction of the set of admissible
parameters and the second is adaptive regularization [13], see Section 1.3.3. In the AE
method the unknown wave speed is projected to a particular finite-dimensional basis of
eigenfunctions, which is iteratively adapted during the frequency stepping. Depending
on the frequency we truncate the adaptive eigenspace (AE) basis at a small and slowly
increasing finite number of eigenfunctions. This effectively introduces regularization into
the inversion, which is an alternative to the standard Tikhonov-type regularization. Hence,
in the following chapters, we consider the reduced space objective function (2.23) without
any added regularization, i.e. α = 0.

Combining these two regularizations, we introduce the adaptive eigenspace represen-
tation for u, where both the dimension and the basis functions themselves are adapted
during the optimization process. Chapters 4, 5 and 6 can be essentially found in [33].

4.1 Adaptive Eigenspace Basis

Instead of a standard nodal basis (FD, FE grid-based discretization), we shall use a basis
of (global) eigenfunctions {φm}m≥1 to represent the parameter u(x) as

u(x) = u0(x) +
∑
m≥1

βmφm(x). (4.1)

Here the “background” u0(x) ∈ H1(Ω) solves the elliptic problem:{
−∇ · (µ(x)∇u0(x)) = 0, ∀x ∈ Ω,

u0(x) = c2(x), ∀x ∈ Γ,
(4.2)
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where µ(x) is defined by

µ(x) =
1

max{|∇u(x)|, ε}
, ∀x ∈ Ω, ε > 0. (4.3)

The parameter ε > 0, which ensures that the denominator of µ does not vanish, is typically
set to a very small value such as ε = 10−6. While the primary role of u0 is to accommodate
the (known) inhomogeneous boundary values of u, we shall demonstrate in Chapter 5,
that u0 also captures much of the behavior of u in the interior.

Following [17], we choose for the functions φm the orthonormal basis of eigenfunc-
tions φm ∈ H1

0 (Ω) of the elliptic operator,{
−∇ · (µ(x)∇φm(x)) = λmφm(x), ∀x ∈ Ω,

φm(x) = 0, ∀x ∈ Γ,
(4.4)

with corresponding eigenvalues 0 < λm ≤ λm+1, m ≥ 1. Clearly, at higher λm, the
eigenfunctions φm in (4.4) will be increasingly oscillatory.

In Chapter 5, we shall provide analytical and numerical evidence which underpins the
remarkable accuracy of this basis for representing any given u(x). In our AEI approach, the
eigenfunctions {φm}m and the background u0 are repeatedly recomputed as the underlying
control u(x) varies during the optimization. Hence, we call {u0} ∪ {φm}m≥1 an adapted
eigenspace (AE) basis.

Since u(x) is precisely the quantity we seek, and thus unknown, we always use in (4.3)
the value from the previous optimization step. At the first step, when no information
about u inside Ω is available yet, we simply set µ(x) ≡ 1. Then, u0 is a harmonic prolonga-
tion of c2 from Γ into Ω while the basis {φm}m≥1 simply corresponds to the eigenfunctions
of the Laplacian operator in Ω.

Remark 1. The elliptic operator in (4.2) and (4.4) essentially coincides with the gradient
of the penalized total variation (TV) regularization term [74, 89],

RTV (u) =
1

2

∫
Ω

√
|∇u|2 + ε2 dx,

given by

∇RTV (u) = −∇ ·

(
1√

|∇u|2 + ε2
∇u

)
' −∇ · (µ(x)∇u) .

Penalized TV-regularization is well-known in image processing for noise removal, while pre-
serving sharp interfaces. Instead of adding a Tikhonov regularization term to the objective
functional, the AEI approach projects u to the basis of eigenfunctions of the gradient of
the penalized TV-regularization functional; hence, the AE basis inherits similar properties.
The relation between the gradient of Tikhonov-regularization functionals and the AEI will
be discussed in detail in Chapter 8.
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4.2 Adaptive Eigenspace Inversion Algorithm

In practice, we truncate the infinite sum in (4.1) at a finite number K ≥ 1:

u(x) = u0(x) +
K∑
m=1

βmφm(x). (4.5)

To keep both the memory requirements and the computational effort low, it is imperative
to keep the number K of eigenfunctions minimal. The truncation of the eigenfunction
expansion is also crucial for numerical stability, as it builds regularization into the AEI
approach – see Remark 1 above but also Remark 3 below.

At higher frequencies, waves detect and carry more detailed information about the scat-
terer, yet the number of local minima of F(u) may also increase. To minimize the chance
of converging to a (false) local minimum, we also apply a standard frequency continuation
procedure [14, 6]. First, we solve the inverse problem (2.22) at the lowest frequency ω1.
Then we progressively increase ω = ω2, . . . , ωn while re-initializing the optimization at
every ωj from the previous lower frequency ωj−1. In doing so, we assume that the mea-
surements are available through a range of frequencies, for instance via Fourier transform
of a time-dependent signal.

AEI Algorithm.
Input: initial guess u = 1, observations yobs` . Output: u∗.

1. Choose K ≥ 1 and compute {φm}Km=1 from (4.4) and u0 from (4.2) with µ ≡ 1

2. Expand u(x) = u0(x) +
∑K

m=1 βmφm(x)

3. For ω = ω1, . . . , ωn

(a) Compute F(u) and ∇F(u), set H

(b) STOP: if ‖∇F(u)‖ ≤ Tol

i. Solve Hp = −∇F(u)

ii. Determine step size α and set u := u+ αp

iii. Update F(u), ∇F(u) and H

(c) Set µ from (4.3) with ∇u
(d) Update K, compute {φm}Km=1 from (4.4) and u0 from (4.2)

(e) Expand u(x) = u0(x) +
∑K

m=1 βmφm(x)

4. u∗ = u

The AEI approach applies regardless of the underlying optimization method used. Here
we consider truncated Newton-like methods [19, 63] and denote byH either the true Hessian
or some approximation of it, depending on the method (Newton, BFGS, or Gauss-Newton)
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used. In all cases the linear system in 3(b)i is solved by a truncated CG-iteration with
the Eisenstat-Walker criterion [22]. In 3(b)ii, the step size α of the search direction p is
determined either by Armijo (Newton, Gauss-Newton) or Wolfe (BFGS) step-size control,
depending on the underlying method [65]. In steps 1 and 3d of the AEI Algorithm, we
compute the first K eigenfunctions in (4.4) by using a standard restarted Lanczos itera-
tion [53].



Chapter 5

Approximation Properties of the AE
Basis

In the AEI method presented in Chapter 4, the (unknown) parameter u is expanded as
in (4.5) in the L2-orthogonal basis of eigenfunctions {φm}m=1,...,K defined by (4.4) together
with u0 defined by (4.2). In this entire section, we shall assume that u is known and shall
now provide some analytical and some numerical evidence which underpins the remarkable
accuracy provided by our particular choice of u0 and the AE basis.

5.1 One-Dimensional Case

In one space dimension, (4.2) reduces to −
d

dx

(
µ(x)

d

dx
u0(x)

)
= 0 ∀x ∈ (a, b),

u0(a) = c2(a) , u0(b) = c2(b),
(5.1)

where

µ(x) =
1

max{|u′(x)|, ε}
, ∀x ∈ (a, b). (5.2)

The following result is immediate.

Proposition 1. Let u : Ω → R, Ω = (a, b), a < b, u continuous, piecewise differentiable
and with C ≥ u′(x) ≥ ε > 0 or −C ≤ u′(x) ≤ −ε < 0, at every differentiability point x ∈
Ω, u(a) = c2(a) and u(b) = c2(b). If u0 solves (5.1) then u0(x) = u(x), ∀x ∈ Ω.

Proof. We first assume that u is strictly increasing and therefore u′(x) ≥ ε > 0. Since
µ(x) = 1/max{|u′(x)|, ε} = 1/u′(x), u itself also satisfies (5.1) with u0(a) = c2(a) and
u0(b) = c2(b). As µ is strictly positive through Ω, the (weak) solution of (5.1) is unique
and therefore u0(x) = u(x), ∀x ∈ Ω.
If u is strictly decreasing, the proof is similar for µ(x) = −1/u′(x) > 0.
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Remark 2. From Proposition 1 we conclude that our choice for u0 is in fact optimal in
one space dimension when u′ is strictly positive (or negative) throughout Ω, since it auto-
matically yields u itself. The same conclusion immediately holds in higher dimensions, if
the background medium is layered, that is if u(x1, x2, . . . , xn) depends on a single variable.
In general, however, u0 will not equal u, in particular when u is not monotonic.
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Figure 5.1: One-dimensional case. Comparison of adaptive and harmonic choices for u0.
Left: u monotonically increasing; right: u arbitrary.

First, we illustrate the usefulness of our particular choice for u0 in (5.1)-(5.2) by com-
paring it to a straightforward choice where u0 is harmonic and satisfies (5.1) with µ(x) ≡ 1.
If u is strictly increasing (or decreasing) over Ω = (0, 1), u0 defined by (5.1)-(5.2) auto-
matically coincides with u – see Proposition 1. Clearly, if u0 is merely harmonic over Ω, it
does not coincide with u, as shown in Fig. 5.1. If u both increases and decreases over Ω,
neither the harmonic nor the adaptive u0 will coincide with u. However, the adaptively
computed u0 will in general better approximate u inside Ω, as shown in Fig. 5.1; in fact,
the adaptive u0 coincides with u over [0.6, 1].

Next, we approximate the difference u − u0 in span{φ1, φ2, . . . , φK}, where all φm
satisfy (4.4) in one space dimension, that is −

d

dx

(
µ(x)

d

dx
φm(x)

)
= λmφm(x) ∀x ∈ (a, b),

φm(a) = 0 , φm(b) = 0,
(5.3)

with µ defined in (5.2).

Clearly, the local behavior of φm in the neighborhood of any fixed x0 ∈ Ω is essentially
determined by the magnitude of C = |u′(x0)|. If |u′(x)| ' C > ε in a neighborhood of x0,
φm essentially behaves like

φm(x) ' Am sin(
√
Cλm x) +Bm cos(

√
Cλm x)

near x0 and hence is strongly oscillatory at higher m. However, if u is essentially constant
near x0, |u′(x)| ' 0, then µ = 1/ε there and φm essentially behaves like

φm(x) ' Am sin(
√
ελm x) +Bm cos(

√
ελm x).
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Since ε is very small, φm will also remain essentially constant there for moderate values
of m.

To illustrate this behavior, we now consider the piecewise linear profile u shown in
Fig. 5.2, where u′(x) = 3, 0 and − 9 on the interval (0, 0.3), (0.3, 0.9) and (0.9, 1), respec-
tively. Since u′ is piecewise constant, we can immediately determine all eigenfunctions
as:

φm(x) =


Am,1 sin(

√
3λm x) +Bm,1 cos(

√
3λm x), x ∈ [0, 0.3),

Am,2 sin(
√
ελm x) +Bm,2 cos(

√
ελm x), x ∈ [0.3, 0.9),

Am,3 sin(
√

9λm x) +Bm,3 cos(
√

9λm x), x ∈ [0.9, 1].

(5.4)

In Fig. 5.2, we show u together with some of the eigenfunctions from (5.3). On every subin-
terval, φm has a different frequency determined by the local value of

√
Cλm. In [0.3, 0.9),

the frequency ελm is very small, as ε = 10−4, and φm appears essentially constant. As λm
further increases, the frequency

√
ελm increases as well and oscillations appear. Clearly,

the smaller ε, the more eigenfunctions φm essentially behave as constants wherever u is
essentially constant. We remark that φ1 nearly coincides with u up to a scaling factor.

Finally, we consider for u the smooth polynomial profile

u(x) = 1− 89.95x6 + 281.35x5 − 339.51x4 + 199.56x3 − 60.85x2 + 9.40x.

It is shown in Fig 5.3 together with the first eigenfunction φ1 obtained from (5.3) either
with µ ≡ 1 or µ as in (5.2). Again, we observe that the adaptively determined eigen-
function φ1 captures well the main features of u up to a scaling factor, unlike the first
eigenfunction of the Laplacian. To reach a relative error below 1% for the best approxi-
mation with respect to the L2-norm, only the first six eigenfunctions φ1, . . . , φ6 are needed
in the adaptive case. In contrast, the first six eigenfunctions of the Laplacian yield a
seven times larger relative L2-error, which drops below 1% only once thirteen eigenfunc-
tions are included in the approximation; hence, the AE basis better captures the essential
information about u.

5.2 Two-Dimensional Case

To illustrate the remarkable approximation properties of the AE basis in two space di-
mensions, we now consider the profile u(x), x = (x1, x2), shown in Fig. 2.3. Next, we
compute u0 from (4.2) with ε = 10−6 and µ as in (4.3). In Fig. 5.4, we observe that u0

matches with remarkable accuracy the background medium but misses the embedded kite-
shaped obstacle. The first eigenfunction φ1 from (4.4), however, ignores the background
and capture precisely the remaining obstacle. Using u0 and φ1, we expand u as in (4.5)
with K = 1 and compute its best L2-approximation. Shown in Fig. 5.4, it is hardly distin-
guishable from the true u with well-defined sharp contours and a relative L2-error below
2%.
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Figure 5.2: One-dimensional case. The true profile u (top left), together with the eigen-
functions φ1, φ2, φ3, φ24 and φ25 from (5.3) with ε = 10−4.
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Figure 5.3: One-dimensional case. The true smooth profile u (top) and the first eigenfunc-
tion φ1 from (5.3): µ ≡ 1 (left), and µ as in (5.2) (right).

In contrast, if we repeat the same experiment with µ ≡ 1, we observe in Fig. 5.4 how u0

indeed matches the boundary values of u but fails to capture any additional features
inside Ω. Similarly, the first eigenfunction of the Laplacian is independent of u(x) and
thus, as expected, carries no information about it. Again, we expand u as in (4.5) but
now use the first 1000 eigenfunctions of the Laplacian instead. Although the L2 best
approximation with 1,000 Laplacian eigenfunctions now yields a reasonable approximation
of u with 6% relative L2-error, the contours are blurred while small high-frequency ripples
appear due to the well-known Gibbs-phenomenon. These results illustrate the remarkable
accuracy even of but a few eigenfunctions of the AE basis.

Remark 3. For a given profile u, the corresponding AE basis VK = {u0, φ1, . . . , φK} of
relatively small dimension usually yields a remarkably accurate representation of u. At
higher eigenvalues λm, however, the (mutually orthogonal) AE basis functions φm become
increasingly oscillatory and no longer carry useful information about u – see Fig. 5.5.
Truncating the expansion in (4.5) at a finite value, K, thus effectively builds regularization
into the AEI approach.
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Figure 5.4: Two-dimensional case. Top, from left to right: the background u0 from (4.2),
the first AE eigenfunction φ1 from (4.4), the L2 best approximation of u using {u0, φ1}.
Bottom, from left to right: the harmonic u0, the first Laplace eigenfunction φ1, the L2 best
approximation of u using the first 1,000 Laplace eigenfunctions {u0, φ1, . . . , φ1000}.

Figure 5.5: First AEI eigenfunction φ1 (left) and last AEI eigenfunction φN (right) on a
200× 200 grid.

Specification of the Number of Eigenfunctions K

We consider once more the true profile u described in Fig. 2.3 and observe in Fig. 5.5 the
eigenfunction φ1, respectively φN , corresponding to the smallest, respectively the largest,
eigenvalue. We see that φ1 is relevant for the reconstruction whereas φN contains only
irrelevant information and is highly oscillating. The challenge is to find a way to choose
the number of eigenfunctions K, that insures only relevant information. If we choose
truncate (4.5) in this way, we insure no extra regularization term such as Tikhonov in
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our formulation (2.23). Note that for this section, we focus on the reconstruction of the
kite-shaped obstacle only.

Our aim is to sort out all φm that do not contain information about u. If u is constant
almost everywhere, then we have |∇u| = 0 and thus we can rewrite (4.4), as

−∇ ·
(

1

ε
∇φm(x)

)
= λmφm(x),

or, since ε is constant, as
−∆φm(x) = (ελm)φm(x) ,

where the resulting φm actually do not contain information on u.

Figure 5.6: From top left to bottom right: φ1, φ3, φ131, φ132, φ133 and φ134.

In Fig. 5.6, we display some eigenfunctions for the exact profile u. In the upper row,
we see relevant eigenfunctions for the reconstruction which contain the variations of u
and are constant outside the reconstructed parameter. On the contrary, the lower row
Fig. 5.6 shows eigenfunctions after m0 = 132, which contain information only outside the
kite-shaped obstacle and are zero inside of it. The fundamental change in behavior of the
eigenfunctions φm occurs at m = 132: at m ≤ 131, φm clearly encodes relevant information
about the obstacle whereas beyond m ≥ 132 the eigenfunctions essentially behave like
Laplace eigenfunctions orthogonal to the first 131.

Our aim is to automatically detect this transition. To sort out the eigenfunctions φm
which are not relevant for the reconstruction we can solve the eigenvalue problem (4.4),
with µ in (4.3) twice, once with ε and once with ε̃ = ε/γ, γ ≥ 1. For a certain m0 ≥ 1, we
then observe that

λ̃m
λm

= γ , for m ≥ m0, (5.5)
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where λ̃m are the corresponding eigenvalues of (4.4) with ε̃. This is well illustrated on the
left picture of Fig. 5.7. From this observation, we can set K = m0 − 1 and we use all
eigenfunctions φm, for m ≤ K in the reconstruction. In this way to determine K we need
to solve two eigenvalue problems, which can be very costly especially for large systems.
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Figure 5.7: Left: ratio
λ̃m
λm

of (5.5), for γ = 10. Right: ratio
λm+1

λm
of (5.6).

Another way to determine K by solving only one eigenvalue problem is to compute the
following ratio

λm+1

λm
. (5.6)

From the observation above, we expect the ratio to be larger at one m0, which corresponds
to the m0 from (5.5). On the right picture of Fig. 5.7, we display the ratio (5.6) and see the
jump at m0. Now, we can once more set K = m0 − 1 by solving only once the eigenvalue
problem (4.4).

In practice, when the profile u is unknown, we use K ≤ m0 − 1 as a regularization
parameter, which allows us to avoid any additional regularization term in (2.23). We
start with a small number K of eigenfunctions and when ω increases during the frequency
stepping process, we also increase K. In doing so, we dramatically reduce the number of
control variables and regularize the solution. Also, as K is chosen for each frequency ω, we
avoid any additional computation of useless eigenfunctions. The choice of K is discussed
in Section 6.4 of the next chapter.



Chapter 6

Numerical Experiments

We shall now illustrate the usefulness and versatility of the AEI method through a series
of numerical experiments. Clearly, the squared velocity u of the medium is now unknown
and we shall attempt to recover it from boundary measurements by solving (2.22) with the
objective functional (2.23), where α = 0.

First, we compare the adaptive eigenspace representation to a standard grid-based
nodal representation of the control u to demonstrate the resulting significant reduction
in degrees of freedom. Next we add yet another level of adaptivity by solving the auxil-
iary elliptic eigenvalue problem with an adaptive finite element method. We also present
numerical experiments that underpin our choices for the background profile u0 and the
varying dimension of VK with increasing frequency. Then, we show that the AE basis
functions φm are highly localized, and hence easily sparsified; thus, the memory require-
ment of the adaptive eigenspace basis is kept to a minimum. Finally, we demonstrate the
robustness of the AEI approach in the presence of noise or missing data and combine it
with the sample average approximation (SAA) approach [38].

In the entire section, we consider the profile u displayed in Fig. 2.3 and reminded in
Fig. 6.1, which mimics a layered material with regions of different wave speed. Unless
specified otherwise, the typical parameter settings in the numerical experiments are the
following: nine equispaced Gaussian sources are located along the upper boundary at
(0.1, 0.8), . . . , (0.9, 0.8), whereas the receivers are located on the four lateral boundaries
of Ω = (0, 1) × (0, 1). We use second-order staggered finite differences on a 500 × 500
Cartesian mesh for the discretization of (2.2), (4.2)-(4.4). To avoid any inverse crime, the
reference solution is computed on a separate finer mesh, which does not contain the coarser
computational mesh.

In the AEI algorithm described in Section 4.2, we always set the initial guess to
u(x) ≡ 1. Starting at the lowest frequency ω = 8, we progressively increase the fre-
quency ω = 10, 12, 14, . . . , 90. The number of eigenfunctions K starts at K = 16 or
32 and increases linearly with the frequency ω. For the optimization, we use a standard
truncated Gauss-Newton method [35, 65] without extra regularization term. The search
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Figure 6.1: Left: true profile u; Right: real part of y` with f` at (0.1, 0.8) and ω = 90

direction is by a truncated Conjugate-Gradient iteration with the Eisenstat-Walker stop-
ping criterion [22, 59, 63, 19] and the step-size by a standard Armijo rule. In the definition
of µ in (4.3), we always set ε = 10−6.

In the following numerical experiments, we either use finite differences for the discretize-
then-optimize approach, or finite elements for the optimize-then-discretize approach. We
shall not emphasize any particular choice for the discretization as it did not affect the
results.

6.1 Adaptive Eigenspace vs. Nodal Basis

The use of an adaptive eigenspace (AE) basis for the control variable u instead of a standard
grid-based nodal basis is the distinguishing feature of the AEI method. Thus, we now
compare the AE vs. a standard nodal representation for the reconstruction of u. In both
cases, we omit extra Tikhonov-type regularization.

First, we include an additional tenth source located at (0.15, 0.15). The two corre-
sponding reconstructed profiles are shown in Fig. 6.2. Although both methods recover the
essential features of the medium, the AEI method clearly yields much crisper boundaries
but also higher accuracy inside the various subregions. Moreover, the AEI method achieves
the higher accuracy with fewer than Nu = 360 degrees of freedom vs. Nu = 501, 000 for the
standard nodal representation – see Table 6.1. Clearly, adding regularization would cer-
tainly remove some of the artifacts in the grid-based approach and thus yield a smoother,
but not necessarily more accurate, reconstruction. See Fig. 3.1.

Next, we repeat the previous experiment but now omit all the receivers at the lower
boundary of Ω together with the tenth source located at (0.15, 0.15). Hence, much less
information about the lower part of the medium is available in the data. Nevertheless, as
shown in Fig. 6.3, the AEI method is still able to recover u everywhere inside Ω, unlike the
standard grid-based approach. Indeed, as shown in Table 6.1, the relative L2-error for the
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Figure 6.2: Adaptive eigenspace vs. nodal basis. Full boundary data: reconstruction with
a nodal basis (left) or an AE basis (right).

Full data Partial data
Basis L2-Error Nu L2-Error Nu

Nodal 15.91% 501,000 30.24% 501,000
AEI 4.65% ≤ 360 4.80% ≤ 360

Table 6.1: Adaptive eigenspace vs. nodal basis. Relative L2-error and number of degrees
of freedom for u.

nodal approach has now almost doubled whereas the error for the AEI method has hardly
changed. Although the AEI method uses much fewer control variables than the grid-based
approach, i.e. Nu = K, the reconstructions appear remarkably accurate and tolerant to
missing data.

Figure 6.3: Adaptive eigenspace vs. nodal basis. Missing boundary data: reconstruction
with a nodal basis (left) or an AE basis (right).
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6.2 Adaptive Finite Element Discretization

The AEI method uses two separate computational meshes, the first for the forward and
adjoint problems (2.21), (2.27) and the second for the auxiliary elliptic eigenvalue prob-
lems (4.2), (4.4). So far both meshes were spatially uniform. Here we include yet an-
other level of adaptivity by adapting the finite element (FE) mesh in the solution of (4.2)
and (4.4) to better capture small-scale features of u.

In the AEI Algorithm, mesh adaptation is performed after the while loop in step 3b
and before the update in step 3c. We use a standard a priori FE adaptive mesh strategy
based on the Hessian of the current u [73], which is available in the open source software
FreeFem++ [43]. Again, the mesh to solve the forward problem (2.21) and the adjoint
problem (2.27) remains fixed and uniform (200 × 200 Cartesian mesh) throughout the
entire computation. For the optimization, we now use a truncated Quasi-Newton (BFGS)
method with Wolfe step-size control.

In Fig. 6.4, we present the numerical results for the AEI method with and without
mesh adaptation. The reconstruction on a uniform triangular mesh yields 4.86% relative
L2-error, whereas the reconstruction with adaptive FE strategy yields 4.17% relative L2-
error, yet with a ten times smaller number of vertices. Hence, we have not only reduced the
error in the reconstruction with even crisper and smoother edges, but also greatly reduced
the number of degrees of freedom in the control thereby dividing the overall execution time
by 2.5. As shown in Fig. 6.4, the adapted mesh automatically concentrates the degrees of
freedom along variations of u and is refined only where it is needed.

6.3 Adaptive vs. Harmonic Background u0

As shown in Section 5.2, the background state u0 defined through (4.2) allows the AEI
method to accomodate varying boundary data. Here we compare the accuracy in the
reconstruction for two different choices for u0:

– harmonic: u0 is computed only once at the beginning of the AEI Algorithm by solv-
ing (4.2) with µ ≡ 1

– adaptive: u0 is recomputed at each frequency step by solving (4.2) with µ as in (4.3)

In Fig. 6.5, we compare the recovered u for the above two different background states u0,
both either with or without the adaptive mesh strategy from Section 6.2. Clearly, the
adaptive background u0 improves the accuracy of the reconstruction as the relative L2-
errors are approximately halved – see Table 6.2. Moreover, the artifacts near the exterior
boundary, visible in the harmonic background approach, are now completely absent.

Hence the more accurate background state u0 enables the AEI method to better approx-
imate the remainder u− u0 with the AE basis. Still, the adaptive strategy is also slightly
more expensive since it adaptively recomputes u0 for every frequency. These conclusions
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Figure 6.4: Adaptive FE discretization. Top: uniform triangular mesh with 30,534 vertices
(left) and recovered u (right). Bottom: with mesh adaptation, final mesh for ω = 90 with
2,783 vertices (left) and recovered u (right).

also appear to hold if an adaptive FE strategy is included in the solution of (4.2), (4.4),
which in fact seems to have little impact on the overall accuracy here.

background state u0 harmonic adaptive
without mesh adaptation 10.73% 4.86%
with mesh adaptation 10.90% 4.17%

Table 6.2: Adaptive vs. harmonic background. Relative L2-error in u.

6.4 Constant vs. Adaptive Dimension of VK

Our AEI method does not require extra regularization term, such as standard Tikhonov reg-
ularization. Instead it restricts the optimization to the AE subspace VK = span{u0, φ1, . . . , φK},
which effectively acts as inherent regularization of the inverse problem. Here we focus on
the choice of K to understand the regularization effect of the AEI method. To prevent any
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Figure 6.5: Adaptive vs. harmonic background. Top: without mesh adaptation, har-
monic u0 (left) and adaptive u0 (right). Bottom: with mesh adaptation, harmonic u0 (left)
and adaptive u0 (right).

intrinsic regularization from a very fine mesh or over-abundant data, we omit the receivers
at the lower boundary of Ω (missing data) and use a coarser 200× 200 Cartesian mesh.

First, we keep the number of eigenfunctions constant through the entire frequency step-
ping process. In Fig. 6.6, we present the numerical results for constant K = 100 using
either a truncated full-Newton or Gauss-Newton method. For the full-Newton method, the
regularization is not sufficient to reduce the perturbation at the top of the computational
domain, although the reconstruction is more accurate than with the nodal basis. In con-
trast, for the Gauss-Newton method, the regularization is too strong and the method has
difficulty reconstructing the kite. Similar conclusions hold for other constant values of K,
which underlines the need for K to vary with the frequency ω.

Next, we let K vary linearly with ω, starting at a small number of eigenfunctions
(K = 32) to reduce the risk of converging to a false local minimum. As ω increases during
frequency continuation, we slowly increase K to capture smaller details of the scatterer.
In Fig. 6.6, both reconstructions are now quite accurate with an L2-error of 6.50% for the
Newton and 6.72% for the Gauss-Newton method, respectively.
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Figure 6.6: Constant vs. adaptive dimension of VK . Top: for constant K = 100, truncated
full-Newton method with relative L2-error = 14.79% (left) and truncated Gauss-Newton
method with relative L2-error = 7.95% (right). Bottom: for linearly varying K, truncated
full-Newton method with relative L2-error = 6.50% (left) and truncated Gauss-Newton
method with relative L2-error = 6.72% (right).

Remark 4. The number of eigenfunctions K controls the regularization, similarly to the
parameter α in a standard Tikhonov regularization term αR[u]. For Tikhonov regular-
ization, α is initially large but then gradually decreases to zero as the nonlinear iteration
approaches the desired minimum. In contrast for our AEI approach, K is initially small
but then gradually increases during optimization so that the AE basis includes a higher
number of eigenfunctions for better accuracy.

6.5 Sparse AEI Method

The AEI method greatly reduces the number of parameter values by restricting the opti-
mization to the subspace VK = span{u0, φ1, . . . , φK} of much smaller dimension. Since the
discretized version of the eigenvalue problem (4.4) leads to a sparse, symmetric and posi-
tive definite matrix, the first K eigenfunctions can be efficiently computed via a standard
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Lanczos iteration [53]. Still, the storage of the first K eigenfunctions, which are global
functions in Ω, may at first appear quite large, especially in three space dimensions.

In fact, much of the information contained in those eigenfunctions is highly localized
in space and essentially negligible in most of Ω. Again we consider the example described
at the beginning of Chapter 6. Next, for each eigenfunctions φm, we monitor all entries
smaller than η ·‖φm‖∞ in magnitude. In Fig. 6.7, we display the percentage of small entries
in φm for each frequency averaged over all m ≤ K; recall that K increases linearly with ω.
As ω increases, the percentage of small entries also increases and quickly saturates above
90% at higher frequencies; hence, more than 90% of all entries are in fact negligible. To
save memory space, we can therefore set to zero all those small values and simply replace
the eigenfunctions φm by their sparse approximations.
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Figure 6.7: Sparse AEI method. Percentage of entries smaller than η ·‖φm‖∞ in magnitude
averaged over all m ≤ K at each frequency.

In Fig. 6.8, we show the resulting reconstruction with the sparse AEI approach, where all
small entries in the eigenfunctions below η‖φm‖∞ are set to zero for η = 0.1, 0.05, or 0.01.
Remarkably, the reconstruction hardly changes and, in fact, is even slightly better (L2-
errors below 4%), while saving more than 90% of memory.

6.6 Noisy Data

To illustrate the robustness of the AEI method with respect to noise, we now add multi-
plicative noise to the observations for each observation point xi and frequency ωj:

yobs,δ(xi, ωj) = yobs(xi, ωj)(1 + δ · ξi,j),
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Figure 6.8: Sparse AEI method. Reconstruction of u with sparsified eigenfunctions. Left:
with η = 0.1 (error = 3.83%). Center: η = 0.05 (error = 3.81%). Right: η = 0.01 (error
= 3.90%)

where ξi,j are i.i.d. Gaussian random variables with mean zero and variance equal to one.
The level of noise is denoted by δ.

Again, we consider the parameter settings described at the beginning of this chapter,
but use the adaptive finite element strategy from Section 6.2. In Fig. 6.9 we present the
reconstruction results for two different levels of noise: for δ = 10% (left) we obtain a
relative L2-error of 4.01% and for δ = 20% (right) we obtain a relative L2-error of 5.22%.
As shown in Fig. 6.9, the AEI method is still able to reconstruct the profile without any
added regularization and without artifacts due to noise. In fact, at the smaller noise level
δ = 10%, the relative L2-error is even slightly better than that without noise, 4.01% vs.
4.17%; each case, however, leads to (slightly) different meshes and eigenfunctions due to
the adaptive finite element strategy.

Figure 6.9: Noisy data for varying noise level δ. Left: δ = 10% (L2-error = 4.01%). Right:
δ = 20% (L2-error = 5.22%).
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6.7 Sample Average Approximation

As the number of sources Ns in (2.23) increases, the cost of computing Ns forward and
adjoint solutions in (2.21), (2.27) may become prohibitive. To limit the computational cost
without ignoring any of the available data, we consider the sample average approximation
(SAA) approach from [38], which replaces the sources f` by Nr “super-shots”, Nr � Ns,

Fj =
Ns∑
`=1

ξj` f` , j = 1, . . . , Nr, (6.1)

where the ξj` are i.i.d. random variables with zero mean and unit variance and correspond-
ing observations

Y obs
j =

Ns∑
`=1

ξj` y
obs
` , j = 1, . . . , Nr. (6.2)

During frequency stepping, we choose for each ω a different realization of ξj` – here ξj` = ±1
with probability 0.5.

Again, we consider the parameter settings described at the beginning of Chapter 6, but now
with Ns = 201 Gaussian sources located at (0.1, 0.8), (0.11, 0.8), . . . , (0.89, 0.9), (0.9, 0.8).
The SAA approach [38] with only a single “super-shot”, Nr = 1, yields the reconstruction
shown in Fig. 6.10. For comparison, we also display the reconstruction without SAA with
a single source located at (0.5, 0.8). Although the computational cost of both approaches
is identical, the SAA approach yields better accuracy, remarkably so, given that only a
single (“super-shot”) source is used for the approximation.

Figure 6.10: SAA approach. Reconstruction of u with a single source. Left: without
SAA and with Ns = 1 (10.05% relative error). Right: with a single SAA “super-shot”,
i.e. Nr = 1, from Ns = 201 sources (5.79% relative error). Note that the computational
effort is identical.
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6.8 Computational Cost

We now compare the computational cost of the AEI method to the standard nodal basis
with penalized TV-regularization, where the regularization parameters are adjusted to the
problem. We reconstruct again the profile shown in Fig. 6.1 with the parameter settings de-
scribed at the beginning of Chapter 6, using frequency stepping at ω = 8, 10, 30, 50, 70, 90,
on a 200× 200 FD staggered grid. We stop the iterations at each frequency step when the
relative residuum of the reduced-space gradient (2.24) is smaller than 10−1. The CG algo-

rithm is stopped when the CG iterations has converged according to (2.40) with ηk = η
(2)
k

in (2.41).

The bottleneck of the optimization arises from the number of linear systems (discretized
forward operators) to solve, whose number grows with the number of outer G-N iterations,
inner CG iterations and step-size determination. Hence, in Table 6.3 we compare the
number of linear systems to solve, the number of CG iterations and the number of G-N
iterations. Since the AEI requires the solution of an extra eigenspace problem for each
frequency ω, the runtime of the eigenspace calculation is given as well. The simulations
are computed on a desktop computer with an Intel Xeon E3-1270 V2 with 16 GB RAM,
on a MATLAB R2015a program.

ω = 8 ω = 10 ω = 30
Basis Nodal AE Nodal AE Nodal AE
# CG-Iter 120 41 61 13 1,421 25
# GN-Iter 3 15 4 4 9 7
# linear systems 6,642 2,124 3,501 621 77,436 1,188
Basis comp. runtime - 1.91 s. - 2.18 s. - 8.77 s.

ω = 50 ω = 70 ω = 90
Basis Nodal AE Nodal AE Nodal AE
# CG-Iter 61 20 82 12 93 12
# GN-Iter 4 6 4 4 5 4
# linear systems 3,474 963 4,617 585 5,238 585
Basis comp. runtime - 16.53 s. - 29.95 s. - 47.11 s.

Table 6.3: Adaptive eigenspace vs. nodal basis with penalized TV-regularization. Com-
parison of runtime, number of CG and G-N iterations and basis computations.

In our computational cost test the AEI converges faster in terms of the forcing term
(2.40) and needs less CG iterations per non-linear optimization step. In addition, at 85%
of the G-N iterations for the AEI approach, the step size of the Armijo step-size control
shows a full step, thus reducing extra computations of linear systems in order to find the
step size. For the last example under the above described conditions, the AEI method
solves 3 – 65 times less linear discretized Forward operators per frequency. We remark
that a preconditioned G-N iteration might further reduce by about 35% the number of CG
iterations, as it did in [59] for another application.
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Chapter 7

AEI for the Limited Frequency Data

In some applications, especially in medical imaging, only limited frequency data are avail-
able. In fact, many medical imaging devices operate only at a single frequency. Hence,
frequency stepping is not available. As described in Section 2.3, frequency stepping is an
important tool, which helps preventing converging to a false local minimum. Thus, if we
start the optimization with a too high frequency, it is likely that the optimization process
will end in a false local minimum.

As we cannot take into account frequency stepping, we need to apply another strat-
egy, which guides the algorithm towards a good minimum. We now introduce the single
frequency adaptive eigenspace (SF-AEI) approach.

7.1 Single Frequency AEI (SF-AEI)

In Chapter 4, the AEI-algorithm updates the AE basis together with the number of eigen-
functions K, when the frequency ω increases. As explained in Chapter 5, the number of
eigenfunctions K is linear in the frequency ω, i.e.

K = Cω ,

for some constant C. In the case of a single frequency, we propose to update the basis
as follows: first, we optimize the problem with µ ≡ 1, as we do not have information on
the profile u. After the convergence of the optimization process, we actually adapt the
basis to the AE basis with µ from (4.3) and optimize again. Instead of stopping after one
adaptation for ω, as we do with frequency stepping, we propose to adapt repeatedly the
AE basis from the previous optimal u for the same frequency ω.

We now have to deal with the choice of the number K of eigenfunctions. If we consider
K = Cω, where ω is our constant single frequency, which might be high, the regularization
of the inverse problem might be inappropriate. One way to apply stronger regularization
is to reduce the number of eigenfunctions used in the reconstruction.

73
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7.2 Constant Background Numerical Experiments

As explained in Section 2.3, frequency stepping strategy is essential to the success of the
optimization process. Hence, we want to draw your attention on the fact that when only a
single frequency is available and in the absence of a good initial guess, we cannot recover
very complicated media: if the single frequency is low, waves carry less information about
the scatterer and the reconstruction may be unsatisfactory. If the available frequency is
high, frequency stepping is needed to prevent the optimization process from converging to
a false local minimum.

Hence, we start with a simplified version of the parameter u to illustrate the regu-
larization process at a single frequency. The profile, shown in Fig. 7.1 contains a kite,
centered at (0.4,0.4), and the value of u in the kite is two times higher than the value in
the background. Next, we test several constant values of K for the optimization. The

Figure 7.1: The true profile u to reconstruct with a single frequency.

settings for the numerical experiments using the AEI algorithm are as follows: Nine equis-
paced Gaussian sources are located along the upper boundary at (0.1, 0.8), . . . , (0.9, 0.8),
whereas the receivers are located on the four lateral boundaries of Ω = (0, 1) × (0, 1).
We use second-order finite differences on a 200× 200 mesh for the discretization of (2.2),
(4.2)-(4.4). We optimize at the single frequency ω = 60 and use the truncated GN-method
for the optimization.

We decide to take a constant number of eigenfunctions K between 15 – 240 and optimize
the problem eight times, while adapting the basis between the optimizations. In Fig. 7.2,
we present the numerical results for K = 15, K = 30 and K = 240 left to right respectively.
Several tests using several values of constant K between 15 and 240 were performed, and
the relative L2-error for each value of K is plotted in Fig. 7.3. As shown in Fig. 7.2,
if we take K = 15 the problem is over regularized and the relative L2-error 11.06% is
higher as with K = 30, 7.88%. If we use a too high constant number of eigenfunctions,
e.g. K = 240, the problem is not well regularized and cannot prevent the pertubation in
the computational domain.
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Figure 7.2: Constant dimension of VK for constant frequency. Reconstruction with AEI
of parameter u for K = 15 with relative L2-error=11.06% (left), for K = 30 with relative
L2-error=7.88% (center) and for K = 240 with relative L2-error=32.77% (right).
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Figure 7.3: Relative L2-error of the optimization w.r.t. the number of eigenfunctions K
participating in the reconstruction of u.

Varying Number of Eigenfunctions

If we have more complicated media to reconstruct, the low constant number of eigenfunc-
tions might not be able to capture all the details of the reconstructed medium u. Hence, we
consider another way to regularize the problem by varying the number of eigenfunction K
starting from a small value up to Cω. The aim is to optimize the problem (2.23) NK times
for an increasing K. Once more we solve the inverse problem (2.23) first with µ ≡ 1. Then
we adapt the basis with µ from (4.3), increase K and solve the inverse problem again. We
increase K and adapt the basis repeatedly, until K = Cω, and take the previous optimal
u as initial guess in each new optimization process.
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We consider two strategies to increase K:

K =

⌊
Cω

NK

⌋
,

⌊
Cω

Nk − 1

⌋
, . . . ,

⌊
Cω

2

⌋
, Cω , (7.1)

or

K =

⌊
Cω

NK

⌋
,

⌊
2Cω

Nk

⌋
, . . . ,

⌊
(Nk − 1)Cω

NK

⌋
, Cω . (7.2)

Considering again the example from Fig. 7.1, we optimize the problem eight times, i.e.NK =
8. The values of K with respect to the optimization number is shown in Fig. 7.4.
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Figure 7.4: Number of eigenfunctions K participating in the reconstruction of u w.r.t. the
optimization number for NK = 8.

Before we conclude this chapter with numerical examples we state the single frequency
AEI algorithm.

7.3 Single Frequency AEI Algorithm

We consider again the reduced-space functional F from (2.23) and the corresponding gra-
dient ∇F from (2.24) and Hessian (or approximation of it) H from (2.30).
To solve the the inverse problem at a single frequency, we introduce the following algorithm:
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SF-AEI Algorithm.
Input: initial guess u = 1, observations yobs` for one frequency. Output: u∗.

1. Choose NK ≥ 2

2. compute {φm}Km=1 from (4.4) and u0 from (4.2) with µ ≡ 1, where K =

⌊
Cω

NK

⌋
3. Expand u(x) = u0(x) +

∑K
m=1 βmφm(x)

4. For j = 1, 2, . . . , NK

(a) Compute F(u) and ∇F(u), set H

(b) STOP: if ‖∇F(u)‖ ≤ Tol

i. Solve Hp = −∇F(u) using inexact Newton

ii. Determine step size αk and set u := u+ αkp

iii. Update F(u), ∇F(u) and H

(c) Set µ from (4.3) with ∇u
(d) Update K by the chosen strategy from (7.1) or (7.2)

(e) Compute {φm}Km=1 from (4.4) and u0 from (4.2)

(f) Expand u(x) = u0(x) +
∑K

m=1 βmφm(x)

5. u∗ = u

7.4 Numerical Experiments

We now illustrate the regularization ability of the SF-AEI, starting directly at a high
frequency ω = 60. We use the SF-AEI method with increasing K and NK = 8. Fig. 7.5
illustrates the results using strategies (7.1) and (7.2) in the SF-AEI. Both reconstructions
come with very similar L2-errors (about 8.6%) and are comparable to the reconstruction
with a constant K = 30 for eight iterations. However, we shall now illustrate that the
choice of K, especially when K varies, can capture more details in the case of a complicated
medium.

More precisely, we want to illustrate the ability of the SF-AEI to reconstruct a com-
plicated medium with a good initial guess and to compare it to the fixed number of eigen-
functions. We reconstruct our original profile u shown from Chapters 2, 3 and 6 illustrated
once more in Fig. 7.6.

Since this profile is more complicated and the considered frequency ω = 60 is too high
for a starting frequency, we use the initial guess shown in Fig 7.6. The settings for the
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Figure 7.5: SF-AEI with NK = 8 and varying K in two strategies: strategy (7.1) with
relative L2-error=8.67% (left), strategy (7.2) with relative L2-error=8.68% (right).

Figure 7.6: The true profile u (left), together with the initial guess for the reconstruction
(right).

numerical experiments using the SF-AEI algorithm are as in the previous experiments.
Since we start with a good initial guess, we can consider a smaller number of optimizations
NK = 4.

The results for the SF-AEI are shown in Fig. 7.7, for the strategy (7.1) and for the
strategy (7.2) and for the best choice of constant number of eigenfunctions K = 60. We
observe that the strategy (7.1) gives the better results whereas the strategy (7.2) does
not regularize strong enough during the optimization process. In the case of the constant
number of eigenfunction K = 60, the solution is highly regularized and it is not able to
reconstruct the kite shaped feature in the medium.

In the numerical experiments of the previous chapters, we used K in linear dependence
of ω. In the single frequency, we opt for a choice, which increases K more slowly. This
can be explained as follows: when only one high frequency is available, it seems that the
number of local minima is raising and a stronger regularization must be applied. For more
complicated media, a constant number of K might be insufficient. Hence, when only one
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Figure 7.7: Reconstruction of parameter u with SF-AEI: with increasing K from (7.1) with
L2-error=6.40% (left), with increasing K from (7.2) with L2-error=30.18% (center) and
for constant K = 60 with L2-error=8.78% (right).

frequency is available, the SF-AEI with the strategy (7.1) of varying K seems to be the
most suitable choice.

As we have seen in Section 7.2, the AEI is able to deal with restricted frequency data.
In the last numerical experiment, whose result is shown on the left of Fig. 7.7, the SF-AEI
was able to reconstruct the medium using very limited frequency data. Actually, the initial
guess for the previous example, shown in Fig. 7.6 is the reconstruction of the AEI algorithm
at ω = 8 and µ ≡ 1. That shows that using only two frequencies, ω = 8 and ω = 60, we
can reach an acceptable reconstruction with relative L2-error of 6.40%.
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Chapter 8

AE of Gradients of Penalty
Functionals

In Chapters 4-7, we used the adaptive eigenspace (AE) derived from the penalized TV-
regularization. To build the AE, we considered the regularization functional RTV (3.8)
and compute its gradient (3.14). The resulting AE problem reads (see Remark 1){

−∇ · (µ(x)∇φm(x)) = λmφm(x), ∀x ∈ Ω,

φm(x) = 0, ∀x ∈ Γ,
(8.1)

where µ is given from the gradient of the TV-regularization by

µ(x) =
1√

|∇u(x)|2 + ε2
, ∀x ∈ Ω, ε > 0 . (8.2)

8.1 AE from other Penalty Functionals

In this chapter, we would like to derive new adaptive eigenspaces from other penalty func-
tionals. In Chapter 3 we introduced various Tikhonov regularization functionals (3.3)-(3.8),
whose gradients are given by (3.10)-(3.14). Each gradient of a regularization functional
can deliver an adaptive eigenspace. In der following, we replace the gradient of the TV-
regularization by a gradient of another regularization functional and get an AE with new
properties: the resulting eigenspace, together with its eigenfunctions, has similar properties
as the corresponding standard added Tikhonov regularization.

AE from the H1-Penalty Term

The first example is the H1-regularization penalty functional R∇u (3.4). The aim of this
functional is to penalize non-smooth solutions. The gradient of R∇u is, as in (3.11):

∇uR∇u(u) = −∆u ,
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and the corresponding AE solves{
−∆φm(x) = λmφm(x), ∀x ∈ Ω,

φm(x) = 0, ∀x ∈ Γ.
(8.3)

The eigenspace (8.1) and the Laplacian eigenspace (8.3) were already discussed in Chap-
ter 5. There, we have shown that the AEI with the eigenfunctions basis of the TV-
regularization allows discontinuities in the reconstructed profiles. On the contrary, the
eigenspace of the H1-regularization (the Laplacian eigenspace) is only suitable for smooth
profiles. This indicates that each eigenspace inherits its properties from the corresponding
regularization functional.

AE from the Gaussian Penalty Term

We now consider Gaussian-regularization [21]. The gradient corresponding to the Gauss-
regularization functional (3.6) is, as already given in (3.12):

∇uRGauss(u) = −∇ ·
(

∇u
σ2 exp (|∇u|2/σ2)

)
, σ > 0 .

We derive the associated eigenspace problem in a similar way as for TV-regularization and
get (8.1) with

µ(x) =
1

σ2 exp (|∇u|2/σ2)
, ∀x ∈ Ω, σ > 0 . (8.4)

Note that µ here also depends on the control variable u as it does in AE of the gradient
of penalized TV-regularization (8.2). As we have seen for the AE of the penalized TV-
regularization, the weight function µ which depends on u adapts the eigenspace to the
reconstruction at each frequency step and yields relevant eigenfunctions.

AE from the Lorentzian Penalty Term

Next, we consider the Lorentzian-regularization [21], which is used to penalize strong varia-
tion in the solution and contains an extra parameter to allow discontinuities. We calculate
the gradient corresponding to the Lorentzian-regularization functional (3.7), as computed
in (3.13):

∇uRLorentz(u) = −∇ ·
(

γ∇u
(1 + γ|∇u|2)2

)
, γ > 0 .

Again, we derive the associated eigenspace problem as before and get (8.1) with

µ(x) =
γ

(1 + γ|∇u|2)2 , ∀x ∈ Ω, γ > 0 . (8.5)

Note that µ also depends on the control variable u as for the penalized TV-regularization
and the Gaussian AE.
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Figure 8.1: Adaptive eigenspaces from Tikhonov regularization. From left to right: the
first eigenfunction φ1, the boundary contribution u0, the expansion of u using φ1 and u0

for the respective AE. From top to bottom: AE of the TV-regularization, AE of the H1-
regularization, AE of the Gaussian-regularization and AE of the Lorentzian regularization.
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About the Background-Problem and Illustration

Using µ, we can also compute u0 as described in Chapter 4 by solving{
−∇ · (µ(x)∇u0(x)) = 0, ∀x ∈ Ω,

u0(x) = c2(x), ∀x ∈ Γ ,
(8.6)

where c is the true velocity on the boundary. Actually, all settings of the adaptive
eigenspaces described in Chapter 4 can also be applied here, including for u0 and for
the number K of considered eigenfunctions.

We have seen how to define a new AE from an existing regularization. We can actually
choose a relevant AE depending on the properties of the profile to reconstruct. from
Fig. 2.3 and Chapter 6: the TV-based AE with µ from (8.2), the Laplacian AE (8.3), the
Gauss-based AE with µ from (8.4) and the Lorentzian-based AE with µ from (8.5).

Of course, there are many other possible regularization functionals that may be con-
sidered. As shown for the AE of the penalized TV regularization, the H1-penalty regular-
ization, the Gauss-regularization and the Lorentzian-regularization, taking each Tikhonov
regularization functional and deriving an AE from it gives many new adaptive eigenspaces.
However, Tikhonov regularization functionals may also produce irrelevant AE as well, for
example, the AE for the L2-regularization penalty gives the identity operator:

{
φm(x) = λmφm(x), ∀x ∈ Ω,

φm(x) = 0, ∀x ∈ Γ .
(8.7)

8.2 Numerical Experiments

We now apply the various regularizations to the more realistic profile u, shown in Fig. 8.2.
The profile mimics a layered material with regions of different wave speed and is based on
a well-known geophysical model: the Marmousi model.

The settings in the numerical experiments are as follows: we use six realizations of 201
samples, which yield six sources (“super-shots”) located then at (0.1, 0.9), . . . , (0.9, 0.9).
The receivers are located on the north, east and west lateral boundaries of the computa-
tional domain Ω = (0, 1) × (0, 1). We use a 300 × 300 FD mesh and frequency stepping,
starting at the lowest frequency ω = 8 with a step of 4 up to ω = 200. The initial guess is
the four-layered profile shown in Fig. 8.3.

We now reconstruct the profile u under the settings mentioned above with the bases
from (8.1) using four different choices of µ: from (8.2), µ ≡ 1 (the Laplace eigenfunctions
(8.3)), from (8.4) and from (8.5). In Fig. 8.4, we see that in all four reconstructions we
get a very smooth solution. Hence, the adaptive eigenspaces regularize the solution too
strongly. This illustrates the need for an AE which can be suitable for seismic imaging.
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Figure 8.2: A Marmousi-based profile: A cut from the Marmousi profile.

Figure 8.3: The Marmousi-based profile: the initial guess (left) and the true profile (right).

AE for Seismic Imaging

In seismic models, the medium profiles are layered materials, which are typically repre-
sented by a smoothly varying parameter u in the horizontal direction, but non-smoothly
in the vertical one. Since we understand how to build an AE adapted to the properties of
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Figure 8.4: AEI using four different adaptive eigenspaces for the Marmousi-based profile:
Top: TV-regularization AE with relative L2 error = 6.42% (left), H1-regularization AE
with relative L2 error = 6.43% (right). Bottom: Gaussian-regularization AE with relative
L2 error = 7.12% (left), Lorentzian-regularization AE with relative L2 error = 8.83%.

the profile, we can now construct an AE for typical profiles from seismic imaging. For this
anisotropic profile, we consider a penalized TV-regularization in the vertical direction and
Sobolev H1-penalty functional in the horizontal one:

Rd∇u(u) =
1

2

∫
Ω

(
∂u

∂x1

)2

dx , RdTV (u) =
1

2

∫
Ω

√∣∣∣∣ ∂u∂x2

∣∣∣∣2 + ε2 dx . (8.8)

As for the former regularizations in this chapter, we build a new AE using the gradient of
the anisotropic functional RdTV in (8.8)

∇uRdTV (u) = − ∂

∂x2

 1√∣∣∣ ∂u∂x2 ∣∣∣2 + ε2

∂u

∂x2

 . (8.9)
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Again, we derive the associated eigenspace problem
− ∂

∂x2

 1√∣∣∣∂u(x)
∂x2

∣∣∣2 + ε2

∂φm(x)

∂x2

 = λmφm(x), ∀x ∈ Ω,

φm(x) = 0, ∀x ∈ Γ .

(8.10)

Let φm be an eigenfunction of (8.10) and ϕ = ϕ(x1) be any function depending only on
x1 and ϕ(x1) = 0, ∀x ∈ Γ. Then ϕφm is also an eigenfunction of (8.10) and thus we have
no control on the eigenfunctions in the direction of x1, however, they should respect the
functional Rd∇u (8.8) in this direction. Hence, we replace the partial derivative ∂

∂x2
by a

standard full divergence and gradient operators and get the analogue to (8.1):
−∇ ·

 1√∣∣∣∂u(x)
∂x2

∣∣∣2 + ε2

∇φm(x)

 = λmφm(x), ∀x ∈ Ω,

φm(x) = 0, ∀x ∈ Γ .

(8.11)

Note that the resulting eigenspace (8.11) takes into account both functionals in (8.8): if
∂u/∂x2 = 0 on a subregion inside Ω, then µ = 1/ε on that subregion. Since µ is constant
in that subregion the eigenspace problem can be written as

−∆φm(x) = (ελm)φm(x) .

This yields locally Laplacian eigenfunctions, which automatically corresponds to the func-
tional Rd∇u in (8.8).

Next, we repeat the previous experiment but now use the AE (8.11). The solution is
smooth only in horizontal direction and the discontinuity in the vertical direction is well
reconstructed. The resulted AE is thus adapted to the geophysical profile and the results
are shown in Fig. 8.5.

AE as Initial Estimation

For the reconstruction of complex media such as the Marmousi-based model problem, one
typically starts from a relatively close initial guess, for example a smoother representation
of the target profile. In contrast, our initial guess uses almost no a priori information about
the profile, yet we get an acceptable reconstruction. If we want to get an even more detailed
reconstruction we can use the reconstruction of the AEI as initial estimate for a standard
nodal basis approach. The main benefit of this approach is that the AEI can recover the
main structure of the Marmousi based model, starting from a poor initial estimation. The
nodal basis is then able to recover the finest details, once the intermediate reconstruction
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Figure 8.5: Reconstruction of the Marmousi-based profile using AEI with µ as described
in (8.11). The initial guess (left), the true profile (center) and the reconstruction (right).

Figure 8.6: Reconstruction of the Marmousi-based profile using AEI with µ as described in
(8.11) as initial value for the optimization with the nodal basis. The initial starting value
obtained with the AE (left), the true profile (center) and the final reconstruction (right).

is close enough. By combining both approaches, we achieve an excellent reconstruction as
shown in Fig. 8.6, even in the absence of a good initial guess.

The different bases will play an important role in part III, where several different
regularization are considered. There, we will not only see how the AEI can regularize the
optimization, but also how to avoid unphysical artifacts.



Part III

Multiparameter Inverse Helmholtz
Problem
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Chapter 9

AEI with Multi-Parameter

Multi-parameter inverse problems have been an area of research since 1984 [80]. In the
last couple of years this area of study become very popular, especially in geophysics [66,
72, 90, 30]. The two distinct parameters, density and bulk-modulus, are crucial in oil and
gas exploration. Hence, large number of recent geophysical papers discuss this problem.
Several issues make multi-parameter inverse problems very difficult:

1. Cross-talk - optimizing over several parameters appearing in the same equation
often results in so-called cross-talk, i.e. the parameters create undesired artifacts by
influencing each other [66]. The gradients of the different parameters are coupled
and a small change in one parameter can cause spurious effects and regularization
problems in the other parameters [67].

2. Ill-posedness - another challenge of the multi-parameter inverse problem is its ill-
posedness [72], which is even more extreme than the one-parameter problems.

In the papers mentioned above, some methods are introduced to tackle those problems:
in [72] the full-Newton method for the multi-parameter and the data driven strategy are
presented. The data driven strategy defines the expected decrease in the misfit function
and together with a separate Tikhonov regularization for each parameter, reduces the
cross-talk between parameters. In [67], a sparse version of the Gauss-Newton Hessian is
used for the penalty formulation and in [30] an a priori information on the similarity of the
structures of the parameter is used. In [90], random sequential sources for multi-parameter
inversion with multiple right hand-sides are proposed.

Here, we propose the AEI to solve the multi-parameter inverse problem, based on our
former study for one-parameter AE. In Chapter 4, we used the eigenspace of the TV-
regularization gradient as an adaptive eigenspace and we were thus able to regularize
the problem through the slowly increasing number of eigenfunctions. In Chapter 8 we
extended the AE approach to different regularization gradients. We shall now extend the
AE approach to the multi-parameter inverse problem by using for each parameter its proper
basis, which may be adapted to the parameter properties.

91
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Before we further discuss the AEI approach for multi-parameter inverse problems, we shall
define the particular problem considered.

9.1 The Multi-Parameter Inverse Helmholtz Problem

The propagation of waves through a medium in time can be described by the acoustic wave
equation

1

K(x)
ytt(x, t)−∇ ·

(
1

ρ(x)
∇y(x, t)

)
= f(x, t) , (9.1)

where K(x) > 0 represent the bulk modulus, ρ(x) > 0 the density, f(x, t) the source of the
acoustic waves and y(x, t) the pressure variation [80].

In the literature we often find the acoustic wave equation in the form of (1.1). However,
since we are not always confronted with a piecewise constant density or bulk modulus, we
now would like to consider equation (9.1).

As for the one-parameter (velocity) wave equation (1.1), we use Fourier transform of
the time variable and write

y(x, t) = ŷ(x)e−iωt and f(x, t) = f̂(x)e−iωt , (9.2)

where ω is again the time frequency. We hence get the following two-parameter Helmholtz
equation:

− ω2

K(x)
ŷ(x)−∇ ·

(
1

ρ(x)
∇ŷ(x)

)
= f̂(x) . (9.3)

For the sake of simplicity, we rewrite (9.3) without the Fourier transform notation and
after variable transformation as

− ω2v(x)y(x)−∇ · (u(x)∇y(x)) = f(x) , (9.4)

where v = 1/K > 0 and u = 1/ρ > 0. As in the one-parameter inverse problem of Chapter
2, we impose a Sommerfeld boundary condition to model the unbounded medium

∂y

∂n
− iky = 0, on Γ = ∂Ω . (9.5)

Here k(x) = ω/c(x) is the wavenumber at the time frequency ω and the velocity of the
acoustic waves c(x) is given by

c(x) =

√
u(x)

v(x)
. (9.6)

Again, we use FD to discretize (9.4). For a given u and v the forward operator is

A(u, v)y = f .
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In the multi-parameter AEI, we again opt for the reduced-space approach. The opti-
mization problem then reads

minimize F(u, v) , u ∈ U , v ∈ V where

F(u, v) = 1
2

∑Ns

`=1 ‖PA(u, v)−1f` − ŷ`‖2
+ α1R1(u) + α2R2(v) .

(9.7)

Since the multi-parameter inverse problem is very ill-posed, the regularization functionals
R1(u), R2(v) are added to the misfit. The functionals R1(u), R2(v) are usually chosen as
Tikhonov regularization functionals, see Chapter 3, for example from (3.4), (3.6), (3.7) or
(3.8).

Through the choice of R1(u) and R2(v) we can regularize each parameter separately
according to a priori information. To penalize the difference between the geophysical struc-
tures of two parameters and thus avoid cross-talk, an additional constraint is sometimes
added to the optimization, see [30].

For the optimization we use the inexact (quasi-)Newton method with the Eisenstat-
Walker stopping criteria described in Section 2.3. Since the modifications to the optimiza-
tion method are fairly straightforward, we will omit here the details.

9.2 Cross-Talk

In this section, we illustrate the cross-talk between parameters through numerical examples
and simulations, and show how the parameters cause undesired artifacts in each other.

The Gradients of the Multi-Parameter Inverse Problem

The multi-parameter gradients are coupled and given in the directions of u and v as

∇uF(u, v) =
Ns∑
`=1

(
∂y`(u, v)

∂u

)>
P>
(
PA(u, v)−1f` − yobs`

)
, (9.8)

∇vF(u, v) =
Ns∑
`=1

(
∂y`(u, v)

∂v

)>
P>
(
PA(u, v)−1f` − yobs`

)
. (9.9)

In equations (9.8) and (9.9), we see that one parameter appears in the gradient of the
other. Hence a small change in one parameter can perturb the gradient of the other [67].
Clearly, if we set for both parameters the true value, both gradients (9.8) and (9.9) vanish.
A small perturbation in one of the parameters, however, may cause a non-zero gradient in
both parameters, even if the other parameter already equals the true value.

We illustrate the issue of coupled gradients for the multi-parameter inverse problem
through two slightly different test examples. The examples are chosen such that in both of
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them, one parameter shows the true value and the other one shows a value which is very
close to the true one. In the first example, we modify the variable u slightly and fix the
parameter v at the true solution. In the second example, we make the same modification,
this time in the parameter v, and let the parameter u show the true solution. Hence, we
would expect a zero gradient in the direction of this parameter, and non-zero gradient in
the other. In the following examples this is, unfortunately, not the case. In both cases, a
perturbation occurs in both parameter’s gradients.

Note that we are not optimizing or reconstructing in any of the two examples below,
we are just interested in their reduced-space gradients.

Numerical Examples

We consider u and v from (9.4). For the calculation of the reduced-space gradient, we
consider the following settings:

1. A two dimensional bounded region Ω = (0, 1)× (0, 1).

2. We use nine Gaussian sources located at (0.1, 0.8), (0.2, 0.8), . . . , (0.9, 0.8).

3. Time frequency ω = 8.

4. All parameters are discretized with second order staggered finite differences on a
200× 200 Cartesian mesh (i.e. no AE representation).

Example 1:

In Fig. 9.1, we present a two-parameter profile in Ω. Both parameters, u and v, are piec-
wise constant inside a circle O centered at (0.5, 0.5) and with radius 0.1.

We set the value of the true parameters as follows:{
u(x) = 1.2 x ∈ O ,
u(x) = 1 x ∈ Ω\O ,

{
v(x) = 1.5 x ∈ O ,
v(x) = 1 x ∈ Ω\O .

(9.10)

For the initial guess, we slightly perturb the true value of v inside O by 0.01 but keep u at
the true value: {

u(x) = 1.2 x ∈ O ,
u(x) = 1 x ∈ Ω\O ,

{
v(x) = 1.49 x ∈ O ,
v(x) = 1 x ∈ Ω\O .

(9.11)
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Figure 9.1: Two parameter profile: the true value of u (left), the true value of v (right)

Example 2:

For the second example, we use the same true profile (9.10) and consider the following
initial guess where the value of u inside O is slightly perturbed, wheras v is kept at the
true value: {

u(x) = 1.19 x ∈ O ,
u(x) = 1 x ∈ Ω\O ,

{
v(x) = 1.5 x ∈ O ,
v(x) = 1 x ∈ Ω\O .

(9.12)

The Reduced Gradient:

The last two examples correspond to two initial guesses for the same true profile, where
the initial value is exact for one parameter and slightly modified for the other. Now, we
compute the reduced-space gradients for both parameters and initial guesses. In the upper
row of Fig. 9.2 we show the gradients for u and v of the first example. In the lower row of
Fig. 9.2 we show the gradients for u and v of the second example. Note that the gradients
for both parameter in both experiments are non-zero (they are shown on the same scale).

A zero gradient at the optimal value of any parameter is essential for the success of the
optimization. If a small change in one parameter perturbs the reduced-space gradient of the
other parameter, even if this parameter is at the optimal value, we can expect significant
cross-talk between the parameters, as will be illustrated in the following.

A small modification in one parameter causes not only perturbations in the other pa-
rameter’s gradient, it causes also regularization problems. In both examples shown in
Fig. 9.2, unwanted artifacts can be seen at the boundary and at the source locations. This
illustrates not only the cross-talk between parameters, but also the ill-posedness of the
problem: even when we start that close to the true profile, the gradients may point to a
false solution.
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Figure 9.2: Reduced gradient of each parameter for the profile (9.10): the gradients of u
(left) and v (right), top: for the initial guess (9.11), bottom: for the initial guess (9.12).

Numerical Simulation

To illustrate the problem of cross-talk in inverse problems, we consider again (9.4) in the
unit square Ω = (0, 1) × (0, 1). To reconstruct u and v, we opt for the reduced-space
approach with the inexact Newton method using the full Hessian. We adapt the inexact
(quasi-)Newton algorithm in Section 2.4 to the two-parameter case and set H to the exact
Hessian. Here, we consider the standard nodal basis representation for u and v.

In the upper row of Fig. 9.3, we show the two-parameter target profile. The parameters
u and v are given by{

u(x) = 1.5 x ∈ D
u(x) = 1 x ∈ Ω\D

{
v(x) = 1.4 x ∈ Q
v(x) = 1 x ∈ Ω\Q ,

(9.13)

where D is the kite and Q a square with a side length of 0.4 centered at (0.6, 0.4).

We now reconstruct the parameters u and v by solving problem (9.7) using frequency
stepping at ω = 8, 10, . . . , 198, 200. The wave field y and the control variables u and v are



9.2. CROSS-TALK 97

discretized with second order FD. The reconstructed u and v are shown in the lower row of
Fig. 9.3. Both the shapes of D and Q are nicely reconstructed and their values very close
to the true ones. However, we also observe the shadows of one parameter appearing in the
other: there is cross-talk between the parameters. Still in this example, the cross-talk does
not severely affect the reconstruction of the parameters.

Indeed, in the example presented in Fig. 9.3, the objects do not overlap, which induces
only weak coupling artifacts. We now repeat the last simulation, but we place the center of
the kite D at (0.6, 0.35), such that the kite and the square now overlap - see Fig. 9.4. Now,
we reconstruct the profiles again under the same conditions as before. The reconstruction
of u and v shown in the lower row of Fig. 9.4 clearly displays cross-talk which perturbs the
reconstruction, unlike in the previous example. Even when using Newton’s method with
the exact Hessian, the cross-talk creates spurious effects in the reconstruction.

Figure 9.3: Cross-talk on non-overlapping parameters. Top: true parameter u (left) and v
(right). Bottom: reconstruction for u (left) and v (right).

The same experiments with other quasi-Newton methods yield similar results: the
cross-talk between u and v disturbs the reconstruction just like for the Newton method, see
Fig. 9.3 and Fig. 9.4. Our previous example, illustrated in Fig. 9.2, showed that gradient-
based methods cannot handle the multi-parameter inverse problem. The current numerical
experiment shows that Newton methods alone cannot solve the cross-talk problem.



98 CHAPTER 9. AEI WITH MULTI-PARAMETER

Figure 9.4: Cross-talk on overlapping parameters. Top: true parameter u (left) and v
(right). Bottom: reconstruction for u (left) and v (right).

To tackle the cross-talk, two additional strategies are introduced in [58]: a data driven
strategy, which defines the expected reduction in the misfit function, or a separate Tikhonov
regularization for each parameter. Here, we propose the AEI approach for multi-parameter
inverse problems to tackle the cross-talk.

9.3 AEI for the Multi-Parameter Problem

As concluded in Section 9.2, a regularization term must be added to prevent cross-talk.
Again, we opt for the AEI approach and illustrate the ability of the AE to reduce cross-talk
artifact through numerical examples. In Fig. 9.5 we introduce a two-parameter profile with
u and v, where both parameters are piecewise constant. We build for each parameter a
separate eigenbasis

u(x) = u0(x) +

K1∑
m=1

βm φm(x) and v(x) = v0(x) +

K2∑
l=1

γl ϕl(x), (9.14)
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Figure 9.5: The true parameters u (left) and v (right).

where φm and ϕl are eigenfunctions of two separate bases given by (8.1) with µ in (8.2)
from the penalized TV-regularization gradient. The parameters K1 and K2 are usually
equal, but leave the option to increase either one more slowly than the other.

9.4 Numerical Experiments

We now illustrate the usefulness of the AEI method in preventing cross-talk through two
numerical experiments. First, we perform a simulation using a standard grid-based nodal
representation of the parameters to demonstrate again the cross-talk problem. Second, we
consider AE to reduce the cross-talk.

The parameter settings in the numerical experiments are the following: six super-shot
sources (with SAA) are located along the upper boundary at (0.1, 0.8), . . . , (0.9, 0.8),
whereas the receivers are located on the four lateral boundaries of Ω = (0, 1) × (0, 1).
We discretize (9.4), (4.2)-(4.4) with second-order FD on a 200 × 200 mesh. We set the
initial profiles u ≡ 1 and v ≡ 1 and perform frequency stepping, starting at ω = 8 and
progressively increasing the frequency ω = 10, 20, 30, . . . , 90. A standard truncated G-N
method is used for the optimization, see Section 2.3. For the nodal approach we choose
TV-regularization for R1 and R2 in (9.7) and for the AEI we set α1 = α2 = 0 in (9.7),
i.e. no added regularization.

For the multi-parameter AEI, we consider separate bases for each parameter. Each
basis is obtained by solving (8.1), with µ from (8.2) and ε = 10−6. The number of eigen-
functions K1, and K2 respectively, starts at K1 = K2 = 16 and increases linearly with the
frequency ω. In Fig. 9.6, we display the reconstructions for the standard grid-based nodal
representation and for the AEI approach.

Although both methods recover the position of the essential features of the medium,
the AEI method clearly achieves higher accuracy with minimal cross-talk between the
two parameters. In the nodal basis representation, cross-talk appears inside the various
subregions, especially where the parameters overlap. Moreover, the value of the kite-shaped
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Figure 9.6: Two-parameter profile. Top: the reconstructed parameters u (left) and v (right)
for the nodal approach. Bottom: the reconstructed parameters for the AEI approach.

obstacle in the nodal basis reconstruction of u is far from the true value.

Next, we repeat the last numerical experiment, but this time set the initial profiles u
and v as follows {

u(x) = 1.4 x ∈ O ,
u(x) = 1 x ∈ Ω\O ,

{
v(x) = 1 x ∈ Ω ,

where O is a circle centered at (0.55, 0.4) and with radius 0.2. The initial values for u
and v are plotted at the top of Fig. 9.7 together with the reconstructions for the standard
grid-based nodal representation (middle) and for the AEI approach (bottom).

The initial value of u helps in both cases to get a more accurate value for the recon-
structed kite-shaped obstacle. However, it increases the cross-talk between parameters in
both AEI and nodal approaches. In the case of the nodal basis, the shape of O is seen
in both parameters and the quarter circle at the bottom right has almost vanished. The
cross-talk of the kite-shaped obstacle can be clearly seen in the parameter v.
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Figure 9.7: Two-parameter profile. Top: the initial value for u (left) and v (right). Middle:
the reconstructed parameters for the nodal basis. Bottom: the reconstructed parameters
for the AEI approach.

Hence, in the case of the nodal approach, the reconstruction become even worse in
comparison to the previous example and thus unsatisfactory. On the other hand, in the
case of the AEI approach, light perturbations in the subregion around the kite appear in
both parameters u and v. Additionally, the value of the circle-shaped obstacle which is
placed in the middle of the parameter v is higher than in the true profile and thus, the
perturbations in the AEI approach are comparatively negligible.
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AE from Different Penalty Functionals

In Chapter 8, several AE have been introduced. Here, we can choose for each parameter
a different AE. The choice of a separate AE for each parameter not only allows to include
different a priori information for each parameter, but also reduces the cross-talk. We
illustrate the choice of different AE for each parameter through an example. In Fig. 9.8
we introduce a two-parameter profile with u and v.

Figure 9.8: The true parameters u (left) and v (right). Two-dimensional view (top) and
three-dimensional view (bottom).

For the chosen example, the following a priori information is available: the profile
u is piecewise constant and the obstacles in v are smooth. We shall now compare the
reconstructions with both the nodal basis approach and the multi-parameter AEI.

The parameter settings for the numerical experiments are similar to the first numerical
experiment of this section. Here, we use second-order FD on a 500 × 500 mesh for the
discretization and set the initial profiles u ≡ 1 and v ≡ 1. From the a priori information
on the parameters, we choose judicious bases and expand u and v in (9.14), where φm
are the penalized TV-regularization AE functions, given by (8.1), with µ from (8.2) and
ε = 10−6, and the eigenfunctions ϕl are the H1-regularization AE functions given by (8.3).
The number of eigenfunctions K1 and K2 starts at K1 = K2 = 16 and increases linearly
with the frequency ω. Similarly, for the nodal basis approach, we choose penalized TV-
regularization for R1 and H1-penalty term for R2 in (9.7).
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Figure 9.9: Reconstruction of the two-parameter profile with different regularizations for
each parameter u (left) and v (right). Top: for the nodal basis representation. Bottom:
for the multi-parameter AEI.

In Fig. 9.9, we display the reconstructions for the standard grid-based nodal represen-
tation and for the AEI approach. Again, both methods recover the position of the essential
features of the medium, but the AEI method clearly achieves higher accuracy with minimal
cross-talk. In the last numerical experiments, the different eigenspaces for each parameter
are not only efficiently regularizing the problem, but are also an efficient tool to reduce the
cross-talk between the parameters.
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Conclusions

We have presented a nonlinear optimization method for the solution of inverse scattering
problems in the frequency domain, when the scattered field is governed by the Helmholtz
equation with one or two parameters. Instead of a standard (FD or FE) grid-based rep-
resentation, the unknown (squared) sound speed u is projected to the finite-dimensional
subspace VK = span{u0, φ1, . . . , φK} of much smaller dimension (regularization by space
reduction). The “background” u0 is determined by solving (4.2) whereas the remaining
orthonormal basis functions φm are determined by computing the first K eigenfunctions
in (4.4). The time-harmonic inverse medium problem is formulated as a PDE-constrained
optimization problem and solved by an inexact truncated Newton or quasi-Newton iter-
ation. During the optimization process, which may include frequency continuation, both
the basis and the dimension of VK are repeatedly adapted to the current iterate (adap-
tive regularization). The full Adaptive Eigenspace Inversion (AEI) Algorithm is given in
Section 4.2.

For monotonic one-dimensional or layered media, we have proved that our choice for u0

is in fact optimal. For arbitrary media, our numerical results suggest that it is clearly su-
perior to a straightforward harmonic extension from the known boundary values. Together
with but a few eigenfunctions, the adaptive eigenspace basis yields a remarkably accurate
representation of u. At higher eigenvalues, the eigenfunctions become increasingly oscilla-
tory while no longer carrying useful information about u. Hence adapting the dimension
of the eigenspace basis in (4.5), effectively builds a priori regularization into the inversion,
so that no additional Tikhonov regularization is needed – see Remark 4. As the frequency
ω increases, smaller scale features of the scatterer become visible and the dimension of VK
thus ought to increase accordingly.

In contrast to a standard grid-based nodal representation, the AEI method uses much
fewer control variables for u. Still the reconstructions are remarkably accurate, display less
artifacts and prove more tolerant to partial or missing data. Moreover, our AEI method
leads to a significant reduction in execution time and proves robust with respect to added
noise. By combining it with the Sample Average Approximation (SAA) approach from [38],
it also efficiently handles large numbers of sources.

Since the discrete version of the eigenvalue problem (4.4) leads to a sparse, symmetric
and positive definite matrix, the first K eigenfunctions can be efficiently computed via a
standard Lanczos iteration. If finite element mesh adaptation is used for the numerical so-
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lution of (4.4), small-scale features and interfaces are captured with even greater accuracy
in the reconstruction, without increasing the computational effort. Although the eigen-
functions are global, their information content is highly localized in space so that most
entries are in fact negligible.

Future Work

As summarized above, the AEI method is a remarkable tool, where both analytical and
numerical evidence underpins the accuracy and versatility of it. Numerical experiments
demonstrate the efficiency and robustness to missing or noisy data of the resulting adaptive
eigenspace method. It is able to regularize efficiently the optimization process for one or
two-parameter inverse problems, where in the latter case it is an efficient tool to reduce
the cross-talk between the parameters. However, there are still open questions.

In Chapter 5, we showed some analytical evidence for the choice of the basis. We would
like in the future to prove the optimality of this choice for two and three dimensions.
In the AE approach, truncating the expansion of the parameter u at a finite value K
effectively builds regularization into the AEI approach. In the future we would like to find
an analytical proof, which supports our automatic determination of the parameter K.

In the numerical experiments in Chapter 6, we showed the versatility of the AE approach
and in Chapter 7 we showed how to deal with single frequency data, hence we would like
to expand our approach to other inverse problems and PDE constraints, for example the
inverse Maxwell problem. In Section 6.8, we discussed the computational cost of the AEI
approach, we would like to improve and parallelize our program using a package for PDE
parameter estimation (jInv) [75] implemented in Julia1. Then we may also implement our
method in three space dimensions.

Finally, we have seen in Chapter 9, how the AE is able to remarkably reduce cross-talk
between parameters. We would like to extend our AE approach to more realistic multi-
parameter problems using for example the Marmousi II profile [56] and be able to remove
cross-talk regardless of the starting value or the target profiles.

1http://julialang.org

http://julialang.org
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