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Abstract

Background

There is a perception that genomic differences in the species/lineages of the nine species

making theMycobacterium tuberculosis complex (MTBC) may affect the efficacy of distinct

control tools in certain geographical areas. We therefore analyzed the prevalence and spa-

tial distribution of MTBC species and lineages among isolates from pulmonary TB cases

over an 8-year period, 2007–2014.

Methodology

Mycobacterial species isolated by culture from consecutively recruited pulmonary tubercu-

losis patients presenting at selected district/sub-district health facilities were confirmed as

MTBC by IS6110 and rpoß PCR and further assigned lineages and sub lineages by spoligo-

typing and large sequence polymorphism PCR (RDs 4, 9, 12, 702, 711) assays. Patient

characteristics, residency, and risks were obtained with a structured questionnaire. We

used SaTScan and ArcMap analyses to identify significantly clustered MTBC lineages

within selected districts and spatial display, respectively.

Results

Among 2,551 isolates, 2,019 (79.1%), 516 (20.2%) and 16 (0.6%) were identified asM.

tuberculosis sensu stricto (MTBss),M. africanum (Maf), 15M. bovis and 1M. caprae,
respectively. The proportions of MTBss and Maf were fairly constant within the study period.

Maf spoligotypes were dominated by Spoligotype International Type (SIT) 331 (25.42%),

SIT 326 (15.25%) and SIT 181 (14.12%). We foundM. bovis to be significantly higher in

Northern Ghana (1.9% of 212) than Southern Ghana (0.5% of 2339) (p = 0.020). Using the

purely spatial and space-time analysis, seven significant MTBC lineage clusters (p< 0.05)
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were identified. Notable among the clusters were Ghana and Cameroon sub-lineages

found to be associated with north and south, respectively.

Conclusion

This study demonstrated that overall, 79.1% of TB in Ghana is caused by MTBss and 20%

byM. africanum. Unlike someWest African Countries, we did not observe a decline of Maf

prevalence in Ghana.

Introduction
One of the major threats to tuberculosis (TB) control is the emergence of strains that are resis-
tant to most of the anti-TB drugs, which could make a treatable disease untreatable [1]. Other
factors that limit current TB control efforts are lack of effective vaccines, lack of cheap but
effective rapid diagnostics, emergence of HIV/AIDS pandemic and limited understanding of
the diversity of circulating strains [1]. The increase in TB cases globally requires a concerted
effort to control this global public health problem. This calls for improved understanding of
the disease pathogenesis, epidemiology, and genetic variability within the causative agent.

TB is caused by a group of closely related acid-fast gram-positive bacteria, together referred
to as theMycobacterium tuberculosis complex (MTBC) [2, 3]. The MTBC comprisesM. tuber-
culosis sensu stricto (MTBss),M. Africanum (Maf),M.microti,M. bovis,M. caprae,M.mungi,
M. suricattae,M. orygis andM. pinnipedii. They have varying host ranges:Mycobacterium
microti affects voles, [4, 5]M. caprae a pathogen of goats and sheep [6].M.mungi: Mangoose
pathogen,M. orygis a pathogen of antelope [7],M. pinnipedii a pathogen of seals and sea lions
[8].Mycobacterium bovis displays the broadest spectrum of host affecting humans and animals
[9].Mycobacterium tuberculosis sensu stricto andM. africanum are the main causative agents
of TB in humans; referred to as human adapted MTBC and the remaining seven species as ani-
mal adapted [3]. The human adapted MTBC comprises seven main phylogenetic lineages,
which have been confirmed by single nucleotide polymorphisms (SNPs) and whole genome
sequencing [3, 10–12]. These lineages were further found to exhibit a phylogeographical struc-
ture, which means that specific lineages are closely associated with specific geographic regions,
and preferentially infect persons originating from these regions. Importantly, findings from
recent genomic analysis indicate that some of these human MTBC lineages are as genetically
distinct from each other as from the animal-adapted forms of MTBC [10] and have genomic
differences that may influence host-pathogen interaction as well as applicability of control
tools such as diagnostics and vaccine. Thus the lineages distribution needs to be taken into
account in the development and testing of new control tools such as vaccines to account for
any possible differential phenotypes. West Africa shows a unique mycobacterial population
structure, as it is the only region worldwide where lineages of Maf are endemic [13].

Work done mainly in the Gambia, suggested that Maf is attenuated compared to MTB [13,
14]. While both transmit equally, the rate of progression to disease was slower in Maf infected
contacts. Furthermore, MTBC lineage 6 (also known as Maf West Africa 2) was found to be
associated with HIV co-infection and reduced ESAT6 secretion [15, 16]. Thus MTBss seems to
have a competitive advantage that could lead to a replacement of Maf with the more virulent
MTB. This might be particularly likely due to the large population increases in West African
cities [17]. One could also argue that with the HIV pandemic and other immune suppression
diseases, Maf will still be an important pathogen in West Africa. Recent publications from
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various countries, however, observed an interesting trend: the slow replacement of Maf with
MTBss, especially the Cameroun sub-lineage of lineage 4. This phenomenon was first
described in Guinea-Bissau, where lineage 6 decreased from 51% to 39% in about 2 decades
[18]. Declines in prevalence of the otherM. africanum lineage have also been observed in Côte
d’Ivoire, and Cameroon [19–22].

At the same time, understanding of the genetic population structure of circulating MTBC
strains is increasingly becoming important for TB control. Current genomic studies have
revealed that substantial strain genetic diversity exists among the different members and geno-
types of MTBC, which may have implications for the development and deployment of new TB
vaccines and diagnostics [23]. In this study, we analysed the distribution of MTBC lineages and
sub-lineages in Ghana, a country harbouring six of the seven identified MTBC [24, 25] over an
8-year period. Our findings indicated a fairly constant distribution of the two main MTBC spe-
cies and lineages over time. In addition, we observed clustering of some MTBC lineages at spe-
cific geographical locations.

Materials and Methods

Ethics Statement
The Scientific and Technical Committee and then the Institutional Review Board (IRB) of the
Noguchi Memorial Institute for Medical Research with a federal wide assurance number
FWA00001824 reviewed the protocols and procedures for this study and approved them. Writ-
ten informed consent was obtained from participants using a designed form which was
approved by the IRB. Methods for sputum sampling conformed to WHO guidelines (two sputa
per patient) and patients’ identity was protected.

Study Locale and Participants Data
The study was conducted from July 2007 to December 2014 in Ghana, involving sputum smear
positive TB cases. From July 2007 to December 2011, patients were recruited from five health
facilities; Korle-Bu Teaching Hospital (KBTH) in the Greater Accra region, Agona Swedru
Government Municipal Hospital (ASH), Winneba Government Hospital (WGH), St Gregory
Catholic Clinic from the Central Region, all in the southern section of Ghana (Fig 1). Between
2012 and 2014, based on an on-going prospective study; sputum was collected from suspected
TB cases reporting to the selected health facilities in the Accra Metropolitan Authority (AMA)
and 2 districts (Mamprusi East (MamE) and Tamale Metropolis (TamM)) in the northern
region of Ghana (Fig 1) after informed consent. The study sampling sites span 13 administra-
tive districts with a combined population of 4,024,810 [26–29] in three regions according to
the current administrative district division status created in 2013 (S1 Table). The AMA admin-
istrative district is made up of 10 sub-districts; Ablekuma South, Ablekuma North, Ablekuma
Central, Ashiedu Keteke, Okai Koi South, Okai Koi North, Osu Klotey, Ayawaso East, Ayawaso
Central and Ayawaso West Wogon with a combined population of 1,665,086 according to the
2010 population and housing census conducted in Ghana [26, 30]. The ten sub-districts within
the AMA for the purposes of this study were merged into 5 sub-districts (Fig 1), based on the
geographical demarcation existing as at 2007. These 5 sub-districts were: Ablekuma (Able),
Ashiedu Keteke (AshK), Ayawaso (Ayaw), Okaikoi (Okai) and Osu Klottey (OsuK). The AMA
covers a total land area of 136.674 square kilometres. Kpeshi, a former administrative sub-dis-
trict of AMA is located on the eastern boundary of AMA and has been currently broken down
into two districts; La Dade Kotopon Municipal and Ledzokuku/Krowor Municipal. We
included the former Kpeshie demarcation in all targeted analysis involving AMA as TB
patients still access facilities within AMA. Sites in the northern region, TamM and MamE,
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covers a land area of 790.5 and 1,823.6 square kilometres respectively with a combined popula-
tion of 492,360 (TamM: 371,351 and MamE: 121,009). Together, TamM and MamE constitute
19.9% of the total population in the northern region of Ghana [29].

Information on age, sex, nationality, ethnicity, employment status, previous history of TB,
crowding, substance abuse and duration of symptoms were obtained from the patients with a
structured questionnaire.

Fig 1. Map of sampling sites and study area. Sputum samples were obtained from fifteen sampling sites
(health facilities) all located within three regions in Ghana; Greater Accra, Central and Northern regions.
During the period September 2012 –December 2014, samples were obtained mainly from all the 13
diagnostic centres within the Accra metropolis, (serving more than 46% of the Greater Accra region
populace) and the two health facilities located in the northern region (Tamale Teaching Hospital and BMC
Nalerigu). The ArcMap program in ArcGIS v. 10.0 was used to create the map.

doi:10.1371/journal.pone.0161892.g001
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Mycobacterial Isolation, Species and Lineage Classification
Mycobacterial species were isolated by decontaminating sputum samples with equal amount of
5% oxalic acid solution, then inoculation on Lowenstein Jensen media and incubated as previ-
ously described [31]. Members of the MTBC were confirmed by PCR detection of the insertion
sequence IS6110 and rpoβ as previously described [32]. Classification into the main phyloge-
netic lineages was achieved by large sequence polymorphism typing assay identifying regions
of difference (RD) 4, 9, 12, 702, 711 [2, 3, 14] and also by spoligotyping following manufactur-
er’s directions (Isogen Bioscience BVMaarssen, The Netherlands).

Data Management and Analysis
Data obtained using the structured questionnaire was double entered using Microsoft Access
and validated to correct entry errors. The questionnaire data primarily provided us with the
year of diagnosis and residential address (location) of each TB case for the spatio-temporal
analysis. In addition to these data, other demographic and clinical characteristics of each par-
ticipant as indicated above were generated. The association of specific lineages and/or sub-line-
ages of the MTBC with time and/or geographical locations were explored with Fishers exact
test using the Stata statistical package (Stata Corp., College Station, TX, USA). All analyses
were run with significance level pegged at p< 0.05.

To determine the TB case notification rates for the period 2012–2014, we obtained the
projected population of the individual districts using the exponential growth rate formula;
Pt = Poe

rt (based on the assumption of constant population growth similar to compounded
interest) [33]. Where; Pt = projected population, Po = initial population, e = base of the natu-
ral logarithm, r = intercensal growth rate and t = time elapsed after last census. The intercen-
sal growth rates (S1 Table) used for the various regions were obtained from the Ghana
statistical service 2010 population and housing census data [26].

The GIS co-ordinates of the participants’ self-reported district of residency was used to con-
struct a pictorial plot of the distribution of the MTBC lineages analysed using the ArcMap (Eco-
nomic and Social Research Institute, version 10.0) [34]. The district allocation data generated
was linked to a molecular data of all TB isolates and was used for TB lineage clustering analysis.

Spatial and Space-time Analysis
Kulldorff’s scan statistics (SaTScan™ 9.4.2) tool [35], a commonly used tool for spatial and
space-time cluster analysis for diseases in a wide variety of settings [36–40] was used for analy-
sis of spatio-temporal clustering of TB cases using data obtained only within the time period;
September 2012 to December 2014. TamM was excluded from analysis where 2012 data was
used since we recorded no TB case in 2012. The Kulldorff’s scan statistics tool was used to
detect significant MTBC clusters using the Monte Carlo simulations [41]. Three input files
(cases, population and coordinates) were built using excel and saved in the required format for
upload into the SaTScan software. The discrete Poisson model was used for the analysis with
the assumption that the number of cases at each district had Poisson distribution with a known
population at risk [41]. All other parameters were set at default for both spatial and space-time
analysis (S4 Table). The results of the analyses were tabulated to add statistical significance to
the inferences made using ArcMap.

Normalization of TB cases for within district comparison
To analyse the spatial and space-time distribution of MTBC cases at the district/sub-district
level, we normalized the relative case frequencies against their respective reference population

Distribution of Mycobacteria Strains

PLOS ONE | DOI:10.1371/journal.pone.0161892 August 26, 2016 5 / 19



obtained from the Ghana Statistical Service [26, 27, 29, 30] Also, records of specific genotypes
(or sub-lineages) were normalized using all recorded cases of the specified genotype (or line-
age) within the specified time. For example, all Ghana and Cameroon sub-lineages per district
were normalized using all Lineage 4 cases as the denominator.

Results

Characteristics of Patients Presenting with Tuberculosis
Sputum smear positive patients from whomMTBC strains were isolated were 2551/3110
(82.0%) cases, comprising 70% (1789/2551) males and 30% (762/2551) females. Participants’
age ranged between 2 to 91 and a median age of 39 years. Ninety-one point seven percent
(2339/2551) of the patients were from Southern Ghana and the remaining 8.3% (212/2551)
from Northern Ghana (Fig 2). The HIV status of 1613 patients was indicated, of which 15.5%
(250/1613) were HIV positive. The additional demographic and clinical characteristics of the
cases are indicated in Table 1.

The Population Structure of MTBC causing pulmonary TB in Ghana
Two thousand six hundred and three mycobacterial isolates were obtained from 3110 samples
giving a cumulative isolation rate of 83.7%. We identified 2551 of the isolates as members of
the MTBC and 52 as non-tuberculous mycobacteria (NTM) (as well as those with negative
mycobacteria) which were excluded from further analysis. Among those confirmed as MTBC,
2019 (79.1%) were MTBss, 516 (20.2%) were Maf, and 16 (0.6%) animal strains (15M. bovis
(SIT 1037, 482) and 1M. caprae) (Fig 2A). Six of the seven lineages of the human adapted
MTBC (Maf and MTBss) were identified in the following proportions: L1 (36; 1.4%), L2 (77;
3.0%), L3 (23; 0.9%), L4 (1883; 74.3%), L5 (338; 13.3%) and L6 (178; 7.0%), respectively (Fig
2B). The sub-lineages identified within the L4 were the Cameroon (1151:61.1%) followed by
the Ghana (330; 17.5%), then Haarlem (119; 6.3%), LAM (39; 2.1%), Uganda I (38; 2.0%),
Uganda II (5; 0.3%), New-1 (1; 0.1%), S (3; 0.2%) and H37Rv-like (2; 0.1%) (Fig 2C).

Spatial Distribution of MTBC Genotypes
The combined number of isolates analysed from the different geographical areas, identified
species, lineages and sub-lineages are indicated in Fig 2A–2D, respectively. As shown in Fig
2D, there was no statistical difference in the Maf proportion between the north (17.0%; 36/212)
and the south (21.9%; 378/1726) (p = 0.1099). However, we found the proportion of animal-
adapted species (MTBC other than MTBss and Maf) in the north (1.9%; 4/212) to be more
than twice the proportion in the south (0.7%; 12/1726) (p<0.0884; OR = 2.74). There was
unequal spatial distribution of L4 sub-lineages and spoligotypes. The proportion of the Ghana
sub-lineage was statistically higher in Northern Ghana (32.3%) compared to 20.1% in the
south (p = 0.0016, OR = 1.9, 95%CI = 1.3–2.9). Whereas the Spoligotype international type
(SIT) 61 was more likely to be found in the south (p = 0.0330; OR = 0.7; 95% CI = 0.4–0.9), the
SIT 53 was more likely to be found in the north (p = 0.0015; OR = 2.0; 95% CI = 1.3–3.1). In
addition, L2 was proportionally higher in the north (5.7%; 12/212) compared to the south
(3.1%; 53/1726).

Even though the sample size changed over time due to increase in case study sites, the pro-
portion of distinct species did not change over time (Fig 3). The species/lineages/sub-lineages
distributions of MTBC within the 13 administrative districts where participants resided are dis-
played in Fig 4.
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Spatial and space-time clustering analysis of MTBC cases at the district/
sub-district level (2012–2014)
Spatial and space-time analyses were carried out for districts where sampling was performed
within the time period; September 2012 to December 2014. These districts were AMA (sub-
divided into sub-districts due to the population density) in the south and in the north, MamE.
The TB case notification rate ranged from 3 to 52 cases/100,000 individuals at risk within the
districts/sub-district analyzed (Fig 5A) with the highest case notification rate occurring in 2013
(52 cases/100,000). In a purely spatial analysis, we found two significant clusters within the
study period based on cases notified. The most likely cluster consisted of two sub-districts,

Fig 2. Spatial distribution and prevalence of identifiedmycobacterium tuberculosis lineages.Diagram
shows the spatial distribution of (A) 2551Mycobacterium tuberculosis complex (MTBC) strains; (B) 2535
human adapted MTBC; (C) regional prevalence of 1883 Lineage 4 sub lineages; (D) regional prevalence of
516Mycobacterium africanum (Maf) isolates from the geographical regions served by the health facility
where sampling was carried out in Ghana. Animal strains were found to be associated with the North
(p = 0.0389). Similarly, Lineage 2 was found to be associated with the North (p = 0.0006). The most dominant
Lineage 4 sub-lineage in the North is Ghana (p = 0.0000) whereas in the South is Cameroon, even though the
association is not statistically significant. The unknown sub-type of Lineage 4 is associated with South
(p = 0.0001).

doi:10.1371/journal.pone.0161892.g002
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Table 1. Demographic and clinical data of 2551 TB cases.

Variable (Total number analysed) Number (Percentage)

Sex (2551)
Male 1789 (70.1)

Female 762 (29.9)

Age category (2551)

08–25 459 (18.0)

26–40 1082 (42.4)

41–77 980 (38.4)

>77 30 (1.2)

Residency (2551)
North 212 (8.3)

South 2339 (91.7)

Occupation (2530)

Skilled 490 (19.2)

Unskilled 1890 (74.1)

Unemployed 150 (5.9)

Settlement (2550)

Urban 2283 (89.5)

Rural 267 (10.5)

HIV status1 (1613)

Yes 250 (15.5)

No 1363 (84.5)

Presence of BCG scar 2(1817)

Yes 904 (49.8)

No 913 (50.2)

Income* (2551)

None 771 (30.2)

Low 1500 (58.8)

High 280 (11.0)

Drinking status3 (2071)

Yes 556 (26.8)

No 1515 (73.2)

TB in the past4 (2029)

Yes 218 (10.7)

No 1811 (89.3)

Education Level (2551)

None 300 (11.7)

Primary 605 (23.7)

Secondary 1551 (60.7)

Tertiary 95 (3.7)

Smear Grade (2551)

Scanty 235 (9.2)

1 985 (38.6)

2 531 (20.8)

3 800 (31.4)

In Household number (2551)

<5 589 (23.1)

>5 1962 (76.9)

(Continued)

Distribution of Mycobacteria Strains

PLOS ONE | DOI:10.1371/journal.pone.0161892 August 26, 2016 8 / 19



Table 1. (Continued)

Variable (Total number analysed) Number (Percentage)

Ethnicity (2551)

Akan 800 (31.4)

Ewe 339 (13.3)

Ga 595 (23.3)

Mole -Dagbon 36 (1.4)

Gruma 5 (0.2)

Guan 9 (0.4)

Others 767 (30.0)

Marital status (2551)

Single 859 (33.7)

Married 1037 (40.7)

Divorced 221 (8.7)

Widowed 104 (4.1)

Co habiting 330 (12.9)

Cough (2551)

< 2 weeks 2117 (82.9)

> 2 weeks 122 (4.8)

Symptoms other than cough 312 (12.2)

Night Sweat 5 (2219)

Yes 1372 (61.8)

No 847 (33.2)

Hemoptysis 6 (2227)

Yes 480 (21.6)

No 1747 (78.4)

House type (2551)

Self-contained 486 (19.1)

Compound House 1707 (66.9)

Others 358 (14.0)

Swollen glands 7 (2211)

Yes 210 (9.5)

No 2001 (91.5)

Chest Pain 8 (2234)

Yes 1717 (76.9)

No 517 (23.1)

Nationality 9 (2251)

Ghana 2187 (97.2)

Nigeria 21 (0.9)

Togo 12 (0.5)

Niger 11 (0.4)

Ivory Coast 7 (0.3)

Others West African Nationals 13 (0.7)

Contact with TB patient (2551)

Yes 316 (12.4)

No 2234 (87.6)

Smoking 10(2419)

Yes 500 (20.7)

(Continued)
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AshK and OsuK (p = 0.0000, RR = 3.99) with a secondary cluster occurring at MamE,
(p = 0.0000, RR = 2.16) (Table 2). Similar observations were made using a space-time analysis
with the likely clusters occurring in 2013. To analyze the spatial and space-time distribution of
the two human adapted MTBC (MTBss and Maf), we normalized the relative district case fre-
quencies to that for all cases obtained per district/year (Fig 5B and 5C). We found that the nor-
malized distribution of both MTBss and Maf fluctuated over the three-year period, and no
particular district/sub-district showed constant high values (Fig 5B and 5C). In a purely spatial

Table 1. (Continued)

Variable (Total number analysed) Number (Percentage)

No 1919 (75.3)

1 = 938 missed data for HIV status,
2 = 734 missed data for Presence of BCG scar,
3 = 480 missed data for Drinking status,
4 = 522 missed data for TB in the past,
5 = 332 missed data for Night Sweat,
6 = 324 missed data for Night Sweat,
7 = 340 missed data for Swollen glands,
8 = 317 missed data for Chest Pain,
9 = 300 missed data for Nationality,
10 = 132 missed data for Smoking.

* Income below 1000GH₵ was defined as low whilst those above 1000GH₵ as high.

doi:10.1371/journal.pone.0161892.t001

Fig 3. Temporal distribution and prevalence of human adaptedmycobacterium tuberculosis complex (MTBC). Figure displays a
stacked graph showing the temporal distribution of human adapted MTBC (left y-axis) and a linear graph showing the prevalence of
Mycobacterium tuberculosis sensu stricto (MTBss) andMycobacterium africanum (Maf) (right y-axis) over the entire 8-year study period.

doi:10.1371/journal.pone.0161892.g003
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Fig 4. Spatial distribution of human adapted MTBC lineages andmajor sub-lineages within the eight-year study period. The
figure shows the distribution of MTBC species/lineages/sub-lineages within the 13 districts where participants resided. The blue
coloured panel shows the distribution of all the tuberculosis cases recruited with well-defined residential status. The red, brown and
green coloured panels show the distribution of lineage 4, lineage 5 and lineage 6 respectively. All other sub-lineages/species have
been indicated in the respective legends. This figure was created using the ArcMap program in ArcGIS v. 10.0. Abbreviations:
MTBC,Mycobacterium tuberculosis complex; MTBss,Mycobacterium tuberculosis sensu stricto; Maf,Mycobacterium africanum;
L4, Lineage 4; L5, Lineage 5; L6, Lineage 6; Ghana, Ghana genotypes (Ghana sub-lineage); Cam, Cameroon sub-lineage; MamE,
Mamprusi East district; TamM, Tamale Metropolis; AgWM, AgonaWest Municipal; GomE, Gomoa East; AwuS, Awutu Senya;
GaSM, Ga South Municipal; GaWM, GaWest Municipal; GaCM, Ga Central Municipal; GaEM, Ga East Municipal; AMA, Accra
Metropolis; LaNM, La-Nkwantanang Madina Municipal; AdeM, Adenta Municipal; Kpes, Kpeshie Municipal.

doi:10.1371/journal.pone.0161892.g004
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Fig 5. Spatial distribution of isolated MTBCwithin selected districts (2012–2014). This figure shows the; (A) Sum and case
notification rate of all TB cases from September 2012 to December 2014, (B) Sum and normalized distribution of MTBss cases, (C)
Sum and normalized distribution of Maf. The total number of cases per year was used as the denominator for normalization.
Sampling from TamM did not meet our criteria for being included in analyses for case notification rate and so was excluded in all
columns of panel A. Likewise we also recorded no cases in 2012 as such TamMwas excluded from 2012 analysis (panel B and C).
This figure was created using the ArcMap program in ArcGIS v. 10.0. Abbreviations: MTBss,Mycobacterium tuberculosis sensu
stricto; Maf,Mycobacterium africanum; MamE, Mamprusi East district; TamM, Tamale Metropolis; AshK, Ashiedu Keteke; Ayaw,
Ayawaso; Able, Ablekuma; OsuK, Osu Klottey; Okai, Okaikoi; Kpes, Kpeshie.

doi:10.1371/journal.pone.0161892.g005
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analysis, significant clusters (p = 0.0000, Table 2) were observed in 6 of the 8 districts (MamE,
TamM, Ayaw, Okai, Kpes and OsuK).

The Ghana sub-lineage was found to significantly cluster in the north (p = 0.013,
RR = 2.27). A space-time analysis revealed two significant clusters for the Cameroon sub-line-
age with the most likely cluster occurring in 2014 (p = 0.000, RR = 1.68) consisting of five dis-
tricts (Kpes, Okai, Ayaw, TamM and MamE). The second Cameroon sub-lineage cluster
involved AshK and OsuK, which occurred in 2013 (p = 0.003, RR = 1.79, Fig 6C). Comparing
the North and South for association with some risk factors showed association of the North
with rural settings (P = 0.0000), farming (0.0000), contact with cattle (0.0003), compound
housing (0.0000) whereas the South was associated with driving as occupation (0.0163) as
shown in supplementary data (S6 Table).

Discussion
Our objective was to analyse in time and space the prevalence of MTBC species and genotypes
among isolates obtained from sputum-positive TB cases over an 8-year period in Ghana. A sec-
ondary objective was to determine the space clustering of specific genotypes. Our longitudinal

Table 2. Most likely spatial clusters detected in the study area using SaTScan analysis.

TB
cases

Reference
population

Cluster
type

Year (s) of
observed
cluster

Clustered
districts

Observed
cases

Expected
cases

Log
Likelihood
ratio

Relative
risk

P-
value

Type of
analysis

All TB
cases

District
population

Most likely 2012–2014 AshK, OsuK 213 61.2 123.9 3.99 0.000 Purely
spatial

All TB
cases

District
population

Secondary 2012–2014 TamM, MamE 138 67.9 29.8 2.16 0.000 Purely
spatial

All TB
cases

District
population

Most likely 2013 AshK, OsuK 123 29.7 85.1 4.48 0.000 Space-
time

All TB
cases

District
population

Secondary 2013 TamM, MamE 50 20.5 15.4 2.5 0.000 Space-
time

MTBss All cases per
district

Most likely 2012–2014 MamE, TamM,
Ayaw, Okai, Kpes,
OsuK

588 398.1 75.0 2.21 0.000 Purely
spatial

Maf All cases per
district

Most likely 2012–2014 MamE, TamM,
Ayaw, Okai, Kpes,
OsuK

158 107.8 18.9 2.12 0.000 Purely
spatial

L4 All L4 cases in
2012

Most likely 2012–2014 Able 285 279.1 0.1 1.03 1.000 Purely
spatial

L4 All L4 cases in
2012

Most likely 2012 Able 53 37.1 3.2 1.46 0.204 Space-
time

Gh All L4 cases in
2014

Most likely 2014 MamE, TamM 23 10.8 5.6 2.27 0.013 Space-
time

Cam All L4 cases in
2014

Most likely 2014 Kpes, Okai, Ayaw,
TamM, MamE

122 80.0 11.5 1.68 0.000 Space-
time

Cam All L4 cases in
2013

Secondary 2013 AshK, OsuK 52 30.4 6.8 1.79 0.003 Space-
time

This table shows the most likely spatial clusters detected from the SaTScan analysis. The TB case in the first column shows the category of TB lineage/sub-

lineage to which the spatial or space-time analysis was performed. The districts to which the clusters were observed are shown in column 5 with the

respective year of cluster observation shown in column 4. The last column shows the type of cluster analysis performed. Abbreviations: TB, tuberculosis;

MTBss,Mycobacterium tuberculosis sensu stricto; Maf,Mycobacterium africanum; L4, Lineage 4; Gh, Ghana genotypes (Ghana sub-lineage); Cam,

Cameroon sub-lineage; MamE, Mamprusi East; TamM, Tamale Metropolis; AshK, Ashiedu Keteke; Ayaw, Ayawaso; Able, Ablekuma; OsuK, Osu Klottey;

Okai, Okaikoi; Kpes, Kpeshie.

doi:10.1371/journal.pone.0161892.t002
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Fig 6. Spatial distribution of lineage 4 andmajor lineage 4 sub-lineages within selected districts (2012–2014). The figure shows
the (A) Sum and normalized distribution of lineage 4 cases, (B) Sum and normalized distribution of Ghana sub-lineages cases, (C) Sum
and normalized distribution of Cameroon sub-lineage cases. The total number of cases per year was used as the denominator for
normalization. This study recorded no TB cases for TamM in 2012, consequently TamMwas excluded from all analysis carried out
using 2012 data. This figure was created using the ArcMap program in ArcGIS v. 10.0. Abbreviations: L4, Lineage 4; Ghana, Ghana
genotypes (Ghana sub-lineage); Cam, Cameroon sub-lineage; MamE, Mamprusi East district; TamM, Tamale Metropolis; AshK,
Ashiedu Keteke; Ayaw, Ayawaso; Able, Ablekuma; OsuK, Osu Klottey; Okai, Okaikoi; Kpes, Kpeshie.

doi:10.1371/journal.pone.0161892.g006
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analysis indicated that: 1) the Beijing and Ghana genotypes of Lineages 2 and 4, respectively, as
well as the animal adapted MTBCs are isolated more often from patients from Northern than
Southern Ghana and 2) the proportion of Maf among the isolates over the study period
remained fairly constant.

Our first evidence of an association between the north and the Ghana genotype of Lineage 4 as
well as the Beijing genotype of Lineage 2 reiterates the phylogeographical nature of the human-
adapted MTBCs such that even within a single country there can be variations in the distribution
of distinct genotypes within a lineage and specific geographical regions. For example in Senegal, it
has been observed that the proportion ofM. africanum causing TB varies by region [42].

The Ghana genotype clustered in the two districts (MamE and TamM) of the north (Fig 6B)
whereas the Cameroon sub-lineage clustered in the South as two clusters (Fig 6C; Table 2).
Thus clustering alone cannot be used as a proxy for active transmission of these genotypes in
the specific geographical areas as the resolution of the molecular tool (spoligotyping) used for
characterisation within this study is not enough to infer on-going transmission because of its
low discriminatory power. However, they may be indicative of the areas of origin or introduc-
tion of these genotype/spoligotypes into the country. The Cameroon genotype as observed
from various molecular studies is the most prevalent genotype causing TB in West Africa and
our findings confirm this and also show that this genotype may have been introduced into the
country through the south. Our findings call for studies to investigate the transmission dynam-
ics of these sub-lineages within the respective geographical areas; this is of public health con-
cern because evidence that MTBC genotypes might influence disease phenotype. For example,
an association between Beijing strains (Lineage 2) and drug resistance has often been reported,
and we recently showed that the Ghana genotype is also associated with drug resistance in
Ghana (manuscript submitted). This means that effective control of TB in the Northern region
of Ghana would be challenged with these two genotypes in higher proportions.

We also found the animal-adapted MTBC to be statistically associated with Northern
Ghana (p = 0.0381, OR = 3.73). There were 5 patients among our study population who had
direct contact with cattle including 4 butchers and 1 farmer who owns cattle and all 5 were
infected with animal strains of the MTBC. This finding supports previous observations that
people who are in direct constant contact with cattle and/or their products may be at risk of
infection withM. bovis [43]. However, there were some patients from whom animal strains
were isolated but did not have constant direct contact with cattle or any other farm animal.
This finding compares with a similar work done in Mexico where most of the patients from
whom animal strains of the MTBC were isolated had no direct contact with livestock but rather
had consumed unpasteurized milk products in the past [44]. Our work design did not include
analysis of patients’ dietary lifestyle and therefore we have no data on whether those patients
are in a similar situation. Nevertheless, this association could be due to the dominance of live-
stock in the Northern region as compared to the south [26] meaning more possible interaction
of humans with animals in the north as compared to the south.

The proportion of MTBss analysed among our data set remained stable and higher than
that of Maf over the eight-year period (Figs 2A and 3). This result is in contrast with reports
from other West African countries, indicating a decline of Maf [20, 21]. Various reasons have
been suggested to explain the observed decline including non-specificity of biochemical assays
used previously. Nevertheless, this study shows that Maf has remained fairly constant over the
study period at an average of approximately 20% with significant fluctuations observed within
four different periods {(2009/2010, P = 0.0422), (2010/2011, P = 0.0033), (2011/2012,
P = 0.0002), (2013/2014, P = 0.0014)}.

This finding in conjunction with others [45–47] indicates that the two TB causing patho-
gens have adapted well within the Ghanaian population. Moreover, two independent studies
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conducted by our group found a strong association between L5 and an ethnic group in Ghana
[[25], Asante-Poku et al, submitted].

Study limitations
We did not collect GPS coordinate of the residence of the study participants, so each partici-
pant residential district was generated using his or her residential addresses from the question-
naire. This might not be accurate and so future studies should be done using GPS coordinates
taken from each individual participant’s actual residence.

Supporting Information
S1 Table. Districts and population statistics within designated time points within the study
period. The last population census conducted in Ghana was in 2010. As a results to obtain the
population statistics for the period 2012 to 2014 (columns 5 to 7) we used the exponential
growth rate formulae as described in methods. The intercensal growth rates used per region
were: Greater Accra (3.1%), Central region (3.1%), Northern region (2.9%). �sub-districts
within AMA; †Projected population from 2010 population census data.
(PDF)

S2 Table. Annual distribution of TB cases used for spatial or space-time analysis (2007–
2014). The table lists the number of tuberculosis cases sampled within each district/sub-district
for only participants with residential status. Periods within the 8 year study period where no
sampling was done are marked N/A (not available). The final column and row contains total
counts for each district/sub-district and year respectively. �sub-districts within AMA.
(PDF)

S3 Table. Lineage distribution of isolated MTBC recruited and used for spatial or space-
time analysis (2007–2014). The table lists the distribution of tuberculosis species/major line-
ages/sub-lineages sampled within each district/sub-district for only participants with well-
defined residential status. The final column and row contains total counts for each district/sub-
district and TB species/lineage/sub-lineage respectively. Abbreviations: TB, tuberculosis;
MTBss, Mycobacterium tuberculosis sensu stricto; Maf, Mycobacterium africanum; L4, Line-
age 4; L5, Lineage 5; L6, Lineage 6; Gh, Ghana genotypes (Ghana sub-lineage); Cam, Cameroon
sub-lineage. �sub-districts within Accra metropolis.
(PDF)

S4 Table. Default parameters used in SaTScan for clustering analysis. The table contains a
list of the default settings used in performing the clustering analysis using the SaTScan soft-
ware.
(PDF)

S5 Table. Primer sequences for large sequence polymorphism (LSP) assay. The table con-
tains a list of primer sequences used for the LSP assay.
(PDF)

S6 Table. Comparison of some risk factors among the two regions.
(PDF)

S7 Table. Genotyping profile of 2551 MTBC isolates from Ghana.
(PDF)

S8 Table. Distribution of Species and Lineages of MTBC.
(PDF)
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