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Summary
Spin physics plays a fundamental role in many fields of modern condensed matter,

notably for spintronics and spin-based quantum computation. At the heart of this lies
the spin orbit interaction (SOI), a relativistic effect that is responsible for many fascinating
phenomena discovered recently, such as topological insulators, Majorana fermions, spin
effects in strongly correlated materials and in optical lattices. The main focus of this
PhD work is on spin phenomena and, in particular, on the microscopic origin of SOI in
graphene nanostructures and on phenomena connected to it.

The last decades have seen remarkable experimental progress in fabrication of high-
purity carbon nanotubes (CNTs). Similar developments have taken place in the field
of graphene. This progress paved the way to use carbon-based materials for spin-based
effects that are fundamental both for quantum information processing and spintronics.
One goal in spintronics is the control of spin by electric fields or gates since this is fast
and local, and thus much superior over magnetic field control of spins. The key to such
electric control is spin orbit interaction, as it couples charge and spin degrees of freedom.

We have studied SOI effects in carbon nanotubes and other carbon-based materials.
The theory we have developed allowed us to explain several experiments on SOI in CNT
quantum dots. Moreover, we have proposed a more efficient spin-manipulation in quantum
dots by means of e.g. electron dipole spin resonance (EDSR). The SOI also opens up new
possibilities for striking effects such as helical modes, modes which transport opposite
spins in opposite directions, and Majorana Fermions (MFs), particles that are their own
antiparticles, in carbon nanotubes, single- and bilayer graphene.

Majorana fermions in semiconducting nanowires have attracted wide attention over
the past years, partially due to their non-Abelian statistics, which is of great interest
for topological quantum computation. In our work, we have studied the wavefunction
structure and shown that the various MF wavefunctions have different localization lengths
in real space and interference between them leads to pronounced oscillations of the MF
probability density, which can serve as a signature of MFs in experiments. In the case of a
transparent normal-superconducting junction, the MF leaks out from the superconducting
into the normal section of the wire and is delocalized over the entire normal section. The
interplay between a uniform and a spatially periodic magnetic fields in Rashba nanowires
leads to a competition of phases with two topological gaps closing and reopening, resulting
in unexpected reentrance behavior. Besides the topological phase with localized Majorana
fermions (MFs) we find new phases characterized by fractionally charged fermion (FF)
bound states of Jackiw-Rebbi type. The system can be fully gapped by the magnetic fields
alone, giving rise to FFs that transmute into MFs upon turning on superconductivity.

Spin orbit interaction is also of a great use for the manipulation of spin states in
quantum dots. For example, we have developed a scheme for implementing the CNOT
gate over qubits encoded in a pair of electron spins in a double quantum dot. The scheme
is based on exchange and spin orbit interactions and on local gradients in Zeeman fields.
The switching times for the proposed CNOT gate can be as fast as a few nanoseconds for
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realistic parameter values in GaAs semiconductors.
Spin-orbit interaction is not the only interesting hallmark of spin physics. Another

quantity of interest is the spin susceptibility, which is connected to the Rudermann-
Kittel-Kasuya-Yosida (RKKY) interaction - indirect exchange interaction between spins
over relatively large distances mediated by itinerant carriers, determines the magnetic
properties of the system. Moreover, it can provide a mechanism for manipulation of spin
over larger distances. This is of great interest for the field of spin qubits in order to build
scalable quantum computing architectures. We have studied RKKY interaction in CNTs
and graphene nanoribbons in the presence of both spin orbit interactions and magnetic
fields. In metallic CNTs the RKKY interaction depends strongly on the sublattice and,
at the Dirac point, is purely ferromagnetic (antiferromagnetic) for the localized spins on
the same (different) sublattice, whereas in semiconducting CNTs the spin susceptibility
depends only weakly on the sublattice and is dominantly ferromagnetic. The spin orbit
interactions break the SU(2) spin symmetry of the system, leading to an anisotropic
RKKY interaction of Ising and Moryia-Dzyaloshinsky form, besides the usual isotropic
Heisenberg interaction. Quite remarkably, parameter regimes could be identified that
show strong anisotropies. This opens the door for magnetism in these low-dimensional
carbon systems that can be controlled by electric fields.

ii
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Chapter 1

Introduction

Spin physics plays a fundamental role in many fields of modern condensed matter physics,
notably for spintronics and spin-based quantum computation. At the heart of this lies the
spin orbit interaction (SOI), a relativistic effect derived from the Dirac equation. This
interaction couples spin and orbital degrees of freedom. 1 In condensed matter physics
the SOI gives rise to many striking phenomena such as topological insulators, Majorana
fermions, spin effects in quantum dots, in strongly correlated materials, and in optical lat-
tices. In this thesis we consider a subset of them; however, the work done demonstrates
the richness of the field. We focus in particular on spin effects in semiconducting nanowires
and carbon-based materials such as graphene, bilayer graphene (BLG), graphene nanorib-
bons (GNRs), and carbon nanotubes (CNTs). Graphene is a two-dimensional honeycomb
lattice composed of carbon atoms [2, 3]. Graphene nanoribbons are finite size sheets of
graphene, and carbon nanotubes are sheets of graphene rolled up to cylinders [4]. The
experimental techniques for creating, isolating, and analyzing these materials have by
now remarkably matured, such that characteristics that have previously been obscured
by disorder effects can now be experimentally resolved.

Below we discuss in more detail some of the most striking effects occurring in these
systems due to the presence of the spin orbit interaction.

Energy splittings. One of the most obvious consequences of the presence of SOI in a
system is a modification of the energy spectrum. In general, the SOI breaks the rotation
invariance of spin space and lifts the spin degeneracy of energy levels. The resulting
energy splittings can be measured directly in experiments, allowing one to get a direct
access to the SOI strength. Several experiments performed on carbon nanotube quantum

1Its origin can be intuitively understood from the following reasoning [1]. An electric field in the
lab frame is seen as an effective magnetic field in the rest system of the moving electron. The effective
Hamiltonian can be derived directly from the Dirac equation. This Hamiltonian of a general form can
be incorporated into the effective continuum theory of condensed matter via the framework of the tight-
binding model, by projecting onto the subspace spanned by the orbitals of each individual atom (see
Chapters 2 and 3). This allows us not only to estimate the strength of the SOI but also to gain insight
about symmetries of the system.
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Chapter 1

dots [5, 6, 7] have confirmed our theory of the SOI arising from curvature effects [8, 9].

Helical modes: spin filters and Cooper pair splitters. The breaking of the
spin degeneracy and the opening of gaps in the spectrum is not only interesting from a
fundamental point of view but it is also of importance for many applications in terms of
potential spin devices with radically new functionality. For example, the SOI in carbon
nanotubes enables the generation of helical modes in an all-electric setup [8, 9]. Heli-
cal modes are rather special conduction modes, where opposite spins are transported in
opposite directions, which makes them sought-after for practical implementations. In
particular, helical modes pave the way towards the realization of spin filters. Such filters
are of a great importance for the field of spintronics which is based on the generation and
control of spin polarized currents by purely electric means. Helical modes have also been
proposed for implementing Cooper pair splitters [10]. This is a quantum device where
Cooper pairs are extracted from a supercondcutor in such a way that the partners of a
pair are spatially separated but their spin-singlet state is left intact. This enables the cre-
ation of entanglement over long distances carried by electrons in solid state systems. Such
devices, which are of great interest for quantum computing and quantum communication,
would also allow one to test the Einstein-Podolsky-Rosen paradox and Bell inequalities.
These tests would provide information about fundamental properties of our world such
as non-locality of quantum matter.

Majorana fermions and fractional fermions. Majorana fermions [11] (MFs), be-
ing their own antiparticles, have attracted much attention in recent years in condensed
matter physics [12, 13, 14, 15, 16, 17, 18, 19]. Besides being of fundamental interest,
these exotic quantum particles have the potential for being used in topological quantum
computing due to their non-Abelian statistics [12]. In particular, the possibility of real-
izing them as bound states at the ends of semiconducting nanowires in the proximity of
an s-wave bulk superconductor has led to much research activity in condensed matter.
In this scheme, helical modes are generated in the presence of Rashba SOI by applying
an external magnetic field. The proximity induced superconductivity couples states with
opposite momenta and spins, hence helical modes. If also a spatially varying magnetic
field is present, one can generate fractional fermions [20], analogously to Jackiw-Rebbi
fermion bound states [21]. Fractional fermions were postulated by Su, Schrieffer, and
Hegger in polyacetylene long ago [22]. However, there the half-charge is masked as they
appear in pairs due to spin degeneracy. Quite remarkably, however, with the rotational
spin symmetry being broken, this degeneracy is absent in the setup proposed in our work
[20], and thus the fractional charge is for the first time directly amenable to experimental
observation.

Electric control of spin qubit states (EDSR). The manipulation of the electron
spin by time-dependent external fields is extremely important for quantum computing
and spintronics. Traditionally, a time-dependent magnetic field, coupling to the electron
spin via the Zeeman energy, is utilized for Rabi flopping. However, the combination of
time-dependent electric fields and spin-orbit coupling gives rise to an all-electric control of
the electron spin [so called electric dipole spin resonance (EDSR)]. By applying an electric
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field in such a way that the induced SOI favours a spin direction perpendicular to the spin
quantization axis of the quantum dot, we demonstrate that resonant spin transitions are
possible [9]. The manipulation by an electric field rather than by a magnetic field allows
one to perform more operations at the same time because the former can be applied locally
with high precision via gates, whereas this is rather difficult to achieve with magnetic
fields.

Spin based quantum computing. Quantum computing [23] is based on encoding,
manipulating, and measuring quantum information encoded in the state of a collection of
quantum two-level systems - qubits. Spin-1/2 is an ideal implementation of a qubit, since
it is a natural two-level system, and every pure state of a spin-1/2 corresponds to a state
of a qubit. For this reason, spins have been considered as carriers of quantum information
in a variety of proposals [24]. The initial proposal [25] called for spins in quantum dots
electrically manipulated by the exchange interaction and local time-dependent Zeeman
fields. A variety of other encoding schemes and manipulation techniques [26, 27] rely upon
encoded qubits. In these schemes, the simplicity of qubit states and minimal number
of physical carriers of quantum information are traded for less stringent requirements
on experimental implementations. The optimization in the encoding and manipulation
protocols is always guided by the state of the art in experiments. Recent results suggest
that spin qubits can reside in a variety of material hosts with novel properties. For
example, quantum dots in graphene [28] and in carbon nanotubes [29] are less susceptible
to the decoherence due to nuclei and spin orbit interaction. However, GaAS remains
the most promising route to spin qubits for the near future due to the highly advanced
experimental techniques developed for this material.

Spin orbit interaction not only defines the spin levels (splittings) in quantum dots but
can also be used for the manipulation of quantum states. For example, the SOI induces
a Dzyaloshinskii-Moriya (DM) exchange interaction between two neighboring quantum
dots that can be controlled by gates, enabling fully controlled precession of the singlet-
triplet-qubit state on the Bloch sphere [30]. Moreover, the SOI affects or quite often even
determines electron spin decoherence in quantum dots, so a complete understanding of
the SOI becomes highly desirable.

Anisotropic RKKY interaction. The Rudermann-Kittel-Kasuya-Yosida (RKKY)
interaction [31, 32, 33], an indirect exchange interaction between two localized spins via
spinful charge carriers, is not only a fundamental characteristics of the host system but
also finds interesting and useful applications, historically mostly in low-dimensional mag-
netism. A more recent one is the controlled long-range coupling of spins between distant
quantum dots, [34, 35], which is needed in scalable quantum computing architectures
such as the surface code [36] built from spin qubits [37]. In addition, the RKKY interac-
tion, enhanced by electron-electron interactions, can initiate a nuclear spin ordering that
leads to striking effects such as helical nuclear magnetism at low temperatures [38, 39].
Spin orbit effects break the SU(2) spin-symmetry of the itinerant carriers and thus lead
to - besides the effective Heisenberg interaction - anisotropic RKKY terms of Moryia-
Dzyaloshinsky and of Ising form. Quite remarkably, when the Fermi level is tuned close
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to the gap opened by the SOI in semiconducting nanotubes, we find that the isotropic and
anisotropic terms become of comparable size [40]. This has far reaching consequences for
ordering in Kondo lattices with RKKY interaction, because this opens up the possibility
to have magnetic phase transitions in low-dimensional systems at finite temperature that
are tunable by electric gates.

This thesis is organized as follows. In Chapters 2 and 3 we study the interplay of
strong electric fields, magnetic fields, and spin-orbit interactions in carbon nanotubes
[8, 9]. Focusing on the second shell π and σ orbitals, we derive an effective low-energy
theory describing the electrons near the two Dirac points. We also check our main results
versus numerical simulations. This theory allows us to predict several striking effects.
One of them is the appearance of (spin-filtered) helical modes in an all-electric setup.
For perfect armchair nanotubes, there are two pairs of helical modes, one for each valley,
transporting up-spins in one direction and down-spins in the opposite direction. This
helicity is perfect in that the average spin is non-zero only for this one spin component
and zero for all others. Furthermore, we show that the EDSR effect may be implemented
by a time-dependent electric field perpendicular to the CNT. The typical Rabi frequencies
which can be achieved in this system are in the MHz-GHz range.

The realization of the helical modes in carbon nanotubes opens a new perspective for
generation of Majorana fermions in carbon-based systems [17]. In Chapter 4 we discuss
such a scenario. By placing the CNT on top of an s-wave superconductor and tuning the
Fermi level and the electric field, one can induce pairing of Kramers partners from opposite
Dirac points. This pairing opens up inequivalent gaps for the exterior and the interior
branches. The Majorana modes obtained are stabilized by either tuning the electric field
such that the exterior gap acquires a predominantly s-wave character or by increasing the
temperature to remove the pairing in the interior branches.

In Chapter 5 we focus on the spinor-wavefunction for MFs and derive analytical expres-
sions for various limiting cases, loosely characterized as weak and strong SOI regimes [18].
We find that these solutions are superpositions of states that come, in general, from dif-
ferent extremal points of the energy dispersion, one centered around zero-momentum and
the others around the Fermi points. Despite having nearly disjoint support in momentum-
space, all such contributions must be taken into account, in general, in order to satisfy the
boundary conditions imposed on the spinor-wavefunctions in real space. As a consequence
of this composite structure of the MF wavefunctions, there will be more than one localiza-
tion length that characterizes a single MF. The superposition also gives rise to interference
effects that lead to pronounced oscillations of the MF probability density in real space.
If only a section of the wire is covered with a superconductor, a normal-superconducting
(NS) junction is formed. For this case, we find that the MF becomes delocalized over the
entire normal section, while still being localized in the superconducting section, as noted
in a numerical study by Chevallier et al. [41]. Here, we will find analytical solutions for
this problem, valid in the weak and strong SOI regime. Depending on the length of the
normal section, the support of the MF wavefunction is, again, centered at zero momentum

4



or the Fermi momenta.

In hybrid systems considered in Chapter 5 a topological phase with a MF at each end
of the nanowire is predicted to emerge once an applied uniform magnetic field exceeds a
critical value [19]. As pointed out recently [42], the Rashba SOI in such wires is equivalent
to a helical Zeeman term, and thus the same topological phase with MFs is predicted to
occur in hybrid systems in the presence of a helical field but without SOI [43, 44]. In
Chapter 6 we go a decisive step further and address the question, what happens when both

fields are present, an internal Rashba SOI field as well as a helical–or more generally–a
spatially varying magnetic field [20]. Quite remarkably, we discover that due to the
interference between the two mechanisms the phase diagram becomes surprisingly rich,
with reentrance behavior of MFs and new phases characterized by fractionally charged
fermions (FF), analogously to Jackiw-Rebbi fermion bound states [21]. Since the system
is fully gapped by the magnetic fields at certain Rashba SOI strengths (in the absence
of superconductivity), these FFs act as precursors of MFs into which they transmute by
turning on superconductivity.

Carbon nanotubes (see Chapter 4) are not the only candidate among carbon-based
systems to host helical modes or Majorana fermions. Topologically confined bound states
in bilayer graphene, predicted to occur if a gap and band inversion is enforced by gates [45],
provide a good basis for MFs. Quite remarkably, these states are localized in the region
where the voltage changes sign, are independent of the edges of the sample, and propagate
along the direction of the gates, thus effectively forming a quantum wire. In Chapter 7
we address the spin degrees of freedom in such BLG wires [46]. It is the goal of this work
to include spin physics and to show that it gives rise to striking effects. In particular, we
uncover a mechanism enabling helical modes propagating along the wires. In analogy to
Rashba nanowires, topological insulators, and CNTs, such modes provide a platform for a
number of interesting effects such as spin-filtering and Majorana fermions. Here, the SOI
plays a critical role and in order to substantially enhance it, we consider a BLG sheet with
local curvature. Two pairs of top and bottom gates define the direction of the quantum
wire, which is chosen in such a way that it corresponds to a ‘semi-CNT’ of zigzag type. In
this geometry, the energy levels of the mid-gap states cross in the center of the Brillouin
zone. A magnetic field transverse to the wire in combination with intervalley scattering
leads to an opening of a gap between two Kramers partners at zero momentum.

In Chapter 7 we show that helical modes can be generated also in graphene nanorib-
bons by a spatially varying magnetic field or by Rashba SOI with a uniform magnetic field.
[47] We demonstrate that the opening of the SOI gap is universal for both semiconducting
and metallic graphene armchair nanoribbons independent of the mechanism that induces
the spin orbit interaction, leading to a helical regime with nearly perfect spin polarization.
Moreover, we have checked numerically that the helical regime is robust against boundary
defects. All this makes graphene nanoribbons promising candidates for spin effects and
spintronics applications. Our proposal is also a next step in bringing topological features
to graphene systems. Topological states proposed by Kane and Mele [48] turned out to
be experimentally undetectable due to the small intrinsic SOI of graphene. In contrast,
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we show that if a GNR in the helical regime is brought into proximity to an s-wave su-
perconductor, the system can be tuned into a topological phase that supports Majorana
fermions. This opens up the possibility to use GNR for topological quantum computing.

Spin orbit interaction effects find their place also in quantum dots, which are of an
important use for quantum computation. We study the implementation of the CNOT
gate for ST-qubits in Chapter 9. The setup consists of an array of quantum dots with
controlled growth direction and the relative orientation of the dots. Pairs of neighboring
dots build the ST-qubits, where the quantization axis is determined by an externally
applied magnetic field B. Moreover, we introduce an inhomogeneity in magnetic fields,
Bi, by local micromagnets or by the hyperfine field. The resources used for time-dependent
control are the exchange interaction Jij(t) and the SOI vector βij(t). If the SOI vector β
is parallel to the external (B) and local magnetic fields (Bi), we are able to construct a
perfect scheme for the CNOT gate based on the π/4-phase gate, Uπ/4, consisting of four
basic steps. Two of the steps involve interaction of spins that belong to different qubits,
and open the possibility of leakage errors. Under the condition of total control over the
system parameters, we show that the leakage can be eliminated. In the other two steps,
the tuning of the exchange interaction enables perfect swap gates even in the presence
of field gradients and SOI. Motivated by recent results on the surface code, we shortly
comment also on the 2D architecture. Here we encounter a situation in which the SOI
vector β and the magnetic fields, B and Bi, are perpendicular. In this case, the leakage
to the non-computational space with Sz 6= 0 is inevitable, however, it can be made very
small.

In Chapter 10 we study the Rudermann-Kittel-Kasuya-Yosida interaction in carbon
nanotubes and graphene nanoribbons at zero temperature in the presence of spin orbit
interaction.[40] The spin susceptibility in metallic CNTs, characterized by a Dirac spec-
trum (gapless and linear), crucially depends on whether the localized spins that interact
with each other are from the same or from different sublattices. In particular, if the
Fermi level is tuned exactly to the Dirac point where the chemical potential is zero the
interaction is of ferromagnetic type for spins on A-A or B-B lattice sites, whereas it is
of antiferromagnetic type for spins on A-B lattice sites. In semiconducting CNTs, with
a sizable bandgap, the spin susceptibility depends only slightly on the sublattices. In all
cases, the spin susceptibility is an oscillating function that decays as 1/R, where R is the
distance between the localized spins. The spin orbit interaction breaks the spin degener-
acy of the spectrum and the direction invariance of the spin space. As a result, the spin
susceptibility is described by a tensor χαβ that has two non-zero off-diagonal components
χxy = −χyx, the finite values of which signal the presence of SOI in the system. More-
over, the RKKY interaction is also anisotropic in the diagonal terms, χzz 6= χxx = χyy.
Quite surprisingly, we find that all non-zero components, diagonal and off-diagonal, can
be tuned to be of equal strength by adjusting the Fermi level. These anisotropies, giving
rise to Ising and Moriya-Dzyaloshinski RKKY interactions, thus open the possibility to
have magnetic order in low-dimensional systems at finite temperature. Metallic armchair
GNRs behave similarly to metallic CNTs. Indeed, in both cases the spin susceptibil-
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ity shows a strong dependence on the sublattices with, however, different fast oscillating
prefactors. A Rashba-like SOI interaction can be generated in armchair GNR by periodic
magnetic fields. In contrast to CNTs with intrinsic SOI, this field-generated SOI can be
gauged away giving rise to a simple structure of the spin susceptibility tensor.
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Chapter 2

Helical modes in carbon nanotubes
generated by strong electric fields

Helical modes, conducting opposite spins in opposite directions, are shown to exist in
metallic armchair nanotubes in an all-electric setup. This is a consequence of the interplay
between spin-orbit interaction and strong electric fields. The helical regime can also
be obtained in chiral metallic nanotubes by applying an additional magnetic field. In
particular, it is possible to obtain helical modes at one of the two Dirac points only, while
the other one remains gapped. Starting from a tight-binding model we derive the effective
low-energy Hamiltonian and the resulting spectrum.

This chapter has been published in Physical Review Letters 106, 156809 (2011).
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Chapter 2

2.1 Introduction

Carbon based solid state physics has attracted much attention over the past decades. One
of the best studied structures in this field is the carbon nanotube (CNT), a hexagonal
lattice of carbon atoms rolled up to a cylinder [1]. The experimental techniques for
creating, isolating, and analyzing CNTs have by now remarkably matured, such that
characteristics that have previously been obscured by disorder can now be experimentally
resolved [2, 3, 4, 5]. An example is the spin-orbit interaction (SOI), which is generally
small in CNTs [6, 7, 8, 9], yet can affect electron spin decoherence in CNT quantum dots
[10, 11], or allow spin control [12, 13] and spin filtering [14]. A complete understanding
of the SOI in CNTs becomes therefore desirable.

In this Letter, we investigate the effect of SOI in combination with a strong electric
field in single-wall CNTs within an effective low-energy theory. In particular, we identify
experimentally accessible parameter regimes in which SOI and electric fields create helical
modes without the need for magnetic fields. This must be contrasted with the helical
modes in one-dimensional metals with Rashba SOI, which can be created only with an
additional magnetic field that opens a gap at the crossing point of the two Rashba-shifted
parabolas [14, 15]. Helical modes, conduction channels transporting opposite spins in
opposite directions, naturally lead to spin filtering, but they have also potential application
as Cooper pair splitters [16] and, if in proximity with a superconductor, lead to Majorana
bound states at the edges of the conductor [17]. Helical modes have also attracted much
attention recently in the context of topological insulators [18]. Such physics may be
achieved in CNTs in an all-electric setup.

Perfect helical modes appear in armchair CNTs, while in metallic chiral CNTs the
spins of the left and right moving modes are not precisely opposite. In the latter, however,
perfect helicity can be restored in one Dirac point by an additional magnetic field, whereas
the other Dirac point becomes insulating at these energies. This corresponds to the
effective suppression of one valley for the low-energy physics.

2.2 Tight-binding model for CNTs

The effective theory is based on a comprehensive model which incorporates the curvature
effects for nearest-neighbor hopping and orthogonal orbitals [1]. Charge effects in CNTs
due to electric fields have been considered before [19, 20, 21]. Here, we also include spin
effects induced by external uniform electric fields (see Fig. 2.1). For this we start from a
tight-binding description of the honeycomb lattice on a cylinder surface where we include
all orbitals of the second shell and the hybridization of the π and the σ bands. The
screening of the electric field by electron-electron interactions is treated on the mean-field
level. The corresponding Hamiltonian is

H = Hbs +HSO +H
(1)
E +H

(2)
E . (2.1)
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Tight-binding model for CNTs

The band structure Hamiltonian Hbs includes the hopping of electrons between orbitals
of neighboring carbon atoms and accounts for the orbital energies Hbs = tµµ

′

ij c
†
iµλcjµ′λ +

εsc
†
isλcisλ. Here ciµλ are the electron operators, i and j are nearest neighbor sites on the

honeycomb lattice, λ = ±1 is the spin in z-direction, and µ runs over the second shell
orbitals with µ = s the s orbital and µ = pr, pt, pz the p orbitals pointing in radial,
tangential and z-direction (see Fig. 2.1). The π band is formed by the pr orbitals,
while the σ band is formed by pt, pz, s. Summation over repeated indices is assumed.
The hopping amplitude tµµ

′

ij between (j, µ′) and (i, µ) is a linear combination of the four
fundamental hopping amplitudes Vss, Vsp, V

π
pp, V

σ
pp [1] with coefficients depending on the

relative orientation of the orbitals µ and µ′ [22]. The energy difference between s and p
orbitals is εs.

R

Figure 2.1: Cross section of a CNT in a uniform electric field E. The orientation of the
orbitals pr, pt as well as the local coordinate system r̂, t̂ depends on the azimuthal angle
ϕ. The s orbital is indicated by the dashed circles. The electric field E is oriented along
the x-direction of the global coordinate system. The z-direction is along the nanotube.

The atomic SOI is modeled by the on-site Hamiltonian HSO = i∆SOε
µνηc†iµλS

ν
λλ′ciηλ′ ,

where now µ, η = pr, pt, pz, ε
µνη is the Levi-Civita symbol, and ∆SO = 6meV [23]. The

index ν = r, t, z labels the spin components in the local coordinate system, i.e., Sr =
Sx cosϕi + Sy sinϕi, S

t = Sy cosϕi − Sx sinϕi, with ϕi the azimuthal angle of site i (see
Fig. 2.1) and Sx,y,z the spin Pauli matrices (with eigenvalues ±1).

An electric field oriented perpendicular to the tube axis affects the electrons in two
ways. First, the orbital energies are modulated by the electrostatic potential gradient.
This is described by the on-site energy Hamiltonian H

(1)
E = eE∗R cos(ϕi)c

†
iµλciµλ, where

E∗ is the screened electric field, e is the electron charge, and R is the CNT radius. This
Hamiltonian induces a rearrangement of charges on the CNT surface and so, by Coulomb
interaction, leads to screening of E. Hence, H

(1)
E depends on the screened field inside the

tube E∗, which we find in the linear regime to be given by E∗ = E/γ with γ ≃ 5, in
agreement with Refs. [19, 20, 21]. However, the renormalization of the Fermi velocity vF
[20] is found to be negligible for the parameters used in this paper.

Second, an electrostatic potential φ(r) varying on the lattice scale induces intra-atomic
transitions between orbitals µ and µ′ because generally 〈µ|φ(r) |µ′〉 6= 0. Most important
is the s-pr transition because of two reasons: 1) It is the only transition directly coupling
π and σ bands, thus giving rise to a first order effect in the s-pr coupling strength. 2)
Its strength is determined by the unscreened field E and not by E∗ < E. Indeed, the
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induced potential φind cancels in H
(2)
E , i.e. 〈pr| φind(r) |s〉 = 0, as φind is approximately

an even function in r about r = R. Based on these arguments, we keep only the s-pr
transition. The validity of this approximation was also verified numerically. The resulting
Hamiltonian is H

(2)
E = −eEξ0 cos(ϕi)c

†
iprλ

cisλ+H.c., where ξ0 = −〈pr| r |s〉 = 3aB
Z

≃ 0.5Å
with aB the Bohr radius and Z ≃ 3.2, where we have assumed hydrogenic wave functions
for the second shell carbon orbitals.

Table 2.1: The effective Hamiltonian for CNTs. a ≃ 2.4Å is the lattice constant. θ
is the chiral angle (θ = π

6
for armchair CNTs). σ1,2 are the Pauli matrices in sub-

lattice space. Sx,y,z are the spin operators (eigenvalues ±1). (Vss, Vsp, V
π
pp, V

σ
pp, εs) =

−(6.8, 5.6, 3.0, 5.0, 8.9) eV [1], ∆SO = 6 meV [23]. The Fermi velocity is vF =√
3|V π

pp|a/2~ ≃ 0.95× 106 m/s.

Hcv
orb = ~vF (∆k

t
cvσ1 + τ∆kzcvσ2)

∗)
~vF∆kcv = ~vF

(
∆ktcv
∆kzcv

)
= τ

V π
pp(V

π
pp − V σ

pp)

8(V π
pp + V σ

pp)

( a
R

)2(− cos 3θ
sin 3θ

)
≃ τ

5.4meV

R[nm]2

(
− cos 3θ
sin 3θ

)

Hcv
SO = αSzσ1 + τβSz ∗) α =

√
3εs∆SO(V

π
pp − V σ

pp)

18(Vsp)2(R/a)
≃ −0.08meV

R[nm]
β =

−
√
3∆SOV

π
pp cos 3θ

3(V π
pp + V σ

pp)(R/a)
≃ −0.31meV

R[nm]
cos 3θ

Hel
SO = τeEξSyσ2 ξ = −∆SO

3Vsp
ξ0 ≃ 2× 10−5nm eEξ ≃ 0.2 meV for E = 1 V/nm

∗) see also Refs. [6, 7, 8, 9].

2.3 Effective low-energy theory

The microscopic model allows us to formulate an effective low-energy theory for the π
band near the Dirac points K and K′. As explained, we include the curvature effects
and the s-pr transition H

(2)
E important for the SOI, and neglect the other inessential

interactions. We have tested this against numerical solutions of the full Hamiltonian
[Eq. (2.1)]. We also checked that additional trigonometrically modulated perturbations,
such as s-pt transitions or sublattice staggered potentials, do not change the spectrum
qualitatively.

Hamiltonian (2.1) can be written as H = Hπ +Hσ +Hπσ, where Hπ and Hσ describe
the π and σ bands, and Hπσ the σπ coupling. For momenta k close to a Dirac point
||Hπσ|| ≪ ||Hπ−Hσ||. In perturbation theory we obtainHeff

π = Hπ+Hπσ[Hπ−Hσ]
−1Hπσ+

O((a/R)2). Here we keep only terms up to second order in the small parameter a/R and
the small energies ∆SO, eEξ0 which must be compared to typical hopping amplitudes ∼
eV. Hπσ ≃ Hπσ

bs +Hπσ
SO +H

(2)
E , where the superscript πσ refers to the terms coupling the

π and the σ bands. We calculate the effective Hamiltonian for the π band

Heff
π = H0

π +Hcv
orb +Hcv

SO +Hel
SO, (2.2)

where the last three terms are explicitly listed in Table 2.1, including numerical values
for typical CNTs. Furthermore, H0

π = limR→∞Hπ = ~vF (k
0
Gσ1 + kτσ2) is the π band
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Effective low-energy theory

Hamiltonian for flat graphene with periodic boundary conditions, with τ = ±1 labeling
the two inequivalent K and K′ points and k the momentum along the tube measured
from the corresponding Dirac point. For semiconducting CNTs, k0G = (n − τδ/3)/R 6= 0
leads to a gap 2~vF |k0G|, where n ∈ Z is the subband index and δ = (N1 − N2)mod 3 for
a (N1, N2)-CNT. In the following, we consider only the lowest subband in metallic CNTs
defined by k0G = 0 [1].

Hcv
orb describes the curvature induced k-shift of the Dirac points [6, 9], e.g., K →

K − ∆kcv, with ∆kcv = (∆ktcv,∆k
z
cv). The shift ∆kzcv is parallel to the tube and can

be removed by a gauge transformation shifting the origin of k. For non-armchair CNTs,
∆ktcv 6= 0 and gaps are introduced by the curvature Hcv

orb. Hcv
SO contains the curvature

induced SOI [6, 7, 9, 8]. It contains only Sz because Sr,t depend on cosϕ and sinϕ, which
average out in the ϕ integration.

On the other hand, H
(2)
E ∝ cosϕ which, in combination with the SOI terms involving

St = Sy cosϕ − Sx sinϕ, leads to a nonvanishing Hel
SO ∝ Syσ2 ∆SOeEξ0

∫
dϕ cos2 ϕ [24].

Since the term proportional to Sr couples only within the σ band, it leads to negligible
higher order corrections. Hence,

Hel
SO = τeEξSyσ2, (2.3)

where ξ = −ξ0∆SO/3Vsp. This is one of our main results.

-1.2 -0.8 -0.4 0 0.4 0.8 1.2

Figure 2.2: Energy dispersion ε(k) of a (10,10) armchair nanotube (implying R =
0.67nm). The solid (red) lines show the analytical results [see Eq. (2.4) and Tab. 2.1] and
the dots show numerical results obtained from H in Eq. (2.1). The axial k-shift ∆kzcv has
been removed in both, the numerical and the analytical spectrum. The arrows correspond
to the Sy projections and are reversed for E → −E. The field strength is E = 1 V

nm
so

that the splitting 2eEξ ≃ 0.4meV and the gap 2|α| ≃ 0.24meV. The dashed lines indicate
the spectrum for the case α = 0 with the spin-degeneracies at k = 0. The dashed gray
(light blue) lines indicate chemical potentials at which only helical modes exist [see Eq.
(2.5)].
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2.4 Spectrum and helical states

First we focus on armchair CNTs, assuming that ∆kzcv has been gauged away. Further-
more, ∆ktcv = 0 and β = 0 so that the physics is completely determined by the interplay
of Hel

SO and αSzσ1. In Fig. 2.2, we show the spectrum for a (10,10)-CNT in an electric
field of 1V/nm. For |k| ≫ |α/~vF |, Hel

SO aligns the spin in y-direction. For the right-
moving branch (τσ2 = 1, positive slope) the energy of the Sy =↑ state is higher than
the energy of the Sy =↓ state by 2eEξ. For the left-moving branch (τσ2 = −1, negative
slope) the Sy =↓ state is higher in energy. Without the term αSzσ1 the spectrum would
be spin-degenerate at k = 0 (dashed lines in Fig. 2.2). Unlike in usual one-dimensional
conductors [15, 14] these degeneracies cannot be lifted by a uniform magnetic field be-
cause hybridization between the crossing bands requires the combination of spin flip and
sublattice hybridization. This is, however, caused precisely by αSzσ1, which is generated
by virtual transitions to the σ band that result in the simultaneous spin and sublattice
hybridization. As a result, a gap of size 2|α| is opened at each degeneracy point. The
resulting spectrum, shown in Fig. 2.2, at the K point has four branches, the subbands
|m, k〉, given by

ε(k) = ±eEξ ±
√
α2 + (~vFk)2. (2.4)

An equivalent spectrum exists at K′. The spin orientations on the branches for |k| ≫
|α/~vF | are identical at both Dirac points (arrows in Fig. 2.2). For general k, the Sy

expectation value in state |m, k〉 is given by

〈m, k|Sy |m, k〉 = ±k/
√

(α/~vF )2 + k2, (2.5)

where for eEξ > 0 the + corresponds to subbands m = 1, 4 in Fig. 2.2, and the − to
m = 2, 3 (and vice versa for eEξ < 0). Note also that the expectation values of Sx and Sz

in all states give zero, so that only 〈Sy〉 6= 0. In this sense, the states are always perfectly
spin-polarized, even though the measured total spin is not unity. The bands crossing the
chemical potentials µ1 and µ2 indicated in Fig. 2.2 have 〈Sy〉 ≃ ±0.95. We also note that
electron-electron interactions generally lead to an enhancement of the gap 2|α| [14].

Fig. 2.2 shows the analytical spectrum Eq. (2.4) for an armchair CNT in comparison
with a numerical diagonalization of Hamiltonian (2.1). The qualitative features of the
spectrum are well preserved by the effective theory.

If, in an armchair CNT, the chemical potential is tuned to µ1 or µ2 (see Fig. 2.2),
the remaining conducting modes are helical, i.e., the direction of motion is coupled to the
spin direction. In the present case, the spin points along E × v, where v = ±vF ẑ for
right and left movers, respectively. In particular, this implies that E → −E also reverses
the helicity, thus inverting the spin filtering. We note that the helical modes are stable
against small deviations from the (N,N)-CNT (armchair) case with chiral angle θ = π

6
.

The additional terms βSz and ~vF∆k
t
cvσ1, which appear for θ 6= π

6
, partially align the spin

in z-direction and open gaps at the zero-energy crossing points. We find that for metallic
chiral CNTs, e.g. with (N + 3, N) and N ≃ 10− 20, that are close to the armchair limit,
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Valley suppression
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Figure 2.3: Chiral (17,14)-CNT with electric field E = 1V/nm (eEξ ≃ 0.2meV). (a) The
spectrum and (b) the spin expectation values at the K/K′ point for the |2, k〉 subband
and magnetic field Bz = 0. For Bz = 0.81T, the bands (c) at K′ (dashed lines) are
gapped, while the spectrum at K (solid lines) has the same form as in the armchair case
[Eq. (2.4)]. The size of the gap is 2|α| = 0.16meV. The spin expectation values (d) at K
for |2, k〉 follow closely the armchair case [see Eq. (2.5)].

good spin polarization (〈Sy〉 ∼ 90% and 〈Sz〉 < 20%) can still be obtained (see also Fig.
2.3).

2.5 Valley suppression

In chiral (N + 3l, N)-CNTs, with l = 1, 2, ..., it is possible to mostly restore the armchair
spectrum and spinor properties for one Dirac point by the further application of a magnetic
field Bz along the tube. As mentioned above, θ < π

6
results in cos(3θ) 6= 0, thus leading to

two additional terms in the Hamiltonian: a transverse k-shift ~vF∆k
t
cvσ1 and an effective

Zeeman field τβSz. These terms have opposite signs at different Dirac points. The field
Bz leads to terms of the same form, yet with equal signs at both Dirac points, so that the
chirality-induced cos(3θ)-terms can be canceled at one of the Dirac points, whereas they
are doubled at the other. Indeed, the orbital effect of Bz adds ∆ktB = πBzR/Φ0 to ∆ktcv,
with Φ0 the magnetic flux quantum. The Zeeman effect of Bz adds µBBzS

z to τβSz. Due
to the different radius (R) dependencies of the Zeeman and orbital terms, R and Bz can
be chosen such that both cos(3θ) terms in Table 2.1 cancel at one Dirac point, provided
that ∆SO > 0 [25] (see Fig. 2.3). However, since R cannot be chosen continuously, the
cancellation is perfect only for one of the two terms. The Zeeman term can be removed
at K with Bz = −µB/β, but small gaps will remain at energy ε = 0. On the other hand,
if the ε = 0 gaps are to be closed, Bz must be tuned such that ∆ktB + ∆ktcv = 0. The
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small residual Zeeman term β∗ = β + µBBz (|β∗| ≪ |β|) then leads to

ε = ±
√

(β∗)2 + (eEξ)2 ±
√

(~vFk)2 + α2, (2.6)

and to a small spin-polarization 〈Sz〉 ≃ ±β∗/eEξ (〈Sx〉 = 0 in all cases).
An illustrative example is the (17,14)-CNT with Bz ≃ 0.81T, for which the orbital and

Zeeman cancellations work particularly well. AtK the spectrum and the spinor properties
〈m, k|Sx,y,z |m, k〉 of an armchair CNT are restored, while at K′ the curvature-induced
gap ~vF∆k

t
cv is amplified by a factor of 2 (see Fig. 2.3). This amplification is sufficient

to remove all states of K′ from the relevant energy range so that only K contributes a
single pair of helical modes at the chemical potential µ1.

2.6 Conclusions

We note that as an immediate consequence of the SOI induced gaps the conductance of
the CNT is reduced by a factor of two, and by an additional factor of two if the valley
degeneracy is lifted. As mentioned, helical modes can be used as spin filters, Cooper pair
splitters, and allow for Majorana fermions at the CNT edges if the latter is brought in
contact with a superconductor. These properties, together with the all-electric control,
make CNTs attractive candidates for spintronic and quantum computing applications.

We acknowledge discussions with D. L. Maslov, and funding from the Swiss NSF,
NCCR Nanoscience (Basel), and DARPA QuEST.
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Chapter 3

Carbon nanotubes in electric and
magnetic fields

We derive an effective low-energy theory for metallic (armchair and non-armchair) single-
wall nanotubes in the presence of an electric field perpendicular to the nanotube axis,
and in the presence of magnetic fields, taking into account spin-orbit interactions and
screening effects on the basis of a microscopic tight binding model. The interplay between
electric field and spin-orbit interaction allows us to tune armchair nanotubes into a helical
conductor in both Dirac valleys. Metallic non-armchair nanotubes are gapped by the
surface curvature, yet helical conduction modes can be restored in one of the valleys by
a magnetic field along the nanotube axis. Furthermore, we discuss electric dipole spin
resonance in carbon nanotubes, and find that the Rabi frequency shows a pronounced
dependence on the momentum along the nanotube.

This chapter has been published in Physical Review B 84, 085452 (2011).
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3.1 Introduction

The last two decades have seen remarkable progress in the experimental techniques to
fabricate and analyze high purity carbon nanotubes (CNTs).[1, 2, 3, 4, 5, 6, 7] This
progress has paved the way for using CNTs for electron and, in particular, electron spin
based effects that are of interest for quantum information processing and spintronics.[8,
9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23] For the latter, the spin-orbit
interaction (SOI) plays a significant role as it allows the spin manipulation by electric
fields. The purity of CNTs has by now advanced so far that indeed SOI effects can be
observed.[9, 10, 11, 12, 13]

In this paper, we investigate the SOI in metallic single-wall CNTs in the presence of
external electric and magnetic fields. We provide an extensive discussion of electric field
screening in CNTs and of resonant spin transitions via ac electric fields, namely, electric
dipole spin resonance (EDSR). Our starting point is a tight binding description including
all second shell orbitals of the carbon atoms, from which we derive an effective low-energy
band theory.

In the metallic regime, SOI effects by an external electric field can only be expected
if the field is applied perpendicularly to the CNT axis. Without the electric field, the
SOI in a CNT has been studied before[24, 25, 26, 27, 28, 29] and is the result of the
orbital mixing caused by the curvature of the graphene sheet wrapped up into a cylinder.
This leads to different geometric conditions than for flat graphene, which has accordingly a
different SOI.[30, 31] It is also very different from the SOI found in typical one-dimensional
semiconductor wires because of the rotational symmetry of the CNT. In a semiconductor
wire, the usual Rashba-SOI with a well-defined spin-precession axis arises from the specific
asymmetric electric environment caused by the confining potentials. Such an axis is absent
in the rotationally invariant CNT unless it is reintroduced by the application of an external
transverse electric field. As we discuss in detail below, this leads indeed to a Rashba-like
SOI. However, in contrast to the semiconductors, the CNTs have a hexagonal lattice
structure with two carbon atoms per unit cell. The resulting band structure has a nearly
vanishing density of states at the charge neutrality point (Dirac point), and roughly a
linearly increasing density of states at low energies away from this point. This means,
first, that the high energy states affect the low energy properties in a more pronounced way
than in a semiconductor. Second, the screening of the external electric field becomes less
effective, and the distribution of charges on the tube surface can become complicated. As
the screened field affects the low-energy physics as well, it requires specific investigation.
It turns out here that for a quantitative understanding we need to start indeed from the
full band structure based on the lattice description, and not from the effective low- energy
Dirac theory.

The combination of these effects allows us to understand how precisely SOI and espe-
cially the SOI parts induced by the external electric field affect the system properties. The
larger number of external and internal degrees of freedom as compared to semiconductor
wires, such as field strength, sublattice or Dirac valley index, CNT radius, chirality, and
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chemical potential, allows for an extensive tunability of the SOI-induced system proper-
ties. For instance, in armchair CNTs it allows us to obtain in both Dirac valleys helical,
spin-filtered conduction modes, in which opposite spins are transported in opposite direc-
tions. Similar helical states occur in SOI-split quantum wires[32, 33, 34, 35, 36, 37, 38, 39]
and at the edges of topological insulators,[40] and can be used, for instance, as spin
filters[41, 39] or as Cooper-pair splitters.[42] In addition, if such a helical conductor is
brought into proximity to a superconductor, it allows for the realization of Majorana end
states. This has attracted much attention very recently,[43, 44, 45, 46, 47] mainly be-
cause these Majorana states may be used as fundamental quantum states for topological
quantum computation.[48]

It should be noted that in semiconductor quantum wires the helical modes are realized
only under conditions of an external magnetic field, with the consequence that time-
reversal symmetry is broken and the spins at opposite conduction band branches are not
truly antiparallel. In contrast, in armchair CNTs the helical modes can be obtained in
an all-electric setup, and they are perfectly polarized in the sense that only the spin
expectation value Sy in the direction perpendicular to the electric field and the CNT axis
is nonzero, even though we generally have |〈Sy〉| < 1 within the helical bands.

For metallic but non-armchair CNTs, two more terms appear in the low-energy Hamil-
tonian. First, an orbital curvature induced term, which opens gaps at the remaining helical
zero-energy modes. Second, a SOI term, which plays the role of an effective Zeeman field
transverse to the Sy polarization, yet with opposite sign in each Dirac valley. While these
two terms primarily destroy the helical conduction modes, their presence can be turned
to an advantage: by applying a magnetic field along the CNT axis, the effective Zeeman
field in one of the valleys can be suppressed, while it doubles the gap in the other valley.
Hence the helical conduction modes are restored to high quality in one of the valleys,
while conduction in the other valley is suppressed completely.

To conclude, we provide a microscopic description of electric dipole spin resonance[49,
50, 51, 52, 8, 53] (EDSR) in CNTs. An ac electric field perpendicular to the CNT axis
couples to the electronic spin via the SOI. However, this coupling comprises an additional
sublattice coupling that is absent in semiconductor setups. It causes a significant momen-
tum dependence of the resonant Rabi frequency of the EDSR experiment. The further
application of a static electric field, perpendicular to the CNT axis and to the ac field,
lifts the spin degeneracy of the bands in an way analogous to a static Zeeman field. This
allows us to propose an all electric realization of Rabi resonance experiments, in which
the electric fields replace the static and time-dependent magnetic fields.

The paper is structured as follows. In Sec. 3.2 we introduce the tight-binding model of
the hexagonal carbon lattice including SOI and the effect of electric and magnetic fields.
The π and σ bands are discussed in Sec. 3.3, and we identify the important πσ band
hybridization couplings that have an impact on the low-energy physics. This allows us to
derive the effective low-energy theory for the π bands in Sec. 3.4. The partial screening
of the external electric field is investigated in Sec. 3.5, where we discuss in particular
the validity of linear response and the influence of the σ bands. The implications of
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the effective low-energy theory are analyzed in Sec. 3.6, with special focus on helical
modes, valley suppression and the role of further external magnetic fields. Turning to the
dynamical response of the CNTs, in Sec. 3.7, we investigate resonant spin transitions by
an ac electric field. The final section 3.8 contains our conclusions.

3.2 Model

Our calculations are based on a tight-binding model describing the second shell orbitals
of the carbon atoms in CNTs. [54] It takes into account the spin-orbit interaction and
external electric and magnetic fields. The Hamiltonian we start from consists of four
terms

H = Hhop +HSO +HE +HB, (3.1)

where Hhop describes the hopping between neighboring tight-binding orbitals, HSO de-
scribes the on-site spin-orbit interaction, and HE and HB describe external electric and
magnetic fields, respectively. The Hamiltonian is expressed in second quantization by
the electron annihilation operators cn,ζ,µ,λ, where the two-dimensional integer vector
n = (n1, n2) labels the unit cells of a honeycomb lattice, ζ = ±1 labels the sublattice
A/B, and λ = ±1 labels the spin. µ = s, pr, pt, pz denotes the second shell orbitals with
µ = s the s orbital and µ = pr, pt, pz the p orbitals. The pr orbital is perpendicular to the
surface of the CNT and essentially constitutes the π band. The pt,z orbitals are tangential
(see Figs. 3.1 and 3.2) and, together with the s orbital, build the σ bands. These orbitals
span a local coordinate system.

If the cylinder surface on which the carbon atoms are placed in a CNT is projected
onto a plane, the graphene lattice with lattice vectors a1 = a(t̂ cos θ + ẑ sin θ) and a2 =
a(t̂ cos(π/3−θ)− ẑ sin(π/3−θ)) is recovered, where θ is the chiral angle of the nanotube,
defined as the angle between the first unit vector a1 and the chiral vector C (see Fig.
3.1). In the following, we will also use the collective site index i = (n1, n2, ζ) to label the
atom positions. The position of atom i is then Ri = n1a1+n2a2+(1− ζ)L1/2. The three
vectors

L1 =
a√
3
(−t̂ sin θ + ẑ cos θ), (3.2)

L2 =
a√
3
(t̂ cos(π/6− θ)− ẑ sin(π/6− θ)), (3.3)

L3 =
a√
3
(−t̂ cos(π/6 + θ)− ẑ sin(π/6 + θ)), (3.4)

connect an A site with its three nearest neighbors on the B sublattice. These three B sites
will be denoted by B1,2,3 in the following. Note that we have chosen to define the model
directly in a coordinate system which will be convenient for the subsequent calculations.

In the following, we describe each term in Eq. (3.1) and its derivation in detail.
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Figure 3.1: Definition of the honeycomb lattice vectors and the direction of the pz and
pt orbitals. The white arrows in the p orbitals point into the direction where the wave
function is positive. The ellipses indicate the unit cells consisting of A and B sublattice
atoms. The p orbital alignment is equal on both sublattices. Together with the pr orbital,
which points out of the plane (not shown here), the directions of pr, pt, pz form a right-
handed set of vectors.

3.2.1 Hopping Hamiltonian

The term Hhop describes the hopping between orbitals on neighboring carbon sites as
well as the on-site orbital energies. We only take into account nearest neighbor hopping
and assume the orbitals on neighboring carbon atoms to be orthogonal. The hopping
Hamiltonian has the form

Hhop =
∑

〈i,j〉
µ,µ′,λ

tijµµ′c
†
iµλcjµ′λ + εs

∑

i,λ

c†isλcisλ, (3.5)

where 〈i, j〉 runs over nearest neighbor sites, and εs = −8.9 eV is the orbital energy of
the carbon s orbitals relative to the p orbital energy, The latter is set to zero in this
paper. The amplitude tijµµ′ of an electron hopping from the orbital µ′ on the jth site
to the orbital µ on the ith site is a linear combination of the four fundamental hopping

Figure 3.2: Cross section of a CNT. The ẑ-direction is along the nanotube axis. The
orientation of the orbitals pr, pt as well as the local coordinate system r̂, t̂ depends on the
azimuthal angle ϕ. The s orbital is indicated by the dashed circles.
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Figure 3.3: Hopping between atomic orbitals of neighboring carbon sites in the graphene
limit. (a) - (d) show the orbital combinations with non-zero hopping amplitude. (e), (f)
show hoppings which are forbidden by symmetry.

amplitudes [54] Vss = −6.8 eV, Vsp = 5.6 eV, V π
pp = −3.0 eV, V σ

pp = 5.0 eV (see Fig. 3.3)
with coefficients depending on the relative orientation of the orbitals µ and µ′.[55] For the
explicit calculation of tijµµ′ , the p orbitals are decomposed into components parallel and
perpendicular to the i − j bond. These components can be easily expressed in terms of
scalar products (see Fig. 3.4). If the direction of a p orbital on the A atom is pA

µ and the
direction of a p orbital on the Bn atom is pBn

ν , then the projections on the unit vector
ln = Ln/| Ln | in the direction from atom A to atom Bn are

σ⊥ = (pA
µ · ln)(pBn

ν · ln), (3.6)

σ‖ = pA
µ · pBn

ν − (pA
µ · ln)(pBn

ν · ln), (3.7)

where indices {µ, ν} = {r, t, z} describe p orbitals and n = {1, 2, 3} denotes the neighbor-
ing B atoms. Therefore, the hopping matrix elements are

tABn

µν =V π
pp

(
pA
µ · pBn

ν − (pA
µ · ln)(pBn

ν · ln)
)
+

V σ
pp(p

A
µ · ln)(pBn

ν · ln), (3.8)

tABn

µs =− Vsp(p
A
µ · ln), (3.9)

tABn

sν =Vsp(p
Bn

ν · ln). (3.10)

3.2.2 Spin-orbit interaction

The spin-orbit interaction is modeled by projecting the Thomas Hamiltonian for a spher-
ically symmetric atomic potential V (r)[56]

H intr
SO =

~

4m2
ec

2

1

r

dV (r)

dr
L · S (3.11)

onto the subspace spanned by the second shell orbitals of each individual carbon atom. L
is the electron angular momentum operator and S is the vector of the spin Pauli matrices
with eigenvalues ±1.
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By symmetry, this projection can be reduced to a form depending on a single parameter
only, defining the strength of the intrinsic SOI

∆SO =
~
2

4m2
ec

2
〈pAr | (∂t[∂rV ]− ∂r[∂tV ]) |pAt 〉. (3.12)

In the literature one finds a wide spread for the spin-orbit coupling constant ∆SO (see
Refs. [57, 31, 58]). Note also that there are different conventions for the spin operators
used in the spin-orbit Hamiltonian. In some works, Pauli matrices with eigenvalues ±1
are used while in other papers, the spin operators have eigenvalues ±1

2
. In this paper, we

always use Pauli matrices with eigenvalues ±1. For the spin-orbit coupling constant one
finds values between 3 meV[31] and 20 meV.[58] In this work we follow Ref. [57] and use
∆SO = 6 meV. The projected spin-orbit Hamiltonian reads

HSO = i∆SO

∑

i,λ,λ′

µ,ν,η

εµνηc†iµλS
ν
λλ′ciηλ′ . (3.13)

Here, µ, η = pr, pt, pz run over the p orbitals only. εµνη is the Levi-Civita symbol. The
index ν = r, t, z labels the spin components in the local coordinate system, i.e., Sr =
Sx cosϕi + Sy sinϕi, S

t = Sy cosϕi − Sx sinϕi, with ϕi the azimuthal angle of site i (see
Fig. 3.2) and Sx,y,z the spin Pauli matrices (with eigenvalues ±1). The spin-orbit energies
emerging from HSO and from the curvature effects are found to be much larger than the
spin-orbit energies due to the d-orbitals, [59] allowing us to neglect the latter.

3.2.3 Electric fields

In this section we introduce the Hamiltonian describing a homogenous external electric
field E perpendicular to the CNT axis. Due to screening effects, local fields with com-
plicated spatial dependence are generated by the rearrangement of the electron density
on the lattice and have to be taken into account in principle. However, it turns out that
none of these nontrivial contributions affect the physics in an essentialy way.

a) b)

Figure 3.4: The hopping element between a) pAµ and sBn b) pAµ and pBn
ν can be calculated

by the decomposition of the pAµ (p
Bn
ν ) orbital into two parts: perpendicular to the bond

pAµ,⊥(p
Bn

ν,⊥) and parallel to the bond pAµ,‖(p
Bn

ν,‖).
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We start from the most general electrostatic potential φtot(r) = φext(r) + φind(r),
which is the sum of the potential φext coming from the homogeneous external field and
the generally complicated potential φind from screening effects. The matrix elements
〈µ, i|φ(r) |µ′, j〉 between the orbitals of two different carbon atoms i 6= j are much smaller
than the typical hopping elements (∼ eV) so that we can safely neglect them and consider
only on-site effects of the electric potential.

The averaged potential φµµ(Ri) = 〈µ, i|φtot(r) |µ, i〉 for the µ orbital on site i changes
the electrostatic energy of an electron in this orbital. Note thatRi is the position of the ith
carbon atom in three-dimensional space. In the following, we assume that the dependence
of φµµ(Ri) on the orbital µ is negligible, i.e., φtot(Ri) ≃ φµµ(Ri). Furthermore, we show
in Sec. 3.5 that even with the induced potential φind included, φtot essentially depends on
the azimuthal angle ϕi similar to the case of a homogeneous field. Therefore, the diagonal
matrix elements of the electrostatic potential are φ(Ri) ≃ φtot(ϕi) ∝ cosϕi and give rise
to the Hamiltonian

H
(1)
E =

∑

i,µ,λ

φtot(ϕi)c
†
iµλciµλ. (3.14)

For sufficiently small CNT radii R and electric fields the total potential on the surface of
the CNT is well approximated by φtot(ϕi) ≃ eE∗R cosϕi, where E

∗ < |E| is the screened
electric field and e is the electron charge.

We note that, because φ varies on the scale of the spatial extent of the orbital wave
function and breaks the lattice symmetries, in general, the matrix elements between the
different orbitals φµµ′(Ri) = 〈µ, i|φ(r) |µ′, i〉 6= 0 and transitions between orthogonal
orbitals µ, µ′ on the same carbon atom are generated. We call this the µ-µ′ transitions in
the following. The potential of a homogeneous external field alone gives rise to s-pr and
s-pt transitions. But the complicated additional induced potential φind(r) gives also rise
to coupling between other orbitals. For this work, the s-pr transition is most important
because of two reasons: 1) It is the only transition directly coupling π and σ bands, thus
giving rise to a first order effect in the s-pr coupling strength. 2) Its strength is determined
by the unscreened field E and not by the screened E∗ < E. Indeed, the induced potential
phiind drops out, i.e., 〈pr|φind(r) |s〉 ≃ 0, as φind is approximately an even function in the
radial coordinate r about the tube radius r = R. The Hamiltonian describing the s-pr
transition is

H
(2)
E = −eEξ0 cos(ϕi)c

†
iprλ

cisλ +H.c., (3.15)

with the strength of the transitions being characterized by the integral

ξ0 = −
∫

d3rψ∗
2s(r) z ψ2pz(r) =

3aB
Z

, (3.16)

where ψ2s and ψ2pz are the hydrogenic wave functions of the second shell atomic orbitals,
aB is the Bohr radius, and Z is the effective nuclear charge, which for the second shell in
carbon is Z ≃ 3.2. From this we obtain ξ0 ≃ 0.5 Å. Note that our value for ξ0 is a rather
conservative estimate. It is roughly four times smaller than what has been assumed in
Ref. [31].
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3.2.4 Magnetic fields

The Zeeman Hamiltonian describing the interaction of the electron spin with the magnetic
field is in the tight-binding model written as

Hmag =
∑

i,µ,v,λ,λ′

µBBvc
†
iµλS

v
λλ′ciµλ′ , (3.17)

where the index µ runs over all orbitals, i labels the position of the atom, and λ, λ′ denote
the spin. Bv with v = x, y, z are the components of the magnetic field in the global
coordinate system, which we choose such that the electric field is always in x direction
and the CNT axis is along ẑ.

The orbital effect of the magnetic field is usually expressed in terms of Peierls phases,
multiplying the hopping amplitudes in the tight-binding Hamiltonian. For a magnetic
field along the CNT axis, which will be of most interest in this paper, this will lead to
an Aharonov-Bohm shift of the circumferential wave vector, which can be incorporated
easily into the effective model, derived subsequently.

3.3 π and σ bands

In general, all four orbitals of the second shell in CNTs are hybridized by the hopping
Hamiltonian Hhop. However, in the limit R → ∞, the hopping amplitudes between the
pr orbital and any of the orbitals s, pt, pz become zero, and the hopping Hamiltonian
becomes equal to the Hamiltonian of flat graphene. The pr orbitals then form the π
band and the remaining three orbitals, which are still strongly hybridized, form the σ
bands. For CNTs with finite R, the π band hybridizes with the σ bands due to the CNT
curvature, which leads to non-zero hopping amplitudes tprptij , tprpzij , tprsij . However, the πσ
hybridization is still small for realistic CNT sizes, so that it is convenient to partition the
total Hamiltonian [Eq. (3.1)] as

H = Hπ +Hσ +Hπσ +Hσπ. (3.18)

The parts Hπ contain only electron operators ciprλ for the pr orbitals, Hσ contains only
operators for the orbitals pt, pz, s, and the parts Hπσ (Hσπ) contain only the combinations
c†iprλciµλ (c†iµλciprλ ) with µ = pt, pz, s running only over the σ orbitals. We will use the
symbols Hπ, Hσ, Hπσ, Hσπ also for the representation of H in first quantization, i.e., for
complex matrices whenever this notation is more convenient.

In the following, we discuss the π-band Hamiltonian Hπ and the σ-band Hamiltonian
Hσ separately before we take into account the πσ hybridization. For this, we transform
to a k-space representation of the electron operators

ciµλ =
1√
N

∑

κ

eiκ·Ricκζµλ (3.19)
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where N is the number of unit cells. The preliminary definition of the momentum κ =
κ ẑ + κtt̂ has a momentum component κ along the tube and one component κt around
the tube. Remember that the alignment of the corresponding unit vectors ẑ, t̂ relative to
the lattice depends on the chirality of the tube (see Fig. 3.1).

3.3.1 π band hopping Hamiltonian

We start the discussion of the π band with the limit R → ∞, in which the hopping
amplitude between all nearest-neighbor pr orbitals is V π

pp. The transformation of the
hopping terms of the π band Hamiltonian Hπ

hop to k-space gives

Hπ
hop = V π

pp

∑

κ

w(κ)c†
κAprλ

cκBprλ +H.c., (3.20)

where w(κ) = eiκ·L1
+ eiκ·L2

+ eiκ·L3
. The spectrum ±V π

pp|w(κ)| of Hπ
hop is zero at the two

Dirac points K = 4π(t̂ cos θ + ẑ sin θ)/3a and K′ = −K. Since we are interested mainly
in the low-energy states, we expand κ about each of the two Dirac points,

κ = K+ k or κ = K′ + k, (3.21)

to linear order in k = k ẑ+ ktt̂. The resulting approximated hopping Hamiltonian for the
π band reads

Hπ
hop ≃ ~vF

∑

k

eiτθ(τkt − ik)c†kAτprλ
ckBτprλ +H.c., (3.22)

with ~vF =
√
3|V π

pp|/2a. The index τ = ±1 labels the two valleys K and K′, respectively.
Finally, to bring (3.22) to a more convenient form, we change the phase of all pr orbitals
on the A sublattice by

ckAτprλ → τeiτθckAτprλ (3.23)

and arrive at the usual first quantized form of the Dirac Hamiltonian

Hπ
hop = ~vF (ktσ1 + kτσ2), (3.24)

where the Pauli matrices σi operate in the A,B sublattice space. σ3 equals 1 on the A
sublattice and −1 on the B sublattice. Note that, due to the finite circumference of carbon
nanotubes, kt = (n − τδ/3)/R is quantized. δ = (N1 − N2) mod 3, for a (N1, N2)-CNT,
is zero for metallic nanotubes, to which we restrict the discussion in this paper.

The deviations of tprprij from V π
pp due to the finite radius R leads to an additional

contribution to the non-diagonal part of Hπ, which is added directly to t = V π
ppw(k),

τa2

64R2
(4(V σ

pp + V π
pp)e

−3iτθ + e3iτθ(V π
pp − V σ

pp)). (3.25)

This results in a shift of the wave vectors dependent on the chirality and radius along
the both axes. The curvature effects also lead to a renormalization of the Fermi velocity,
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Figure 3.5: Curvature induced σ bonding between pr orbitals of neighbouring atoms
(The corresponding atoms are defined as A, B1, and B2). Blue lines are aligned with
the corresponding pr orbital directions and red (green) lines are perpendicular to the red
(green) hexagon segment and, therefore, to the red (green) bond between the atoms A and
B2(B1). Note that all these lines (blue, red, and green) are aligned in graphene. Thus, in
graphene, only π bonding (that is due to overlap of orbitals aligned perpendicular to the
connecting line between the two atoms) is possible between such orbitals. NT curvature
breaks such a symmetry: in curved graphene sheet, pr orbital direction (shown by blue
lines) has perpendicular and parallel components to the line connecting two atoms. The
latter component is responsible to a σ bond formation (that is due to overlap of orbitals
along the line connecting the two atoms).

which can be obtained if we keep terms up to second order in a/R and first order in k.
The correction to Hπ

hop is

∆Hπ
hop = ~(∆v⊥F ktσ1 + τ∆v

‖
Fkσ2), (3.26)

with

~∆v⊥F =
2(7V π

pp + 5V σ
pp) + cos 6θ(V π

pp − V σ
pp)

128
√
3

( a
R

)2
(3.27)

~∆v
‖
F =

2(V σ
pp + 3V π

pp)− cos 6θ(V π
pp − V σ

pp)

128
√
3

( a
R

)2
. (3.28)

Moreover, there is an additional term which couples transverse and longitudinal move-
ments,

∆Hπ
t−z = ~∆vt−z

F ((kσ1 + τktσ2), (3.29)

with

~∆vt−z
F =

1

128
√
3

( a
R

)2
sin 6θ(V π

pp − V σ
pp). (3.30)

It should be emphasized that the corrections to the Hamiltonian given by Eqs. (3.25)–
(3.29) are not the only terms responsible for the shifts of the wave vectors and the Fermi
velocity renormalization. Further terms leading to effects on the same order of magnitude
indeed arise from the π-σ band coupling. Such corrections by the higher energy bands
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will be discussed in the next sections. Collecting all terms we obtain the correction to the
Fermi velocity

∆v
‖
F

vF
= γ

( a
R

)2
. (3.31)

From Eq. (3.28) we find γ = −0.05, while the direct numerical solution of Eq. (3.1) gives
γ = −0.15, which indeed reflects the significance of the correction by the energetically
higher bands. In any case, the curvature-induced renormalization of the Fermi velocity is
small and does not give rise to any significant effect in the regime discussed in this work.

3.3.2 σ band hopping Hamiltonian

The orbitals s, pt, pz on the sublattices A and B give rise to six σ bands. For a flat
honeycomb lattice (i.e., R → ∞), there is no hybridization between these σ bands and
the π band. For CNTs with finite radii R, finite hopping matrix elements between the
σ and the π orbitals cause a small hybridization which will be treated in perturbation
theory below. Indeed, one of the small parameters appearing in the perturbation theory is
the ratio a/R with a the lattice constant. It is important to understand that, in order to
correctly account for the curvature effects to order (a/R)2 in the analytical theory derived
in Sec. 3.4, it is sufficient to treat the σ bands in the limit R → ∞, i.e., in zeroth order
in a/R. Any curvature effect in the σ bands of order of a/R would lead to a correction
of at least third order.

Furthermore, since the effective theory will be valid only near the Dirac points K,K′,
we only consider the eigenstates and eigenenergies of the σ bands at the Dirac points, i.e.,
for κ = K,K′. In k space and in the basis

S =
{
|sA〉, |pAt 〉, |pAz 〉, |sB〉, |pBt 〉, |pBz 〉

}
, (3.32)

the σ band Hamiltonian has the block form

Hσ =

(
0 hσ,AB

h†σ,AB 0

)
, (3.33)

where hσ,AB is given by

3

4




0 2iVsp 2τVsp
−2iVsp τe−3iτθ(V π

pp − V σ
pp) ie−3iτθ(V π

pp − V σ
pp)

−2τVsp ie−3iτθ(V π
pp − V σ

pp) −τe−3iτθ(V π
pp − V σ

pp)


 . (3.34)

τ = ±1 labels the Dirac point K,K′, respectively. Hσ can be diagonalized analytically.
We find the energy spectrum of the σ bands at K,K′

εσ(∗)pp = ±3

2
(V π

pp − V σ
pp), (3.35)

ε
σ(∗)
sp1 =

1

2

(
εs ±

√
(εs)2 + 18(Vsp)2

)
, (3.36)

ε
σ(∗)
sp2 = ε

σ(∗)
sp1 . (3.37)
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The corresponding eigenvectors are given by

|σpp〉 =
1√
2
(−τe−3iτθ|lA,−〉+ |lB,+〉), (3.38)

|σ∗
pp〉 =

1√
2
(τe−3iτθ|lA,−〉+ |lB,+〉), (3.39)

|σsp1〉 = −τη−|sA〉+ η+|lB,−〉, (3.40)

|σsp2〉 = η−|sB〉+ τη+|lA,+〉, (3.41)

|σ∗
sp1〉 = τη+|sA〉+ η−|lB,−〉, (3.42)

|σ∗
sp2〉 = η+|sB〉 − τη−|lA,+〉, (3.43)

where

|lj,+〉 = 1√
2
(|pjz〉+ iτ |pjt〉), (3.44)

|lj,−〉 = 1√
2
(|pjz〉 − iτ |pjt〉), (3.45)

η± = 1√
2

√
1± εs√

(εs)2+18(Vsp)2
. (3.46)

3.3.3 πσ hybridization

In this section we consider different mechanisms which lead to a coupling between π and
σ bands. All these couplings are weak compared to the typical energy scales of the π and
σ bands, so that we may treat them in perturbation theory. It is therefore convenient to
write the Hamiltonian of a carbon nanotube in first quantization in the block form

H =

(
Hπ Hπσ

Hσπ Hσ

)
, (3.47)

where Hπσ is a 2 × 6 matrix describing the πσ mixing. It contains three types of con-
tributions, namely from the spin-orbit interaction, from the curvature of the nanotube
and from the external electric field, applied to the nanotube. As we want to describe the
spin-orbit coupling, we need to explicitly take into account the spin of the electron. Thus,
each of the 12 matrix elements of Hπσ is an operator acting on the electronic spin. In the
matrices describing curvature and electric field effects, this operator will be the identity,
but for the spin-orbit interaction matrices, it will be composed of the spin Pauli matrices
Sµ. Also, the matrix elements may contain momentum and position operators.

In the basis P × S with P =
{
|pAr 〉, |pBr 〉

}
and S =

{
|sA〉, |pAt 〉, |pAz 〉, |sB〉, |pBt 〉, |pBz 〉

}
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the total Hamiltonian H is of the form



0 t
t∗ 0

V AA
prs V AA

prpt V AA
prpz V AB

prs V AB
prpt V AB

prpz

V BA
prs V BA

prpt V BA
prpz V BB

prs V BB
prpt V BB

prpz

. . .

. . .

. . .

. . .

. . .

. . .

εs 0 0 HAB
ss HAB

spt HAB
spz

. . . . 0 0 −HAB
spt HAB

ptpt HAB
ptpz

. . . . . . . . . . . 0 −HAB
spz HAB

ptpz HAB
pzpz

. . . . . . . . . . . . . . . . . εs 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0




, (3.48)

where, as explained above, each matrix element is an operator acting on the electron spin
and, furthermore, each matrix element may depend on the crystal momentum κ or on
the spatial position r. It will turn out that the only spatial dependencies we need to deal
with are dependencies on the azimuthal angle ϕi of the carbon atoms.

The diagonal blocks correspond to the Hamiltonians of the isolated π and σ bands,
as discussed in the two preceding subsections, and the off-diagonal blocks (framed in
bold boxes) are the Hπσ and Hσπ = H†

πσ matrices with entries V ij
uv = 〈ui|Hhyb|vj〉 for

i, j ∈ {A,B} and u, v =∈ {s, pt, pz, pr}). Here Hhyb is the part of the Hamiltonian
inducing transitions between the π and σ bands. As stated above, it is composed of
three different contributions: the hybridization coming from the curvature Hcurv

πσ , from
the spin-orbit HSO

πσ , and from an applied electric field HE
πσ. Each of these contributions

will be discussed in the following.

Curvature induced π-σ bond hybridization in nanotubes

Due to the curvature of the nanotube surface, hoppings between orbitals on neighboring
carbon atoms, which are symmetry-forbidden in flat graphene, become allowed in CNTs.
This is illustrated in Fig. 3.5. We now calculate the corresponding hopping matrix
elements in k-space at the Dirac points (κ = K,K′) between the π orbital (pr) and the σ
orbitals (s, pt, pz). As the hopping is spin-independent, the hopping matrix is the identity
in spin space. Furthermore, since the hopping does not depend on the spatial position of
the electron but only on its momentum, the matrix elements will generally be functions
of the momentum κ but not of the position operator. Since we are interested only in the
physics near the Dirac point, it will be sufficient to consider the Dirac momenta κ = K,K′

only. The neglect of the momentum deviation k = κ −K(′) from the Dirac momenta in
the π sigma coupling matrices turns out to be a good approximation; it only gives rise
to a small renormalization of the Fermi velocity. k is only important in the P subspace,
as discussed in Sec. 3.3.1.

It is important to note that, for a curved surface, the vectors Ln connecting nearest
neighbors, not only have tangential components proportional to ẑ and t̂, but also a radial
contribution Ln

r r̂. The magnitude Ln
r is of order a/R and thus vanishes in the graphene
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limit R → ∞. The hopping amplitudes tijµν must be calculated as described in Eqs.
(3.8)–(3.10), and using the above described Ln vectors with radial contributions. For
the transformation to k-space, on the other hand, the radial contributions of Ln are not
needed because κ and k are defined in the two-dimensional tangent space, describing the
longitudinal (ẑ) and the circumferential or transverse (t̂) direction. Nevertheless, it is
convenient to write scalar products between the three-component vectors Ln = Ln

z ẑ +
Ln
t t̂+ Ln

r r̂ and the momentum boldsymbolκ = κẑ+ κtt̂+ 0r̂.
For a given κ, the curvature-induced πσ coupling is defined by

Hcurv
πσ =

∑

n=1,2,3
µ,λ

[
eiκ·Ln

tABn

prµ c
†
κAprλ

cκBµλ

+ e−iκ·Ln

tBnA
prµ c

†
κBprλ

cκAµλ

]
, (3.49)

where µ = s, pt, pz runs over the orbitals forming the σ band. As we are finally interested
in a low-energy theory for the π band, taking the coupling to the σ band into accound
in up to second order in the small parameters, one of which is a/R, and since Hcurv

πσ will
only enter in second order perturbation theory, it is sufficient to keep only the linear a/R
order in Hcurv

πσ . Doing so, we find in the P × S basis

Hcurv
σπ =

√
3a

16R




0 −2τe−3iτθVsp
0 i(3V σ

pp + 5V π
pp)

0 −τ(V π
pp − V σ

pp)
−2τe3iτθVsp 0
i(3V σ

pp + 5V π
pp) 0

τ(V π
pp − V σ

pp) 0



. (3.50)

Again, τ = ±1 labels the Dirac points κ = K,K′, respectively. Furthermore, note that
Hcurv

σπ is the identity in spin space, so that the matrix in Eq. (3.50) enters the block
Hamiltonian twice if the electron spin is taken into account.

Spin-orbit coupling in π bands

For the analysis of the spin-orbit interaction it is important to note that the correspond-
ing Hamiltonian HSO [Eq. (3.13)] is local, i.e., it has no matrix elements connecting
orbitals from different lattice sites. Thus, HSO

σπ can be represented as a 6 × 2 × 2 tensor,
corresponding to the six σ orbitals per unit cell, the two π orbitals per unit cell and the
two-dimensional spin space. Each matrix element, however, may depend on the unit cell
coordinate. It is most convenient to write HSO

σπ in a local spin basis with spin-components
Sr pointing in the radial direction of the nanotube, St pointing in the transverse (or cir-
cumferential) direction, and Sz pointing along the tube axis. Since the local environment,
i.e., the definition of the direction of the p orbitals, are equal for all lattice sites of the
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tube, the πσ coupling matrix due to spin-orbit interaction has a simple form

HSO
σπ = i∆SO




0 0
Sz 0
−St 0
0 0
0 Sz

0 −St



. (3.51)

Note that there are no Sr operators in the matrix elements of the SOI between the pr and
the σ orbitals. This is easily seen from the second quantized form of the atomic spin-orbit
Hamiltonian Eq. (3.13), in which the Levi Civita symbol forbids the terms in which a spin
operator and an orbital in the same direction appear. As a πσ coupling always involves
a pr orbital, the S

r spin cannot appear.
In Eq. (3.51) the directions of the spin operators are defined in the local basis r̂, t̂, ẑ.

On the other hand, the hopping Hamiltonian does not affect the electron spin. A electron
with spin pointing in the global x direction, say, and is hopping around the nanotube has
its spin pointing in the global x direction independently of its position. This means that
the hopping Hamiltonian is the identity in spin space, but only if the global spin basis
Sx,y,z is used, rather than the local spin basis Sr,t,z. Thus, also the spin operators in Eq.
(3.51) must be transformed to the global basis. This transformation is given by

Sr(ϕi) = Sx cosϕi + Sy sinϕi (3.52)

St(ϕi) = Sy cosϕi − Sx sinϕi (3.53)

Sz = Sz. (3.54)

Note that, unlike the hopping matrix Hcurv
σπ , HSO

σπ depends not on the momentum
but rather on ϕi. This is because the spin-orbit Hamiltonian we started from did not
involve hoppings between neighboring carbon atoms but only local terms. Transforming
this spatially dependent part of the Hamiltonian to the momentum space leads to non-
diagonal matrix elements in k, coupling the transverse momentum kt to its neighboring
momenta kt ± 1

R
. As we are finally interested in a low-energy theory for the lowest π

subband, all virtual +∆kt processes must be compensated by a −∆kt process in second
order perturbation theory. This will be discussed in detail in Sec. 3.4. For now, we keep
the real-space notation of HSO

σπ and emphasize again that the matrices in Eqs. (3.50) and
(3.51) are defined with respect to a different basis (k space and real space, respectively).

Electric field

As discussed in Sec. 3.2.3, there are two significant effects of an electric field applied
perpendicular to the carbon nanotube. The orbitally diagonal cosine potential, described
by H

(1)
E , will be discussed in Sec. 3.5; it turns out that H

(1)
E is reduced by screening

effects and, apart from leading to a small renormalization of the Fermi velocity,[] has no
significant effect on the low-energy theory we aim at.
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Most important, however, is the s-pr transition, described by H
(2)
E . In the basis P × S,

we find for the contribution of the s-pr transition to the πσ coupling

HE
σπ =




−eEr(ϕi)ξ0 0
0 0
0 0
0 −eEr(ϕi)ξ0
0 0
0 0



, (3.55)

where Er(ϕi) is the radial component of the electric field. The angular dependence of the
electric field in the linear response regime can be approximated by

Er(ϕi) = E cosϕi, (3.56)

where E is the magnitude of the applied electric field applied perpendicular to the CNT
axis (see also Fig. 1 in Ref. [60]). Again, we note that the matrix elements of HE

σπ are
identities in spin space and do not depend on the momentum but on the azimuthal angle
ϕi of the carbon atoms.

3.4 Effective Hamiltonian for the π band

Having defined all parts of the microscopic Hamiltonian, we are now in a position to
derive the effective low-energy Hamiltonian of the CNT. This will be done in second
order perturbation theory. The small parameters in which we expand are: the surface
curvature a/R, the spin-orbit interaction coupling strength ∆SO = 6 meV, and the electric
field strength eEξ0 ≃ 50 · E[V/nm] meV. The last two quantities are energy scales and
must be compared to the typical σ band eigen energies which are on the order of a few
eV. In the derivation of the low-energy theory, we completely neglect the Hamiltonian
H

(1)
E . For the π band this Hamiltonian alone is known to give rise to a Fermi-velocity

renormalization of second order in the electric field.[61] The question whether H
(1)
E can

actually be neglected will be critically discussed in Sec. 3.6.
The effective Hamiltonian for the π band is calculated in second-order perturbation

theory as

Heff
π ≃ Hπ +Hπσ

1

ε−Hσ

H†
πσ, , (3.57)

where

Hπσ = Hcurv
πσ +HSO

πσ +HE
πσ. (3.58)

We proceed by inserting into Eq. (3.57) the unitary matrix Uσ, which diagonalizes Hσ

and is constructed from the eigenvectors given by Eqs. (3.38)–(3.43)

Heff
π ≃ Hπ +HπσUσU

†
σ

1

ε−Hσ
UσU

†
σH

†
πσ, (3.59)
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so that the inverse operator (ε−Hσ)
−1 reduces to a diagonal sum of the σ band eigenvalues.

Furthermore, since we are interested in energies close to the Dirac point, we set ε = 0.
This reduces the complicated 8 × 8 Hamiltonian matrix, describing π and σ orbitals,
to an effective 2 × 2 Hamiltonian matrix for the π orbitals only. The two-dimensional
vector space, the matrix Heff

π is defined in, corresponds to the two sublattices A and B.
Note, however, that the matrix elements of Heff

π still contain the momentum operator
k̂ = (k̂t, k̂), the position operator ϕ̂i and spin operators. In particular, we find

Heff
π (ϕ̂i, k̂) = ~vF

[
(k̂t +∆ktcv)σ1 + τ(k̂ +∆kzcv)σ2

]

+ α
[
Szσ1 − τSt(ϕi)σ2

]
+τβ1

[
Sz cos 3θ − St(ϕi) sin 3θ

]

+ τeEr(ϕi)ξ2
[
St(ϕi)σ2 − τSzσ1

]
+

+ γ1τS
r(ϕi)σ3 + eEr(ϕi)ξ1, (3.60)

with the coefficients

~vF

(
∆ktcv
∆kzcv

)
= τ

V π
pp(V

π
pp + V σ

pp)

8(V π
pp − V σ

pp)

( a
R

)2(− cos 3θ
sin 3θ

)
(3.61)

α =

√
3εs(V

π
pp + V σ

pp)∆SO

18V 2
sp

a

R
, (3.62)

β1 = −
√
3V π

pp∆SO

3(V π
pp − V σ

pp)

a

R
, (3.63)

γ1 =
2εs∆

2
SO

9V 2
sp

, (3.64)

ξ1 = −
(V σ

pp + V π
pp)

2
√
3Vsp

a

R
ξ0, (3.65)

ξ2 =
2∆SO

3Vsp
ξ0. (3.66)

As we aim at an effective theory for the lowest subband, we project Heff
π (ϕ̂i, k̂) onto

the subspace spanned by the wave functions of this subband. These wave functions are
plane waves ∝ exp(ikz) which do not depend on ϕ. Thus, projection means ϕ-averaging
the Hamiltonian and setting k̂t = 0. Furthermore, since there is no operator in Heff

π (ϕ̂i, k̂)
which does not commute with k̂, we may write

Heff
π (k) =

∫
dϕ

2π
Heff

π (ϕ, (0, k)). (3.67)

Any term in Heff
π (ϕ, (0, k)) containing odd powers of sin or cos average to zero. Finally,

the resulting effective low-energy theory is given by

Heff
π = Hπ

hop +Hcv
orb +Hcv

SO +Hel
SO. (3.68)
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Hcv
orb describes the curvature induced k-shift of the Dirac points.[24, 27, 29] For non-

armchair metallic CNTs, ∆ktcv 6= 0 leads to the opening of a gap at the Dirac point

Hcv
orb = ~vF∆k

t
cvσ1, (3.69)

with

~vF∆k
t
cv = −τ 5.4meV

R[nm]2
cos 3θ. (3.70)

The k-shift ∆kzcv along the CNT is irrelevant and has been neglected here (see also Ref.
[60]).

Hcv
SO contains the curvature induced SOI [28, 27] which does not average out in the ϕ

integration,

Hcv
SO = αSzσ1 + τβSz, (3.71)

with the parameters

α ≃ −0.08meV

R[nm]
, (3.72)

β ≃ −0.31meV

R[nm]
cos 3θ. (3.73)

This term contains only on the Sz spin operator which is consistent with the rotational
symmetry of the nanotube. Hcv

SO is responsible for the breaking of the electron-hole
symmetry.[9]

Finally, the electric field induced SOI depends on the product E(ϕ)St(ϕ), which does
not average out in the ϕ integral. Indeed, E(ϕ) ∝ cosϕ while St(ϕ) = Sy cosϕ−Sx sinϕ.
The cos2 ϕ integral leads to a nonvanishing

Hel
SO = τeEξSyσ2, (3.74)

where

ξ = ξ2/2 =
∆SO

3Vsp
ξ0 ≃ 2× 10−5 nm. (3.75)

This term breaks rotational invariance of the CNT and involves the Sy operator for the
electric field along the x axis. The fact that the directions of the applied field and the
induced spin polarization are perpendicular is typical for the electric field-induced SOI.

3.5 Field screening

An electric field applied perpendicularly to a carbon nanotube induces a rearrangement
of the electrons on the tube surface. If the electrons were free to move, as in the case of a
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metal cylinder, the field inside the tube would be perfectly screened. However, since the
density of states in CNTs at half-filling is small, the electrons rather behave as in half-
metals, and thus the field screening is only partial. In the following, we calculate the field
screening and its consequences explicitly by two methods: by a linear response calculation
and by a direct diagonalization of the full Hamiltonian, including the external field. The
analytical linear response calculation will provide us with a simple and intuitive picture of
the screening but some uncontrolled approximations such as, for instance, the restriction
to the π band, are needed there. The numerical calculation takes into account all bands
derived from the second shell orbitals of the carbon atoms and provides a quantitative
result, corroborating the linear response calculation.

The task is, therefore, to calculate the charge response of a CNT to the electrostatic
potential described by

HE = φ0,tot

∑

n,ζ

cos(ϕn,ζ)n̂n,ζ (3.76)

with φ0,tot the amplitude of the total electrostatic potential acting on the tube surface.
ϕn,ζ is the azimuthal angle of the carbon atom in unit cell n and sublattice ζ . The

operator n̂n,ζ =
∑

µ c
†
n,ζ,µcn,ζ,µ counts the electrons on atom (n, ζ) in all second shell

orbitals µ = s, pr, pt, pz. In order to keep the notation simple, we drop the spin index λ
in this section and multiply the charge response by a factor of 2.

Note that HE describes a homogeneous electric field E, which gives rise to the elec-
trostatic potential φext(ϕ) = eER cosϕ. E is the field which is applied externally. In
the following we will show that the induced electron charges on the tube surface give
rise to an induced electrostatic potential φind(r) which, although it has a rather com-
plicated spatial structure away from the nanotube surface (i.e. for |r| 6= R), reduces
to φind(ϕ) = φ0,ind cosϕ for |r| = R. Thus, anticipating this result, the total potential
φtot(ϕ) = φext(ϕ) + φind(ϕ) = φ0,tot cosϕ is described by the Hamiltonian (3.76). As dis-
cussed in Sec. 3.5.4, this additivity property of the amplitudes φ0,ext and φ0,ind can be
interpreted as a linear screening of the electric field inside the nanotube, i.e., φ0,tot = eE∗R
with the screened field E∗ < E.

3.5.1 Linear response of the π band

We define the static linear response coefficient χµµ′

ζζ′ (n,n
′) as the proportionality constant

between the density response at site (n, ζ) in orbital µ and the density perturbation at
site (n′, ζ ′) in orbital µ′ described by any Hamiltonian Ac†n′ζ′µ′cn′ζ′µ′

ρnζµ = δ
〈
c†nζµcnζµ

〉
= Aχµµ′

ζζ′ (n,n
′). (3.77)
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χµµ′

ζζ′ (n,n
′) can be calculated by the Kubo formula

χµµ′

ζζ′ (n,n
′) = −2i

∫ ∞

0

dt e−ηt

×
〈[
c†nζµ(t)cnζµ(t), c

†
n′ζ′µ′cn′ζ′µ′

]〉
, (3.78)

where cn,ζ,µ(t) = eitHcn,ζ,µe
−itH is the Heisenberg representation of the electron annihi-

lation operator and η = 0+ ensures the convergence of the time integral. The factor 2
accounts for the spin-degeneracy. The average denotes the expectation value with respect
to the ground state of the electronic system. The generalization to finite temperatures is
possible but not of interest here.

The linear response of the nanotube to the Hamiltonian defined in Eq. (3.76) is

ρnζµ = φ0

∑

n′,ζ′,µ′

cos(ϕn′,ζ′)χ
µµ′

ζζ′ (n,n
′). (3.79)

In the remainder of this subsection we deal only with the linear response in the π band
allowing us to set µ = µ′ = pr and suppress the orbital index. The contributions of the σ
band will be discussed below on the basis of the numerical calculation. Furthermore, we
restrict the calculation to armchair nanotubes.

A straightforward calculation of the charge density induced by the Hamiltonian (3.76)
gives rise to two terms in the charge response: a normal response, which has the same
cosine modulation as the inducing Hamiltonian [Eq. (3.76)], and an anomalous response,
which is staggered on the sublattice level and has a sine modulation,

ρ(ϕn,ζ) = φ0,tot [χn cosϕn,ζ − ζχa sinϕn,ζ] , (3.80)

with the normal and anomalous response coefficients

χn = χAA + ReχBA cos(ϕAB)− ImχBA sin(ϕAB), (3.81)

χa = ReχBA sin(ϕAB) + ImχBA cos(ϕAB). (3.82)

Here ϕAB = a/
√
3R is the difference of the azimuthal angle between the different sublattice

sites within one unit cell and χAA, χBA are the k-space susceptibilities, defined by

χζζ′ = χprpr
ζζ′ (q = t̂/R). (3.83)

As expected, the relevant susceptibilities for the charge response to a transverse homoge-
neous field are to be evaluated for zero momentum along the tube and for the smallest
possible momentum around the tube.
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The charge susceptibilities required for Eq. (3.83) can be expressed as k-space integrals

χζζ(q) =
1

N

∑

κ,a,a′

Θ(εF − εa(κ))Θ(εa′(κ+ q)− εF )

εa(κ)− εa′(κ+ q)
(3.84)

χ−ζζ(q) =
1

N

∑

κ,a,a′

aa′ exp (iζ(φκ − φκ+q))

× Θ(εF − εa(κ))Θ(εa′(κ+ q)− εF )

εa(κ)− εa′(κ+ q)
, (3.85)

where the spin-degeneracy has been taken into account. εF is the Fermi energy and εa(κ)
are the energy eigenvalues for the two branches (a = ±1) of the π band. We assume here
that the curvature effects, discussed in Sec. 3.3, do not affect the final charge polarization
significantly. This assumption will be tested numerically in the next subsection. Thus,
we calculate ε±(κ) = ±|V π

ppw(κ)| and φκ = argw(κ) from the Hamiltonian (3.20).

Furthermore, we restrict the discussion to the charge neutrality point εF = 0 so that
a = −1 and a′ = 1 and

χζζ(q) = − 1

|V π
pp|N

∑

κ

1

|w(κ)|+ |w(κ+ q)| (3.86)

χ−ζζ(q) =
1

|V π
pp|N

∑

κ

exp (iζ(φκ − φκ+q))

|w(κ)|+ |w(κ+ q)| . (3.87)

Note that for q = 0 we have χζζ(0) = −χ−ζζ(0) so that the linear response to a homoge-
neous potential is zero in flat graphene. This is a consequence of the vanishing density of
states of graphene at the charge neutrality point. For the q vectors given by Eq. (3.83)
and for the k-space grid defined by the circumference and the length of the CNT (we as-
sume periodic boundary conditions in z direction), the k-space summations in Eqs. (3.86)
and (3.87) are evaluated numerically. For instance, for a (10,10)-CNT and in the limit of
infinitely long tubes we obtain

|V π
pp|χn = −0.0424, |V π

pp|χa = 0.002. (3.88)

In the Dirac approximation of the band structure, i.e., ε±(k) = ±
√
3|V π

pp||ka|/2,
Eqs. (3.86) and (3.87) can be calculated analytically for small q = |q|. For the spin-
susceptibility, which is equal to the charge susceptibility for non-interacting systems, this
has been done in Refs. [62, 63, 64] with the result

~vF
a
χζζ(q) = −Λa

2π
+
qa

16
(3.89)

~vF
a
χ−ζζ(q) =

Λa

2π
− 3qa

16
, (3.90)
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where Λ is an ultraviolet cutoff, a is the lattice constant, and ~vF/a =
√
3|V π

pp|/2. From
this we find the analytical forms for the normal and anomalous response coefficients

|V π
pp|χn = − 1

4
√
3

a

R
− Λa

6
√
3π

( a
R

)2
+O

(
(a/R)3

)
(3.91)

|V π
pp|χa =

Λa

3π

a

R
− 1

8

( a
R

)2
+O

(
(a/R)3

)
. (3.92)

The comparison of the analytical result for χn with the numerical evaluation of the Kubo
integrals in Fig. 3.6 shows that the first term in Eq. (3.91) captures the leading a/R-
term qualitatively in a correct way. However, the Dirac approximation leads to a wrong
prefactor.

Figure 3.6: The normal response coefficient χn of the π band as a function of a/R.
The black dots are the exact result from the numerical evaluation of Eqs. (3.86) and
(3.87). The solid line shows the linear term in Eq. (3.91). The inset shows the anomalous
response coefficient χa together with a polynomial fit χa ≃ 0.016(a/R)2.

The analytical form of the anomalous response calculated in the Dirac approximation
differs from the exact result. In the next subsection we explain the reason for this and why
the evaluation of Kubo formulas within the Dirac approximation is not reliable. However,
as we are finally interested in the field screening, the anomalous response, which is stag-
gered on the atomic scale, is irrelevant as it averages out in a continuum approximation
of the charge distribution. The staggered potential induced by the anomalous response
has a sinϕ modulation so that it does not open a gap. We have checked numerically that
such an additional term in the Hamiltonian does not change our results.

3.5.2 Analysis of the Kubo integral

It is instructive to study the structure of the Kubo integrals for the charge susceptibilities
[Eqs. (3.86) and (3.87)] in more detail, especially in view of their Dirac approximations.
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For q = 0 the intra-sublattice susceptibility has the structure

χζζ(q = 0) ∝
∫

dε
D(ε)

ε
, (3.93)

where D(ε) = N−1
∑

κ,a δ(ε− εa(κ)) is the density of states. In graphene, D(ε) is known
to be linear in the energy ε near the Dirac point. For carbon nanotubes, which can
be viewed as graphene with one confined direction, D(ε) is constant for ε ≃ 0, but it
increases discontinuously with ε as ε crosses more and more transverse subbands. On a
coarse grained energy scale D(ε) ∼ ε for both, CNTs and graphene, as long as ε . 3 eV.
In the Dirac approximation, it is assumed that only electronic states with low energies
are important, i.e., that the integral in Eq. (3.93) converges before ε ≃ 3 eV. However,
Eq. (3.93) does obviously not converge for D(ε) ∼ ε so that, strictly speaking, the Dirac
approximation is not allowed for Kubo formulas.

This convergence problem is reflected in the cutoff dependence of the first terms in Eqs.
(3.89) and (3.90). However, the terms linear in q do not depend on the ultraviolet cutoff,
which suggests that only contributions from small energies, where the Dirac approximation
is valid, enter the q-dependence. Indeed, one finds that in the high energy regime

χζζ(q)− χζζ(0) ∼
∫

dε
D(ε)

ε5
(3.94)

converges quickly.

In order to compare the Kubo integrals of the tight-binding formulation with the Dirac
approximation, we consider χAA(q = 0). Eq. (3.86) can be written as

− |V π
pp|χζζ(0) =

∫ ∞

0

dεf(ε), (3.95)

with

f(ε) =
1

N

∑

κ

δ(ε− |w(κ)|)
2|w(κ)| . (3.96)

In the Dirac approximation in which w(K + k) ∝ kx + iky is assumed (we may drop all
the prefactors in this analysis in favor of notational simplicity), fDirac(ε) can be calculated
easily. Since f(ε) ∼ D(ε)/ε, the Dirac approximation fDirac(ε) must be constant.

Calculating f(ε) numerically for the more complicated tight-binding form of w(κ),
which can be evaluated only for finite size systems N < ∞, is not quite straightforward.
We do this by discretizing the energy in ∆ε steps and defining

ftb(ε,N)

=
1

N∆ε

∑

κ

Θ[|w(κ)| − ε]Θ[ε+∆ε− |w(κ)|]
2|w(κ)| . (3.97)
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Figure 3.7: The energy-resolved integrand of the Kubo integral f(ε) for χζζ(q = 0). The
black line is the integrand calculated from the full tight-binding model ftb(ε) (see text).
The horizontal gray (red) line shows the integrand in Dirac approximation fDirac(ε). The
inset shows the integrand g(ε) for q = 2πt̂/50. The dots are the results of the tight-binding
calculation for a 200 × 200 k-space grid and the line shows the Dirac approximation of
g(ε).

In the limit ∆ε → 0 and N → ∞, Eq. (3.97) approaches the actual f(ε), as defined in
Eq. (3.96). However, finite-size effects make ftb look very rugged. In order to obtain a
smooth f(ε), which can be plotted nicely, we define an average over N

ftb(ε) =
1

2M

M∑

m=1 [
ftb(ε, (202 + 3m)2) + ftb(ε, (203 + 3m)2)

]
, (3.98)

where we have assumed a quadratic k-space grid and we ommited all grids in which a
k-space point hits a Dirac point. The choice of the smallest N = 2022 is completely
arbitrary, as well as the choice of M = 82, as long as M is large enough.

Fig. 3.7 shows fDirac(ε) and ftb(ε). Obviously, for small ε ≪ |V π
pp| the Dirac approx-

imation coincides with the tight-binding calculation. However, for larger energies they
strongly differ. Moreover, while the finite tight-binding bandwidth (|w(κ)| ≤ 3) gives a
natural high energy cutoff and ensures the convergence of the energy integral, the Dirac
model must be replenished by an ultraviolet cutoff Λ in order to ensure the convergence.

For the deviation of the finite q susceptibility from χζζ(0)

− |V π
pp|[χζζ(q)− χζζ(q = 0)] =

∫ ∞

0

dε g(ε), (3.99)
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with

g(ε) =
1

N

∑

κ

δ(ε− |w(κ)|)

×
[

1

|w(κ)|+ |w(κ+ q)| −
1

2|w(κ)|

]
, (3.100)

the integral is convergent for the tight-binding formulation as well as for the Dirac ap-
proximation. Furthermore, g(ε) is only large at low energies, i.e., where the Dirac ap-
proximation is valid. Also, the comparison of the Dirac approximation of g(ε) and the
tight-binding calculation in the inset of Fig. 3.7 shows that the integrand g(ε) is equal in
both calculations.

3.5.3 Exact charge response

In order to scrutinize the results of the linear response calculation we diagonalize the
Hamiltonian H0 +HE numerically and calculate the charge distribution induced by HE

[Eq. (3.76)]. Unlike the linear response method, this calculation is not restricted to small
fields E. We start with considering only the π bands in order to be able to check the
results of the linear response calculation directly. In a second step, we then take into
account all carbon orbitals of the second shell in order to see how the charge response is
affected by the σ orbitals.

π band only

Considering only the π band and neglecting all curvature effects, we set H0 = Hπ
hop. We

consider only armchair nanotubes and transform the direction along the nanotube to k-
space. For a nanotube with Nc unit cells in circumferential direction, the Hamiltonian is
a k-dependent 2Nc×2Nc matrix, which we diagonalize numerically. From the eigenvalues
εm,k and the corresponding eigenvectors ψm,k(ϕ) we calculate the induced charge density
(in units of the electron charge e)

ρ(ϕ) =
2

Nz

∑

m,k

Θ(εF − εm,k)|ψm,k(ϕ)|2 − 1. (3.101)

Note that ϕ must be considered as a discrete variable with 2Nc possible values between 0
and 2π corresponding to the A and B sublattice sites in the Nc unit cells in circumferential
direction. Nz is the number of unit cells along the tube (z direction). The spin-degeneracy
is taken into account in Eq. (3.101).

Fig. 3.8 compares the density response to an external field corresponding to φ0,tot =
0.01V π

pp, calculated from linear response and from the direct solution of the lattice Hamil-
tonian. Within numerical accuracy, both calculations give the same results for these small
potential amplitudes. Also, one can clearly see the anomalous response, which makes the
response curve different from a pure cosine shape.
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Figure 3.8: The induced π band charge density ρ(ϕ) for in a (10,10)-CNT for φ0,tot =
0.01V π

pp. The black dots show the results of the numerical diagonalization of the π band
Hamiltonian. The line (red) is the charge response evaluated in linear response. The
linear response data is also discrete. It is joined that it can be distinguished from the
numerical results. Actually both calculations give the same result.

The response coefficients χn and χa can be extracted from the numerical calculations of
the induced charge densities ρ(ϕ) by a fit to Eq. (3.80). The normal response coefficients
χn for larger potentials φ0,tot resulting from these fits are shown in Fig. 3.9. For small
external potentials, χn(φ0,tot) is close to its linear response result, Eq. (3.91). For larger
potentials, however, there are large deviations. The linear response regime is left if φ0,tot

Figure 3.9: Nonlinearities in the normal response coefficient χn in the π band. The
different curves correspond to different nanotube radii R = 0.67, 1.00, and 1.33 nm. The
solid lines are the response coefficients fitted to the numerical charge density calculated by
Eq. (3.101). The dashed lines indicate the corresponding linear response coefficients. The
applied potential (abscissa) is rescaled with the subband splittings of the nanotubes with
the different radii. These are ∆sb = (0.31, 0.16, 0.078)|V π

pp| for the radii R = 0.67, 1.00,
and 1.33 nm, respectively.
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is on the order of the subband splitting ∆sb. This subband splitting depends on the CNT
radius and is given in the caption of Fig. 3.9.

σ band contributions

In the analysis of the Kubo integral we have observed that the contributions to the charge
susceptibilities from high energies cannot a priori be neglected. Thus, in order to check the
stability of the π band calculation of the induced charge density, we calculate the charge
redistribution in a tight-binding model containing all second shell orbitals of the carbon
atoms, i.e., the π and the σ bands. For this, we numerically diagonalize the Hamiltonian

H = Hhop +HSO +HE , (3.102)

with the individual terms of H defined in Sec. 3.2. The charge density can be separated
into a π band part and a σ band part

ρπ(ϕn,ζ) =
∑

λ

〈
c†nζprλcnζprλ

〉
(3.103)

ρσ(ϕn,ζ) =
∑

λ

∑

µ=s,pz,pt

〈
c†nζµλcnζµλ

〉
. (3.104)

Both terms have the qualitative form found in the linear response theory. Defining the
normal and the anomalous response coefficients for the π and σ response separately, we
find for the exemplary (10,10)-CNT

|V π
pp|χπ

n = −0.050 V π
ppχ

σ
n = −0.0077 (3.105)

V π
ppχ

π
a = 0.011 V π

ppχ
σ
a = 0.0049 (3.106)

Thus, about 87% of the normal charge response, which will be important for the field
screening discussed in the next subsection, comes from the π electrons. Note that the
field screening, which enters the Hamiltonian of this numerical calculation, has been
taken into account self-consistently.

3.5.4 Field screening

As mentioned before, the charge response calculated in the previous subsections is not
the actual charge response of the carbon nanotube because electron-electron interactions
have not been taken into account. Their effect, however, is important because they reduce
the amplitude of the charge rearrangement considerably.

In order to see this, we include the electron-electron interactions with a self-consistent
Hartree calculation. In addition to this mean-field approximation, we assume that the
charge induced by an external electric field is distributed homogeneously on the carbon
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nanotube surface, i.e., we neglect the anomalous response as it is staggered on the sub-
lattice level and averages out in the continuum approximation. We therefore assume that
the electric field induces the continuous charge distribution

ρ3D(r) = ρ0 cos(ϕ)δ(|r| − R), (3.107)

where R is the radius of the nanotube, ϕ is the continuous azimuthal angle of the spatial
coordinate r measured from the center of the nanotube, and ρ0 is the amplitude of the
induced charge distribution. ρ0 is most easily determined by requiring that the total
induced charge in the positive half space (cosϕ > 0) calculated from the continuum
approximation Eq. (3.107) and from the lattice-resolved expression Eq. (3.80) are equal,

∫
d3rΘ(cosϕ)ρ3D(r) = e

∑

n,ζ

Θ(cosϕn,ζ)ρ(ϕn,ζ), (3.108)

with Θ(x) the unit step function and e the electron charge. The anomalous response
drops out on the right hand side of Eq. (3.108). Furthermore, for the normal response,
the right hand side of Eq. (3.108) is calculated approximately by using

∑

n,ζ

f(ϕn,ζ) ≃
L

a

1

∆ϕ

∫
dϕf(ϕ), (3.109)

where ∆ϕ =
√
3a

4R
is the mean azimuthal angle between neighboring lattice sites in the

armchair CNT, L is the length of the tube (in z direction) and f(ϕ) is any function.
The consequences of the errors, introduced by the above approximation, for the screening
properties are much smaller than the consequences of the uncertainties of the hopping
parameters. Therefore, we have

ρ0 =
4e√
3a2

χnφ0,tot, (3.110)

with φ0,tot the amplitude of the electrostatic potential at the tube surface, including the
contributions from the external and the induced fields. This back action effect is the basis
for charge screening and will be calculated in the following.

A charge distribution of the form (3.107) induces an electric potential φind which can
be calculated by

φind(r) =
e

4πε0

∫
d3r′

ρ3D(r′)

|r− r′| , (3.111)

where ε0 is the vacuum dielectric constant. For symmetry reasons, φind does not depend on
the z coordinate (along the tube) but has only a radial (r) and azimuthal (ϕ) dependence.
We find

φind(r, ϕ) = φ0,ind cos(ϕ)f(r/R). (3.112)

with φ0,ind = −Γφ0,tot and

f(r/R) =

{
r
R

for r < R
R
r

for r > R
. (3.113)
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The proportionality constant Γ is given by

Γ = 356.78R[nm]|χn|eV (3.114)

The total electrostatic potential φtot(r) felt by the electrons on the tube surface consists
of two parts

φtot(r) = φext(r) + φind(r), (3.115)

where φext(r) comes from the external electric field and φind(r) is induced by the rear-
rangement of electron charges at the tube surface.

At the tube surface |r| = R, all terms in Eq. (3.115) have the same functional form
(∼ cosϕ), so that the problem of solving the self-consistency equation reduces to an
equation for the amplitudes of the electric potentials at the tube surface

φ0,tot = φ0,ext + φ0,ind = φ0,ext − Γφ0,tot (3.116)

and so
φ0,tot = φ0,ext/γ, γ = 1 + Γ. (3.117)

Inside the tube (r < R), the functional form of φtot(r) is the same as φext(r), so that
the total electric field inside the tube is homogeneous, just as the external field, but is
screened by the factor γ. Thus, we may define the screened field

E∗ = E/γ. (3.118)

Note, however, that only inside the nanotube, the field is screened homogeneously. Out-
side the tube, the total electric field is highly inhomogeneous.

The screening factor γ quantifies how free the surface charges are to move. For a
metal cylinder γ → ∞, which means that the charges can move freely on the surface.
For a cylinder made from an insulating material, the charges are localized and can only
form dipoles, which is reflected by γ & 1. A carbon nanotube lies in between the metallic
and the insulating limit. For a (10,10)-CNT, for instance, we find γ ≃ 5.6, where the
π and σ bands are taken into account. Note that γ − 1 depends linearly on the inverse
hopping parameters [see, e.g., Eqs. (3.105) and (3.106)], so that the typical error of γ
in a tight-binding calculation as performed here can be estimated by the spread of tight-
binding parameters found in the literature. Within these error bars of 30%, our result is
in agreement with previous works.[65, 66]

3.6 Analysis of the low-energy theory

3.6.1 Spectrum without electric field

In the absence of electric fields, the CNT is invariant under rotations around its axis
and the z projection of the spin sz = ±1 is a good quantum number. In addition, the
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valley index τ = ±1 is always a good quantum number, as long as there is no intervalley
scattering. The term ~vF∆k

z
cvσ2 in Hcv

orb shifts the momentum of the Dirac point along
the tube. Assuming infinitely long tubes, this shift is irrelevant and can be dropped.
Thus, we are left with the Hamiltonian

H = τszβ + τ~vFkσ2 + (~vF (kt +∆ktcv) + αsz)σ1, (3.119)

which is readily diagonalized (see also Ref. [27]). The eigenvalue spectrum has eight
branches, given by

εu,sz(k) = τszβ +
√

(~vFk)2 + (~vF (kt +∆ktcv) + αsz)2, (3.120)

εd,sz(k) = τszβ −
√
(~vFk)2 + (~vF (kt +∆ktcv) + αsz)2, (3.121)

where τ = ±1 and sz = ±1. In the basis {|A ↑〉 , |B ↑〉 , |A ↓〉 , |B ↓〉}, the eigenvectors
are given by

1√
2




1
eiϑ+

0
0


 ,

1√
2




−1
eiϑ+

0
0


 ,

1√
2




0
0
1
eiϑ−


 ,

1√
2




0
0
−1
eiϑ−


 , (3.122)

with

eiϑ± =
(~vF (k

t +∆ktcv)± α) + iτ~vFk√
(~vF (kt +∆ktcv)± α)2 + (~vFk)2

. (3.123)

In the case of a semiconductor CNT a gap between the two nearest spin-up and spin-
down states is

∆ = 2|α± β|, (3.124)

where ± corresponds to electrons and holes, respectively. In the case of an armchair
nanotube, the eigenstates are two-fold spin-degenerate and the gap between holes and
electrons is 2|α|.

An electric field perpendicular to the tube axis gives rise to the spin-orbit term HSO ∝
Sy, and so sz no longer is a good quantum number. In the following we discuss the
consequences of such an electric field.

3.6.2 Helical modes

As already discussed in Ref. [60], the interplay of strong electric fields and spin-orbit
interaction leads to helical modes. For an armchair CNT the chiral angle is θ = π/6
and all terms proportional to cos 3θ vanish, i.e., ∆ktcv = 0 and β = 0. Furthermore the
longitudinal k-space shift ∆kzcv can be ignored since it can be removed by regauging the
phase of the orbitals. This leads to the effective Hamiltonian for the lowest subband in
an armchair CNT

Harm = τ~υFkσ2 + αSzσ1 + τeEξSyσ2, (3.125)
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which has four branches of eigenvalues

ε(k) = ±eEξ ±
√
α2 + (~υFk)2 (3.126)

for each valley. In the basis {|A ↑〉 , |B ↑〉 , |A ↓〉 , |B ↓〉}, the corresponding eigenvectors
are given by

1

2




−1
eiς

eiς

1


 ,

1

2




1
−eiς
eiς

1


 ,

1

2




1
eiς

−eiς
1


 ,

1

2




1
eiς

eiς

−1


 , (3.127)

with

eiς =
α + iτ~υFk√
α2 + (τ~υFk)2

. (3.128)

Note that the first two terms in Eq. (3.125) commute with the third term. As a result,
this two parts can be diagonalized simultaneously, which leads to eigenvectors that are
E-independent. The electric field E only enters the eigenvalues. In the following, we label
the four branches for each valley by n = 1, ..., 4. For each k, n = 1 corresponds to the
highest eigenvalue and n = 4 to the lowest.

Figure 3.10: (a) Low-energy spectrum for a (10,10)-CNT (armchair) in a field E = 1
V/nm. (b) The dependence of y-spin polarization 〈3, k|Sy |3, k〉 on the momentum k along
the tube. The solid lines are the results of the analytical low-energy effective theory. The
dots correspond to numerical calculations (see text).
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Figure 3.11: a) Low-energy spectrum for armchair CNT (20,20) in a field E = 1 V/nm.
b) The dependence of y-spin polarization 〈3, k|Sy |3, k〉 on a wave vector k. The solid
lines are the results of the analytical low-energy effective theory. The dots correspond to
numerical calculations (see text).

Figure 3.12: Low-energy spectrum for armchair CNT (10,10) in a field E = 1 V/nm
assuming that the screening factor γ is equal to 20. The solid lines are the results of the
analytical low-energy effective theory. The dots correspond to numerical calculations. In
this limit we observe a good agreement between two models, which confirms our hypothesis
that discrepancies in Fig. 3.10 are caused by the fact that we neglected the change in
charge distribution caused by electric field.

In Figs. 3.10(a) and 3.11(a), the spectrum calculated from the analytical low energy
theory is compared to the spectrum calculated from the numerical solution of the complete
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tight-binding model [Eq. (3.1)]. Obviously, there are significant differences. These are

due to the neglect of the Hamiltonian H
(1)
E in the derivation of the analytical theory. It

is known[61] that H
(1)
E alone gives rise to a renormalization of the Fermi velocity on the

order of the squared screened electric field (E∗)2 = (E/γ)2. However, the combination of

H
(1)
E with other parts in the spin-orbit Hamiltonian which depend trigonometrically on ϕ

may give rise to effects of first order in E∗ ∼ 1/γ. Thus, the differences of the numerical
and analytical spectrum should disappear in the limit of perfect screening, i.e. γ → ∞.
In order to check this expectation, we increase the screening parameter γ in the numerical
calculation and find that the agreement between numerics and analytics becomes better
for larger screening. For γ = 20, the analytical theory is as good as the numerics, as
shown in Fig. 3.12. Better screening can be achieved, for instance, by filling the CNT
with a dielectric.

The reason why these effects are important although they are of higher than second
order is that the parameter regime we are discussing here is at the border of the appli-
cability of perturbation theory. Nevertheless, as we will argue now, the effective theory
is valuable also in this regime because it correctly captures the most important features
of the helical modes. Moreover, we will show that the numerical results predict an even
better spin-polarization than the analytical theory.

As mentioned above, the actual value of the parameter ξ is unknown. We use here
a conservative estimate ξ = 2 · 10−5 nm, but exhausting the range of values for ξ0, ∆SO,
etc., ξ can increase by one order of magnitude.1 In this case, i.e. for ξ = 2 · 10−4 nm,
the analytical theory fits much better to the numerical calculations. This is essentially
because the spin-splitting generated by eEξSzσ2 is sufficiently large so that the higher
order terms, causing the deviations from the simple analytical model, are not effective in
this case.

Next, we discuss the spin-polarization. The eigenstates given in Eq. (3.127) allow us
to calculate the spin-polarization of each branch in the analytical model. It is easily seen
that 〈k, n|Sx,z |k, n〉 = 0, i.e., the spin is only polarized in the y direction (perpendicular to
the CNT axis and to the electric field). In this sense, the spin is perfectly polarized, even
though 〈Sy〉 is smaller than one; the vector 〈S〉, with S = (Sx, Sy, Sz), is perfectly parallel
to the y direction and has no components perpendicular to ŷ. This y-spin polarization in
the analytical model is given by

〈k, n|Sy |k, n〉 = ± k√
k2 + (α/~vF )2

. (3.129)

Note that 〈k, n|Sy |k, n〉 is odd in k. This means that for Fermi levels as indicated in Figs.
3.10 and 3.11, we have one helical liquid per Dirac point. The sign of the helicity, however,
is the same for each Dirac point (this is a consequence of time-reversal invariance), so that
a CNT with a properly tuned Fermi level is a perfect spin filter.

1Note that in Table I of Ref. [60], ξ was given an order of magnitude too big by mistake. However,
given the uncertainty of the parameters ξ0, ∆SO, etc., and thus of ξ, all results remain valid.

54



Analysis of the low-energy theory

In Figs. 3.10(b) and 3.11(b), the analytical spin-polarizations are compared with the
numerical spin-polarizations. They agree well and the analytical spin-polarization is seen
to be a lower bound to the numerical result. One should also note that, because of the
increased splitting at zero k between states 3 and 4 of the numerical calculation compared
to the analytical results, the range of possible Fermi levels for the helical liquid is increased.
This leads to a higher maximum 〈Sy〉 in the more rigorous numerical solution. Also in this
sense, the analytical model provides a lower bound on the maximum 〈Sy〉. For example,
in the case of a (10,10)-CNT to which an electric field E = 1 V/nm is applied (see Fig.
3.10) one can achieve 〈Sy〉 ≃ 90% in the helical phase.

Another well studied effect of the Hamiltonian H
(1)
E is a renormalization of the Fermi

velocity. We have not taken this renormalization into account in the analytical calculation
in Fig. 3.11, but it is accounted for in the numerical calculation. Also this effect allows
us to go to larger kF in the helical regime.

Now that we have understood which features are well captured by the analytical model
(e.g., the spin-polarization and the spectrum of the holes), and which are not described
correctly (the electron spectrum for large fields), we discuss the case of non-armchair
nanotubes on the basis of the analytical model. As mentioned above, the effects leading
to deviations from the analytical results can be suppressed by increasing the screening of
the externally applied electric field.

For non-armchair, but metallic nanotubes (i.e., kt = 0), the chiral angle is θ 6= π/6
and cos(3θ) 6= 0. This gives rise to two additional terms in the Hamiltonian [see Eq.
(3.125)]. One term, ~vF∆k

t
cvσ1, opens an orbital gap. The other term, τβSz, acts as

an effective Zeeman field along the tube axis. For the mechanism of valley suppression,
discussed in the next subsection, it is important to note that both additional terms have
opposite signs in different valleys K,K′.

The most prominent effect of θ 6= π/6 is the opening of a large orbital gap in the meV
range for reasonable CNT radii R. For a nanotube with R = 1.44 nm but different helical
angles, the low-energy spectrum is shown in Fig. 3.13. In the armchair CNT, the helical
liquid appears on an energy scale of a few hundred µeV. Thus, it is not a priori clear
that the helicity of the left/right movers survives the departure from the pure armchair
topology of the lattice. However, a plausibility argument for the stability of the helicity
with respect to ~vF∆k

t
cvσ1 can be given: for large k ≫ ∆ktcv, the electronic states are

eigenstates of the operator σ2S
y. In this limit the y-spin polarization (i.e., the helicity)

becomes 100%. The y-spin polarization changes sign under k → −k. Furthermore, as
long as there is no band crossing, 〈Sy〉 must be a smooth, odd function of k. This means,
as long as |kF | 6= 0, the y-spin polarizations of the second band at ±kF must be opposite.
The question is only, how large is the amplitude of the polarization.

The orbital gaps are not the only effect of a nontrivial chirality θ 6= π/6. The effective
Zeeman field τβSz leads to an additional spin-polarization in z direction (along the tube).
This can be observed in Fig. 3.14. At small k, where the electronic states are not
forced into eigenstates of σ2, the effect of this effective Zeeman field is largest, i.e., the z
polarization is maximal, while, at large |k|, the spin tends to be aligned in y direction. This
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Figure 3.13: Low-energy spectrum for two chiral metallic CNTs with different chiralities
but comparable radii. The field strength is 0.5 V/nm. The four bands with smaller
absolute energy (red, solid) correspond to a (23,20)-CNT with R = 1.44 nm and θ =
0.154π. The four bands with larger absolute energy (blue, dashed) are from a (26,17)-
CNT with R = 1.44 nm and θ = 0.128π.

effect reduces the quality of the spin helicity in that the spin alignment is not completely
odd in k and not along ŷ. Only the y-spin component is odd, but the z-spin is an even
function of k.

Figure 3.14: Spin-polarizations of the third band in y and z direction in chiral nanotubes
as functions of k. The field strength is 0.5 V/nm. The odd functions around k = 0 (red)
correspond to 〈Sy〉 and the even functions (blue) to 〈Sz〉. The solid lines are results from
a (23,20)-CNT and the dashed lines from a (26,17)-CNT.

3.6.3 Valley suppression

In the previous section we have seen how the quality of the helicity is reduced in case of a
non-armchair chirality of the CNT. This was due to an orbital k-shift ~vF∆k

t
cvσ1 and an

effective Zeeman field τβSz, both of which are consequences of the chiral angle θ 6= π/6
deviating from the armchair case. Here, we show that the appearance of these terms can
be turned into an advantage: by applying an additional magnetic field along the tube,
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Figure 3.15: Magnetic fields needed for compensating the chirality-induced effective
Zeeman term in different (m + 3l, m)-CNTs as a function of CNT radius R. l varies
from 1 (lower curves, red) to 5 (upper curves, blue). The dots correspond to the discrete
radii and chiralities. The interconnecting lines are guides to the eye. The vertical line
shows the optimal CNT radius at which both, the Zeeman term and the orbital shift, are
compensated simultaneously.

the perfect helicity can be restored in one valley while all bands of the other valley are
removed from the low-energy regime.

First note that both, the orbital k-shift and the effective Zeeman field, can be inter-
preted as originating from a magnetic field applied along the axis of the CNT. In general,
a magnetic field B has two effects on the electrons. First, it induces a Zeeman energy,
described by the Hamiltonian

HZ = µBB · S, (3.130)

where µB is the Bohr magneton and S is the vector of Pauli matrices for the electron spin
(eigenvalues ±1). Second, if the magnetic field has a component along the CNT axis, i.e.,
Bz 6= 0, the transverse wave function of the electron encloses magnetic flux and this gives
rise to a shift in the electron momentum in circumferential direction

∆ktB =
πBzR

Φ0
, (3.131)

where Φ0 = h/|e| is the magnetic flux quantum. Since ∆ktB must be added to ∆ktcv, as
well as µBzS

z must be added to τβSz, the effect of a non-armchair chirality of the CNT
can be compensated for by a magnetic field, at least to a certain degree as explained
below. However, since the chirality-induced ∆ktcv and τβ have opposite signs in different
valleys, but the real magnetic field terms ∆ktB and µBBz have not, this compensation
works only in one of the two valleys. In the other valley, instead, the effect of the chirality
is even increased.

Note that in general only one of the two chirality effects can be compensated for by a
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Figure 3.16: Chiral (23,20)-CNT with electric field E = 1 V/nm. (a) The spectrum and
(b) the spin expectation values at the K/K′ point for the |2, k〉 subband and magnetic
field Bz = 0. For Bz = 0.46 T, the bands (c) at K′ (not shown) are gapped, while the
spectrum at K (solid lines) has the same form as in the armchair case [Eq. (3.126)]. The
size of the gap is 2|α| = 0.16 meV. The spin expectation values (d) at K for |2, k〉 follow
closely the armchair case [see Eq. (3.129)].

magnetic field Bz. Compensating for the orbital gap requires

~vF
πBzR

Φ0

= τ
5.4 meV

R[nm]2
cos 3θ, (3.132)

while compensating for the effective Zeeman field requires

µBBz = τ
0.31 meV

R[nm]
cos 3θ. (3.133)

In general, Eqs. (3.132) and (3.133) are not compatible.
However, these two conditions have a different dependence on the CNT radius R, so

that there exists an optimal radius Ropt ≃ 1.46 nm at which Eqs. (3.132) and (3.133) are
compatible. For R = Ropt, the compensating magnetic field is

Bz,opt = 3.67 T · cos 3θ. (3.134)

Of course, the CNT radius is not a continuous variable, but can only take on discrete
values. Fig. 3.15 shows the fields needed for compensating the effective Zeeman term
for different CNT chiralities. We see in Fig. 3.15 that there are indeed CNTs that have
an optimal radius. In fact, the uncertainty in determining the optimal radius of actual
CNTs is larger than the spacing of the dots in Fig. 14 so that all dots in the vicinity of
the vertical line in the figure can be considered as optimal.

3.6.4 External magnetic fields in armchair CNTs

In this section we discuss the low-energy spectra of armchair carbon nanotubes in strong
electric fields and additional magnetic fields B along the three possible spatial directions.
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Magnetic field along the nanotube

A magnetic field along the CNT axis B = Bzẑ leads to the shift of the circumferential
wave vector, given by Eq. (3.131). Together with the Zeeman term, this leads to the
additional term in the Hamiltonian

Hmag = ~υF
πBzR

Φ0
σ1 + µBBzS

z. (3.135)

The resulting spectrum of a (20,20)-CNT in a 1 V/nm electric field is shown in Fig. 3.17
for different magnetic field strengths.

As explained above, for the case of a magnetic field along the CNT axis, the additional
terms in the Hamiltonian can be accounted for by redefining the parameters β and ∆ktcv,
i.e.,

β∗ = β + µBBz, (3.136)

∆kt∗ = ∆ktcv + πBzR/Φ0. (3.137)

The energy spectrum at k = 0 for a chiral nanotube is given by

ε1,3 = −α ±
√

(eEξ)2 + (β∗ − ~υF∆kt∗)2, (3.138)

ε2,4 = α±
√
(eEξ)2 + (β∗ + ~υF∆kt∗)2. (3.139)

The splitting ∆1 at k = 0 is given, to leading order in the magnetic field Bz and for an
armchair nanotube, by

∆1 ≃ 2

∣∣∣∣∣eEξ +
(β∗ + ~υF∆k

t∗)
2

2eEξ

∣∣∣∣∣ . (3.140)

Magnetic field along the electric field

In case of a magnetic field perpendicular to the CNT axis we take into account only the
Zeeman term, as the orbital effect is small for the strengths of the fields considered here.
For B = Bxx̂ parallel to the electric field the additional term in the Hamiltonian reads

Hmag = µBBxS
x. (3.141)

For an armchair CNT, the total Hamiltonian can then be diagonalized analytically. We
find

ε = ±
[
(eEξ)2 + α2 + (µBBx)

2 + (~υFk)
2

± 2
√
(eEξα)2 + ((eEξ)2 + (µBBx)2) (~υFk)2

] 1
2

. (3.142)

59



Chapter 3

In Fig. 3.18 the spectrum is shown for several values of the magnetic field. Bx decreases
the splitting at k = 0

∆1 ≃ 2

∣∣∣∣eEξ
(
1− 1

2

µ2
BB

2
x

α2 − (eEξ)2

)∣∣∣∣ . (3.143)

Figure 3.17: Spectrum of a (20,20)-CNT in an electric field E = 1 V/nm and different
magnetic fields Bz = 0, 0.09, 0.03 T (parts a, b, c) along the nanotube axis (z direction).
The dependence of the spin-polarization on the wave vector k is shown in part d) for
Bz = 0.03 T. In the limit of the large magnetic fields the Zeeman term dominates and
〈Sz〉 → ±1. See Eq. (3.140) for ∆1.

Figure 3.18: The spectrum of a (20,20)-CNT in the electric field E = 1 V/nm and
different magnetic fields Bx = 0, 0.5, 1 T (parts a, b, c) along the electric field (x
direction). The dependence of the spin-polarization on the wave vector k is represented
on the graph d) for Bx = 0.1 T. In the limit of large magnetic fields the Zeeman term
dominates and 〈Sx〉 → ±1. See Eq. (3.143) for ∆1.
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Figure 3.19: The spectrum of the CNT (20,20) in the electric field E = 1V/nm and dif-
ferent magnetic fields By = 0, 0.2, 0.5, 1 T (parts a, b, c, d) perpendicular to the electric
field and to the nanotube axis (y direction). The dependence of the spin-polarization on
the wave vector is given by Eq. (3.129) with the shifted wave vector.

Magnetic field perpendicular to the electric field and the nanotube axis

A magnetic field perpendicular to the electric field and to the nanotube axis is described
by the Zeeman term

Hmag = µBByS
y. (3.144)

In this case the magnetic field tries to polarize the spin in the same direction as the electric
field. For an armchair nanotube the Hamiltonian can be diagonalized exactly giving the
energy spectrum

ε1,2 = −eEξ ±
√
α2 + (~υFk − µBBy)2, (3.145)

ε3,4 = eEξ ±
√
α2 + (~υFk + µBBy)2, (3.146)

which is shown in Fig. 3.19. By leads to an additional shift ∆k = ±µBBy/~υF of the
momentum along the nanotube axis.

3.7 Resonant spin transitions

The manipulation of the electron spin by time-dependent external fields is most important
for quantum computing and spintronics. Traditionally, a time-dependent magnetic field,
coupling to the electron spin via the Zeeman energy, is utilized for Rabi flopping.[67]
However, the combination of time-dependent electric fields and spin-orbit coupling may
give rise to an all-electric control of the electron spin.[49, 50, 51, 52, 53] This effect is
called electric dipole spin resonance (EDSR) and it was argued semiclassically[8] that this
concept is applicable to CNTs in principle. In the following, we investigate the EDSR
effect due to Hel

SO, which has been derived microscopically in Sec. 3.4.
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In a spin resonance experiment one considers a spin which is split by a Zeeman energy
EZ . In order to drive transitions between the spin-up and spin-down states, an external
field with frequency ω = EZ/~ is required. In the case of a CNT, there are two regimes for
such transitions, characterized by the frequencies required to drive them. Spin resonance
at optical frequencies (THz regime) involve different subbands. They are possible 2 but
not of interest in this work. The intra-subband transitions have characteristic energy
scales below 1 meV, which corresponds to frequencies in the GHz regime. AC voltages in
the GHz regime can easily be generated electronically, so that this regime is suitable for
EDSR.

We now discuss the transitions between electronic states with opposite spins in the
lowest subband, induced by a time-dependent electric field

Eac(t) = Eac cosωt. (3.147)

The effective Hamiltonian describing the interaction with a time-dependent field is similar
to Eq. (3.74). However, we assume Eac along the y direction, so that

Hac(t) = τeEac(t)ξS
xσ2. (3.148)

This term can be used to implement the EDSR effect. The frequency ω of the field is
chosen to fit the energy difference between two eigenstates of Heff

π [Eq. (3.68)], between
which the transitions are induced.

Indeed, the form of Hac(t) is typical for the EDSR effect. It has a trigonometric
time dependence and is proportional to the spin operator Sx. However, Hac(t) is also
proportional to the sublattice operator σ2, and this leads to an additional complication
compared to a simple spin resonance Hamiltonian of the form cos(ωt)Sx. This compli-
cation disappears in the limit of large k where the term τ~vFkσ2 dominates in Heff

π and
one can assume σ2 to be a good quantum number, i.e., σ2 = ±1. In this case the Rabi
frequency is given by

ω∗
R =

eEacξ

~
. (3.149)

The occurence of the sublattice operator in the coupling term reduces the Rabi frequency
ωR < ω∗

R around k ≃ 0.

3.7.1 Without dc electric field

We start with considering non-armchair CNTs with θ 6= π/6. In this case, transitions
between the states εu,+ and εu,− [see Eq. (3.121)] are driven by Hac(t). For the Rabi

2The electromagnetic field, described by the time-dependent vector potential Aac(r, t) = A0 sin(ωt−
k · r), leads to inter-subband transitions Hind−tr = υF eA0i(n

+ − n−)/2c. The interplay of Hind−tr with
the spin-orbit interaction HSO−tr

π = γ1σ3(S
−n+ + S+n−) + τ(β1 sin 3θ + ασ2)i(S

+n− − S−n+), where
the subband transitions come from the angular dependencies of the spin operators in Eq. (3.60), enables
the realization of electric dipole spin resonance at optical frequencies. This effect, however, is beyond the
scope of this work.
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Figure 3.20: The dependence of the Rabi frequency ωR on the wave vector k along the
CNT axis (a) for the metallic nanotubes (13,10)-CNT (dotted), (23,20)-CNT (dashed),
and (33,30)-CNT (solid). (b) shows ωR for semiconducting nanotubes: the CNT (12,10)
- dotted, the CNT (18,10) - dashed, the CNT (24,10) - solid. The amplitude of the ac
electric field is 1 mV/nm.

frequency we obtain

ωR =
eEacξ

~
|sin((ϑ+ + ϑ−)/2)| , (3.150)

where ϑ± is defined in Eq. (3.122). In agreement with what was explained above, Eq.
(3.150) reduces to ω∗

R in the limit k → ±∞.
For k = 0, the wavefunction is an eigenfunction of σ1. The states εu,+ and εu,− have

opposite spins but the same isospins σ1, if ~υF (k
t + ∆ktcv) > α. The time-dependent

electric field [Eq. (3.148)], however, couples spin (S) and isospin (σ) simultaneously.
Thus, at k = 0 Rabi flopping between εu,+ and εu,− via Hac(t) is not allowed and the
Rabi frequency is zero (see Fig. 3.20). Near the Dirac points the Rabi frequency is
proportional to k. We find

ωR ≃ eEacξ

~

∣∣∣∣
k

kt +∆ktcv

∣∣∣∣ . (3.151)

For non-metallic CNTs, kt is very large and this leads to a strong suppression of the Rabi
frequency (see Fig. 3.20).

A magnetic field along the nanotube axis renormalizes the coefficients β and ∆ktcv [see
Eqs. (3.136) and (3.137)] and thus allows us to change the Rabi and resonance frequencies.
If the magnetic field is chosen such that kt+∆kt∗ = 0, i.e., for B = Bcr

z [see Eq. (3.132)],
with

Bcr
z = τ

Φ0

π~vF

5.4meV

R[nm]3
cos 3θ., (3.152)

the Rabi frequency is ω∗
R for arbitrary k. Thus, by chosing Bz appropriately, the Rabi

frequency can be increased to its upper limit ω∗
R. This effect is stable with respect to

small deviations from the optimal Bz, as is shown in Fig. 3.21. Note that for k = 0,
ωR = ω∗

R for any Bz sufficiently close to Bcr
z .
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Figure 3.21: The dependence of the Rabi frequency ωR on the wave vector k along the
CNT (26,20) axis. The amplitude of the ac field is 1 mV/nm. The magnetic field along
the CNT axis is equal to B = 0.93Bcr

z (dash-dotted), B = 0.95Bcr
z (dashed), B = 0.98Bcr

z

(dotted), and B = Bcr
z (solid).

As usual, a magnetic field B perpendicular to the nanotube axis aligns the electron
spin. An ac electric field along this magnetic field induces Rabi transitions. Assuming
that the frequency of the electric field is tuned to the energy of the spin splitting at
the Fermi points (the Fermi level is assumed to be tuned into the k = 0 splitting), the
dependence of the Rabi frequency on the magnetic field is shown in Fig. 3.22.

If a circularly polarized field is applied, one induces the transitions only from the
spin-down state at the Fermi level to the state spin-up above the Fermi level

Hcirc(t) = τeEcirc(t)ξS
+σ2, (3.153)

with S± = Sx ± iSy. If the opposite polarization of the field is chosen, the transitions

Figure 3.22: The dependence of the Rabi frequency ωR on the magnetic field B⊥ applied
perpendicular to the CNT axis for metalic nanotubes: the CNT (13,10) -dotted, the CNT
(23,20) - dashed, the CNT (33,30) - full. The amplitude of the ac field is 1 mV/nm.
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occur in the opposite directions.

3.7.2 With static electric field

A static electric field perpendicular to the axis of a nanotube in combination with SOI
lifts the spin degeneracy in the spectrum of an armchair nanotube. In contrast to the
well-known Rabi resonance method, realized in a static magnetic field and a perpendicular
time-dependent magnetic field, we propose an all-electric setup for spin manipulation with
two perpendicular electric fields, one of which is static and the other is time-dependent.
The static electric field aligns the spin along the y direction, i.e., perpendicular to the CNT
axis and perpendicular to the direction of the static electric field. The time-dependent
electric field rotates spin around the x direction.

For armchair nanotubes we find that the transitions between states 1 and 2 or between
3 and 4 in the spectrum shown in Fig. 3.10 have the optimal Rabi frequencies ω∗

R. Rabi
transitions between these groups (e.g. 1 ↔ 4) are not possible.

Figure 3.23: The dependence of the Rabi frequency ωR on the wave vector k along the
CNT (26,20) axis. The amplitude of the ac field is Eac = 1 mV/nm and E = 1 V/nm.
The magnetic field along the CNT axis is equal to B = 0 (dash-dotted), B = 0.5Bcr

z

(dashed), B = 0.9Bcr
z (dotted), and B = Bcr

z (solid).

As explained above, for non-armchair but metallic CNTs, the orbital term ∆kt∗ can
be compensated by an additional magnetic field Bz = Bcr

z along the CNT. Then, as in
the case of the armchair nanotube, the Rabi frequency of transitions between states 1 and
2 or between 3 and 4 is ω∗

R, while transitions between states of different groups are not
allowed. For Bz 6= Bcr

z , the Rabi frequencies are smaller than ω∗
R and depend on k, as is

shown in Fig. 3.23.
A magnetic field perpendicular to the nanotube axis (see Fig.3.18) breaks the sym-

metry of the spectrum around the Dirac point. As a result, the resonance frequencies for
the right-moving and left-moving modes are different and it is possible to implement the
EDSR mechanism for only one of the two modes.
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3.8 Conclusions

We have studied the interplay of strong electric fields, magnetic fields and spin-orbit
interactions in carbon nanotubes. An approximate effective low-energy theory describing
the electrons near the two Dirac points has been derived analytically and this theory has
been tested against more sophisticated numerical solutions of the lattice tight-binding
Hamiltonian for the second shell π and σ orbitals. We have established that the properties
of carbon nanotubes are described well by our analytical model in the limit of large field
screening. The latter can be achieved by immersing the CNT into dielectrica.

The central feature of CNTs in electric fields is the appearance of (spin-filtered) helical
modes in an all-electric setup. For perfect armchair nanotubes, there are two pairs of
helical modes, one for each valley, transporting up-spins in one direction and down-spins
in the opposite direction. This helicity is perfect in that the average spin is non-zero only
for this one spin component and zero for all others. Thus, the average spin is a perfectly
odd function of k for armchair CNTs. For non-armchair chiralities, an additional magnetic
field can be used to restore the helical phase in one valley. In the other valley, all electronic
states are removed from the low-energy regime so that this valley is suppressed by the
combination of non-armchair chirality and magnetic field.

Furthermore, we have shown that the EDSR effect may be implemented by a time-
dependent electric field perpendicular to the CNT. The typical Rabi frequencies which
can be achieved in this system are in the MHz-GHz range.

We emphasize that the present low-energy theory, which is based on the assumption
of structurally perfect infinitely long wires, can be extended to nontrivial geometries and
to disordered tubes by adding appropriate terms to the effective Hamiltonian. This low-
energy theory reduces the complexity of the modelling significantly because the (large)
high-energy (sub) bands have been integrated out already. For instance, spatial potential
fluctuations that have sufficiently long ranged correlations, and thus cannot scatter be-
tween subbands or valleys, appear as a spatially dependent 4 × 4 identity matrix in the
effective 4×4 real-space Hamiltonian. Thus, the theory derived in this work provides the
basis for further investigations of disorder and other effects.

We acknowledge helpful comments by P. Recher and A. Schultes. This work was
partially supported by the Swiss NSF, NCCR Nanoscience, NCCR QSIT, and DARPA.
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Chapter 4

Electric-Field Induced Majorana
Fermions in Carbon Nanotubes

We consider theoretically an armchair Carbon nanotube (CNT) in the presence of an
electric field and in contact with an s-wave superconductor. We show that the proximity
effect opens up superconducting gaps in the CNT of different strengths for the exterior and
interior branches of the two Dirac points. For strong proximity induced superconductivity
the interior gap can be of the p-wave type, while the exterior gap can be tuned by the
electric field to be of the s-wave type. Such a setup supports a single Majorana bound
state at each end of the CNT. In the case of a weak proximity induced superconductivity,
the gaps in both branches are of the p-wave type. However, the temperature can be
chosen in such a way that the smallest gap is effectively closed. Using renormalization
group techniques we show that the Majorana bound states exist even after taking into
account electron-electron interactions.

This chapter has been published in Physical Review Letters 108, 196804 (2012).
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4.1 Introduction

Majorana fermions in solid state systems have attracted considerable attention recently
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. In particular, the possibility of realizing them as bound states at
the ends of semiconducting nanowires in the proximity of an s-wave bulk superconductor
has led to much activity. Such setups require a Zeeman splitting, typically generated by
an external magnetic field [11], that must be larger than the proximity induced gap to
induce an effective p-wave superconductor in the topological phase. Such a magnetic field,
however, tends to destroy the gap in the bulk superconductor itself, and thus a delicate
balance must be found [12]. It is therefore very desirable to search for Majorana-scenarios
which do not require magnetic fields.

One of the prerequisites for a Majorana bound end state (MBS) is the existence of
helical modes, i.e. modes which carry opposite spins in opposite directions. It has been
shown recently that such helical states are induced in Carbon nanotubes (CNT) via
spin-orbit interaction (SOI) by an external electric field E [13, 14]. This mechanism
works optimally for a special class of metallic CNTs: armchair CNTs (N,N). This class
is characterized by a spin-degenerate low-energy spectrum around the two inequivalent
Dirac points, K and K ′. This degeneracy can be lifted by E which gives then rise to
helical modes.

Figure 4.1: (a) An armchair nanotube (cylinder) is placed on top of a superconductor (blue
slab). The x-axis points along the nanotube. An electric field E is applied perpendicular
to the nanotube, say along y-axis [17]. There are two non-equivalent lattice sites: A (light
red) and B (light green). (b) The distances between the superconductor surface and the
atoms of sublattice A (dark-red row) and of sublattice B (dark-green row) are assumed
the same. Thus, the tunneling amplitudes to the different sublattices are (nearly) equal.

However, when putting the CNT in contact with an s-wave superconductor (see
Fig. 4.1) with the goal to generate MBS the following problem is encountered. The two
Dirac points K and K ′ are Kramers partners (see Fig. 4.2) and thus the superconducting
pairing induced via the proximity effect will involve both of them, i.e. left (right)-moving
electrons from the branch at K get paired with the right (left)-moving electrons from the
branch at K ′ to form an s-wave Cooper pair with zero total momentum.

This results in two superconducting gaps, an ‘exterior’ one, ∆e, and an ‘interior’ one,
∆i. Thus, in general, we expect twoMBS at each end of the CNT (i.e. four in total). This,
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however, is problematic as the Majorana pair at a given end can combine to form a single
fermion by local perturbations. Thus, the question then arises if there exists a regime
with only one MBS at each end [15]. As we will show, the answer is affirmative but under
rather stringent conditions. One of them requires a comparable tunnel coupling of the A
and B sublattices of the CNT to the superconductor, see Fig. 4.1. Using the interference
mechanism first described by Le Hur et al. [16], we will show that for this particular
case ∆e (∆i) gets enhanced (suppressed) due to constructive (destructive) interference
in the tunneling process. If ∆e/i is smaller (larger) than the gap opened by E, then the
coupling between the two Dirac points is of p-wave type (s-wave type). This leads to two
regimes for MBS. In the first one, only one of two branches has a p-wave gap, thus giving
rise to only one MBS at each end of the CNT. In a second regime, where both branches
have a potential for p-wave pairing, the temperature T can be chosen to lie between ∆e

and ∆i, so that only the exterior branches will go fully superconducting, whereas the
interior branches stay normal. Again, a single pair of MBS in the CNT emerges. We
further investigate the effect of interactions on the MBS. This is particularly important
for the second regime due to the presence of gapless states from the interior branches
that could be harmful to the MBS. However, using bosonization techniques we will dispel
these concerns and show that for screened interactions the MBS remain stable although
they can get substantially delocalized similar to the simpler case of Rashba wires [8].

4.2 Armchair nanotube low-energy spectrum

We consider an armchair CNT in the presence of an electric field E applied perpendicular
to the CNT axis (see Fig. 4.1)[17]. Taking into account the spin-orbit interaction the
low-energy sector is described by an effective Hamiltonian around the Dirac points given
by [13]

H = ~υFkτ3σ2 + τ3eEξSzσ2 + αSxσ1, (4.1)

where k is the momentum along the nanotube axis taken from the Dirac point, σi is
the Pauli matrix on the sublattice space (A,B) associated with the honeycomb unit cell,
and Si is the spin operator with eigenvalues ±1. The Pauli matrix τi acts on the K,K ′-
subspace. Here, vF ≃ 106 m/s is the Fermi velocity, and the parameter α arises from
the interplay between SOI and curvature effects [18, 19, 13]. In the framework of the
tight-binding model, α = −0.08meV/R[nm], where R is the radius of the CNT [13]. The
parameter ξ ≃ 2× 10−5nm is given by a combination of hopping matrix elements, on-site
dipole moment, and SOI [14].

The spectrum given by H (Eq. 4.1) consists of four branches (see Fig. 4.2), εn(k) =
±eEξ±

√
α2 + (~υFk)2 for each Dirac point. In the following, we label the four branches

by n = 1, ..., 4. For each k, n = 1 corresponds to the highest eigenvalue and n = 4 to the
lowest. The remarkable feature of the spectrum is the existence of helical modes, which
carry opposite spins in opposite directions. The average value of the spin along the CNT-
axis (〈Sx〉) or parallel to E-field (〈Sy〉) is equal to zero. The projection of the spin along the
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z-direction is equal to 〈Sz〉 = sin ζ , where ζ is defined by ζ = arcsin(~υFk/
√
α2 + (~υFk)2)

and depends on the wavevectror k. Note that the eigenvectors ψ
e/i
nK and ψ

e/i
nK ′ are indepen-

dent of E. For a (10,10)-CNT and E = 1V/nm, and with a Fermi level µ tuned between
the two lowest electronic states polarizations close to 90% can be reached [14].

Figure 4.2: The energy spectrum around the Dirac points K, K ′ for a (10,10)-CNT in an
electric field E = 1 V/nm, which consists of exterior (full line) and interior (dashed line)
branches. Each branch of the spectrum is characterized by the sign of the spin projection
along the z-axis 〈Sz〉 (red: spin down, blue: spin up). The Fermi level µ lies inside the
gap given by 2eEξ, and δ = eEξ + α− µ.

Proximity induced superconductivity. If a CNT is in contact with an s-wave bulk
superconductor, then the proximity effect induces superconductivity also in the CNT
which at the BCS mean-field level is described by

∑

i,j,i′,j′,s

(∆dc
†
iprsc

†
jpr s̄ +∆nc

†
i′prs

c†j′pr s̄) + h.c., (4.2)

where we concentrate on the contribution coming from the π-bands formed by the radial
pr-orbitals [20, 13]. Here, c

(†)
iprs

are the standard fermionic annihilation (creation) opera-
tors, with s and s̄ denoting opposite spin states. The sum runs over atoms which are in
contact with the bulk superconductor: i and j belong to the same sublattice, whereas i′

and j′ belong to different sublattices. Generically, the lattice constant of the supercon-
ducting material is not commensurate with the one of graphene. The CNT is placed in
such a way that the distance from the superconducting surface to the A and B atoms is
the same (see Fig. 1), which is satisfied for armchair CNTs. This ensures equal probabil-
ity amplitude for tunneling to either sublattice. Since the phase of the superconducting
order parameter ∆d/n can be chosen arbitrary, we assume them to be real. The coupling
terms in Eq. (4.2) conserve momentum, so they pair Kramers partners from the opposite
Dirac cones. The process in which the Cooper pair tunnels from the superconductor to
either one of the sublattice σ is written as

∆d

∑

σ,s,κ

sgn(σs̄)ψ†
σsκψ

†
σs̄κ̄ + h.c. , (4.3)
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where the indices κ and κ̄ denote opposite Dirac points. The operators ψσsκ and ciprs are
connected via Fourier transformation [14]. The pairing term between electrons in different
sublattices are

i∆n

∑

σ,s,κ

sgn(s̄)ψ†
σsκψ

†
σ̄ s̄κ̄ + h.c. (4.4)

To simplify the notation we introduce Pauli matrices ηi which act on the particle-hole
subspace, and we work in the basis Ψ̃ = (Ψ,Ψ†), with

Ψ = (ψA↑K , ψB↑K , ψA↓K , ψB↓K , ψA↑K ′, ψB↑K ′ , ψA↓K ′, ψB↓K ′).

This allows us to rewrite Eqs. (4.3) and (4.4) in a compact form Hsc = Ψ̃†HscΨ̃,

Hsc = −η2τ1Sy∆d σ3 + η1τ1Sy∆n σ1. (4.5)

In the same basis, H in Eq. (4.1) can be rewritten as H = 1
2
(~υFkσ2 + eEξη3τ3Szσ2 +

αη3Sxσ1). To express the coupling between the different energy states in a canonical form
we work in the basis of eigenvectors {ψe

nK , ψ
i
nK , ψ

e
nK ′, ψi

nK ′}. For the states at the Fermi
level, n = 2, Hsc becomes

∑

l=e,i

∆l(ψ
l
2K ′ψl

2K − ψl
2Kψ

l
2K ′) + h.c. , (4.6)

with different coupling strengths for the exterior (e) and interior (i) branches,

∆e/i = ∆d ±∆n |sin ζ | . (4.7)

We note that the sign reflects the constructive and destructive interference, resp., in the
tunneling process from the bulk-superconductor into the CNT [16]. The final effective
Hamiltonian for states at the Fermi level (expressed in terms of right- and left-movers,
see below) takes the form Hn=2 = Heβe +Hiβi, where Hl = kτ3 − ∆lη2τ2, where βe/i =
(1 ± β3)/2 (with the Pauli matrix β3) acts on the exterior/interior branch subspace. Hl

describes a one-dimensional p-wave topological superconductor of class DIII, satisfying
time reversal, particle-hole, and chirality symmetry [22]. In Eq. (4.6), we neglected a

term ∆n cos ζ characterizing the coupling between ψ
e/i
2K and ψ

e/i
4K ′ which are separated by

the particle-hole gap 2α, see Fig. 4.2. In the following we consider the limit of equal
diagonal and non-diagonal parameters, i.e., ∆d ≈ ∆n [21]. We note that for k ≫ α/~υF
the coupling between the interior branches is close to zero and that between the exterior
branches is equal to 2∆d. We show that this asymmetry in the coupling strengths is
crucial for the existence of Majorana bound states in CNTs.

4.3 Majorana bound states

Next, we obtain the MBS following the derivation of Ref. [8]. For illustrative purposes we
derive the bound states that arise by considering the exterior branches. The field corre-
sponding to the exterior branch is defined as, ψe(x) = ψR

2K(x)e
i(kF+K)x+ψL

2K ′(x)e−i(kF+K)x,
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Figure 4.3: The particle-hole spectrum of a CNT (10,10) in the presence of an electric field
E with the Fermi level µ tuned inside the energy gap between the two upper branches
(solid black lines). All energies are counted from µ = 0.11 meV (see Fig. 4.2). By
proximity effect, superconducting gaps ∆e,i are opened at the Fermi points kF . (a) Here,
the E-field is fixed at 1 V/nm and ∆d is varied. for ∆d = 5 µeV < ∆c1 both branches
are in the p-wave phase (dotted blue line). At the critical value ∆d = 23 µeV = ∆c1

the gaps induced by the proximity effect and by E are equal (dot-dashed red line). For
∆d = 30 µeV > ∆c1 only the interior branch is in the p-wave phase (dashed green line).
Keeping ∆d constant at 11 µeV and changing E, one goes from a regime [dashed blue
line in (b)] with E = 0.4 V/nm < Ec1 = 0.6 V/nm where only the interior branch is in
the p-wave phase to a regime [dashed green line (c)] with E = 1 V/nm > Ec1 = 0.6 V/nm
where both branches are in the p-wave phase.

where ψR
2K(x) and ψ

L
2K ′(x) are the slowly moving right and left components about the K

and K ′ points, resp. Denoting the length of the CNT by L, the boundary conditions,
ψe(x = 0) = ψe(x = L) = 0, yield the restriction ψR

2K(x) = −ψL
2K ′(−x). Thus, the kinetic

term is given by H
(1)
0 = −ivF

∫ L

−L
ψR†
2K(x)∂xψ

R
2K(x), and the p-wave pairing term between

the exterior branches by

−∆e

∫ L

−L

dx sgn(x)[ψR
2K(x)ψ

R
2K(−x) + h.c.] . (4.8)

Solving for the zero energy mode localized around x = 0, we obtain the MBS ΨM
e (x) ∝

γe sin[(K + kF )x]e
−x/ξe , where γe = γ†e, and it is assumed that the localization length,

given by ξe = ~vF/2∆e, satisfies ξe ≪ L. Similarly for the interior branches, with the
index e replaced by i.
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In general, the Majorana modes arising from the interior and exterior branches at the
same end of the CNT are not protected and can combine into a fermion. To avoid such
a scenario one needs to ensure the presence of only one single MBS at each end of the
CNT. This can be achieved in two ways.

First, there is a window where the electric field E can be chosen in such a way that
the superconductivity in the exterior branch can be tuned into a non-topological s-wave
superconductor, while the interior one still remains a topological p-wave superconductor
of class DIII [22] (see also above). In this case, only the interior branch supports a MBS
at each end of the nanotube, and we refer to this as a topological phase of the CNT (see
dashed green line in Fig. 4.3a). Concretely, such a regime is reached for ∆e(kF ) > δ >
∆i(kF ), where kF ≈

√
(µ+ eEξ)2 − α2/~vF and δ = eEξ + α − µ. With Eq. (4.7) this

criterion becomes equivalent to ∆c2 & ∆d & ∆c1, where ∆c1/c2 = δ/(1±sin ζ). For a given
value of ∆d, the experimentally viable approach to drive the system into the topological
phase is to tune the electric field E. Indeed, for Ec1 & E & Ec2 (see Fig. 4.3b) the
exterior branch is in the s-wave phase, while the interior one is in the p-wave phase. The
critical value of the electric field Ec1 (Ec2) is determined by the condition δ = ∆e(kF )
(δ = ∆i(kF )). Similarly, we can tune between the phases by changing the Fermi level. [In
passing we note that the gap eEξ, and thus δ, get enhanced by interaction effects around
k = 0 [23], which is useful for experimental realizations. However, for simplicity we will
ignore this feature here.]

Second, in the regime ∆d . ∆c1 (see dotted blue line in Fig. 4.3a) or E & Ec1 (see
Fig. 4.3c) both branches are dominated by p-wave pairing. If the temperature is lower
than both gaps, i.e. kBT < ∆e,i, then there is an even number of MBS at each end of the
nanotube, and the CNT is in the topologically trivial phase. However, in the intermediate
regime with ∆e > kBT > ∆i [24], the interior gap ∆i is closed and the Majorana states
are removed, yet those from the exterior branches remain, and the CNT is again in the
topological phase. In the following we consider this latter scenario and discuss the role of
interactions coming from the gapless states of the interior branch.

4.4 Interaction effects

Interactions effects are most conveniently described by linearizing the spectrum of the
fermionic fields ψ

e/i
2K and ψ

e/i
2K ′ near the Fermi momentum kF and expressing them in

terms of the bosonized fields. The quadratic part of the bosonized Hamiltonian thus
obtained has the following form,

H0 =
1

2

∑

n=±
{υnKn(∂xθn)

2 +
υn
Kn

(∂xφn)
2}, (4.9)

where ∂xφ+ and ∂xφ− are the sum and difference of densities between the two fermionic
bands. The fields conjugate to them are defined as, θ+ and θ−, resp. The parametersK+ ≃
1−U0/πυ andK− ≃ 1+(1−〈Sz〉2)U2kF /2πυ encode information about the interactions and
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the renormalized velocities are given as υ+ ≃ υF +U0/π, and υ− ≃ υF + b′(1+ 〈Sz〉2)/4π,
where the b′-term [25, 26] is due to the backscattering contribution. Here, U0,2kF denotes
the Fourier component of the screened Coulomb interaction. Since 〈Sz〉2 < 1 and thus
K− > 1, we conclude [27] that the forward scattering term ∝

∫
dxdτ cos(

√
8πφ−) scales

to zero.

Additional terms induced by the proximity effect lead to a modified Hamiltonian given
by

H = H0 +
∆e

2πa
cos

√
2π(θ+ − φ−). (4.10)

Since we assume here ∆e > kBT > ∆i, the term due to the interior branches, ∆i

2πa
cos

√
2π(θ++

φ−), is smeared out by temperature effects and will not be considered.

Using standard techniques [27, 28], we derive the following renormalization group (RG)
equations,

dK+

dl
=

f 2

4

(
1 +

4γK+K−
(1 + γ)2

)
, (4.11)

dK−1
−
dl

=
f 2

4

(
1 +

4γ

K−K+(1 + γ)2

)
, (4.12)

dγ

dl
=

f 2

4

γ(1− γ)K+

(1 + γ)(K+K− + 1)
, (4.13)

df

dl
= f

(
2− 1

2K+
− K−

2

)
, (4.14)

where the flow parameter l = ln[a/a0], f = 2∆ea, and γ is the ratio of the velocities
υ+/υ−. We note that for the non-interacting case γ is already at its fixed point, γ = 1,
and including interactions (the repulsive interactions are assumed to be well screened)
causes only a small deviation from unity [29, 30]. Thus, it is convenient to assume γ = 1,
and under this assumption K+K− is a constant, given in leading order by unity. Above
RG equations now acquire the simple form dR/dl = f 2/2 and df/dl = f(2− 1/R), where
R = (1/K+ + K−)/2. These equations are exactly the same as in Ref. [8] derived for
interacting spinless fermions in an effective p-wave regime. We conclude that for a CNT
whose initial values of the parameters lie in the regime f0 > 2

√
2R0 − ln(2R0e) has its

RG flow such that both K+ and K− approach the non-interacting value. At this point the
problem can be refermionized into a set of decoupled gapped and gapless fermions and
for a strongly screened CNT with initial value e.g. K+ = 0.8 the localization length ξe
increases by 25%. Therefore, we conclude that the MBS which arise from gapped fermions
remain protected even in the presence of interacting gapless fermions and simply acquire
a renormalized ξe.
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4.5 Conclusions

We have shown that an armchair CNT with helical modes generated by an external electric
field is a promising candidate material for Majorana bound states. By placing the CNT
on top of an s-wave superconductor and tuning the Fermi level and the electric field,
one can induce pairing of Kramers partners from opposite Dirac points. This pairing
opens up inequivalent gaps for the exterior and the interior branches. The Majorana
modes obtained are stabilized by either tuning the electric field such that the exterior gap
acquires a predominantly s-wave character or by increasing the temperature to remove
the pairing in the interior branches.
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Chapter 5

Composite Majorana Fermion
Wavefunctions in Nanowires

We consider Majorana fermions (MFs) in quasi-one-dimensional nanowire systems con-
taining normal and superconducting sections where the topological phase based on Rashba
spin orbit interaction can be tuned by magnetic fields. We derive explicit analytic solu-
tions of the MF wavefunction in the weak and strong spin orbit interaction regimes. We
find that the wavefunction for one single MF is a composite object formed by superpo-
sitions of different MF wavefunctions which have nearly disjoint supports in momentum
space. These contributions are coming from the extrema of the spectrum, one centered
around zero momentum and the other around the two Fermi points. As a result, the var-
ious MF wavefunctions have different localization lengths in real space and interference
among them leads to pronounced oscillations of the MF probability density. For a trans-
parent normal-superconducting junction we find that in the topological phase the MF
leaks out from the superconducting into the normal section of the wire and is delocalized
over the entire normal section, in agreement with recent numerical results by Chevallier
et al..

This chapter has been published in Physical Review B 86, 085423 (2012).
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5.1 Introduction

Majorana fermions[1] (MFs), being their own antiparticles, have attracted much attention
in recent years in condensed matter physics [2, 3, 4, 5, 6, 7, 8, 12, 9, 10, 13, 15, 14, 16, 17,
11, 18, 19]. Besides being of fundamental interest, these exotic quantum particles have
the potential for being used in topological quantum computing due to their non-Abelian
statistics[20, 21, 24, 26, 25, 22, 23]. There are a number of systems where to expect
MFs, e.g. fractional quantum Hall systems[27, 28], topological insulators[3, 4], optical
lattices[5], p-wave superconductors[12], and especially nanowires with strong Rashba spin
orbit interaction[7, 8, 9] - the system of interest in this work. There are now several claims
for experimental evidence of MFs in topological insulators [29, 30] and, in particular, in
semiconducting nanowires of the type considered here[31, 32, 33].

As is well-known[7, 9, 8, 19], an s-wave superconductor brought into contact with
a semiconducting nanowire with Rashba spin orbit interaction (SOI) induces effective p-
wave superconductivity that gives rise to MFs, one at each end of such a wire. Most studies
have analyzed the corresponding model Hamiltonian by direct numerical diagonalization,
which provides exact solutions of the Schrödinger equation for essentially all parameter
values irrespective of their relative sizes. Less attention, however, has been given to
analytical approaches which can provide additional insights into the nature of MFs. As
usual, this comes with a price: closed analytic expressions are hard to come by and can
be obtained only in special limits. But since these limits turn out to include realistic
parameter regimes such an approach is not a mere academic exercise but worthwhile also
from a physical point of view.

Motivated by this, we focus in the present work on the spinor-wavefunction for MFs,
and derive analytical expressions for various limiting cases, loosely characterized as weak
and strong SOI regimes. We find that these solutions are superpositions of states that
come, in general, from different extremal points of the energy dispersion, one centered
around zero-momentum and the others around the Fermi points. Despite having nearly
disjoint support in momentum-space, all such contributions must be taken into account, in
general, in order to satisfy the boundary conditions imposed on the spinor-wavefunctions
in real space. As a consequence of this composite structure of the MF wavefunctions,
there will be more than one localization length that characterizes a single MF. We will
see throughout this work that the Schrödinger equation for the systems under consider-
ation allows, in principle, degenerate MF wavefunctions. However, this degeneracy gets
completely removed by the boundary conditions considered here, and, consequently, there
exists only one single MF wavefunction at a given end of the nanowire. The superposition
also gives rise to interference effects that leads to pronounced oscillations of the MF prob-
ability density in real space. Quite interestingly, the relative strengths of the different
localization lengths as well as of the oscillation periods can be tuned by magnetic fields.

If only a section of the wire is covered with a superconductor, a normal-superconducting
(NS) junction is formed. For this case, we find that the MF becomes delocalized over the
entire normal section, while still localized in the superconducting section, as noted by sev-
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eral groups before[34, 19, 35, 36, 37], and most recently studied in detail in a numerical
study by Chevallier et al. [38]. Here, we will find analytical solutions for this problem,
valid in the weak and strong SOI regime. Depending on the length of the normal section,
the support of the MF wavefunction is, again, centered at zero momentum or the Fermi
momenta. Also similarly as before, different localization lengths and oscillation periods
of the MF in the normal section occur, again tunable by magnetic fields. This could then
provide an experimental signature for MFs, e.g. in a tunneling density of states measure-
ment, where a signal that comes from a zero-mode MF will show oscillations along the
normal section.

The paper is organized as follows. In Sec. 5.2 we introduce the continuum model of
a nanowire including SOI, magnetic field and induced superconductivity. The composite
structure of MF in proximity-induced superconducting wire is discussed in Sec. 5.3 for
strong and weak SOI. In Sec. 5.4 we investigate an NS junction and show how the type
of MF wavefunction oscillates in space and depends on magnetic field. The final Sec. 5.5
contains our conclusions. Some technical details are referred to two Appendices.

5.2 Model

Following earlier work[7, 8, 9, 38, 19], our starting point is a semiconducting nanowire with
Rashba SOI (see Fig. 5.1) characterized by a SOI vector αR that points perpendicularly to
the nanowire axis and defines the spin quantization direction z. In addition, a magnetic
field B is applied along the nanowire in x-direction. We imagine that the nanowire
(or a section of it) is in tunnel-contact with a conventional bulk s-wave superconductor
which leads to proximity-induced superconductivity in the nanowire itself, characterized
by the induced s-wave gap ∆sc (see Fig. 5.1). We refer to this part of the nanowire
as to the superconducting section (or as to the nanowire being in the superconducting
regime), in contrast to the ‘normal’ section of the nanowire that is not in contact with
the superconductor and thus in the normal regime.

We describe this nanowire system by a continuum model and our goal is to find
the explicit wavefunctions for the MFs in the entire nanowire, including normal and
superconducting section. For this, we need to introduce some basic definitions and briefly
recall well-known results about the spectrum.

The Hamiltonian H0 = Hkin+HSOI +HZ for the normal regime [7, 8] consists of the
kinetic energy term

Hkin =
∑

σ

∫
dx Ψ†

σ(x)

[
(−i~∂x)2

2m
− µ

]
Ψσ(x), (5.1)

where m is the (effective) electron mass and µ the chemical potential, the SOI term,

HSOI = −iαR

∑

σ,σ′

∫
dx Ψ†

σ(x)(σ3)σσ′∂xΨσ′(x), (5.2)
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Figure 5.1: Nanowire (blue slab) of length Lsc in the superconducting regime with gap ∆sc

induced via proximity effect by a bulk s-wave superconductor (not shown). A magnetic
field B is applied along the nanowire in x-direction and perpendicularly to the Rashba
SOI vector αR that points in z-direction.

where, again, the z-axis is chosen along αR, and the Zeeman term corresponding to the
magnetic field B along the nanowire (x-axis),

HZ = ∆Z

∑

σ,σ′

∫
dx Ψ†

σ(x)(σ1)σσ′Ψσ′(x). (5.3)

Here, Ψ†
σ(x) is the creation operator of an electron at position x with spin σ/2 = ±1/2

(along z-axis), and the Pauli matrices σ1,2,3 act on the spin of the electron. The Zeeman
energy is given by ∆Z = gµBB/2, where g is the g-factor and µB the Bohr magneton. It
is convenient to introduce the corresponding Hamiltonian density H0,

H0 =

∫
dx ψ†(x)H0ψ(x),

H0 = −~
2∂2x/2m− µ− iαRσ3∂x +∆Zσ1, (5.4)

which acts on the vector ψ = (Ψ↑,Ψ↓). The bulk spectrum of H0 (see Fig. 5.2a) consists
of two branches and is given by

E0
±(k) =

~
2k2

2m
− µ±

√
(αRk)2 +∆2

Z , (5.5)

where k is a momentum along the nanowire. By opening a Zeeman gap 2∆Z , the magnetic
field lifts the spin degeneracy at k = 0. The chemical potential µ is tuned inside this gap
and set to zero. In this case, the Fermi wavevector is determined from E0

−(kF ) = 0 and
given by

kF =

√
2k2so +

√
4k4so + k4Z , (5.6)

where kso = mαR/~
2 and kZ =

√
2∆Zm/~.
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The nanowire in the superconducting regime is described by the Hamiltonian H0 +
Hsc, where the s-wave BCS Hamiltonian Hsc couples states with opposite momenta and
spins[7, 8],

Hsc =
1

2

∑

σ,σ′

∫
dx ∆sc(Ψσ(iσ2)σσ′Ψσ′ + h.c.). (5.7)

The proximity-induced superconductivity gap ∆sc is chosen to be real (thereby assuming
that we can neglect the flux induced by the B-field, which is the case e.g. for InSb
nanowires [31]). The spectrum of H0 +Hsc (see Fig. 5.2b) is then found to be

E2
±(k) =

(
~
2k2

2m

)2

+ (αRk)
2 +∆2

Z +∆2
sc (5.8)

± 2

√

∆2
Z∆

2
sc +

(
~2k2

2m

)2

(∆2
Z + (αRk)2).

The ‘topological’ gap at k = 0 is given by ∆− = ∆sc − ∆Z , and the closing of this gap
marks the transition between nontopological (∆− > 0) and topological (∆− < 0) phases
[5, 7, 8]. In contrast, the gap at kF , ∆e ≡ 2|E−(kF )|, is always nonzero (see Fig. 5.2b).

5.3 Majorana fermions in the superconducting sec-

tion

In this section we consider first the simpler case where the superconducting section extends
over the entire nanowire from x = 0 to x = Lsc, see Fig. 5.1. In the topological phase
there is one MF bound state at each end of the nanowire[7, 8]. In the physically interesting
regime, these two MFs should be independent and have negligible spatial overlap. This

Figure 5.2: Bulk spectrum for extended electron (solid lines) and hole (dashed lines)
states in the normal (a) and in the superconducting regime (b). (a) In the normal regime,
a Zeeman gap 2∆Z is opened at k = 0, but the full spectrum is still gapless due to the
propagating modes at the Fermi points ±kF . (b) The proximity-induced superconductiv-
ity leads to the opening of a gap ∆e at the Fermi points ±kF and modifies the topological
gap ∆− = ∆sc −∆Z at k = 0.

87



Chapter 5

Figure 5.3: (a) Band structure of a nanowire with strong SOI and in a uniform magnetic
field B in the lab frame (see also Fig. 5.2) for the normal section. States around k = 0
belong to the interior branches and states around k = kF = 2kso belong to the exterior
branches. (b) The same band structure in the rotating frame. The rotating magnetic field

B̃(x) given by Eq. (5.12) couples R̃↑ and L̃↓ that leads to the opening of the Zeeman gap

2∆Z but does not affect L̃↑ and R̃↓.

justifies the consideration of a semi-infinite nanowire. In this work we focus on the MF
at the left end, x = 0.

We will consider two limiting regimes, namely strong (kF ≃ 2kso) and weak (kF ≃ kZ)
SOI. In both regimes, the Hamiltonian can be linearized near the Fermi points and solved
analytically. We show that the MF wavefunction has support in k-space from the exterior
(k ≃ ±kF ) and the interior (k ≃ 0) branches of the spectrum, see Fig. 5.3a. If the system
is in some intermediate regime of moderate SOI, the support of the MF wavefunction
extends over all momenta from −kF to kF , and this case cannot be treated analytically
in the linearization approximation considered here.

5.3.1 Regime of strong SOI and rotating frame

The regime of strong SOI is defined by the condition that the SOI energy at the Fermi
level is larger than the Zeeman splitting, ∆Z ≪ mα2

R/~
2 (or kF ≈ 2kso), and larger than

the proximity gap, ∆sc ≪ mα2
R/~

2. This allows us to treat the magnetic field and the
proximity-induced superconductivity as small perturbations.

The spectrum obtained in Eq. (5.5) consists of two parabolas shifted by the SOI
momentum kso = mαR/~

2 and with a Zeeman gap opened at k = 0 (see Fig. 5.3a).
In the strong SOI regime it is more convenient to work in the rotating frame, see Fig.
5.3b. For this we follow Ref. [39] and make use of the following spin-dependent gauge
transformation

Ψσ(x) = e−iσksoxΨ̃σ(x), (5.9)

where tilde refers to the rotating frame. The HSOI term is effectively eliminated (H̃SOI =

0) and the spectrum corresponding to H̃kin consists of two parabolas centered at k = 0,
one for spin up and one for spin down. Around the Fermi points, ±kso, the spectrum can
be linearized and the electron operators Ψ̃σ are expressed in terms of slowly-varying right

88



Majorana fermions in the superconducting section

(R̃σ) - and left (L̃σ) - movers,

Ψ̃σ(x) = R̃σ(x)e
iksox + L̃σ(x)e

−iksox. (5.10)

The kinetic energy term in the linearized model is

H̃kin = −i~υF
∫
dx [R̃†

σ(x)∂xR̃σ(x)− L̃†
σ(x)∂xL̃σ(x)] (5.11)

with Fermi velocity υF = αR/~. Here, we droped all fast oscillating terms, which is

justified as long as ξ ≫ 2π/kso, where ξ is a localization length of R̃σ and L̃σ (see below).
In the rotating frame the B-field becomes helical, rotating in the plane perpendicular

to the SOI vector αR,

B̃(x) = B[x̂ cos(2ksox)− ŷ sin(2ksox)]. (5.12)

Here, x̂ and ŷ are unit vectors in x and y directions, respectively (see Fig. 5.1). This
leads to the Zeeman Hamiltonian of the form

H̃Z = ∆Z

∫
dx Ψ̃†

σ(x)e
2iσksoxΨ̃−σ(x),

≃ ∆Z

∫
dx [R̃†

↑(x)L̃↓(x) + L̃†
↓(x)R̃↑(x)], (5.13)

where in the second line we used the linearization approximation and, again, droped all
fast oscillating terms. We note that only R̃↑(x) and L̃↓(x) are coupled, which leads to
opening of a gap, as shown in Fig. 5.3b. This is similar to the spin-selective Peierls
mechanism discovered in Ref. [39] where interaction effects strongly renormalize this gap
(here, however, we shall ignore interaction effects).

The superconductivity term [see Eq. (5.7)] in the linearized model becomes

H̃sc =
1

2

∫
dx ∆sc(R̃↑(x)L̃↓(x)− L̃↓(x)R̃↑(x)

+ L̃↑(x)R̃↓(x)− R̃↓(x)L̃↑(x) + h.c.). (5.14)

We construct two vectors, φ̃(i) = (R̃↑, L̃↓, R̃
†
↑, L̃

†
↓) and φ̃(e) = (L̃↑, R̃↓, L̃

†
↑, R̃

†
↓), which

correspond to the exterior (k ≃ 2kso) and interior (k ≃ 0) branches of the spectrum in

the lab frame (see Fig. 5.3a). The linearized Hamiltonian H̃kin + H̃Z + H̃sc reduces then
to (l = i, e)

H̃(l) =
1

2

∫
dx (φ̃(l)(x))†H̃(l)φ̃(l)(x), (5.15)

where the interior branches are described by

H̃(i) = −i~υFσ3∂x +∆zσ1η3 +∆scσ2η2, (5.16)
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and the exterior ones by

H̃(e) = i~υFσ3∂x +∆scσ2η2. (5.17)

Here, the Pauli matrices η1,2,3 act on the electron-hole subspace.

The energy spectrum is determined by the Schrödinger equation, H̃(l)ϕ̃
(l)
E (x) = Eϕ̃

(l)
E (x),

with boundary conditions to be imposed on the eigenfunctions ϕ̃
(l)
E (x) as discussed below.

We introduce then the operator γ̃
(l)
E =

∫
dx ϕ̃

(l)
E (x) · φ̃(l)(x) and see that it diagonalizes

Eq. (5.15), i.e., H̃(l) =
∑

E E(γ̃
(l)
E )†γ̃

(l)
E . Focusing now on the zero modes, we consider in

particular γ̃(l) ≡ γ̃
(l)
E=0 but express it in a more convenient basis,

γ̃(l) =

∫
dx Φ̃

(l)
E=0(x) · Ψ̃(x), (5.18)

where Ψ̃ = (Ψ̃↑, Ψ̃↓, Ψ̃
†
↑, Ψ̃

†
↓) and where fast oscillating terms were dropped. In this new

basis Ψ̃, we have reinstalled the phase factors e±iksox (associated with R̃σ and L̃σ) explicitly

in the wavefunctions Φ̃
(l)
E=0(x), so that they are taken automatically into account when we

impose the boundary conditions on Φ̃
(l)
E=0(x).

The zero-energy operator γ̃(l) represents a MF, i.e., (γ̃(l))† = γ̃(l), if and only if the

corresponding wavefunction Φ̃
(l)
E=0(x) has the following form

Φ̃
(l)
E=0(x) =




f(x)
g(x)
f ∗(x)
g∗(x)


 , (5.19)

where the functions f, g are arbitrary up to normalization
∫
dx|Φ̃(l)

E=0(x)|2/2 =
∫
dx(|f(x)|2+

|g(x)|2) = 1, which, however, will be suppressed in the following.

In infinite space (no boundary conditions), the spectrum of the interior branches [see

Eq. (5.16)] is given by E
(i)
± = ±

√
(~υFκ)2 +∆2

±, while the one for the exterior branches

[see Eq. (5.17)] is given by E
(e)
1,2 = ±

√
(~υFκ)2 +∆2

e, where κ is taken from the Fermi
point. Here, ∆± = ∆sc±∆Z and ∆e = ∆sc. If ∆Z and ∆sc become equal, the topological
interior gap ∆− is closed. In contrast, the exterior gap ∆e is not affected by the magnetic
field.

The only normalizable eigenstates of H̃(l) at zero energy and at x > 0 are two
evanescent modes coming from the interior branches, characterized by a decay wavevector
k
(i)
± = |∆±|/αR, and two evanescent modes coming from the exterior branches, character-

ized by a decay wavevector k(e) = ∆sc/αR. The corresponding zero-energy eigenfunctions

ϕ̃
(l)
E=0(x) give the four basis wavefunctions, exponentially decaying in the semi-infinite
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space x > 0,

Φ̃
(i)
− =




−i sgn(∆−)e
−iksox

eiksox

i sgn(∆−)e
iksox

e−iksox


 e−k

(i)
− x, Φ̃

(i)
+ =




e−iksox

−i eiksox
eiksox

i e−iksox


 e−k

(i)
+ x, (5.20)

Φ̃
(e)
1 =




i eiksox

e−iksox

−i e−iksox

eiksox


 e−k(e)x, Φ̃

(e)
2 =




eiksox

i e−iksox

e−iksox

−i eiksox


 e−k(e)x. (5.21)

Here we should note that these four degenerate MF wavefunctions are not yet solutions
of our problem: they do satisfy the Schrödinger equation but not yet the boundary condi-
tions. Thus, we search now for a linear combination of them, Φ̃M , such that the boundary
conditions are satisfied. At the left end of the nanowire, the condition on the wavefunc-
tion is Φ̃M(x = 0) = 0. We assume here that the length of the nanowire Lsc provides the
largest scale, so we can neglect any interplay between the two ends of the nanowire and
treat them independently (see also below). The set of vectors {Φ̃(i)

− , Φ̃
(i)
+ , Φ̃

(e)
1 , Φ̃

(e)
2 } is

seen to be linearly independent in the nontopological phase at x = 0, thus it is impossible
to satisfy the boundary conditions and no solution exists at zero energy. In contrast,
in the topological phase, ∆Z > ∆sc, the two vectors Φ̃

(i)
− and Φ̃

(e)
1 are ‘collinear’ such

that the boundary condition can be satisfied and the zero energy state is a MF given by
Φ̃M = Φ̃

(i)
− − Φ̃

(e)
1 in the rotating frame. Using Eq. (5.9), the MF wavefunction in the lab

frame is then given by

ΦM(x) =




i
1
−i
1


 e−k

(i)
− x −




i eikF x

e−ikF x

−i e−ikFx

eikFx


 e−k(e)x, (5.22)

with kF = 2kso.
There are a few remarks in order. First, we see that the initial fourfold degeneracy of

the MF has been completely removed by the boundary condition and we end up with one
single non-degenerate MF wavefunction at the left end of the nanowire, x = 0 (analogously
for the right end, x = Lsc). This is reminiscent of a well-known fact in elementary
quantum mechanics, where for spinless particles in a one-dimensional box the degeneracy
also gets removed by vanishing boundary conditions (whereas there is degeneracy for
periodic boundary conditions).[40] This non-degeneracy of the MFs is a generic feature
which will occur in all cases considered in this work, even in the presence of additional
symmetries such as pseudo-time reversal invariance (see Sec. 5.3.2 below and footnote
[41]).

Second, we see that the MF wavefunction ΦM is a ‘composite’ object that is a su-
perposition of two MF wavefunctions with (essentially) disjoint supports in k-space, one
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Figure 5.4: The MF probability density |ΦM(x)|2, see Eq. (5.22), for a nanowire in the
strong SOI regime with ~

2∆sc/mα
2
R = 0.1. The decaying MF wavefunction ΦM oscillates

with a period π/kso. (a) In the topological phase but still near the transition, ∆Z = 2∆sc,

the MF wavefunction undergoes many oscillations due to the interference between Φ̃
(i)
−

and Φ̃
(e)
1 . (b) Deep inside the topological phase, ∆Z = 7∆sc, the MF wavefunction from

the interior branches decays much faster than the one from the exterior branches. This
leads to only a few oscillations of the density and a uniform decay with a decay wavevector
k(e) away from the end of the nanowire.

coming from the exterior (Φ̃
(e)
1 ) and one from interior (Φ̃

(i)
− ) branches of the spectrum,

respectively. Note that the corresponding wavevectors are extrema of the particle-hole
spectrum shown in Fig. 5.2b. As a consequence, these two MF wavefunctions have dif-
ferent localization lengths in real space, ξ(i) = 1/k

(i)
− and ξ(e) = 1/k(e), which are inverse

proportional to the corresponding gaps, |∆−| and ∆sc. Which one of them determines the
localization length of ΦM depends on the ratio between ∆Z and ∆sc.

In particular, as the magnetic field is being increased from zero to the critical value
Bc = 2∆sc/gµB, MFs emerge at each end of the nanowire [7, 8, 5]. However, if the
localization lengths ξ(i) of these emerging MFs are comparable to the length Lsc of the
nanowire, then these two MFs are hybridized into a subgap fermion of finite energy (see
App. 5.A). This then implies that the MFs in a finite wire can only appear at a magnetic
field B∗

c ≃ Bc(1 + 4αR/∆scLsc) that is larger than the Bc obtained for a semi-infinite
nanowire. If the magnetic field is increased further, the main contribution to the MF
bound state comes from the exterior branches.

The composite structure of the MF wavefunction manifests itself in the probability
density |ΦM(x)|2 along the nanowire. The density of a MF coming only from one of

the branches, for example, Φ̃
(i)
− , is just decaying exponentially. In contrast, the density

of the composite MF exhibits oscillations (see Fig. 5.4). These oscillations are due to

interference and are most pronounced when the contributions of Φ̃
(e)
1 and Φ̃

(i)
− to Φ̃M are

similar, i.e., when both decay lengths, ξ(i) and ξ(e), are close to each other.

The approach of the rotating magnetic field allows us to understand the structure of
composite MF wavefunction. However, this approach is valid under the assumption that
the SOI at the Fermi level is the largest energy scale. In order to explore the weak SOI
regime, we come back to the full quadratic Hamiltonian in the next subsection.
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5.3.2 Weak SOI regime: Near the topological phase transition

The regime of weak SOI is defined by the condition that the Zeeman splitting is much
larger than the SOI energy at the Fermi level, ∆Z ≫ mα2

R/~
2 [or kF ≈ kZ , see Eq. (5.6)].

This allows us to treat the SOI as a perturbation [26, 15].
Around the Fermi points, ±kF , the eigenstates of H0 are found from the Schrödinger

equation H0(−i∂x → ±kF )ϕR/L = 0 [see Eq. (5.4)] and given by

ϕ
R/L
0 =

1√
2

(−1 ± kso
kF

1± kso
kF

)
, (5.23)

where ϕ
R/L
0 denotes the eigenstates at k = ±kF . In Eq. (5.23) we kept only terms up

to first order in kso/kF . As expected, ϕ
R
0 and ϕL

0 are nearly ‘aligned’ along the magnetic
field since ∆Z ≫ αRkF . In the absence of SOI, ϕR

0 and ϕL
0 are perfectly aligned along

the x-axis and have the same spin, so they cannot be coupled by an ordinary s-wave
superconductor. The SOI slightly tilts the spins in the orthogonal direction, which then
allows the coupling between these states if the nanowire is brought into the proximity of
an s-wave superconductor.

The exterior branches can be treated in the linearized approximation similar to Sec.
5.3.1,

χ(x) = R(x)eikF x + L(x)e−ikF x, (5.24)

where, again, R (L) annihilates a right (left) moving electron. These operators are con-
nected to spin-up (Ψ↑) and spin-down (Ψ↓) electron operators as R(x) = ϕR(x) · ψ and
L(x) = ϕL(x) · ψ, where ψ = (Ψ↑,Ψ↓) (with corresponding support for right and left
movers). Here, ϕR/L(x) is given by Eq. (5.23) but where we allow now also for a slowly
varying x-dependence.

In this approximation, we find

H0 = −i~υF
∫
dx [R†(x)∂xR(x)− L†(x)∂xL(x)], (5.25)

where the Fermi velocity is given by υF ≈
√

2∆Z/m. The proximity-induced supercon-
ductivity [see Eq. (5.7)] is described in the linearized model as

Hsc =
1

2

∫
dx∆sc(R(x)L(x)− L(x)R(x) + h.c.), (5.26)

where the strength of the proximity-induced effective p-wave superconductivity, ∆sc, is
found from Eqs. (5.7), (5.23), and (5.24),

∆sc

∆sc
= (ϕR

0 )
∗ · iσ2ϕL

0 = 2
kso
kF

=

√
2mαR

~
√
∆Z

≪ 1. (5.27)

The suppression of ∆sc compared to ∆sc can be understood from the fact that two states
with opposite momenta at the Fermi level have mostly parallel spins due to the strong

93



Chapter 5

magnetic field and they slightly deviate in the orthogonal direction due to the weak SOI,
which then leads to a suppression of ∆sc by a factor kso/kF .

Again, introducing a vector φ(e)(x) = (R,L,R†, L†), we represent the linearized Hamil-
tonian H(e) = H0 +Hsc as

H(e) =
1

2

∫
dx(φ(e))†H(e)φ(e),

H(e) = −i~υF τ3∂x +∆scτ2η2, (5.28)

where the Pauli matrices τ1,2,3 act on the right/left-mover subspace.
The spectrum around the Fermi points in infinite space (no boundary conditions)

follows from the Schrödinger equation, H(e)ϕ(e) = E(e)ϕ(e), and is given by E
(e)
1,2 =

±
√

(~υFκ)2 +∆2
e, where the momentum κ is again taken from the Fermi points. Here,

2∆e ≡ 2∆sc is the gap induced by superconductivity.
The zero-energy solutions that are normalizable for x > 0 are two evanescent modes

with wavevector k̄(e) =∆sc/~υF determining the localization length. These solutions can

be written explicitly as ϕ
(e)
1 = (1,−i, 1, i)e−k̄(e)x and ϕ

(e)
2 = (−i, 1, i, 1)e−k̄(e)x. Repeating

the procedure that led us to Eq. (5.18) in Sec. 5.3.1, we can introduce a new MF operator,

γ =

∫
dx ΦE=0(x) ·Ψ(x). (5.29)

Here Ψ = (Ψ↑,Ψ↓,Ψ
†
↑,Ψ

†
↓). The two corresponding wavefunctions are written as

Φ
(e)
j =




fj(x)
if ∗

j (x)
f ∗
j (x)

−ifj(x)


 e−k̄(e)x, (5.30)

where

f1(x) = i(1 + kso/kF )e
ikFx − (1− kso/kF )e

−ikF x,

f2(x) = i(1− kso/kF )e
−ikF x − (1 + kso/kF )e

ikF x. (5.31)

The effect of the SOI on the states around k = 0 is negligible near the topological
phase transition if ~2|∆−|/2mα2

R ≪ 1. Therefore, the eigenstates for weak and strong

SOIs are the same in first order in SOI. This means that we are allowed to take Φ̃
(i)
− and

Φ̃
(i)
+ given by Eq. (5.20) and transform them back into the lab frame,

Φ
(i)
− =




−i sgn(∆−)
1

i sgn(∆−)
1


 e−k

(i)
− x, Φ

(i)
+ =




1
−i
1
i


 e−k

(i)
+ x. (5.32)
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After we found four basis wavefunctions {Φ(i)
− , Φ

(i)
+ , Φ

(e)
1 , Φ

(e)
2 }, we should impose the

boundary conditions on their linear combination Φ(x). The wavefunction Φ(x) should
vanish at the boundary x = 0. One can see that if we neglect the corrections to the
wavefunctions Φ

(e)
1 and Φ

(e)
2 coming from SOI, then we are able to satisfy the boundary

conditions. This is a consequence of the fact that in the absence of SOI both states at
the Fermi level have the same spin, so that the functions Φ

(e)
i , i = 1, 2, effectively become

spinless objects and the MF always exists and arises only from the exterior branches. For
the complete treatment, however, we should also consider contributions from the interior
branches. This will be addressed next.

The set of wavefunctions {Φ(i)
− , Φ

(i)
+ , Φ

(e)
1 , Φ

(e)
2 } becomes linearly dependent in the topo-

logical regime ∆− < 0 and the MF wavefunction is given by

ΦM =

(
1− kso

kF

)
Φ
(e)
1 −

(
1− kso

kF

)
Φ
(e)
2 − 4

kso
kF
Φ
(i)
− . (5.33)

As in the regime of strong SOI (see Subsec. 5.3.1), the MF wavefunction has its
support around wavevectors k = 0 (interior branches) and k = ±kF (exterior branches).
However, in contrast to the previous case, the contribution of the interior branches is
suppressed by the small parameter kso/kF , thus the exterior branches contribute most to
the MF wavefunction. At the same time we note that the localization length of MFs is
determined by the smallest gap in the system. Near the topological phase transition[7, 8],
which corresponds to the closing of the topological (interior) gap, the interior branches

determine the localization length as long as k̄(e) > k
(i)
− . If the magnetic field is increased

further, the gap in the system is given by the exterior gap, 2∆e = 2∆sc ∝ 1/
√
B [see Eq.

(5.27)]. The localization length is increasing as ∝ B. As soon as it is comparable to the
nanowire length Lsc, the wavefunction of the two MFs at opposite ends overlap, and the
two zero-energy MF levels are split into one subgap fermion of finite energy.

In the weak SOI regime and sufficiently far away from the topological transition point,
∆Z > ∆sc(1 + kso/kF ), so that the gap is determined by the exterior branches only, we
can work in the simplified model[15] given by H(e) [see Eq. (5.28)]. The explicit MF
wavefunction can be found from Eq. (5.33),

ΦM(x) =




e−iπ/4

ieiπ/4

eiπ/4

−ie−iπ/4


 sin(kFx)e

−k̄(e)x. (5.34)

Again, we note that this wavefunction describes a MF with the spin of both, the electron
and the hole, pointing in x-direction, again, up to corrections of order of kso/kF . The MF

probability density |ΦM(x)|2 ∝ sin2(kFx)e
−2k̄(e)x decays oscillating with a period half the

Fermi wavelength, λF/2 = π/kF (see Fig. 5.5).
In passing we remark thatH(e) given in Eq. (5.28) belongs to the topological class DIII

according to the classification scheme of Ref. [42] and supports MFs in 1D, in agreement
with our result Eq. (5.34) [41].
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Figure 5.5: The MF probability density |ΦM(x)|2 for a nanowire in the weak SOI regime
( mα2

R/~
2∆sc = 0.2 and ∆Z = 5∆sc) oscillates with period π/kF due to interference

between right- and left-moving contributions [see Eq. (5.30)]. The decay length is given
by 1/k̄(e).

5.4 Majorana fermions in NS junctions

In this section we consider a nanowire containing a normal-superconducting (NS) junction
where the right part is in the superconducting and the left part in the normal regime, see
Fig. 5.6. The junction is assumed to be fully transparent. We will show that the MF
wavefunction leaks out of the superconducting section and leads to a new MF bound state
that extends over the entire normal section. We note that this bound state is different
from Andreev bound states [45] known to occur in NS junction systems. Indeed, the
existence of the latter at zero energy would be accidental in the presence of a magnetic
field since they move away from the Fermi level if the magnetic field is varied. Further,
the MFs found in this section always exist in the topological regime and are not sensitive
to the length Ln of the normal section, in stark contrast to Andreev bound states that
move in energy as function of Ln [45, 46].

We continue to work with the formalism developed in Sec. 5.3 [see Eqs. (5.18) and
(5.29)] and represent γ in the basis of electron/hole spin-up/spin-down operators Ψ(x) in

x

z

y
0

Figure 5.6: NS junction of a nanowire. The right section (blue) of the nanowire from
x = 0 to x = Lsc is brought into contact with a bulk s-wave superconductor (not shown)
that induces a gap ∆sc in the nanowire via proximity effect. The left section (green) of
the nanowire from x = −Ln to x = 0 is in the normal regime. A magnetic field B is
applied along the entire nanowire in x-direction and perpendicularly to the Rashba SOI
vector αR, which points in z-direction.

96



Majorana fermions in NS junctions

terms of a four-component vector Φ(x) on which we impose the boundary conditions. As
before, the length of the superconducting part of the nanowire Lsc is assumed to be much
larger than any decay length given by k

(i)
− , k

(i)
+ , or k(e) (k̄(e)). This assumption allows us

to treat the nanowire again as semi-infinite with no boundary conditions at x = Lsc. In
contrast, the normal section, x ∈ [−Ln, 0], is finite. Thus, at x = 0 we invoke continuity
of the wavefunctions and of their derivatives [44] and at x = −Ln we impose vanishing
boundary conditions,

Φ(x = 0−) = Φ(x = 0+), (5.35)

∂xΦ(x = 0−) = ∂xΦ(x = 0+), (5.36)

Φ(x = −Ln) = 0. (5.37)

The analytical form of the functions Φ(x) can be found in two regimes, again in the
weak and strong SOI limits, which we address now in turn.

5.4.1 NS junction in the strong SOI regime

As before, the most convenient way to treat the strong SOI regime is to work in the
rotating frame. In Sec. 5.3.1 we already found the four basis wavefunctions at zero
energy

(Φ̃
(sc)
1 , Φ̃

(sc)
2 , Φ̃

(sc)
3 , Φ̃

(sc)
4 ) = (Φ̃

(i)
− , Φ̃

(i)
+ , Φ̃

(e)
1 , Φ̃

(e)
2 ) (5.38)

in the superconducting section, for x ≥ 0 [see Eqs. (5.20) and (5.21)].

The eigenfunctions for the normal section can be found from the linearized Hamilto-
nians for the interior branches, H̃(i) [see Eq. (5.16)], and for the exterior branches, H̃(e)

[see Eq. (5.17)], with ∆sc = 0. The exterior branches are not gapped leading to the four
propagating modes (see Fig. 5.3b) with wavefunctions given by

Φ̃
(n)
1 =




−i eiksox
e−iksox

i e−iksox

eiksox


 , Φ̃

(n)
2 =




eiksox

i e−iksox

e−iksox

−i eiksox


 , Φ̃

(n)
3 =




i eiksox

e−iksox

−i e−iksox

eiksox


 , Φ̃

(n)
4 =




eiksox

−i e−iksox

e−iksox

i eiksox


 ,

(5.39)
where we choose to represent the wavefunctions in form of MFs, guided by our expectation
that the final solution is also a MF. The interior branches are gapped by the magnetic field
(see Fig. 5.3b) and the four corresponding wavefunctions describing evanescent modes
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are given by

Φ̃
(n)
5 =




−i e−iksox

eiksox

i eiksox

e−iksox


 ek

(n)x, Φ̃
(n)
6 =




e−iksox

i eiksox

eiksox

−i e−iksox


 ek

(n)x, (5.40)

Φ̃
(n)
7 =




i e−iksox

eiksox

−i eiksox
e−iksox


 e−k(n)(Ln+x), Φ̃

(n)
8 =




e−iksox

−i eiksox
eiksox

i e−iksox


 e−k(n)(Ln+x), (5.41)

with k(n) = ∆Z/αR. The modes Φ̃
(n)
5,6 decay from their maximum at x = 0 to zero for

x→ −∞, while Φ̃
(n)
7,8 decay from their maximum at x = −Ln to zero for x→ +∞.

After having introduced the basis consisting of 12 MF wavefunctions given by Eqs.
(5.20), (5.21), (5.39), and (5.41), we search for their linear combination,

Φ̃M(x) =

{ ∑4
j=1 ajΦ̃

(sc)
j , x ≥ 0

∑8
j=1 bjΦ̃

(n)
j , −Ln ≤ x ≤ 0,

(5.42)

such that the boundary conditions (5.35)-(5.37) are satisfied. This is, in general, possible
only in the topological phase. However, we also find solutions in the nontopological phase,
where these solutions exist only if some special relations between the parameters ∆Z , αR,
∆sc, and Ln are satisfied. This allows us to identify them as Andreev bound states in
an NS junction. Since they are not of interest here, we focus on the solutions in the
topological phase only.

It is worth of pointing out that due to the internal symmetry of the MF wavefunctions,
five of the coefficients are readily seen to vanish, namely

a2 = b1 = b4 = b5 = b8 = 0. (5.43)

The exact analytical solution is given in App. 5.B and used for the plot in Fig. 5.7. Here,
we only discuss the two limiting cases of long and short normal sections Ln.

First, we consider Ln ≫ 1/k(n), allowing us to neglect the terms Φ̃
(n)
5 and Φ̃

(n)
6 at

x = −Ln, and Φ̃
(n)
7 and Φ̃

(n)
8 at x = 0. In this case, the sum in Eq. (5.42) is determined

by the coefficients

a1 → 0, b6 → 0, b7 = −1, (5.44)

a3 = b3 = cos(2ksoLn), a4 = b2 = − sin(2ksoLn),

leading to the solution of the form

Φ̃M(x) =

{
Φ̃
(n)
3 (2Ln + x) e−k(e)x , x > 0

Φ̃
(n)
3 (2Ln + x)− Φ̃

(n)
3 (−x) e−k(n)(x+Ln) , −Ln ≤ x < 0.

(5.45)
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0

Figure 5.7: The MF probability density |ΦM(x)|2 in an NS junction for a nanowire in the
strong SOI regime (~2∆sc/mα

2
R = 0.06). The normal section of length Ln is long compared

to the decay length, i.e. k(n)Ln ≫ 1. The MF wavefunction extends over the entire normal
section (green) and decays exponentially inside the superconducting section (white). The

oscillations with period π/kso result from interference between the three components Φ̃
(n)
2,3,7,

of ΦM . In weak magnetic fields (∆Z = 1.5∆sc, blue full line), k(n)Ln ∼ 1, and the
oscillations extend over the entire normal section. In contrast, in strong magnetic fields
(∆Z = 7∆sc, red dashed line), the oscillations are strongly suppressed. Inset: |ΦM(x)|2
as function of x for a short normal section, k(n)Ln ≪ 1. Similarly to the case of the
superconducting wire (see Fig. 5.4), |ΦM(x)|2 decays oscillating.

Thus, we see that the MF wavefunction in the lab frame, ΦM(x), decays monotonically in
the superconducting section while it oscillates in the normal one (see Fig. 5.7). In weak
magnetic fields the MF probability density |ΦM(x)|2 oscillates over the entire normal
section, in contrast to the near absence of oscillations in strong magnetic fields.

We note that a long normal section serves as a ‘momentum filter’. As shown in
Subsec. 5.3.1, a MF has equal support from the exterior and interior branches [see Eq.
(5.22)] if the entire nanowire is in the superconducting regime. In contrast to that, if a
significant portion of the nanowire is in the normal regime, the MF has support mostly
from the exterior branches with momenta k ≃ ±kF . The contributions from the interior
branches with momenta k ≃ 0 are negligibly small, a1 → 0 and a2 = 0. This behavior
can be understood in terms of momentum mismatch: the normal section does not have
propagating modes with k = 0 (in the lab frame). Thus, while such k = 0 modes exist in
the superconducting section, they cannot propagate into the normal section.

Second, we consider the opposite limit Ln ≪ 1/k(n). Here, we can treat the decaying

solutions, Φ̃
(n)
j , j = 5, 6, 7, 8, as being constant over Ln. The MF wavefunction Φ̃M(x)

is constructed from seven basis MF wavefunctions with the same coefficients as in Eq.
(5.44) with the only difference that now a1 = −1. For short normal sections, the form
of the MF probability density |ΦM(x)|2 is very similar to the one of a superconducting

nanowire (compare inset of Fig. 5.7 with Fig. 5.4a). Again, the interference between Φ̃
(i)
− ,

Φ̃
(e)
1 , and Φ̃

(e)
2 leads to oscillations in the superconducting section.
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In both limits of short and long normal sections, |ΦM(x)|2 has it maximum in the
normal section while it decays in the superconducting one. This opens the possibility
of measuring the presence of a MF state spectroscopically in the normal section. The
amplitude and period of oscillations of the MF probability density is sensitive to magnetic
fields and to the nanowire length, controlled e.g. by an infinite barrier on the left end.
Moreover, by shifting such a barrier via gates, we can change the type of MF from Φ̃

(e)
1 to

Φ̃
(e)
2 [see Eqs. (5.38), (5.42), and (5.44)]. This amounts to change a given MF state from

a ‘real part’ type, ψ + ψ†, to an ‘imaginary part’ type, i(ψ − ψ†).

5.4.2 NS junction in the weak SOI regime

As before, we first identify basis wavefunctions in the superconducting section and in the
normal section. Then, we search for a linear combination of them such that the boundary
conditions given by Eqs. (5.35)-(5.37) are satisfied.

As shown in Sec. 5.3.2, the MF wavefunction ΦM has predominantly support from the
exterior branches. The correction to the MF wavefunction from the interior branches is
suppressed by a factor kso/kF [see Eq. (5.33)]. If we focus on the regime away from the
topological phase transition where the exterior gap is smaller than the interior one, then,
as in Eq. (5.30), the MF wavefunction can be constructed to first order in kso/kF from

the exterior wavefunctions Φ
(e)
j=1,2 alone,

Φ
(sc)
j =




gj(x)
ig∗j (x)
g∗j (x)

−igj(x)


 e−k̄(e)x,

g1 = e−iπ/4 sin(kFx), g2 = e−iπ/4 cos(kFx). (5.46)

The propagating electron modes ϕR and ϕL of Eq. (5.23) in the normal section
described by H0 (without Hsc) were considered before [see Eq. (5.29)] and given by

Φ
(n)
1 =




e−ikF x

−e−ikF x

eikFx

−eikF x


 , Φ

(n)
2 =




eikF x

−eikF x

e−ikF x

−e−ikF x


 , Φ

(n)
3 =




ie−ikF x

−ie−ikF x

−ieikF x

ieikF x


 , Φ

(n)
4 =




ieikF x

−ieikF x

−ie−ikF x

ie−ikF x


 .

(5.47)

The ansatz for the wavefunction in both sections is

Φ(x) =

{ ∑2
j=1 ajΦ

(sc)
j , x ≥ 0

∑4
j=1 bjΦ

(n)
j , −Ln ≤ x ≤ 0.

(5.48)
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Figure 5.8: The MF probability density |ΦM(x)|2 in an NS junction for a nanowire
in the weak SOI regime (mα2

R/~
2∆sc = 0.2 and ∆Z = 5∆sc). The MF wavefunction

extends over the entire normal section of length Ln (green) and decays rapidly inside the
superconducting section (white).

The coefficients aj and bj can then be found from the boundary conditions (5.35)-(5.37),

a1 = 2[k̄(e) sin(kFLn) + kF cos(kFLn)],

a2 = 2kF sin(kFLn),

b1 = −b4 = kF cos(kFLn − π/4),

b2 = −b3 = −kF cos(kFLn + π/4), (5.49)

leading finally to the MF wavefunction of the form

ΦM(x) = f(x)




e−iπ/4

−e−iπ/4

eiπ/4

−eiπ/4


 , (5.50)

where

f(x) =






kF sin(kF [x+ Ln]), −Ln ≤ x ≤ 0

e−k̄ex[kF sin(kF [x+ Ln])
+k̄e sin(kFx) sin(kFLn)], x ≥ 0.

(5.51)

The corresponding MF probability density |ΦM(x)|2 is shown in Fig. 5.8. The MF
wavefunction extends over the entire normal section. In this section, we considered as
basis functions only propagating modes, Φ

(n)
j , leading to a purely oscillatory solution

with the period given by half the Fermi wavelength λF/2 = π/kF . In contrast, in the
superconducting section, the MF wavefunction decays on a short distance. In other words,
the MF is mostly delocalized over the entire normal section and is strongly localized in
the superconducting section, in agreement with recent numerical results[38]. This might
simplify the detection of MFs by local density measurements since the normal section
is freely accessible to tunnel contacts, in contrast to the superconducting section which
needs to be covered by a bulk s-wave superconductor.
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5.5 Conclusions

In this work, we have focused on the wavefunction properties of Majorana fermions occur-
ring in superconducting nanowires and in nanowires with an NS junction. The supercon-
ducting phase is effectively p-wave and is based on an interplay of s-wave proximity effect,
spin orbit interaction, and magnetic fields. We have derived explicit results for the MF
wavefunctions in the regime of strong and weak SOI and shown that the wavefunctions are
composite objects, being superpositions of contributions coming from the interior (around
k = 0) and exterior (around ±kF ) branches of the spectrum in momentum space. While
the underlying Hamiltonians considered in this work allow degenerate MF wavefunctions,
the boundary conditions at hand completely lift this degeneracy and we are left with only
one single MF state at a given end of the nanowire (i.e. in total there are two MF states
for the entire nanowire).

In the strong SOI regime of a superconducting nanowire both branches contribute
equally. However, the decay length of the MF is determined by the branch that also
defines the smallest gap in the system. Moreover, the oscillations in the MF probability
density with period of the Fermi wavelength are decaying on the scale given by the largest
gap in the system. In the weak SOI regime, the exterior branches mostly contribute to
the MF wavefunction. The contributions of the interior branch is suppressed by the
small factor kso/kF ≪ 1 and only close to the topological phase transition this branch
determines the localization length of the MF. The interference between modes from kF
and −kF leads to oscillations of the probability density of the MF with an exponentially
decaying envelope.

For a nanowire with an NS junction we find that the MF wavefunction becomes delo-
calized over the entire normal section, while still being localized in the superconducting
section, in agreement with recent numerical results.[38] Again, we obtain analytical results
for the weak and strong SOI regimes. Depending on the length of the normal section, the
support of the MF wavefunction is centered at zero momentum or at the Fermi points.
Again, we find different localization lengths and oscillation periods of the MF in the nor-
mal section that are tunable by magnetic fields. Based on this insight, we expect that
in a tunneling density of states measurement the tunneling current at zero bias exhibits
oscillations as a function of position along the normal section due to the presence of the
MF in the normal section.

Finally, we remark that in this work we have focused on single particle properties and
ignored, in particular, interaction effects. It would be interesting to extend the present
analysis to interacting Luttinger liquids, in particular for the SOI nanowire with an NS
junction, combining the approaches developed in Refs. [47, 39, 15, 14].

Acknowledgements. We acknowledge fruitful discussions with Karsten Flensberg, Diego
Rainis, and Luka Trifunovic. This work is supported by the Swiss NSF, NCCR Nanoscience
and NCCR QSIT, and DARPA.
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5.A Finite nanowire

In this Appendix we address the problem of a finite superconducting section of length Lsc.
In this case, the decaying modes Φ̃0 = {Φ̃(i)

− , Φ̃
(i)
+ , Φ̃

(e)
1 , Φ̃

(e)
2 } with maximum at x = 0 are

given by Eqs. (5.20) and (5.21). Now we should also take into account the four evanescent

modes with maximum at x = Lsc. These modes, Φ̃Lsc
= {Φ̃(i)

− , Φ̃
(i)
+ , Φ̃

(e)
1 , Φ̃

(e)
2 }, are found

from Eqs. (5.16), (5.17) and are similar by their structure to Φ̃0,

Φ̃
(i)
− =




i sgn(∆−)e
−iksox

eiksox

−i sgn(∆−)e
iksox

e−iksox


 ek

(i)
−

(x−Lsc), Φ̃
(i)
+ =




e−iksox

i eiksox

eiksox

−i e−iksox


 e−k

(i)
+ (x−Lsc),

Φ̃
(e)
1 =




−i eiksox
e−iksox

i e−iksox

eiksox


 e−k(e)(x−Lsc), Φ̃

(e)
2 =




eiksox

−i e−iksox

e−iksox

i eiksox


 e−k(e)(x−Lsc).

(5.52)

We construct a 8×4 matrix ω̃(x) from the eight basis wavefunctions. The zero-energy
solution can then be compactly written as

Φ̃(x) = a · Φ̃0(x) + b · Φ̃Lsc
(x) ≡ ω̃(x)

(
a
b

)
, (5.53)

where a = (a1, a2, a3, a4) and b = (b1, b2, b3, b4) are coefficients that should be determined
from the boundary conditions,

Φ̃(x = 0, Lsc) = 0, (5.54)

which can be rewritten as a matrix equation in terms of a 8× 8 matrix Ω̃,

Ω̃

(
a
b

)
=
(
ω̃(0) ω̃(Lsc)

)(a
b

)
= 0. (5.55)

The determinant of the matrix Ω̃ is nonzero, so the solution of the matrix equation is
unique and trivial, (a,b) = 0. This means that, strictly speaking, MFs cannot emerge in
a finite-size nanowire. MFs exist only under the assumption that the overlap of the two
MF wavefunctions (localized at each end of the nanowire and derived in a semi-infinite
nanowire model) can be neglected. Otherwise, the two MFs are hybridized into a subgap
fermion of finite energy.
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5.B Exact solution in strong SOI regime

Here, we present the exact solution for the MF wavefunction Φ̃(x) composed of seven
different basis MFs wavefunctions [see Eq. (5.42)] and satisfing the boundary conditions
(5.35)-(5.37). We find

a2 = b1 = b4 = b5 = b8 = 0,

a1 = 4k2so + 4ksok
(e) cosh(k(n)L) sin(2ksoLn)− 2k(e) cos(2ksoLn)[k

(e) cosh(k(n)Ln) + k(n) sinh(k(n)Ln)],

a3 = e−k(n)Ln [ek
(n)Ln(k(e)[k(n) − 2k

(i)
− ] + k(n)[k(n) − k

(i)
− ])− 4k2soe

2k(n)Ln cos(2ksoLn)

− 2kso(e
2k(n)Lnk(e) + k

(i)
− − k(n)) sin(2ksoLn)],

a4 = −e−k(n)Ln [2ek
(n)Lnkso(k

(n) − k
(i)
− − k(e)) + 2kso(e

2k(n)Lnk(e) + k
(i)
− − k(n)) cos(2ksoLn)

− e2k
(n)Ln4k2so sin(2ksoLn)],

b2 = −e−k(n)Ln(−2ek
(n)Lnksok

(e) + 2kso(k
(i)
− − k(n)) cos(2ksoLn)− 4k2soe

2k(n)Ln sin(2ksoLn)),

b3 = e−k(n)Ln(ek
(n)Lnk(e)[k(e) − k

(i)
− ]− 4k2soe

2k(n)Ln cos(2ksoLn) + 2kso(k
(n) − k

(i)
− ) sin(2ksoLn)),

b6 = −2kso(k
(n) − k

(i)
− )− ek

(n)Lnk(e)[2kso cos(2ksoLn) + (k(e) − k
(i)
− ) sin(2ksoLn)],

b7 = 4k2soe
k(n)Ln . (5.56)
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Chapter 6

Transition from fractional to
Majorana fermions in Rashba

nanowires

We study hybrid superconducting-semiconducting nanowires in the presence of Rashba
spin-orbit interaction (SOI) as well as helical magnetic fields. We show that the interplay
between them leads to a competition of phases with two topological gaps closing and
reopening, resulting in unexpected reentrance behavior. Besides the topological phase
with localized Majorana fermions (MFs) we find new phases characterized by fractionally
charged fermion (FF) bound states of Jackiw-Rebbi type. The system can be fully gapped
by the magnetic fields alone, giving rise to FFs that transmute into MFs upon turning
on superconductivity. We find explicit analytical solutions for MF and FF bound states
and determine the phase diagram numerically by determining the corresponding Wron-
skian null space. We show by renormalization group arguments that electron-electron
interactions enhance the Zeeman gaps opened by the fields.

This chapter has been published as Phys. Rev. Lett. 109, 236801 (2012).
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6.1 Introduction

Majorana fermions [1] (MF) in condensed matter systems [2], interesting from a fundamen-
tal point of view as well as for potential applications in topological quantum computing,
have attracted wide interest, both in theory [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]
and experiment [17, 18, 19]. One of the most promising candidate systems for MFs are
semiconducting nanowires with Rashba spin-orbit interaction (SOI) brought into proxim-
ity with a superconductor [7, 8, 9]. In such hybrid systems a topological phase with a MF
at each end of the nanowire is predicted to emerge once an applied uniform magnetic field
exceeds a critical value [6, 7, 8, 9]. As pointed out recently [20], the Rashba SOI in such
wires is equivalent to a helical Zeeman term, and thus the same topological phase with
MFs is predicted to occur in hybrid systems in the presence of a helical field but without
SOI [21, 22].

Here, we go a decisive step further and address the question, what happens when both

fields are present, an internal Rashba SOI field as well as a helical–or more generally–a
spatially varying magnetic field. Quite remarkably, we discover that due to the inter-
ference between the two mechanisms the phase diagram becomes surprisingly rich, with
reentrance behavior of MFs and new phases characterized by fractionally charged fermions
(FF), analogously to Jackiw-Rebbi fermion bound states [23]. Since the system is fully
gapped by the magnetic fields at certain Rashba SOI strengths (in the absence of super-
conductivity), these FFs act as precursors of MFs into which they transmute by turning
on superconductivity.

The main part of this work aims at characterizing the mentioned phase diagram. For
this we find explicit solutions for the various bound states, which allows us to derive
analytical conditions for the boundaries of the topological phases. We also perform an
independent numerical search of the phases and present results illustrating them. We
show that the phases can be controlled with experimentally accessible parameters, such
as the uniform field or the chemical potential. We formulate the topological criterion as
a condition local in momentum space via the kernel dimension of the Wronskian, which
does not require the knowledge of the spectrum in the entire Brillouin zone. We also
address interaction effects and show that they increase all Zeeman gaps and thereby the
stability of the topological phase.

6.2 Model

We consider a system consisting of a semiconducting nanowire with Rashba SOI in
proximity with an s-wave bulk superconductor and in the presence of magnetic fields
which contain uniform and spatially varying components, see Fig. 6.1. The Rashba spin-
orbit interaction is characterized by a SOI vector α pointing along, say, the z-axis. The
effective continuum Hamiltonian for the nanowire is in Nambu representation given by
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x

z
y

Figure 6.1: Schematics of the hybrid semiconducting-superconducting system, consisting
of a finite Rashba nanowire (green cylinder) on top of an s-wave bulk superconductor (red
slab) in the presence of a uniform magnetic fieldB (grey arrow) applied along the nanowire
in x-direction. Periodically arranged nanomagnets (blue bars) produce a spatially varying
magnetic field Bn(x) (grey arrows). We note thatBn(x) can also be generated intrinsically
e.g. by a helical hyperfine field of nuclear spins inside the nanowire [24].

H0 =
1
2

∫
dx ψ†(x)H0ψ(x) with

H0 = (−~
2∂2x/2m− µ)η3 − iαη3σ3∂x, (6.1)

where m is the electron mass. Here, ψ = (Ψ↑,Ψ↓,Ψ
†
↑,Ψ

†
↓), and Ψ

(†)
σ (x), with σ =↑ / ↓,

is the annihilation (creation) operator for a spin up/down electron at position x. The
Pauli matrix σi (ηi) acts in the spin (electron-hole) space. The spectrum of H0 consists
of four parabolas centered at the Rashba momentum ±kso = ±mα/~2, see Fig. 6.2. The
chemical potential µ is chosen to be zero at the crossing of the Rashba branches at k = 0.

The uniform (B) and spatially varying (Bn ) magnetic fields lead to the Zeeman term,

Hz = gµB[B+Bn(x)] · σ η3/2, (6.2)

where g is the g-factor and µB the Bohr magneton. The proximity-induced superconduc-
tivity couples states of opposite momenta and spins and is described by Hs = ∆sσ2η2,
where the effective pairing amplitude ∆s can be assumed to be non-negative.

Figure 6.2: The spectrum of Rashba nanowire consists of parabolas shifted by ±kso: solid
and dashed lines correspond to the electron and hole spectrum, respectively. The outer
circles (dotted) mark the exterior branches and the inner circle (dotted) marks the interior
branches. A spatially varying magnetic field with period 4kso (dark green arrow) couples
the exterior branches. Similarly, a uniform magnetic field couples the interior branches
at k = 0 (not indicated). A spatially varying magnetic field with period 2kso (light green
arrow) mixes exterior with interior branches.
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From now on, we assume that the SOI energy mα2/~2 is the largest energy scale at
the Fermi level in the problem. In this strong SOI regime, we can treat the B-fields and
∆s as small perturbations. This allows us to linearize the full Hamiltonian H0 +Hz +Hs

around k = 0 (referred to as interior branches) and k = ±2kso (referred to as exterior
branches), see Fig. 6.2. This entails that we can use the ansatz

Ψ(x) = R↑ + L↓ + L↑e
−2iksox +R↓e

2iksox, (6.3)

where the right mover Rσ(x) and the left mover Lσ(x) are slowly-varying fields. For
a uniform magnetic field alone (chosen along the x-axis) the full Hamiltonian becomes

H = 1
2

∫
dx ψ̃(x)†Hψ̃(x) with

H = −i~υFσ3τ3∂x +∆zη3σ1(1 + τ3)/2 + ∆sη2σ2, (6.4)

where the Pauli matrix τi acts in the interior-exterior branch space, and

ψ̃ = (R↑, L↓, R
†
↑, L

†
↓, L↑, R↓, L

†
↑, R

†
↓). (6.5)

The Fermi velocity is given by υF = α/~ and the Zeeman energy by ∆z = gµBB/2.
Next, we include the spatially varying magnetic field, and assume that it has a substan-
tial Fourier component either at 4kso (case I) or at 2kso (case II), leading to additional
couplings between all branches of the spectrum, see Fig. 6.2. We treat now the two cases
in turn and will see that the interplay of Rashba and magnetic fields leads to a surprisingly
reach diagram of topological phases.

6.3 Case I - period 4kso

Here, we consider Bn(x) with period 4kso and perpendicular to α. For a field with
oscillating amplitude only, we consider two geometries, Bn,x = x̂Bn cos(4ksox + θ) and
Bn,y = ŷBn sin(4ksox + θ), with arbitrary phase shift θ, while for a helical field we con-
sider a field with anticlockwise rotation, (Bn,x + Bn,y)/2. (clockwise rotation does not
lead to coupling). We note that Bn(x) can also be generated intrinsically e.g. by the
hyperfine field of ordered nuclear spins inside the nanowire [24]. All geometries lead to
identical results: they affect only the exterior branches (see Fig. 6.2) and the corre-
sponding Hamiltonian remains block-diagonal in τ -space. The full Hamiltonian becomes
H4kso = H+∆n(σ1 cos θ− σ2 sin θ)η3(1− τ3)/2, where ∆n = gµBBn/4. The spectrum for
the exterior (l = e) and interior (l = i) branches is given by

E2
l = (~υFk)

2 +∆2
s +∆2

l + µ2

± 2
√

∆2
s∆

2
l + µ2[(~υFk)2 +∆2

l ],
(6.6)

where ∆e/i = ∆n/z. We note the equivalence of effects of a uniform field on the interior
branches and of a periodic field on the exterior branches. The spectrum is fully gapped
except for two special cases, ∆2

n/z = ∆2
s + µ2. This suggests that there will be transitions

between different non-trivial phases.
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We identify these phases by the presence or absence of bound states inside the gap.
For this it is most convenient to study the Wronskian corresponding to the four decaying
fundamental solutions [25]. Here, we consider a semi-infinite nanowire, with boundary
at x = 0, and assume that all decay lengths will be shorter than the system length. For
fixed parameters (including the energy E), we find the four decaying eigenstates of H4kso

for the left and right movers. Using Eq. (6.3), we express them in the basis of the original
fermionic fields ψ, leading to four four-spinor solutions Φj with j = 1, ..., 4, and construct
a 4× 4 Wronskian matrix Wij(x) = [Φj(x)]i. The dimension d of the null space of W (0)
determines the system phase: d = 0 corresponds to a phase with no bound states (trivial
phase), d = 1 at E = 0 to a phase with one single Majorana fermion (MF) (topological
phase), d = 2 at E = 0 or d = 1 atE 6= 0 to a phase with one localized fermion of fractional
charge (FF, see below) (fermion phase). We refer to the trivial and fermion phases as
non-topological. Finally, the knowledge of the W (0) null space allows us to construct
the bound state wave functions, expressed in terms of linearly dependent combinations
of Φj fulfilling the Dirichlet boundary condition at x = 0. In the Appendix 6.A we list
the analytical solutions for the MF bound states, from which we see explicitly that these
solutions are robust against any parameter variations (topologically stable) as long as the
topological gap remains open.

For case I, we find that the system is in the topological phase if one of the following
inequalities is satisfied,

(IA) ℜ
√
∆2

n − µ2 < ∆s < ℜ
√

∆2
z − µ2 (6.7)

(IB) ℜ
√

∆2
z − µ2 < ∆s < ℜ

√
∆2

n − µ2, (6.8)

with the corresponding MF wave functions given in the Appendix 6.A. Case IA goes into
IB upon interchange ∆z ↔ ∆n. As anticipated after Eq. (6.6), the boundaries of the
topological phase correspond to the system being gapless. In the absence of Bn, there
is only one topological gap, which arises from the interior branches [7, 8]. In this case,
only condition IA can be satisfied, and a MF emerges when the uniform B-field exceeds
a critical value. However, in the presence of Bn, the exterior gap is also topological. As
shown in Fig. 6.3, the interplay between the two gaps leads to a rich phase diagram with
reentrance behaviour. For instance, if |∆l| > |µ| and ∆s = 0, the system is in the non-
topological phase but still fully gapped by the magnetic fields. With increasing ∆s, first
the exterior (interior) gap closes and reopens, bringing the system into the topological
phase. Then, upon further increase of ∆s, the interior (exterior) gap closes and reopens,
bringing the system back into the non-topological phase.

We note that case IB allows the presence of a MF in weaker uniform magnetic fields,
see Fig. 6.3. If the nanomagnets generating Bn can be arranged such that the field
penetration into the bulk-superconductor is minimized, as illustrated in Fig. 6.1, much
stronger oscillating than uniform fields can be applied, opening up the possibility to
generate MFs in systems with small g-factors.
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The system is in the fermion phase, if

θ = π + φn + φz, and

∆s < min{ℜ
√
∆2

z − µ2,ℜ
√

∆2
n − µ2},

(6.9)

where the phases φz,n are defined by eiφz,n =
(√

∆2
z,n − µ2 + iµ

)
/∆z,n. The corresponding

wave functions are listed in the Appendix 6.A. In this regime, two MFs (both localized
at x = 0) fuse to one fermion bound state. Such bound state fermions are known to have
fractional charge e/2 [26, 27, 28, 29], as first discovered in the Jackiw-Rebbi model [23, 30].
We note that such FFs appear also in the Su-Schrieffer-Heeger model [26], where they arise
as a purely orbital effect due to site-dependent hoppings. In contrast, the FFs found here
are a spin effect and arise from Zeeman interactions with non-uniform magnetic fields. If
neither of the inequalities (6.7)-(6.9) is satisfied, the system is in the trivial phase without
any bound state at zero energy.

Detuning from the conditions in Eq. (6.9), the two zero-energy solutions are usually
split, becoming a fermion-antifermion pair at energies ±E. Importantly, FFs do not
require the presence of superconductivity. For example, if ∆s = 0 and µ = 0, the two
bound states have energy

EFF = ± ∆z∆n sin θ√
∆2

z +∆2
n − 2∆z∆n cos θ

. (6.10)

We note that the splitting vanishes at θ = nπ, n integer, due to the chiral symmetry
of H4kso at these special values [30]. In contrast, the MF remains at zero energy for all
values of θ, which is a direct manifestation of the stability of the bound state within
the topological phase (despite the fact that the MF wave function depends on θ, see
Appendix 6.A).

To determine the full phase diagram we have performed a systematic numerical search
for all bound state solutions with energies inside the gap and determined the null space
of the Wronskian. The results are plotted in Fig. 6.3. The bright yellow lines inside
the colored area in Fig. 6.3 correspond to zero-energy FFs satisfying Eq. (6.9). At the
point where the lines touch the topological phase (shown in green), the gap closes and
reopens and the zero-energy FF transmutes into a MF. In the fermion phase away from
the zero-energy line the two solutions split (the bigger the splitting the darker the color),
until they finally reach the gap (black boundaries) and disappear. The fermion phase
exists only for certain values of the phase shift θ, in contrast to the topological phase,
which, again, is not sensitive to θ, see Fig. 6.3c. Moreover, the fermion phase is also
sensitive to the relative orientation of B and Bn, see Fig. 6.3d. In the same panel, we
see that outwards regions are more suitable for a fractional charge observation than the
central region, where energies of the bound states are very close to the gap edge.

The FF could be detected by comparing the local charge density at, say, the left end
of the nanowire for two different phases, where one phase supports FFs while the other
one does not. This difference should then reveal the fractional charge e/2 of the left FF.
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Figure 6.3: Phase diagram for case I supporting three phases: the trivial phase with
no bound states (white area), the topological phase with one MF (green area), and the
fermion phase with two FFs (colored area). The color in the fermion phase encodes the
ratio of the fermion energy to the system gap, which varies from zero (bright yellow) to
one (black). Note that the central region of the topological phase corresponds to case IA,
while the four corner regions to case IB. Here, (a) ∆n/∆s = 3, θ = 0, while (b) ∆n/∆s = 3,
θ = π/4. Note that ∆z < 0 and θ corresponds to ∆z > 0 and θ + π. By comparing (a)
with (b) and by calculating the dependence on θ [(c) µ/∆s = 0.4, ∆z/∆s = 2], we note
that the topological phase is insensitive to θ in contast to the fermion phase. The position
of a zero-energy FF depends not only on θ and µ [see (a)-(c)] but also on ∆z and ∆n [(d)
µ/∆s = 1.5, θ = π/4] in agreement with Eq. (6.9).

In particular, in the absence of superconductivity, one can compare the phase with θ = 0
(FF present) to the one with θ = π/2 (no FF). In the presence of superconductivity, the
local charges of the system in the fermion phase (FF present) and in the trivial phase (no
bound states) can be compared. E.g., changing the sign of the uniform field transfers the
system between the two phases (see Fig. 3a).

6.4 Case II - period 2kso

6.4.1 Case IIa - Bn ⊥ α

We now shortly comment on two addititonal geometries with a spatially varying magnetic
field with a period 2kso. To keep the following discussion concise, we set µ = 0 and state
the results for E = 0 bound states only. We begin with a field perpendicular to the SOI
vector α and given by Bn,x = x̂Bn cos(2ksox) or Bn,y = ŷBn sin(2ksox) (an oscillating
field) or (Bn,x + Bn,y)/2 (a helical field). Such a field mixes the exterior and interior
branches, see Fig. 6.2. The corresponding Hamiltonian is H⊥

2kso
= H + ∆nη3σ1τ1. The
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spectrum is given by

E2
⊥ = (~υFk)

2 + [∆2
n +∆2

z/4] + (∆s ±∆z/2)
2 (6.11)

± 2
√

(~υFk)2∆2
n + [∆2

n +∆2
z/4](∆s ±∆z/2)2.

Repeating the procedure used above, we derive the condition for the topological phase
as

∆z > ∆s

∣∣1−∆2
n/∆

2
s

∣∣ . (6.12)

Again, the phase boundary to the topological phase corresponds to the parameters at
which the system is gapless, i.e. ∆z = ∆s |1−∆2

n/∆
2
s|. We note that in the presence

of a spatially periodic magnetic field MFs may emerge at substantially weaker uniform
magnetic fields. The fermion phase occurs if

|∆n| > ∆s and ∆z < ∆s

(
∆2

n/∆
2
s − 1

)
. (6.13)

The rest of the parameter space corresponds to the non-topological phase. The corre-
sponding wave functions for MFs and FFs are given in the Appendix 6.A.

6.4.2 Case IIb - Bn ‖ α

Finally, we comment on an oscillating field aligned with the SOI vector α and given by
Bn = ẑBn cos(2ksox + θ). This field couples the interior and exterior branches (see Fig.

6.2). The corresponding Hamiltonian is H‖
2kso

= H +∆n(η3σ3τ1 cos θ − τ2 sin θ), with the
spectrum given by

E2
‖ = (~υFk)

2 +

[√
∆2

n +
∆2

z

4
±
(
∆z

2
±∆s

)]2
. (6.14)

The topological phase is determined, again, by Eq. (6.12) and the corresponding MF wave
functions are given in the Appendix 6.A. We note once more that MFs can be observed
in weaker uniform magnetic fields. Interestingly, in this configuration the fermion phase
is absent, demonstrating the sensitivity of the FFs to the B-field orientation.

6.5 Electron-electron interactions

Electron interactions play an important role in one-dimensional systems [31] and, in par-
ticular, for MFs [21, 32]. E.g., the interior gap opened by a uniform magnetic field is
strongly enhanced by interactions [20]; and so we expect the same renormalization to
occur here for both gaps. This is indeed the case, as we show next. For this, we perform
a renormalization group analysis for both the uniform and the periodic field. Following
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Ref. [24] we arrive at the effective Hamiltonian H =
∑

l

∫
dx
2π
Hl(x) in terms of conjugate

boson fields, φe,i and θe,i, with

Hl = υ[(∇φl)
2 + (∇θl)2] +

∆l

a
cos(2

√
Kφl), (6.15)

where we have suppressed quadratic off-diagonal terms being less relevant compared to
the cosine terms. The index l = e/i denotes the exterior/interior branch, a the lattice con-
stant, K2 = (υs/Ks+υcKc)/(υc/Kc+υsKs) and υ =

√
(υc/Kc + υsKs) (υs/Ks + υcKc)/2.

Here, υc,s are the charge (c) and spin (s) velocities and Kc,s the corresponding Luttinger
liquid parameters [31]. The gaps ∆l opened by magnetic fields are renormalized up-

wards by interactions and given by ∆̃l = ∆l(π~υF/∆la)
(1−K)/(2−K). For GaAs (InAs)

nanowires [24, 21], we estimate an increase by about a factor of 2 (4). The enhanced
Zeeman gaps allows the use, again, of materials with lower g-factors.

6.6 Conclusions

The interplay between spatially varying magnetic fields and Rashba SOI in a hybrid
nanowire system leads to a rich phase diagram with reentrance behavior and with frac-
tionally charged fermions that get transmuted into Majorana fermions at the reopening
of the topological gap.

We acknowledge useful discussions with Claudio Chamon. This work is supported by
the Swiss NSF, NCCR Nanoscience, and NCCR QSIT.

6.A MF and FF wavefunctions for different regimes

Here we present the analytical solutions of the Majorana fermion (MF) and fractional
fermion (FF) wave functions for different regimes discussed in the main text. Every MF
wave function has the four-spinor form ΦMF (x) = (f(x), g(x), f ∗(x), g∗(x)) with normal-
ization condition

∫
dx |ΦMF (x)|2 = 2 (below we omit the normalization factors). For

zero energy E = 0, the functions f(x) and g(x) are listed in Table 6.1, together with the
regime of validity corresponding to the cases I and II defined in the main text.

We use the notations eiφz = (
√

∆2
z − µ2 + iµ)/∆z, e

iφn = (
√
∆2

n − µ2 + iµ)/∆n, and
φ± = (θ± φn − φz)/2. In row IIa-FF of Table 6.1, only one MF wave function is given, a
second one needs to be added from row IIa-MF, depending on whether (∆s−∆z/2)

2 > ∆2
n

or (∆s −∆z/2)
2 < ∆2

n.
If ∆s = 0 and µ = 0, there is one fractional fermion (at one end of the wire) with

energy
EFF = ∆z∆n sin θ/

√
∆2

z +∆2
n − 2∆z∆n cos θ, (6.16)

and the corresponding wave function is given by

ΦF =

(
Φ↑
Φ↓

)
=

(
eiφ

F

1

)(
e2iksox−x/ξF2 − e−x/ξF1

)
, (6.17)
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where cosφF = EFF/∆z, ξ
F
1 = α/

√
∆2

z − E2
FF , and ξ

F
2 = α/

√
∆2

n −E2
FF . We note that

this fermion has an anti-fermion partner of opposite energy in the Nambu representation.
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Table 6.1: Wave functions of MFs and FFs for different regimes at zero energy.
√
∆2

n − µ2 < ∆s <
√

∆2
z − µ2, |∆z,n| > |µ|

(IA) f = ig∗ = ie−x/ξ
(e)
1 +i(2ksox+φ++φz/2) cosφ− + e−x/ξ

(e)
3 +i(2ksox+φ−+φz/2) sinφ+ − ie−x/ξ

(i)
2 +iφz/2 cosφn

MF ξ
(e)
1 = α/(∆s −

√
∆2

n − µ2), ξ
(e)
3 = α/(∆s +

√
∆2

n − µ2), ξ
(i)
2 = α/(

√
∆2

z − µ2 −∆s)

0 < ∆s <
√

∆2
z − µ2, |∆n| = |µ|, |∆z| > |µ|

f = e−∆sx/α+i2ksox(−ieiφz/2 + (2xµ/α)e−i(θ/2+π/4) sin[(θ − φz)/2 + π/4]) + ie−x/ξ
(i)
2 +iφz/2

g = e−∆sx/α−i2ksox(−e−iφz/2 + (2xµ/α)ei(θ/2+3π/4) sin[(θ − φz)/2 + π/4]) + e−x/ξ
(i)
2 −iφz/2

0 < ∆s <
√

∆2
z − µ2, |∆n| < |µ|, |∆z| > |µ|; km =

√
µ2 −∆2

n/α

f = ig∗ = ie−x/ξ
(i)
2 +iφz/2 − ie−∆sx/α+i(2ksox+φz/2)

(
cos(kmx) + sin(kmx)

[
iµ+∆ne

i(θ−φz)
]
/
√
µ2 −∆2

n

)

√
∆2

z − µ2 < ∆s <
√
∆2

n − µ2, |∆z,n| > |µ|
(IB) f = −ig∗ = −ie−x/ξ

(i)
1 −iφz/2 cosφ− + e−x/ξ

(i)
3 +iφz/2 sin[(θ − φn + φz)/2] + ie−x/ξ

(e)
2 +i(2ksox+φ−+φz/2) cosφz

MF ξ
(i)
1 = α/(∆s −

√
∆2

z − µ2), ξ
(i)
3 = α/(∆s +

√
∆2

z − µ2), ξ
(e)
2 = α/(

√
∆2

n − µ2 −∆s)

∆s <
√

∆2
n − µ2, ∆z = |µ|, |∆n| > |µ|

f = e−∆sx/α
(
iei(θ−φn)/2 − (2xµ/α)eiπ/4 sin [(φn − θ)/2− π/4]

)
− ie−x/ξ

(e)
2 +i(4ksox+θ−φn)/2

g = e−∆sx/α
(
−e−i(θ−φn)/2 + (2xµ/α)eiπ/4 sin [(φn − θ)/2− π/4]

)
+ e−x/ξ

(e)
2 +i(4ksox−θ+φn)/2

∆s <
√

∆2
n − µ2, |∆z| < |µ|, |∆n| > |µ|; km =

√
µ2 −∆2

z/α

f = −ig∗ = ei(θ−φn)/2
[
ie−x/ξ

(e)
2 +i2ksox − ie−∆sx/α

(
cos(kmx) + sin(kmx)

[
∆ze

i(φn−θ) − iµ
]
/
√
µ2 −∆2

z

)]

(I) θ = π + φn + φz, 0 ≤ ∆s < min{ℜ
√
∆2

z − µ2,ℜ
√
∆2

n − µ2}, EFF = 0

FF f1 = ig∗1 = ieiφ/2
(
e2iksox−x/ξ

(e)
3 − e−x/ξ

(i)
2

)
, f2 = −ig∗2 = eiφ/2

(
e2iksox−x/ξ

(e)
2 − e−x/ξ

(i)
3

)

∆z > ∆s |1−∆2
n/∆

2
s| and (∆s −∆z/2)

2 > ∆2
n; ξ± = α/

(
∆z/2±

√
(∆s −∆z/2)2 −∆2

n

)

(IIa) f = ig∗ = ie2iksox
(
e−x/ξ−∆n + e−x/ξ+A

)
− ie−x/ξ+∆n − ie−x/ξ−A, A = α/ξ− −∆s

MF ∆z > ∆s |1−∆2
n/∆

2
s| and (∆s −∆z/2)

2 ≤ ∆2
n; cosφ = (∆z/2−∆s)/∆n, km =

√
∆2

n − (∆s −∆z/2)2/α

f = ig∗ =
[
ie2iksox cos(kmx+ φ/2)− i cos(kmx− φ/2)

]
e−∆zx/2α

(IIa) |∆n| > ∆s, ∆z < ∆s (∆
2
n/∆

2
s − 1), and (∆s +∆z/2)

2 > ∆2
n; ξ̃± = α/

(
∆z/2±

√
(∆s +∆z/2)2 −∆2

n

)

FF f = −ig∗ = e2iksox
(
e−x/ξ̃−∆n + e−x/ξ̃+B

)
− e−x/ξ̃+∆n − e−x/ξ̃−B, B = α/ξ̃− +∆s

|∆n| > ∆s, ∆z < ∆s (∆
2
n/∆

2
s − 1), and (∆s +∆z/2)

2 ≤ ∆2
n; cosφ = (∆z/2 + ∆s)/∆n, km =

√
∆2

n − (∆s +∆z/2)2

f = −ig∗ =
[
cos(kmx− φ/2)− ei2ksox cos(kmx+ φ/2)

]
e−∆zx/2α−iφ/2

∆z > ∆s |∆2
n/∆

2
s − 1|

(IIb) f = ∆n[e
−x/ξ2 cos θ − ie−x/ξ4 sin θ − e−x/ξ3+i(2ksox−θ)]

MF +i[∆z/2 +
√

∆2
n +∆2

z/4](e
i(2ksox−θ)(e−x/ξ2 cos θ + ie−x/ξ4 sin θ)− e−x/ξ3)

g = −i∆n[e
−x/ξ2 cos θ + ie−x/ξ4 sin θ − e−x/ξ3−i(2ksox−θ)]

+[∆z/2 +
√

∆2
n +∆2

z/4](e
−i(2ksox−θ)(e−x/ξ2 cos θ − ie−x/ξ4 sin θ)− e−x/ξ3)

ξ2 = α/
(
∆z/2 + ∆s −

√
∆2

n +∆2
z/4
)
, ξ3 = α/

(
∆z/2−∆s +

√
∆2

n +∆2
z/4
)
, ξ4 = α/

(
∆s +

√
∆2

n +∆2
z/4−∆z/2

)
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Chapter 7

Helical States in Curved Bilayer
Graphene

We study spin effects of quantum wires formed in bilayer graphene by electrostatic con-
finement. With a proper choice of the confinement direction, we show that in the presence
of magnetic field, spin-orbit interaction induced by curvature, and intervalley scattering,
bound states emerge that are helical. The localization length of these helical states can be
modulated by the gate voltage which enables the control of the tunnel coupling between
two parallel wires. Allowing for proximity effect via an s-wave superconductor, we show
that the helical modes give rise to Majorana fermions in bilayer graphene.

This chapter has been published as Phys. Rev. B 86, 235416 (2012) (2012).
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7.1 Introduction

Graphene and its derivatives [1, 2, 3, 4], such as bilayer graphene (BLG) and carbon
nanotubes (CNT), have attracted wide interest due to its peculiar bandstructure with
low energy excitations described by Dirac-like Hamiltonians. Moreover, these materials
are usually placed on substrates, which allows high control of its geometry, doping, and
placement of metallic gates [5, 6, 7, 8, 9]. Topological insulators were predicted for
graphene [10], but later it was found that the intrinsic spin-orbit interaction (SOI) is
too weak [11, 12]. For BLG, first-principle calculations also show weak SOI [13, 14]. In
an other proposal, topologically confined bound states were predicted to occur in BLG
where a gap and band inversion is enforced by gates [15]. Quite remarkably, these states
are localized in the region where the voltage changes sign, are independent of the edges
of the sample, and propagate along the direction of the gates, thus forming effectively a
quantum wire [15, 16, 17]. At any fixed energy, the spectrum inside the gap is topologically
equivalent to four Dirac cones, each cone consisting of a pair of states with opposite
momenta.

The spin degrees of freedom in such BLG wires, however, have not been addressed yet.
It is the goal of this work to include them and to show that they give rise to striking effects.
In particular, we uncover a mechanism enabling helical modes propagating along the wires.
In analogy to Rashba nanowires [18], topological insulators [19], and CNTs [20, 21], such
modes provide the platform for a number of interesting effects such as spin-filtering and
Majorana fermions [22]. Here, the SOI plays a critical role, and in order to substantially
enhance it, we consider a BLG sheet with local curvature as shown in Fig. 7.1. Two pairs
of top and bottom gates define the direction of the quantum wire which is chosen in such
a way that it corresponds to a ‘semi-CNT’ of zigzag type. In this geometry, the energy
levels of the mid-gap states cross in the center of the Brillouin zone. A magnetic field
transverse to the wire in combination with intervalley scattering leads to an opening of
a gap, 2∆g, between two Kramers partners at zero momentum, see Fig. 7.2. As a result,
the number of Dirac cones changes from even (four) to odd (three), and the wire becomes
helical with opposite spins being transported into opposite directions. In the following
we derive the spectrum and its characteristics analytically and confirm these results by
independent numerics. We also address the physics of Majorana fermions which emerge
when the wire is in proximity contact to an s-wave superconductor.

7.2 Curved bilayer graphene with SOI

We consider a gated curved bilayer graphene with a magnetic field B (along the x′-axis)
applied perpendicular to the direction of the fold (along the z-axis), see Fig. 7.1. We
begin with a description of the bilayer graphene in the framework of the tight-binding
model [3, 4]. Each layer is a honeycomb lattice composed of two types of non-equivalent
atoms A1 (A2) and B1 (B2) and defined by two lattice vectors a1 and a2. We focus here
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Curved bilayer graphene with SOI

Figure 7.1: A bilayer graphene (BLG) sheet with a fold at x = 0 along the z-axis is
placed between two pairs of gates that are set to opposite polarities ±V0/2, inducing the
bulk gap. There are mid-gap bound states, localized in transverse x-direction around
x = 0. At the same time, they freely propagate along the z-direction, forming an effective
quantum wire [15]. An externally applied magnetic field B = Bex′ breaks time-reversal
symmetry. The spin-orbit interaction β is induced by the curvature of the wire, which is
characterized by the radius R. In the insets we show the BLG structure in momentum
(left) and real (right) space for a chosen chirality θ = 0. The edges of the BLG sheet can
be arbitrary.

on AB stacked bilayer, in which two layers are coupled only via atoms A2 and B1 (see
Fig. 7.1) with a hopping matrix element t⊥ (t⊥ ≈ 0.34 eV). By analogy with CNTs [3],
we introduce a chiral angle θ as the angle between a1 and the x-axis.

The low-energy physics is determined by two valleys defined as

K = −K′ = (4π/3a)(cos θ, sin θ),

where a = |a1|. The corresponding Hamiltonian in momentum space is written as

H0 = ~υF (kxσ1 + τ3kzσ2) +
t⊥
2
(σ1η1 + σ2η2)− V η3, (7.1)

where the Pauli matrices σi (ηi) act in the sublattice (layer) space, and the Pauli matrices
τi act in the valley space. Here, υF =

√
3ta/2~ is the Fermi velocity (υF ≈ 108 cm/s), with

t ≈ 2.7 eV being the intralayer hopping matrix element. The kx (kz) is the transversal
(longitudinal) momentum calculated from the points K and K′. The potential difference
between the layers opens up a gap 2|V | in the bulk spectrum, while a spatial modulation,
i.e. V → V (x), breaks the translation invariance along the x-direction, thus only the total

longitudinal momentum K
(′)
z + kz remains a good quantum number.

The Hamiltonain H0 can be simplified for small voltages, |V | ≪ t⊥, by integrating
out the A2 and B1 degrees of freedom, which correspond to much higher energies E ≈ t⊥.
The effective Hamiltonian becomes

H̃0 = −V γ3 −
~
2υ2F
t⊥

(
k2x − k2z

)
γ1 −

2~2υ2F
t⊥

kxkzτ3γ2, (7.2)
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where the Pauli matrices γi act in the space of A1 and B2 atoms. If the voltage changes
sign at x = 0 [for example, V (x) = −V (−x)], this results in the closing and reopening of
the gap. As a consequence, bound states, localized around x = 0, emerge within the bulk
gap [15]. The eigenstates of H̃0 are characterized by kz and the valley degree of freedom
τ = ±1. For a step-like kink potential V (x) = (V0/2) sgn(x) the energy spectrum is shown
in the inset of Fig. 7.2.

Now we include spin and aim at the realization of helical modes in BLG, which requires
an analysis of the spin-full mid-gap states. At any fixed energy in the bulk gap, there
are 2 × 4 states, where the factor 2 arises from spin-degeneracy. This means that the
spectrum is topologically equivalent to four Dirac cones, each cone consisting of a pair of
states with opposite momenta. On the other hand, helical modes are typical for systems
with an odd number of Dirac cones. To effectively eliminate one Dirac cone at given
chemical potential, the spin-degeneracy should be lifted by a magnetic field B, giving
rise to a new gap. Obviously, the opening of such a gap is possible only if there is level
crossing in the system. The spectrum of the mid-gap states has support around K and
K ′. Therefore, if these points, projected onto the kz-axis, are separated from each other,

Figure 7.2: The spectrum of the BLG structure for V0/2 = 50 meV and chirality θ = 0.
The green area in the inset corresponds to the bulk spectrum. The mid-gap bound states
for valleys K (full line) and K ′ (dashed line) have opposite velocities. The main figure
shows the details of K-K ′ crossing region (shaded region in the inset). The curvature in-
duced SOI shifts spin-up and spin-down levels in opposite directions by the SOI parameter
β. A magnetic field B assisted by intervalley scattering ∆KK ′ results in the anti-crossing
gap 2∆g of two Kramers partners at kz = 0. If the chemical potential µ is tuned inside
the gap [shaded area with µ ≈ (V0/2

√
2) ± β], the system is equivalent to three Dirac

cones (only one is shown in the main Figure), resulting in the helical mode regime. Here,
β ≈ 60 µeV (R = 5 nm), ∆KK ′ = 30 µeV, and ∆Z = 30 µeV, so the opened gap is
2∆g ≈ 30 µeV≈ 300 mK.
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Curved bilayer graphene with SOI

no crossing can occur. We thus see that the chiral angle θ is of a crucial importance for our
purpose and the optimal choice is θ = 0 (or very close to it). In this case, Kz = K′

z = 0,
and the level crossing occurs in the center of the Brillouin zone, at kz = 0, see inset of
Fig. 7.2. We emphasize that in contrast to nanoribbons [16] the form of the edges of the
BLG sheet does not matter provided the distance between edges and wire-axis is much
larger than the localization length ξ of the bound state.

Next, we allow also for spin-orbit interaction in our model. While the intrinsic SOI
is known to be weak for graphene [11, 12], the strength of SOI in CNT is enhanced by
curvature [23, 24, 20, 25]. To take advantage of this enhancement, we consider a folded
BLG which is analogous to a zigzag semi-CNT with θ = 0. All SOI terms that can be
generated in second-order perturbation theory are listed in Table I of Refs. [20, 25]. From
these terms only Hso = βτ3sz is relevant for our problem; first, it is the largest term
by magnitude, and second, it is the only term which acts directly in the A1-B2 space.
Here, si is the Pauli matrix acting on the electron spin, and i = x, y, z. The value of the
effective SOI strength β depends on the curvature, defined by the radius R, and is given
by β ≈ 0.31 meV/R[nm] [20].

In the presence of SOI, the states can still be characterized by the momentum kz,
valley index τ = ±1, and spin projection s = ±1 on the z-axis. The spectrum of H̃0+Hso

can be obtained from the one of H̃0 by simply shifting E → E−βτs. This transformation
goes through the calculation straightforwardly, and the spectrum in the presence of the
SOI becomes

E = βτs±
(
~υFkzτ

2
√
t⊥

±
√

(~υFkz)2

4t⊥
+

V0

2
√
2

)2

∓ V0√
2
. (7.3)

The spin degeneracy is lifted by the SOI, giving a splitting 2β. As shown in Fig. 7.2,
the level crossings occur between two Kramers partners at kz = 0: |K, ↑〉 crosses with
|K ′, ↓〉, and |K, ↓〉 crosses with |K ′, ↑〉. The KK ′-crossing can occur provided |θ| <√
3(1 +

√
2)t⊥V0/4πt. For the values from Fig. 7.2, we estimate this bound to be about

1◦. As mentioned before, to open a gap at kz = 0, one needs first a magnetic field
perpendicular to the SOI axis to mix the spin states, and second a K-K ′ scattering
to mix the two valleys. Such valley scattering is described by the Hamiltonian Hsc =
∆s

KK ′τ1 + ∆a
KK ′τ1γ3, where ∆s

KK ′ + ∆a
KK ′ (∆s

KK ′ − ∆a
KK ′) is the scattering parameter

for the bottom (top) layer of the BLG. The Zeeman Hamiltonian for a magnetic field B
applied along the x′-direction is given by HZ = ∆Zsx, with ∆Z = g∗µBB/2, where µB

the Bohr magneton. Here, g∗ is an effective g-factor due to the curvature of the fold and
the localization of the bound state. Since sx′ = sx cosϕ + sy sinϕ depends on x via the
azimuthal angle ϕ(x) of the fold, we replace sx′ by an average over the orbital part of
the bound state wave function. This results in 2/π < g∗/g < 1, the precise value being
dependent on the localization length, where g is the bare g-factor of graphene.

Using second order perturbation theory for β > ∆s
KK ′, ∆Z , we find that the gap
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opened at kz = 0 is given by

∆g =
∆s

KK ′∆Z

β
, (7.4)

see Fig. 7.2, which also contains numerical estimates for realistic parameters. We note that
∆g is enhanced by electron-electron interactions [26], however, we neglect this supportive
effect herein. If the chemical potential is tuned inside the gap 2∆g [µ ≈ (V0/2

√
2) ± β],

there are three right- and three left-propagating modes. Four states at finite momentum
(two left-moving and two right-moving states) are only slightly affected by the magnetic
field and thus can still be considered to carry opposite spins, meaning that the total spin
transfer is close to zero and these modes are not contributing to spin-filtering. In contrast
to that, the two modes with kz ≈ 0 are helical modes: they have opposite velocities and
opposite spins. Thus, similar to Rashba nanowires [18], the BLG quantum wire can be
used as a spin filter device.

Moreover, if the BLG is brought into proximity to an s-wave superconductor, the
states with opposite momenta and spins get paired. Working in the linearized model of
left-right movers [27], we obtain the effective Bogoliubov-de Gennes Hamiltonian for each
of the three pairs, j = 1, 2, 3, written in Nambu space,

Hj
s = ~υjkjχ3 +∆sω2χ2, (7.5)

where υj is the velocity for the jth pair at the Fermi level and ∆s is the strength of the
proximity-induced superconductivity, and the Pauli matrices χi (ωi) act in the left-right
mover (electron-hole) space. We note that we are in the regime corresponding to strong
SOI where we keep only the slowest decaying contributions of the wave functions [27]. To
determine the potential existence of MFs in the system, one can study the topological class
of Hj

s [28]. This Hamiltonian belongs to the topological class BDI. However, by analogy
with multi-band nanowires [29], additional scattering between states would bring the
system into the D class. An alternative way of classification, which determines explicitly
the number of MF bound states, is to study the null-space of the Wronskian associated
with the Schrödinger equation [30]. In our case, we find three MFs at each wire end
in the topological phase defined by ∆2

g ≥ ∆2
s + δµ2, where δµ is the chemical potential

counted from the mid-gap level ∆g. These MFs are generically hybridized into one MF
and one non-zero energy fermion by perturbations such as electron-electron interactions
and interband scattering.

7.3 Numerical calculation

Above we have studied the system analytically, assuming a step-like potential. In this
section we compare our results with the numerical solution of the Schrödinger equation for
the effective Hamiltonian H̃0 +Hso +Hsc +HZ , with a more realistic (smooth) potential,
V (x) = (V0/2) tanh(x/d), where d is the distance between the gates. The spin-orbit
interaction β(x) is finite only within the curved region of the BLG sheet. Along the
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Numerical calculation

Figure 7.3: (a) The profile of the gate potential V (x) along the curved BLG. The reversed
polarity at the two ends gives rise to mid-gap states, localized in x-direction. The density
profile of three right-moving states, whose energy E is inside the gap ∆g, allows us to
estimate the localization lengths ξ: (b) V0 = 100 meV, E = 29.13 meV, d = R (dashed
white line in Fig. 7.2), ξ ≈ 9 and 8 nm, and (c) V0 = 10 meV, E = 3.49 meV, d = R,
ξ ≈ 30 and 24 nm. We note that states with larger momenta have shorter localization
lengths. (d) The localization length follows approximately ξ̃ = ξ − ξ0 ∝ 1/

√
V0. The

circles are extracted from our numerical calculations, ξ = 〈x2〉, for energies in the middle
of the gap ∆g, equivalent to the white dashed line in Fig. 7.2. The lines are fits, ξ̃ ∝ 1/V p

0 ,
for the states at large kz (p = 0.59), shown as dashed lines, and for the states near kz = 0
(p = 0.52), shown as full lines.

z-direction, the system is translationally invariant, so the envelope function is given by
Ψ(x, z) = eikzzψkz(x). The profile of ψkz(x) is presented in Fig. 7.3. The localization
length follows a power law ξ − ξ0 ∝ 1/V p

0 , with p ≈ 1/2, and the shift ξ0 < d is due to
the finite distance between gates. In the limit d → 0, where the analytical solution is
applicable, the localization length is essentially given by ξ = 25/4~υF/

√
V0t⊥ [15], since

corrections due to SOI are of negligible higher order in β.

Tunnel junction. The dependence of ξ on the potential V0 can be exploited to couple
parallel wires. For instance, consider two similar quantum wires, running parallel to each
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other at a distance D. If ξ ≪ D for each wire, then they are completely decoupled.
However, lowering the potential in both wires locally around a point z0 on the z-axis,
such that ξ0 ≈ D, we can enforce wavefunction overlap, leading to a transverse tunnel
junction between the two wires at z0. In this way, an entire network of helical wires can
be envisaged. We mention that such networks could provide a platform for implementing
braiding schemes for MFs [31].

7.4 Conclusions

The confinement of states in BLG into an effective quantum wire is achieved by pairs of
gates with opposite polarities, leading to eight propagating modes [15]. If the direction of
the wire is chosen such that the chiral angle vanishes, both valleys K and K ′ are projected
onto zero momentum kz. The SOI, substantially enhanced by curvature, defines a spin
quantization axis and splits spin-up and spin-down states. A magnetic field assisted by
intervalley scattering opens up a gap at the center of the Brillouin zone. If the chemical
potential is tuned inside the gap, three right- and three left-propagating modes emerge,
so that the system possesses helical modes, which are of potential use for spin-filtering.
In the proximity to an s-wave superconductor, the BLG wire hosts Majorana fermions
arising from the helical modes. By locally changing the confinement potential and thus
the localization lengths, parallel wires can be tunnel coupled. This mechanism can be
used to implement braiding of MFs in bilayer graphene.

This work is supported by the Swiss NSF, NCCR Nanoscience, and NCCR QSIT.
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Chapter 8

Giant SOI due to rotating magnetic
fields in graphene nanoribbons

We theoretically study graphene nanoribbons in the presence of spatially varying magnetic
fields produced e.g. by nanomagnets. We show both analytically and numerically that
an exceptionally large Rashba spin orbit interaction (SOI) of the order of 10 meV can
be produced by the non-uniform magnetic field. As a consequence, helical modes exist
in armchair nanoribbons that exhibit nearly perfect spin polarization and are robust
against boundary defects. This paves the way to realizing spin filter devices in graphene
nanoribbons in the temperature regime of a few Kelvins. If a nanoribbon in the helical
regime is in proximity contact to an s-wave superconductor, the nanoribbon can be tuned
into a topological phase sustaining Majorana fermions.

This chapter has been published as Physical Review X 3, 011008 (2013)
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8.1 Introduction

The last decade has seen remarkable progress in the physics and fabrication of graphene-
based systems [1, 2]. The recent advances in producing graphene nanoribbons (GNRs)
enable to assemble them with well-defined edges, in particular of armchair type [3, 4].
Moreover, it has been shown that the presence of adatoms can significantly increase the
strength of the spin orbit interaction (SOI) of Rashba type [5]. All this together makes
nanoribbons promising candidates for spintronics effects. In particular, generation of
helical states, modes which transport opposite spins in opposite directions, is of great
interest. Such modes were proposed in semiconducting nanowires [6], carbon nanotubes
[7, 8], bilayer graphene [9], and experimentally reported for quantum wires in GaAs hole
gases [10]. They find applications in spin-filters [6], Cooper pair splitters [11], and, in
contact with an s-wave superconductor, they provide a platform for Majorana fermions
with non-abelian braiding statistics [12].

In the present work we propose a novel way to generate a giant effective SOI in GNRs
by spatially varying magnetic fields that can be produced by nanomagnets [13]. This
approach has an advantage over using adatoms because the surface of graphene is not
in tunnel-contact with other atoms, which usually leads to high disorder with strong
intervalley scattering. As we will see, large values of SOI result in helical modes of
nearly perfect polarization. Moreover, nanoribbons, in stark contrast to semiconducting
nanowires, have considerably larger subband splittings, allowing for a superior control of
the number of propagating modes and of the gaps that are characteristic for the helical
regime.

Further, our proposal is a next step in bringing topological features to graphene sys-
tems. Topological states proposed by Kane and Mele [14] turned out to be experimentally
undetectable due to the small intrinsic SOI of graphene. In contast, we show here that
if a GNR in the helical regime is brought into proximity to an s-wave superconductor,
the system can be tuned into a topological phase that supports Majorana fermions. This
opens up the possibility to use GNR for topological quantum computing.

The low-energy physics of armchair GNRs is characterized by broken valley degeneracy
enforced by the boundary effects [15]. To generate helical states we also need to lift the
spin degeneracy. This can be achieved by magnetic fields in two ways: by a uniform
magnetic field and Rashba SOI or by a spatially varying magnetic field. The chemical
potential should be tuned inside the gap opened, leading to a helical regime. We will
study these two scenarios both analytically and numerically. Moreover, we will show
numerically that the presence of helical states is robust against small non-idealities of the
GNR edges. This shows that our proposal is realistic and experimentally feasible.
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8.2 Graphene nanoribbon

GNRs are strips of graphene, a honeycomb lattice defined by translation vectors a1 and
a2 and composed of two types of atoms, A and B, see Fig. 8.1. The GNR axis is chosen
along the z-axis and has a finite width in x direction. GNRs are usually characterized
by a width W and a chiral angle θ, the angle between the GNR axis and a1. We only
consider armchair nanoribbons for which θ is equal to π/2.

Graphene can be analyzed in the framework of the tight-binding approach. The effec-
tive Hamiltonian includes hoppings of electrons between neighboring sites,

H0 =
∑

<ij>,λ,λ′

tij,λλ′c†iλcjλ′. (8.1)

Here, ciλ are the standard electron operators, i and j are nearest-neighbor sites, and
λ, λ′ are spin projections on the z-axis. Without SOI, the spin is conserved and the
hopping amplitude becomes tij,λλ′ = tijδλλ′ , where tij is spin-independent. It is more
convenient to treatH0 in momentum space (kx, kz). The low-energy physics of graphene
is determined by two valleys around K = −K′ = (4π/3a, 0), where a = |a1| is the lattice
constant. Wavefunctions can be represented in the form ψ =

∑
τσ φστe

iτKxx, where τ = ±1
corresponds to K/K ′ and σ = ±1 to the A/B sublattice. The Hamiltonian for the slowly-
varying wavefuctions φστ (x, z) is written in terms of the Pauli matrices σi (τi), acting on
the sublattice (valley) degrees of freedom, as

H0 = ~υF (τ3kxσ1 + kzσ2). (8.2)

Here, kz (kx) is the longitudinal (transverse) momentum calculated from a Dirac point,
and υF is the Fermi velocity. From now on we work in the basis Φ = (φAK , φBK , φAK ′, φBK ′).

Figure 8.1: An armchair GNR formed by a finite strip of graphene aligned along the z-axis
and of width W in x-direction. The GNR is composed of two types of atoms A (blue dot)
and B (green dot) and is characterized by hexagons in real space with translation vectors
a1 and a2. The low-energy physics is determined by the momenta k = (kx, kz) around the
two valleys K = −K′ = (4π/3a, 0). Nanomagnets (green slabs) placed with period λn on
the sides of the GNR provide a spatially varying magnetic field Bn (red arrows).
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Figure 8.2: The spectrum of an armchair GNR obtained by numerical diagonalization
of the tight-binding Hamiltonian H0 +Hso +Hz. The low-energy spectrum is linear for
metallic [(a,b) with N = 82] and quadratic for semiconducting [(c,d) with N = 81]
GNRs. The SOI [(b) ∆so = 1 meV and (d) ∆so = 5 meV] lifts the spin degeneracy, so
the spectrum consists of (b) two Dirac cones or (c) two parabolas shifted by kso from zero
(shown by green lines). For a metalllic GNR each branch is characterized not only by the
spin projection s but also by the isospin γ. The solid (dashed) lines correspond to γ = 1
(γ = −1), see (b). While for a semiconducting GNR a magnetic field, ∆Z = 0.1 meV,
alone opens a gap 2∆g [(d)], we also need to include intervalley scattering (modeled by
fluctuations in on-site energies) for the metallic GNR [(b)]. If the chemical potential µ is
tuned inside the gap, the system is in the helical regime with nearly perfect polarization,
〈sx〉 ≈ 0.99, in both cases.

A GNR, in contrast to a graphene sheet, is of finite width W leading to well-gapped
subbands. In order to impose open boundary conditions on a GNR consisting of N unit
cells in transverse direction, we effectively extend the GNR by two unit cells, so that
the width is equal to W ′ = (N + 2)a and impose vanishing boundary conditions on
these virtual sites, ψ(0, z) = 0 and ψ(W ′, z) = 0 [15]. This leads to quantization of the
transverse momentum kx, Kx + kx = πn/W ′, where n is an integer.

If the width of the GNR is such that N = 3M + 1, where M is a positive integer, the
GNR is metallic [15]. The low-energy spectrum is linear and given by Eσ = γ~υFkz, where
the isospin γ ± 1, corresponding to the eigenvalues of the Pauli matrix σ2. The higher
levels are two-fold degenerate (apart from spin, see below) and gapped by π~υF/3(M+1)a
(see Fig. 8.2a).
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If the GNR width is such that N = 3M (or N = 3M + 2), where M is a positive
integer, the GNR is semiconducting [15]. The gap at kz = 0 is given by 2~υF |kmin

x |, with
|kmin

x | = π/3(N + 2)a . In case of a semiconducting GNR all orbital states are non-
degenerate (see Fig. 8.2c). This means that the boundaries induce intervalley coupling
and break the valley degeneracy [16, 15, 17].

If the chemical potential µ crosses only the lowest level of the spectrum, there are two
states propagating in opposite directions with opposite isospins σ. However, so far we
have not taken spin into account, which will lead to four states at the Fermi level in total.
As we will see next, this degeneracy can also be lifted if we include Rashba SOI and a
uniform magnetic field or, equivalently, a spatially varying magnetic field.

8.3 Rashba spin orbit interaction

The Rashba SOI arises from breaking inversion symmetry. This can be caused by an
electric field Eext applied perpendicular to the GNR plane, or alternatively, by adatoms,
which produce local electric fields. In the first case, the SOI is quite small, ∆so = eEextξ
with ξ = 4 × 10−5 nm [18, 19] for realistic fields Eext ∼ 1 V/µm. In the second case, the
strength of the SOI is significantly increased by doping, and values for ∆so of 10−100 meV
have been observed [5]. The general form of the Rashba SOI Hamiltonian can be obtained
from symmetry considerations [14],

Hso = ∆so(τ3szσ1 − sxσ2), (8.3)

where the Pauli matrices si act on the spin.

8.4 Rotating magnetic field

An alternative approach to generate helical modes is to apply a spatially varying magnetic
field [20, 21, 22]. Such a field can be produced by nanomagnets [13] or by vortices of a
superconductor. We emphasize that this scheme requires not perfect periodicity of the
field but just a substantial weight of the Fourier component at twice the Fermi wavevector.
Moreover, this mechanism is valid for both, rotating and linearly oscillating fields. For
simplicity we assume in this section that the Rashba SOI discussed above is negligible.
The case when both, a spatially varying magnetic field and Rashba SOI, are present was
discussed recently in the context of nanowires [22] and shown to lead to a number of
striking effects such as fractionally charged fermions [22].

First, we consider a field rotating in a plane perpendicular to the GNR, leading to the
Zeeman term

H⊥
n = ∆Z [sy cos(knz) + sz sin(knz)] , (8.4)

where ∆z = gµBB/2, µB is the Bohr magneton, g the g-factor, and λn = 2π/kn the period
of the rotating field. It is convenient to analyze the position-dependent Hamiltonian
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H0 +H⊥
n in the spin-dependent rotating basis [24, 20]. The unitary transformation Un =

exp(iknzsx/2) brings the Hamiltonian back to a GNR with in-plane Rashba SOI and
uniform field perpendicular to the GNR,

H⊥ = U †
n(H0 +H⊥

n )Un = H0 +∆Zsy +∆n
sosxσ2. (8.5)

In a similar way, a field rotating in the plane of a GNR,

H‖
n = ∆Z [sx cos(knz) + sz sin(knz)] , (8.6)

is equivalent to a GNR with out-of-plane Rashba SOI together with a uniform field along
the x-axis,

H‖ = U †
n(H0 +H‖

n)Un = H0 +∆Zsx +∆n
sosyσ2. (8.7)

The induced SOI favors the direction of spin perpendicular to the applied rotating mag-
netic field, and its strength is given by ∆n

so = ~υFkn/2, independent of the amplitude ∆Z .
For example, ∆n

so is equal to 10 meV for nanomagnets placed with a period of 200 nm.

8.5 Helical modes

The spectrum of H⊥ (or by analogy of H‖) can be easily found using perturbation theory.
Taking into account that realistically ∆Z ≪ ∆n

so, we treat the Zeeman term as a small
perturbation. The induced SOI, given by ∆n

sosxσ2, leads to spin-dependent shifts of the
kz-momenta by kso = ∆n

so/~υF = kn/2, both for the metallic and the semiconducting
GNRs, see Figs. 8.2b and 8.2d. Every level is characterized by the spin projection s = ±1
on the x-axis, so the spin part of the wavefunctions, |s〉, is an eigenstate of the Pauli
matrix sx. The corresponding spectrum and wavefunctions that satisfy the vanishing
boundary conditions (for ψ) are given by

ΦE,kz
γ,s = eiz(kz+skso)(−iγ, 1, iγ,−1)|s〉, (8.8)

Eγ,s = γ~υF (kz + skso) (8.9)

for a metallic GNR and

ΦE,kz
±,s = eiz(kz+skso)(±eiϕs+ixkmin

x , eixk
min
x ,

∓ eiϕs−ixkmin
x ,−e−ixkmin

x )|s〉, (8.10)

E±,s = ±~υF
√
(kmin

x )2 + (kz + skso)2 (8.11)

for a semiconducting GNR. Here we use the notation

eiϕs = [kmin
x − i(kz + skso)]/

√
(kmin

x )2 + (kz + skso)2.
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A uniform magnetic field that is perpendicular to the spin-quantization axis defined by
the SOI results in the opening of a gap 2∆g at kz = 0. Using the wavefunctions given by

Eq. (8.10), we can show that ∆g = ∆Zk
min
x /

√
(kmin

x )2 + k2so ≈ ∆Z for a semiconducting
GNR. The spin polarization in this state is given by |〈sx〉| ≈ 1 − (∆Zk

min
x /4~υFk

2
so)

2.
In contrast to that, a metallic GNR possesses an additional symmetry. Each branch is
characterized not only by spin (s = ±1) but also by isospin (σ = ±1), see Fig. 8.2b.
Thus, a magnetic field alone cannot lift the degeneracy at kz = 0. However, if we include
also terms breaking the sublattice symmetry, such as intervalley scattering described by
HKK ′ = ∆KK ′τ1, a gap will be opened. Here, ∆KK ′ is the strength of the intervalley
scattering, which can be caused by impurities or fluctuations in the on-site potential.
Assuming ∆Z ,∆KK ′ ≪ ∆so, the gap becomes 2∆g = 2∆KK ′∆Z/∆so in leading order.
The spin polarization of the helical states is given by |〈sx〉| ≈ 1 − (∆Z/∆so)

2. We note
that for both semiconducting and metallic GNR, ∆Z limits the size of the gap ∆g.

We note that H⊥ is equivalent to the Hamiltonian describing a GNR in the presence
of Rashba SOI and a uniform magnetic field applied in perpendicular y-direction, Htot =
H0+Hso+HZ [see Eqs. (8.2) and (8.3)] in first order perturbation theory in the SOI. Here,
the Zeeman term is given by HZ = ∆Zsy. The wavefunctions given by Eqs. (8.8) and
(8.10) are eigenstates of the Pauli matrix τ1, so the diagonal matrix element of τ3 is zero.
This leads to the result that the term τ3szσ1 in the Rashba Hamiltonian Hso averages
out in first order perturbation theory, and Htot is indeed equivalent to H⊥. This means
that the effect of the SOI is a spin-dependent shift of kz by kso = ∆so/~υF . Similarly, the
uniform magnetic field opens a gap at kz = 0, which can be as big as 10 K for a field of
about 10 T.

An alternative approach to above perturbation theory is to analyze the GNR with
Rashba SOI analytically. For graphene the spectrum of the effective Hamiltonian H0+Hso

is given by Ej,± = ±
(
∆so + j

√
(~υFkx)2 + (~υFkz)2 +∆2

so

)
, where the index j is equal

to 1 (−1) for the highest (lowest) electron level, and the ± sign distinguishes between
electrons and holes. The SOI lifts the spin degeneracy, however, the valley degeneracy is
maintained, and τ3 is a good quantum number. Analogously to Ref. [15], we search for
a sum over the eigenstates ψτ,q(x) of H0 +Hso, ψ

E,kz(x, z) =
∑

τ,q bτ,qψ
E,kz
τ,q (x), such that

the boundary conditions are satisfied. The index q = (j,±) distinguishes between four
wavevectors satisfying Ej,±(kx = ±kj) = E, ~υFk1,2 =

√
E2 − (~υFkz)2 ± 2E∆so. We

also introduce new variables θ and γ, via cos θ = ~υFkz/E and
√
2 sin θ sin γ = ~υFk1/E.

We allow for real as well as imaginary values of k1,2, θ, and γ. The spectrum of a metallic
GNR is then given implicitly by

tan2 θ

(
sin

(
k1W

2

)
cos

(
k2W

2

)
+ cos

(
k1W

2

)
sin

(
k2W

2

)
sin(2γ)

)2

= − sin (k1W ) sin (k2W ) sin(2γ). (8.12)

The exact solution defined by Eq. (8.12) can be analyzed analytically by means of Tailor
expansion. For example, if ∆so ≪ ~υFkz, we get E = ±~υFkz±∆so, which is in agreement
with previous perturbative calculations.
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8.6 Numerics

To check our analytical results numerically, we extend the tight-binding HamiltonianH0

by allowing for hoppings with spin-flip,

Hso =
∑

<ij>,λ,λ′

ic†iλuij · sλλ′cjλ′ +H.c., (8.13)

in such a way that Hso is equivalent to the Rashba SOI in the low-energy sector. Here,
sλλ′ is a vector composed of the Pauli matrices, and spin-dependent hopping elements are
defined as uij = −(3∆so/4)z× eij . A unit vector eij points along the bond between two
sites i and j. The results of the numerical diagonalization of the HamiltonianH0+Hso+HZ

are presented in Fig. 8.2, where the Zeeman term corresponding to a magnetic field B is
modeled as

HZ =
∑

i,λ,λ′

c†iλB · sλλ′ciλ′. (8.14)

As shown in Fig. 8.2, the numerical results fully confirm the analytical calculations.

8.7 Stability against edge defects.

The spectrum of GNRs is known to be sensitive to the specific form of the edges. For
example, the linear spectrum of a metallic GNR becomes parabolic for non-ideal armchair
boundaries (see Fig. 8.3). In contrast to that, subband gaps are only slightly modified
for semiconducting GNRs. We conclude that the valley degeneracy, in general, is lifted
due to strong intervalley mixing induced by the boundaries and this is a property of all
armchair GNRs [17, 16]. We emphasize that for the scenario of helical modes developed
above we do not need any specific symmetries. Thus, our proposal is robust against edge
defects.

The scenario with a rotating magnetic field is even more universal. The only criterion
is that the Fermi wavevector kF is not too large, typically kF/Kx should be smaller than
10−2. This is a natural limit resulting from the fact that the period of rotation of a
magnetic field should be much larger than the lattice constant.

8.8 Majorana fermions.

Next, we consider GNRs in the helical regime brought near to a superconductor. If µ is
tuned inside the gap opened by the field, the two propagating modes are helical. The
proximity-induced superconductivity in the GNR leads to the coupling between such states
and gaps the spectrum. The system can be effectively described in the linearized model
for the exterior (χ = e, states with momenta close to the Fermi momentum, ke = kF )
and the interior branches (χ = i, states with nearly zero momenta, ki = 0) [23]. The
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Figure 8.3: Defects on the edges of a metallic armchair GNR (N = 82) result in opening
of a gap at zero energy. In the numerical diagonalization, the defects were modeled by
omitting two atoms on the edges, which was assumed to be periodic with period ld = 5

√
3a.

We see that the spectrum changes only little and the qualitative features of a metallic
armchair GNR are maintained.

electron operator is represented as Ψ(z) =
∑

ρ=±1,χ=e,i e
iρkχzΨρχ, where the sum runs over

the right (R, ρ = 1) and left (L, ρ = − 1) movers. The effective Hamiltonian becomes

H = −i~υFρ3χ3∂x +
∆g

4
η3ρ1(1 + χ3) + ∆sη2ρ2, (8.15)

where the Pauli matrices χi (ηi) act in the interior-exterior branch (electron-hole) space,

and Ψ̃ = (ΨRe,ΨLe,Ψ
†
Re,Ψ

†
Le,ΨLi,ΨRi,Ψ

†
Li,Ψ

†
Ri). Following Refs. [23, 22], we find that

the criterion for the topological phase transition is given by ∆g >
√
µ2 +∆2

s. In terms of

Zeeman energy this gives ∆Z > ∆so

√
µ2 +∆2

s/∆KK ′ (∆Z >
√
µ2 +∆2

s

√
(kmin

x )2 + k2so/k
min
x )

for a metallic (semiconducting) GNR.

8.9 Conclusions.

We have shown that helical modes can be generated in graphene nanoribbons by a spatially
varying magnetic field or by Rashba spin orbit interaction with a uniform magnetic field.
We have demonstrated that the opening of the gap is universal for both semiconducting
and metallic graphene armchair nanoribbons independent of the mechanism that induces
the spin orbit interaction, leading to a helical regime with nearly perfect spin polarization.
Moreover, we have checked numerically that the helical regime is robust against boundary
defects. All this makes graphene nanoribbons promising candidates for spin effects and
spintronics applications.

This work is supported by the Swiss NSF, NCCR Nanoscience, and NCCR QSIT.
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Chapter 9

Exchange-based CNOT gates for
ST-qubits with spin orbit interaction

We propose a scheme for implementing the CNOT gate over qubits encoded in a pair of
electron spins in a double quantum dot. The scheme is based on exchange and spin orbit
interactions and on local gradients in Zeeman fields. We find that the optimal device
geometry for this implementation involves effective magnetic fields that are parallel to
the symmetry axis of the spin orbit interaction. We show that the switching times for
the CNOT gate can be as fast as a few nanoseconds for realistic parameter values in
GaAs semiconductors. Guided by recent advances in surface codes, we also consider the
perpendicular geometry. In this case, leakage errors due to spin orbit interaction occur
but can be suppressed in strong magnetic fields.

This chapter has been published in Physical Review B 86, 085423 (2012).
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9.1 Introduction

Standard quantum computing [1] is based on encoding, manipulating, and measuring
quantum information encoded in the state of a collection of quantum two-level systems
- qubits. Spin-1/2 is an ideal implementation of a qubit, since it is a natural two-level
system, and every pure state of a spin-1/2 corresponds to a state of a qubit. For this
reason, spins have been considered as carriers of quantum information in a variety of
proposals [2]. The initial proposal [3] called for spins in single-electron quantum dots
electrically manipulated by the exchange interaction and local time-dependent Zeeman
fields. A variety of other encoding schemes and manipulation techniques [4, 5, 6, 7, 8,
9, 10, 11] rely upon encoded qubits. In these schemes, the simplicity of qubit states and
minimal number of physical carriers of quantum information are traded for less stringent
requirements for experimental implementations. On one hand, the alternative setups
protect from the most common types of errors by decoupling the computational degrees
of freedom from the most common sources of noise, and therefore allow for longer gating
times. On the other hand, in some alternative setups the manipulation without fast
switching of the local magnetic fields becomes possible.

The optimization in the encoding and manipulation protocols is always guided by
the state of the art in the experiments. Recent results suggest that spin qubits can
reside in a variety of material hosts with novel properties. Quantum dots in graphene
[12] and carbon nanotubes [13] are less susceptible to the decoherence due to nuclei and
spin-orbit interaction. Spins in nanowires show very strong confinement in two spatial
directions, and the gating is comparably simple [8, 9]. In hole systems, the carriers have
distinct symmetry properties, and show coupling to the nuclear spins of a novel kind
[14]. Recently, the experiments in silicon [15] have demonstrated coherent manipulation
of spins similar to the one achieved in the GaAs-based nanostructures. Within these
hosts, the manipulation techniques that use exchange interaction, spatially inhomogeneous
time independent Zeeman splitting, and nuclear hyperfine interactions are within reach.
Despite these developments, GaAS remains a promising route to spin qubits due to the
highly advanced experimental techniques developed for this material.

Here, we study the implementation of the quantum gates on the encoded two-spin
singlet-triplet (ST) qubits [5, 4, 7, 16, 17, 10] using resources that closely resemble the
ones available in the current experimental setups. There, the application of the time-
dependent electric fields through the gates fabricated into a structure [11] are preferred
to time-dependent local magnetic fields. In addition, the nuclear spins [7, 16, 18, 19, 17]
and inhomogeneous magnetic fields [20, 21] are possible resources for spin control. In the
setups based on semiconductors, the electrons or holes in the quantum dots are influenced
by the spin orbit interaction (SOI), which can contribute to the control [22].

In this work we present a scheme for control of ST-qubits which uses switching of the
exchange interaction as a primary resource. We consider the scheme that is optimized for
the application of quantum gates in the network of quantum dots. The construction of
the CNOT gate uses pulses of the exchange interaction as the only parameter that is time

146



Model

dependent. The exchange interaction itself is not sufficient for the universal quantum
computation over the ST-qubits due to its high symmetry. The additional symmetry
breaking is provided by nonuniform, but static magnetic fields. These fields describe the
influence both of magnetic fields, provided by the nearby magnets, and of the coupling
to the nuclear spins in the host material via hyperfine interaction. Depending on the
scheme used for the application of the quantum gates, the optimal geometry is either the
one in which the magnetic fields point parallel to the axis of symmetry of the SOI or
perpendicular to it.

One major problem in the realization of two-qubit quantum gates (in particular, we
consider here the CNOT gate based on conditional phase gates), is the possibility of leak-
age errors where the spin states defining the logical qubit leave the computational space.
These errors move the state of four spins from the 4-dimensional computational space of
two qubits into some other portion of the 16-dimensional Hilbert space of four spin-1/2
particles. We consider two ways of addressing this problem. One scheme possesses the
axial symmetry due to the fact that the SOI vector and magnetic fields are parallel. For
this ‘parallel scheme’ we are able to construct a perfect CNOT gate, if we are able to
control all the available parameters. Having in mind 2D architectures, we also consider
the CNOT gate between two qubits in the case when the SOI vector and magnetic fields
are perpendicular to each other. Here we cannot prevent the leakage out of the compu-
tational space, however, we show that it is suppressed by a ratio between the SOI and
Zeeman energy coming from a strong external magnetic field.

All our constructions assume that the controlled interactions are switched in time by
rectangular pulses. Any deviations from this form of time dependence lead to additional
corrections and affect the fidelity of the gate.

The paper is organzied as follows. In Sec. 9.2, we introduce the model for the double
dots and effective Hamiltonians for field gradients and exchange and spin orbit interac-
tions. In Sec. 9.3, we consider the parallel geometry and derive the CNOT gate via
the conditional phase gates and swap gates, all based on exchange. There we also give
estimates for the switching times. The scheme for the perpendicular geometry is then
addressed in Sec. 9.4, and we conclude in Sec. 9.5.

9.2 Model

We consider in the following singlet-triplet (ST) qubits that are implemented by two
electrons confined to a double quantum dot system [5, 4], see Figs. 9.1 and 9.2. Such
ST-qubits have been realized successfully in several labs [23], and single and two-qubit
operations have also been demonstrated recently [7, 24, 17, 10]. There are several schemes
for the fundamental CNOT gate, which can be divided into two classes, schemes which
make use of exchange interaction and schemes which do not, but instead rely on coupling
of dipole moments [10]. The latter schemes has the disadvantage to be rather slow and
also to be affected by charge noise rather strongly. Here, we focus on exchange-based
schemes specifically adapted to quantum dots in III-V semiconducting materials, that
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have the SOI, such as in GaAs or InAs quantum dots. Although the SOI is typically
small compared to the level spacing of the dots, it needs to be taken into account in order
to achieve high fidelities in gate operations.

We focus now on two such ST-qubits and assume them to be encoded in four quantum
dots that are arranged in a row, see Figs. 9.1 and 9.2. The external magnetic field B is
assumed to give the largest energy scale and determines the spin quantization axis z. The
Hilbert space of four spins-1/2 is spanned by 24 = 16 basis states. The total spin of the
system is given by Ŝ =

∑4
i=1 Ŝi, where Ŝi is a spin-1/2 operator acting on the spin in a

dot i = 1, 2, 3, 4. Due to axial symmetry, the z-component, Ŝz, becomes a good quantum
number, and the eigenstates corresponding to Sz = 0 span a six-dimensional subspace.
The singlet state of a qubit is defined as |S〉 = (|↓↑〉− |↑↓〉)/

√
2 and the triplet state as

|T 〉 = (|↓↑〉+ |↑↓〉)/
√
2. We define the computational basis of the two ST-qubits in this

subspace as

|00〉 =|↓↑↓↑〉, |11〉 =|↑↓↑↓〉,
|01〉 =|↓↑↑↓〉, |10〉 =|↑↓↓↑〉, (9.1)

where {0, 1}⊗2 denotes the ST-qubit space, ‘↑’ and ‘↓’ denote states of the quantum dot
spins corresponding to the projection Sz

i = ±1/2 on the z axis. The remaining two states,

|l1〉 = | ↑↑↓↓〉, |l2〉 = | ↓↓↑↑〉, (9.2)

belong to the non-computational leakage space. We note that the basis given in Eq. (9.1)
is simply related to the common ST-basis [5, 4] via rotations on the Bloch sphere (corre-
sponding to a unitary basis transformation).

Figure 9.1: Parallel geometry: four quantum dots (yellow discs) aligned along the x-axis
in the presence of an external magnetic field B that is applied parallel to the SOI vector
β (red arrow), which must be perpendicular to the line of the dots and which we take
to be the z-direction. At each dot, there is a local magnetic field Bi (blue arrows), also
assumed to be parallel to B, but with alternating orientations as indicated. The direction
of B defines the spin quantization axis. The dots are defined electrostatically by metallic
gates (light green structures). Each dot contains a spin-1/2, and the exchange (Jij) and
the SOI-induced (βij) interactions between the spins can be controlled by changing the
electrostatic potential between the dots. The dots 1 and 2 (from left to right) define the
first ST-qubit, and the dots 3 and 4 the second ST-qubit.
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Figure 9.2: Perpendicular geometry: similar to the setup shown in Fig. 9.1 but with the
difference that here the SOI vector β (red arrow) is perpendicular to the magnetic fields
B and Bi, which define the spin quantization axis z.

Besides the externally applied magnetic field B, we allow also for local magnetic
fields Bi that are constant in time (at least over the switching time of the gate). Such
local fields can be generated e.g. by nearby micromagnets [21] or by the hyperfine field
[25, 26, 27, 28, 29, 30] produced by the nuclear spins of the host material. In the latter
case, in order to reach a high fidelity, it is important to perform a nuclear state narrowing
[25], i.e. to suppress the natural variance δBi ∼ A/

√
N ∼ 10mT to a smaller value, where

N is the number of nuclear spins in the quantum dot, and A is the strength of the hyperfine
coupling. In the ideal case, one should try to reach a limit where |Bi| ∼ 50mT ≪ |B| and
the fluctuations in Bi are much smaller than |Bi| .

The magnetic fields Bi are assumed to point along the external field B, so that they
preserve the axial symmetry of the problem. However, the Bi’s should have different
values (to create field gradients between the dots), a simple scenario being local fields
of opposite directions on neighboring dots, see Figs. 9.1 and 9.2. The corresponding
Zeeman Hamiltonian is given by

HB =

4∑

i=1

(b+ bi)Ŝ
z
i , (9.3)

where the effective magnetic fields are defined in terms of energy as b = gµBB and
bi = gµBBi, respectively, with g being the electron g-factor and µB the Bohr magneton.

The exchange interaction Jij(t) couples the electron spins of nearest neighbor dots i
and j and can be controlled electrostatically [23, 7, 21]. If the tunnel barrier between the
dots is high we can treat them as independent. If the tunnel barrier is lowered and/or a
detuning between the dots is applied, the two spins interact with each other, leading to
an effective description in terms of an Heisenberg Hamiltonian [3, 31, 22],

Hex = J12(t)Ŝ1 · Ŝ2 + J23(t)Ŝ2 · Ŝ3 + J34(t)Ŝ3 · Ŝ4 . (9.4)

We assume that the magnetic field is sufficiently large compared to exchange energies, i.e.
Jij ≪ B, to avoid admixture of triplets via the SOI (see the discussion of perpendicular
geometry below).
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We note that ideally it is best to switch the exchange Jij by changing the correspond-
ing inter-dot barrier-height or distance, instead of detuning the double dot by a bias ǫ.
Detuning is harmful for two reasons. First, detuning can admix other unwanted states
(for example, (0,2)S, see Fig. 2 in [22]). To analyze the errors coming from detuning, one
needs to go beyond the effective spin Hamiltonian and consider the microscopic model for
the double dots which includes Rashba and Dresselhaus SOI and inhomogeneous fields,
see Ref. [22]. Second, the control of Jij via the tunnel barrier preserves the symmetry
of the charge distribution in the double dot and thus, in particular, avoids the creation
of dipole moments. In contrast, such dipole moments are unavoidable for detuning, and
in the regime with dJij/dǫ 6= 0 charge noise can enter most efficiently the qubit space,
causing gate errors and decoherence of the ST-qubits [25]. Thus, symmetric exchange
switching is expected to be more favourable for achieving high gate fidelities.

Next, we account for the effects of spin orbit interaction. Following Refs. [32, 33, 34]
we model the SOI by a Dzyaloshinskii-Moriya (DM) term for two neighboring quantum
dots (see e.g. Eq. (1) in [33]),

HSOI
ij = βij(t) · (Ŝi × Ŝj), (9.5)

where the SOI vector βij(t) is perpendicular to the line connecting the dots. First we
consider a ‘parallel geometry’ (see Fig. 9.1) where the SOI vectors βij are all parallel to
each other and the magnetic fields B and Bj are assumed to be parallel to the SOI vectors.
This preserves the axial symmetry of the spin system, and by definition, we choose the
direction of B to be the z-axis. This leads to

HSOI
‖ =

∑

i,j

βij(t)(Ŝ
x
i Ŝ

y
j − Ŝy

i Ŝ
x
j ) , (9.6)

where the summation runs over neighboring dots i and j. The strength of the SOI, βij ,
depends on the distance between the dots as well as on the tunnel coupling between them.
This allows us to assume that both Jij(t) and βij(t) are switched on and off simultaneously
[35, 36, 37].

We note here that both Hex and HSOI
‖ , being axially symmetric interactions, preserve

the z-component of the total spin Sz. This means that our set-up is protected from
leakage to the subspace with Sz 6= 0. However, it is not protected from the leakage to the
non-computational space given by Eq. (9.2). By a proper design of gates this leakage can
be minimized.

Alternatively, in a ‘perpendicular geometry’ (see Fig. 9.2) the axis of the quantum dots
is aligned parallel to the applied magnetic field, in the z-direction. The SOI vector βij is
perpendicular to this, and we take it to be in x-direction. The corresponding Hamiltonian
becomes

HSOI
⊥ =

∑

i,j

βij(t)(Ŝ
y
i Ŝ

z
j − Ŝz

i Ŝ
y
j ) . (9.7)

Here, the SOI vector βij breaks the axial symmetry of the system, and the total spin Sz is
no longer a good quantum number. As a consequence, leakage into the non-computational
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space Sz 6= 0 is possible, in principle. However, this coupling involves higher-energy
states and can thus be suppressed by choosing a sufficiently large magnetic field such that
β/B ≪ 1. In contrast, the SOI does not couple states within the computational space,
since the matrix elements of HSOI

⊥ between the states | ↓↑〉 and | ↑↓〉 vanish. We finally
note that, similarly, a finite angle between the fields B and Bj leads to a leakage error of
order (Bj)x,y/B ≪ 1.

9.3 Parallel geometry

In this section we concentrate on the parallel geometry, see Fig. 9.1. Using the axial
symmetry of the problem we are able to construct a sequence of gate operations that
implements the CNOT gate [1], defined on the logical ST-qubits given in Eq. (9.1) by
UCNOT |a, b〉 = |a, a⊕ b〉, where a, b = 0, 1.

One important step in this construction is the implementation of the π/4-gate Uπ/4

(see discussion below and [1]). For this gate we propose the following scheme consisting
of four steps,

C23 → (π12, π34) → C23 → (π12, π34), (9.8)

where the conditional phase gate C23 exchange-couples the dots 2 and 3 and adds a phase
factor to the two ST-qubits (see below). The swap gates π12 and π34 exchange spin states
on the dots 1 and 2 and the dots 3 and 4, and can be performed in parallel.

A major issue in the implementation of Uπ/4 is the avoidance of leakage errors during
the coupling of qubits. To keep qubits in the computational space, operations on spins 2
and 3 must be constructed in such a way that the resulting gate is diagonal in the basis
given by Eq. (9.1). This can be achieved in two ways. The first approach is to use strong
pulses that lead to fast rotations around the Bloch sphere. The second approach is to use
adiabatic pulses that are protected from the leakage to states with different energies [38].
However, the adiabaticity requires a longer pulse time. In the present work we focus on
the first approach.

9.3.1 Conditional phase gate C23

In this subsection we describe the phase gate, C23, involving the exchange and SOI inter-
actions only between dot 2 and 3, while dots 1 and 4 are decoupled from dots 2 and 3,
i.e., J12 = J34 = 0 and β12 = β34 = 0. In this case, the effective Hamiltonian is given by

HC = HB +Hex +HSOI
‖ = HC

1 +HC
23 +HC

4 , (9.9)

where we present it in block-diagonal form. The part of the Hamiltonian HC
i = (b+ bi)Ŝ

z
i

acts only on spins located at the dot i = 1, 4. The other part of the Hamiltonian, HC
23,

acts on spins located at the dots 2 and 3,

HC
23 = (b+ b2)Ŝ

z
2 + (b+ b3)Ŝ

z
3 + J23Ŝ2 · Ŝ3

+ β23(Ŝ
x
2 Ŝ

y
3 − Ŝy

2 Ŝ
x
3 ). (9.10)
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z

yx

Figure 9.3: The Bloch sphere is defined with the north pole corresponding to |↑↓〉 and
the south pole corresponding to |↓↑〉. The effect of the unitary evolution operator UC

0

[see Eq. (9.17)] on a state in the space {|↑↓〉, |↓↑〉} is equivalent to the rotation on the
Bloch sphere around the vector J23ex − β23ey + ∆b23ez. The conditional phase gate C23

corresponds to the full rotation on the Bloch sphere (shown by blue and green circles).

Here, we assume a rectangular pulse shape for the exchange and spin orbit interactions,
and from now on we treat J23 and β23 as time-independent parameters. In this case, the
unitary gate UC is a simple exponential of the Hamiltonian,

UC = e−iHCTC = e−iHC
1 TCe−iHC

23TCe−iHC
4 TC . (9.11)

The spins of dot 1 and 4 do not change in time apart from a phase factor coming from
the corresponding magnetic field. In contrast, the spins of dot 2 and 3 change in time
and acquire phases, as we describe next. For this we express HC

23 as matrix in the basis
{|↑↑〉, |↑↓〉, |↓↑〉, |↓↓〉}, 


HC

+ 0 0
0 HC

0 0
0 0 HC

−


 , (9.12)

where the block-diagonal form reflects the conservation of Sz. In the case of two parallel
spins, the corresponding Hamiltonian is given by HC

± = J23/4 ± (b2 + b3)/2, which just
assigns a phase to the spins. In the case of antiparallel spins, the Hamiltonian HC

0 is given
by

HC
0 =

1

2

(
−J23/2 + ∆b23 J23 + iβ23
J23 − iβ23 −J23/2−∆b23

)
, (9.13)

where ∆b23 = b2 − b3. Here, H
C
0 describes the coupling between the states |↑↓〉 and |↓↑〉,

which, in general, leads to leakage errors. This leakage can be prevented by choosing
the pulse duration, TC , in such a way that the corresponding unitary operator UC

0 =
exp[−iHC

0 TC ] is diagonal in the basis {|↑↓〉, |↓↑〉}. It is more convenient to consider
the evolution given by HC

0 on the Bloch sphere. For that we rewrite HC
0 in terms of
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pseudospins,

HC
0 = −J23/4 + (J̃23/2) n23 · τ , (9.14)

J̃23 =
√
J2
23 + β2

23 + (∆b23)2, (9.15)

n23 =
(
J23,−β23,∆b23

)
/J̃23, (9.16)

where the unit vector n23 defines the rotation axis on the Bloch sphere, see Fig. 9.3, and
the pseudospin, acting on the states {|↑↓〉, |↓↑〉}, is described by the Pauli matrices τ .
The north pole corresponds to |↑↓〉 and the south pole to |↓↑〉. The exchange interaction,
J23, being the largest scale in HC

0 , forces n23 to be aligned mostly along the x-axis. If
we neglect the SOI and any field gradients, the rotation on the Bloch sphere takes place
in the yz-plane. In the presence of SOI and field gradients the rotation axis n23 deviates
from the x-axis.

The unitary time evolution operator UC
0 corresponding to HC

0 takes the form

UC
0 = exp(−iJ23TC/4)(cosαC + i n23 · τ sinαC), (9.17)

where αC = J̃23TC/2. The duration of a pulse is determined by the condition that we
obtain full rotations on the Bloch sphere (see Fig. 9.3),

TC =
2πNC

J̃23
, (9.18)

where NC is a positive integer. Note that deviations from Eq. (9.18) lead, again, to
leakage errors.

As a result, the qubit states with parallel spins on dot 2 and 3, acquire the phases

φ01 =
1

2
(J23/2− b1 + b2 + b3 − b4)TC ,

φ10 =
1

2
(J23/2 + b1 − b2 − b3 + b4)TC , (9.19)

while the qubit states with antiparallel spins on dot 2 and 3 acquire the phases

φ11 =
1

2
(b1 − b4 − J23/2)TC + πNC ,

φ00 =
1

2
(−b1 + b4 − J23/2)TC + πNC . (9.20)

Here, φab corresponds to a phase acquired by a two-qubit state |ab〉. We note that phases
produced by the magnetic fields terms will be canceled during the second C23 pulse after
the π-pulses have been applied to the qubits.
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9.3.2 Swap gates π12 and π34

In this subsection we discuss the swap gates π12 and π34 that exchange spin states between
dot 1 and 2, and dot 3 and 4, respectively. The swap operation is a one-qubit-operation,
so dots 2 and 3 should be decoupled during the swap pulse, i.e., J23 = 0 and β23 = 0. The
swap gate π = (π12, π34) is implemented, again, by a rectangular pulse and all parameters
are assumed to stay constant during the switching process. This simplifies the unitary
evolution operator,

Uπ = Uπ
12 U

π
34 = e−iHπ

12Tπe−iHπ
34Tπ . (9.21)

Further, we focus on the first ST-qubit (dots 1 and 2) and consider only π12 (π34 can be
obtained analogously). We also note that since Sz is conserved separately for each qubit,
the final state is always given by a linear combination of the states |↓↑〉 and |↑↓〉 on dot
1 and 2. Within this subspace the effective Hamiltonian is given by

Hπ
12 =

1

2

(
−J12/2 + ∆b12 J12 + iβ12
J12 − iβ12 −J12/2−∆b12

)
, (9.22)

or in pseudospin representation [see Eq. (9.14)],

Hπ
12 = −J12/4 + (J̃12/2) n12 · τ , (9.23)

J̃12 =
√
J2
12 + β2

12 + (∆b12)2, (9.24)

n12 =
(
J12,−β12,∆b12

)
/J̃12, (9.25)

where ∆b12 = b1 − b2 and the Pauli matrix τi acts in the pseudospin space spanned by
|↑↓〉 and |↓↑〉. Again, the unit vector n12 defines the rotation axis. The corresponding
unitary evolution operator reduces to the form

Uπ
12 = exp(iJ12Tπ/4)(cosαπ + in12 · τ sinαπ), (9.26)

where απ = J̃12Tπ/2.
The swap operation should exchange the states |↑↓〉 and |↓↑〉. In the absence of SOI

and field gradients, the unitary evolution operator Uπ
12 corresponds to a rotation around

the x-axis (n12 = ex) in the yz-plane. At half the period, T 0
π = π/2J̃12, a state evolves

from the north to the south pole and vice versa, i .e., Uπ
12|T 0

π
∝ τx.

However, in the presence of SOI and/or field gradients, the rotation axis n12 is not
aligned with ex (compare with Fig. 9.3), so the trajectory starting at the north (south)
pole would never go exactly through the south (north) pole. The corresponding deviations
lead to errors in the π12 gate on the order of

√
∆b212 + β2

12/J12. This means that it is
impossible to produce a perfect swap operation with only one single rectangular pulse.
However, by applying a sequence of several rectangular pulses, it is still possible to produce
a perfect π12 gate, as we demonstrate next.

Indeed, this goal can be achieved by the following three steps (see also Fig. 9.4).
First, we switch on the exchange interaction J12 between the dots 1 and 2 (this also
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Figure 9.4: Two schemes for the swap gate, π12: |↑↓〉 →|↓↑〉, composed of three con-
secutive rotations on the Bloch sphere where the offset induced by ∆b12 and β12 is fully
compensated. a) First, starting from the north pole, we turn on J12 and β12 to induce ro-
tation around J12ex−β12ey+∆b12ez (upper blue arc) until we reach the equator where we
turn off J12 and β12. Second, we let the state precess around the z-axis in the equatorial
plane until the mirror point of the starting point on the equator is reached (brown arc).
Third, we induce once more rotation around J12ex−β12ey +∆b12ez (lower blue arc) until
we reach the south pole. Lower panel: associated rectangular gate pulses and switching
times T

(a1,a2,a3)
π for the three steps. b) Alternative scheme where during the second step

the state precesses along the equator until it reaches the point diametrically opposite to
its starting point (brown arc).

automatically switches on the SOI β12). We assume J12 to be larger than ∆b12 and/or
β12. The rotation axis n12 in polar coordinates is given by

n12 = (sinϑ cosϕ, sinϑ sinϕ, cosϑ). (9.27)

From now on we work in the coordinate system in which the x-axis points along J12ex −
β12ey, so ϕ = 0 and 0 ≤ cosϑ = ∆b12/J̃12 ≤ 1/

√
2. The strength and the duration of

the rectangular pulse is chosen in such a way that the rotation reaches the equator of the
Bloch sphere. The initial and final vectors on the Bloch sphere are given by

χi = (0, 0, 1), (9.28)

χf = (cotϑ,
√
sin(2ϑ− π/2)/ sinϑ, 0), (9.29)
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allowing us to find the rotation angle α
(a1)
π = π/2+ arcsin(cot2 ϑ), and the corresponding

pulse duration
T (a1)
π = [π + 2 arcsin(cot2 ϑ)]/2J̃12. (9.30)

Second, after switching off exchange and spin orbit interactions, J12 = 0 and β12 =
0, the rotation takes place around the z-axis in the equatorial plane, at a precession
frequency determined by the field gradient ∆b12. The rotation angle becomes α

(a2)
π =

2[π − arccos(cotϑ)], and the pulse duration is given by

T (a2)
π = α(a2)

π /∆b12. (9.31)

Finally, we repeat the first step by applying a pulse of the same strength J12 (β12) and

during the same time, T
(a3)
π = T

(a1)
π .

An alternative scheme (b) is presented in Fig. 9.4b. During the second step the state

evolves on the Bloch sphere only over half of the equator, α
(b2)
π = π, with the corresponding

pulse duration T
(b2)
π = α

(b2)
π /∆b12. The duration of the third pulse is given by

T (b3)
π = [3π − 2 arcsin(cot2 ϑ)]/2J̃12. (9.32)

The second step is the slowest one in these schemes, so the scheme (b) has an advantage
over the scheme (a) by being faster as it requires less rotation on the equator. However,

scheme (b) requires better control of parameters, since T
(b1)
π 6= T

(b3)
π .

Here we note that it is also possible to switch off the exchange coupling J12 not only
on the equator but also at any other point on the Bloch sphere. Moving away from the
equator speeds up the gate performance, but demands greater precision in the tuning,
since the rotation proceeds along a smaller arc and in shorter time.

The scheme presented above confirms that it is possible to construct a perfect π swap
gate even in the presence of z-component of the SOI vector, β12, or local field gradients,
∆b12, by adjusting the pulse durations. The other two components of the SOI vector
couple states of different total spin Sz, and thus cause leakage errors. Therefore, it is
optimal to orient the magnetic fields (defining the spin quantization axis z) along the SOI
vector, β12.

9.3.3 CNOT gate

After the execution of the four-step sequence given by Eq. (9.8) an initial qubit state is
restored but with a phase factor [see Eqs. (9.19) and (9.20)]:

[00]
C23−−→ eiφ00 [00]

(π12, π34)−−−−−→ eiφ00 [11]
C23−−→ ei(φ11+φ00)[11]

(π12, π34)−−−−−→ [00]ei(φ11+φ00),

[11]
C23−−→ eiφ11 [11]

(π12, π34)−−−−−→ eiφ11 [00]
C23−−→ ei(φ11+φ00)[00]

(π12, π34)−−−−−→ [11]ei(φ11+φ00),

[01]
C23−−→ eiφ01 [01]

(π12, π34)−−−−−→ eiφ01 [10]
C23−−→ ei(φ01+φ10)[10]

(π12, π34)−−−−−→ [01]ei(φ01+φ10),

[10]
C23−−→ eiφ10 [10]

(π12, π34)−−−−−→ eiφ10 [01]
C23−−→ ei(φ01+φ10)[01]

(π12, π34)−−−−−→ [10]ei(φ01+φ10), (9.33)
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with φ01 +φ10 = −(φ11 +φ00) = J23TC/2, where we omit a trivial phase 2πNC . The total
gate acting on the qubits as defined by Eq. (9.33) can be written in the compact form

e−i(J23TC/2)σz
1σ

z
2 , (9.34)

where the Pauli matrix σj
1 acts on the first ST-qubit (formed by dot 1 and 2) and σj

2 on
the second one (formed by dot 3 and 4) with j = x, y, z. Choosing

TC =
(
4πm− π

2

)
/J23, (9.35)

where m is a positive integer, we obtain the π/4-gate,

Uπ/4 = ei
π
4
σz
1σ

z
2 . (9.36)

Both Eqs. (9.18) and (9.35) should be satisfied simultaneously. For example, if m = 1
and NC = 2, we get

TC = π
2

√
15

∆b223+β2
23
, (9.37)

J23 = 7√
15

√
∆b223 + β2

23. (9.38)

From this we can estimate the total switching time to perform the π/4-gate that is a
sum of the switching times at each step [see Eq. (9.8)]. For the scheme discussed in
Subsecs. 9.3.1 and 9.3.2 the slowest part is given by the swap gates π12 and π34, whose
switching time is limited by field gradients (due to nuclear spins [7, 16, 18, 19, 17] and/or

micromagnets [20, 21]), |∆b12| = |∆b34| ≈ 10 mT, which corresponds to T
(b2)
π ≈ 10 ns.

The gate can be faster if the rotations around the z-axis are performed not on the equator
but more closely to the poles. This allows us to decrease the switching time of the swap
gate to 2 ns; however, this would require a more precise control over the pulses. The
same trick can be used to decrease the switching time of the conditional phase gate C23

(compare Figs. 9.3 and 9.5). If field gradients larger than 10 mT are used, the switching
rates will be proportionately larger.

Using the π/4-gate, we construct the controlled phase flip (CPF) gate UCPF = diag(1, 1, 1,−1)
(see footnote [13] in [3]) as

UCPF = Uπ/4e
−iπ

4
(σz

1+σz
2−1). (9.39)

Finally, we obtain the CNOT gate,

UCNOT =

(
I 0
0 σx

2

)
, (9.40)

by using the CPF gate and performing a basis rotation on qubit 2 (a single-qubit rotation
by π/2 about the y-axis),

UCNOT = ei
π
4
σy
2UCPF e

−iπ
4
σy
2 . (9.41)
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z

yx

Figure 9.5: An alternative scheme for the conditional phase gate C23 (see also Fig. 9.3).
Instead of the rotation with the pulse defined by Eqs. (9.18) and (9.35) we consider
a sequence of three pulses. During the first and the third pulses (blue arcs) the state
precesses quickly acquiring the π/4-phase, see Eq. (9.35). During the second pulse,
J23 = 0, the state precesses around the z-axis over a shorter path than the one in Fig.
9.3. As a result, the switching is faster.

In summary, the full sequence of operations for the CNOT gate, UCNOT , is given by

ei
π
4
σy
2 [(π12π34)C23(π12π34)C23]e

−iπ
4
(σz

1+σz
2 )e−iπ

4
σy
2 . (9.42)

We note again that this result has been derived under the assumption of rectangular
pulse shapes. This is certainly an idealization, and in practice we expect deviations from
this shape to cause errors for the gates and to affect the gate fidelity. The study of this
issue, being very important for practical purposes, requires a separate investigation and
is beyond the scope of this work.

9.4 Perpendicular geometry

In the previous section we have discussed the parallel geometry for which we were able
to construct a perfect CNOT gate under the assumption that we have a complete control
over the parameters. The CNOT gate, together with single-qubit gates, allows us to
simulate any other quantum gate and its implementation is a crucial step toward the
realization of a quantum computer [1]. In a next step, many such elementary gates need
to be connected into a large network. In recent years, the surface code [39] has emerged
as one of the most promising platforms for this goal due to its large threshold of about
1% for fault tolerant error correction [39]. This platform requires a two-dimensional (2D)
geometry and can be implemented in semiconductors of the type considered here. [11].

The basic 2D scheme is illustrated in Fig. 9.6. There, we show an array of quantum
dots where two neighboring dots in a given row represent one ST-qubit. These quantum
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B

Figure 9.6: Schematic setup for 2D architecture. Two dots define an ST-qubit (black
dotted ellipses). An external magnetic field B and local magnetic fields (blue arrows) are
parallel. In the case of the coupling between two qubits from the same row (red solid
ellipse) the SOI vector β‖ is parallel to the magnetic field B, corresponding to the parallel
geometry (see Fig. 9.1). In the case of coupling between two qubits from two neighboring
rows (red dashed ellipse) the SOI vector β⊥ is perpendicular to the magnetic field B,
corresponding to the perpendicular geometry (see Fig. 9.2).

dots are embedded in a semiconductor where the SOI is of the same type in the entire
structure. As a typical example we mention Rashba and/or Dresselhaus SOI that both
depend on the momentum of the electron. As a result, the direction of the SOI vector β is
always perpendicular to the line along which two quantum dots are coupled by exchange
interaction [22]. Thus, for the coupling of two such qubits in the same row, the SOI vector
β is parallel to the external magnetic field B, so we can use the scheme designed for the
parallel geometry in the previous section. In contrast, if we want to couple two qubits
from neighboring rows, we should also consider a ‘perpendicular geometry’ (see Figs. 9.1
and 9.6) in which the SOI vector β is perpendicular to the magnetic field B.

This perpendicular geometry is characterized by several features. As was mentioned
before, the axial symmetry in this case is broken by the SOI, leading to the coupling
between computational (Sz = 0) and non-computational (Sz 6= 0) space. If the magnetic
field B is sufficiently large to split the triplet levels T± far away from the computational
space (gµBB ≫ β), we can neglect this leakage. We estimate for GaAs B = 5T ≈
100µeV/gµB. At the same time, the SOI does not couple states within the computational
space, so for the realization of the phase gate C23 and the swaps gates π12 and π34 we can
use the same scheme as in Sec. 9.3 only with β = 0.

9.5 Conclusions

We have studied the implementation of the CNOT gate for ST-qubits in a model that
is appropriate for current experiments [7, 24, 17]. The setup consists of an array of
quantum dots with controlled growth direction and the relative orientation of the dots.
Pairs of neighboring dots build the ST-qubits, where the quantization axis is determined
by an externally applied magnetic field B. Moreover, we introduce an inhomogeneity in
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magnetic fields, Bi, by local micromagnets or by the hyperfine field. The resources used
for time-dependent control are the exchange interaction Jij(t) and the SOI vector βij(t).

If the SOI vector β is parallel to the external (B) and local magnetic fields (Bi), we
are able to construct a perfect scheme for the CNOT gate based on the π/4-phase gate,
Uπ/4, consisting of four basic steps. Two of the steps involve interaction of spins that
belong to different qubits, and open the possibility of leakage errors. Under condition of
total control over system parameters, we show that the leakage can be eliminated. In the
other two steps, the tuning of exchange interaction enables perfect swap gates even in the
presence of field gradients and SOI.

Motivated by recent results on the surface code, we shortly comment also on the
2D architecture. Here we encounter a situation in which the SOI vector β and the
magnetic fields, B and Bi, are perpendicular. In this case, the leakage to the non-
computational space with Sz 6= 0 is inevitable. However, it can be made very small as
long as β/gµBB ≪ 1.

Depending on the pulsing scheme, the switching times for the conditional phase gate
are shown to lie in the range 1-100 ns for typical GaAs parameters. Compared to the
experimentally established decoherence times of about 250 µs [17], this switching is suffi-
ciently fast and shows that a CNOT gate based on exchange is a promising candidate for
experimental realizations.
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Chapter 10

RKKY interaction in carbon
nanotubes and graphene

nanoribbons

We study Rudermann-Kittel-Kasuya-Yosida (RKKY) interaction in carbon nanotubes
(CNTs) and graphene nanoribbons in the presence of spin orbit interactions and magnetic
fields. For this we evaluate the static spin susceptibility tensor in real space in various
regimes at zero temperature. In metallic CNTs the RKKY interaction depends strongly
on the sublattice and, at the Dirac point, is purely ferromagnetic (antiferromagnetic) for
the localized spins on the same (different) sublattice, whereas in semiconducting CNTs the
spin susceptibility depends only weakly on the sublattice and is dominantly ferromagnetic.
The spin orbit interactions break the SU(2) spin symmetry of the system, leading to an
anisotropic RKKY interaction of Ising and Moryia-Dzyaloshinsky form, besides the usual
isotropic Heisenberg interaction. All these RKKY terms can be made of comparable
magnitude by tuning the Fermi level close to the gap induced by the spin orbit interaction.
We further calculate the spin susceptibility also at finite frequencies and thereby obtain
the spin noise in real space via the fluctuation-dissipation theorem.

This chapter has been published as Physical Review B 87, 045422 (2013).
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10.1 Introduction

The Rudermann-Kittel-Kasuya-Yosida (RKKY) interaction is an indirect exchange inter-
action between two localized spins induced by itinerant electrons in a host material.[1, 2, 3]
This effective spin interaction, being determined by the static spin susceptibility, is not
only a fundamental characteristics of the host system but also finds interesting and useful
applications. One of them is the long-range coupling of spins between distant quantum
dots, [4, 5] which is needed in scalable quantum computing architectures such as the sur-
face code [6] built from spin qubits. [7] In addition, the RKKY interaction, enhanced by
electron-electron interactions, can initiate a nuclear spin ordering that leads to striking
effects such as helical nuclear magnetism at low temperatures. [8, 9] Such a rotating
magnetic field, equivalent to the presence of a uniform magnetic field and Rashba spin or-
bit interaction (SOI) in one-dimensional systems,[10] is interesting for Majorana fermion
physics in its own right. [10, 11, 12, 13] The RKKY interaction, proposed long ago for
normal metals of Fermi liquid type,[1, 2, 3, 14] was later extended in various ways, in
particular to low-dimensional systems with Rashba SOI in the clean [15] and the dis-
ordered [16] limit, and to systems with electron-electron interactions in one [17, 8, 9]
and two dimensions with [18] and without [19, 20] Rashba SOI. Also, a general theorem
of Mermin-Wagner type was recently proven for isotropic RKKY systems that excludes
magnetic ordering in one and two dimensions at any finite temperature but allows it in
the presence of SOI. [21, 22]

Moreover, due to recent progress in magnetic nanoscale imaging,[23] one can expect
that the direct measurement of the static spin susceptibility has become within experi-
mental reach.[24] For this latter purpose, graphene offers the unique advantage over other
materials such as GaAs heterostructures in that its surface can be accessed directly on
a atomistic scale by the sensing device. All this makes the spin susceptibility and the
RKKY interaction important quantities to study.

Recently, the RKKY interaction in graphene has attracted considerable attention.[25,
26, 27, 28, 30, 29] Graphene is known for its Dirac-like spectrum with a linear dispersion
at low energies. This linearity, however, can give rise to divergences in the expression
for the spin susceptibility in momentum space [27] and complicates the analysis com-
pared to systems with quadratic dispersion. However, Kogan recently showed that these
divergences can be avoided by working in the Matsubara formalism. [30]

In the present work we consider the close relatives of graphene,[31] namely carbon
nanotubes (CNTs) and graphene nanoribbons (GNRs), with a focus on spin orbit inter-
action and non-uniform magnetic fields. Metallic CNTs also have a linear spectrum, so
for them the imaginary time approach developed in Ref. [30] is also most convenient and
will be used here. Analogously to graphene, we find that the static spin susceptibility
changes sign, depending on whether the localized spins belong to the same sublattice or
to different sublattices. [32] No such dependence occurs for CNTs in the semiconducting
regime, characterized by a gap and parabolic spectrum at low fillings.

The spin orbit interaction in CNTs is strongly enhanced by curvature effects in compar-
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ison to flat graphene, [33, 34, 35] while in GNRs strong SOI-like effects can be generated
by magnetic fields that oscillate or rotate in real space. [12, 13] Such non-uniform fields
can be produced for instance by periodically arranged nanomagnets. [36] Spin orbit ef-
fects break the SU(2) spin-symmetry of the itinerant carriers and thus lead, besides the
effective Heisenberg interaction, to anisotropic RKKY terms of Moryia-Dzyaloshinsky and
of Ising form. Quite remarkably, when the Fermi level is tuned close to the gap opened
by the SOI, we find that the isotropic and anisotropic terms become of comparable size.
This has far reaching consequences for ordering in Kondo lattices with RKKY interaction,
since this opens up the possibility to have magnetic phase transitions in low-dimensional
systems at finite temperature that are tunable by electric gates.

We mention that similar anisotropies have been found before for semiconductors with
parabolic spectrum and with Rashba SOI in the clean [15] and in the disordered [16] limit.
However, the spin orbit interactions in CNTs and in GNRs are of different symmetry and
thus both of these problems require a separate study, apart from the fact that the spectrum
is linear.

For all itinerant regimes we consider, the RKKY interaction is found to decay as 1/R,
where R is the distance between the localized spins, thus following the standard behavior
for RKKY interaction in non-interacting one-dimensional systems. [14] [In interacting
systems, described by Luttinger liquids, the decay becomes slower. [17, 9, 37]] In contrast,
the overall sign as well as the spatial oscillation periods of the RKKY interaction are non-
generic and depend strongly on the system and the regimes considered.

Finally, we will also consider the dynamical spin susceptibility at finite frequency. Via
the fluctuation-dissipation theorem we obtain from this the spin-dependent dynamical
structure factor in position space, which describes the equilibrium correlations of two
localized spins separated by a distance R.

The paper is organized as follows. Sec. 10.2 contains different approaches to the
RKKY interaction including imaginary time formalism for metallic CNTs with a linear
spectrum and the retarded Green functions in the real space formalism for semiconducting
CNTs. In Sec. 10.3 the low energy spectrum of CNTs is shortly discussed. Afterwards
the spin susceptibility is calculated both in the absence of the SOI (Sec. 10.4) and in the
presence of the SOI (Sec. 10.5). In addition, in Sec. 10.6 we present results for the case
of a magnetic field along the nanotube axis. Such a field breaks both orbital and spin
degeneracy, leading to non-trivial dependence of the spin susceptibility on the chemical
potential. The fluctuation-dissipation theorem connects the spin susceptibility and the
spin fluctuations, allowing us to explore the frequency dependence of the spin noise at
zero temperature in Sec. 10.7. The RKKY interaction in armchair graphene nanoribbons
is briefly considered in Sec. 10.8. Finally, we conclude with Sec. 10.9 in which we shortly
summarize our main results.
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10.2 Formalism for RKKY

The RKKY interaction[1, 2, 3] was studied for a long time and several approaches were
developed. In this section we briefly review those used in this work.

The RKKY interaction is an effective exchange interaction between two magnetic
spins, Ii and Ij , localized at lattice sites Ri and Rj, respectively, that are embedded in a
system of itinerant electrons with spin-1/2. These electrons have a local spin-interaction
with the localized spins, described by the Hamiltonian

Hint = J
∑

l=i,j

sl · Il, (10.1)

where ~sl/2 is the electron spin operator at site Rl, and J is the coupling strength. Using
second order perturbation expansion in J , [14, 15, 9, 30] the RKKY Hamiltonian [1, 2, 3]
becomes

HRKKY = J2χij
αβI

α
i I

β
j , (10.2)

where χij
αβ = χαβ(Rij, ω = 0) is the static (zero-frequency) spin susceptibility tensor, and

where summation is implied over repeated spin indices α, β = x, y, z (but not over i, j).
Here, we assumed that the system is translationally invariant so that the susceptibility
depends only on the relative distance Rij ≡ Ri − Rj. The RKKY interaction can be
expressed in several equivalent ways. For example, in terms of the retarded Green function
G(Rij; ǫ+ i0+) the RKKY Hamiltonian is given by

HRKKY = −J
2

π
Im

∫ ǫF

−∞
dǫ Tr [(Ii · s)(Ij · s)

×G(Rij ; ǫ+ i0+)G(−Rij ; ǫ+ i0+)
]
, (10.3)

where the integration over energy ǫ is limited by the Fermi energy ǫF (see Ref. [15]).
Here s is a vector of the Pauli matrices acting on the spin of the itinerant electrons, and
the trace Tr runs over the electron spin. The retarded Green function G(Rij; ǫ + i0+),
which are spin-dependent here and represented as 2× 2-matrices in spin space, are taken
in real (Rij) and energy space (ǫ). In the presence of spin orbit interaction, we will use
Eq. (10.3) as a starting point.

In the absence of spin orbit interaction, the spin is a good quantum number, so the
effective HamiltonianHRKKY can be significantly simplified, χij

αβ = δαβχ
ij
0 , and the RKKY

interaction is of Heisenberg type (isotropic in spin space). Expressing the Green functions
in terms of the eigenfunctions ψn(Ri) of the electron Hamiltonian, we obtain

χij
0 = 2

∑

n,m

ψ∗
n(Ri)ψm(Ri)ψn(Rj)ψ

∗
m(Rj)

× nF (ξn)− nF (ξm)

ξn − ξm
, (10.4)
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where the sum runs over all eigenstates of the spinless system, and the factor 2 accounts
for the spin degeneracy. The energy is calculated from the Fermi level, ξn = ǫn − ǫF , and
the Fermi distribution function at T = 0 is given by nF (ξ) = θ(−ξ).

The sum in Eq. (10.4) is divergent in case of a linear spectrum. [38, 30] To avoid these
divergences we follow Ref. [30] and work in the imaginary time formalism, again neglecting
the spin structure of the Green functions. The static real space spin susceptibility at zero
temperature is given by

χij
0 =

2

~

∫ ∞

0

dτ G0(Rij, τ)G0(−Rij ,−τ), (10.5)

where the factor 2 again accounts for the spin degeneracy. The Matsubara Green functions
for τ ≥ 0 are found as

G0(Rij,±τ) = ∓
∑

n

ψ∗
n(Ri)ψn(Rj)e

∓ξnτ/~θ(±ξn). (10.6)

All three approaches to the RKKY interaction described above [see Eqs. (10.3), (10.4),
and (10.5)] are equivalent to each other. Which one is used for a particular case depends
on calculational convenience.

10.3 Carbon nanotubes

In this section, we discuss the effective Hamiltonian for a carbon nanotube. A carbon
nanotube is a rolled-up sheet of graphene, a honeycomb lattice composed of two types of
non-equivalent atoms A and B. The (N1, N2)-CNTs can be alternatively characterized by
the chiral angle θ and the diameter d.[31] The low-energy physics takes place in two valleys
K and K′. These two Dirac points are determined by K = −K′ = 4π(̂t cos θ+ ẑ sin θ)/3a,
where a is the lattice constant. The unit vector ẑ points along the CNT axis, and t̂ is the
unit vector in the transverse direction.

10.3.1 Effective Hamiltonian

In the absence of spin orbit interaction CNTs are described by the effective Hamiltonian
H0,

H0 = ~vF (kGσ1 + kγσ2). (10.7)

The Pauli matrices σi act in the space defined by the sublattices A and B. The Fermi
velocity in graphene υF is equal to 106 m/s. Here, γ = 1 (γ = −1) labels the K (K′)
Dirac points, and k is the momentum along the z-axis calculated from the corresponding
Dirac point. The momentum in the circumferential direction kG is quantized, kG =
2(m − γδ/3)/d, with d the CNT diameter, leading to two kinds of nanotubes: metallic
and semiconducting. Here, m ∈ Z is the subband index and δ = (N1 − N2) mod 3 for a
(N1, N2)-CNT (see Ref. [31]). The spectrum of metallic CNTs (with kG = 0) is a Dirac
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cone, i.e. linear and gapless. In contrast to that, the spectrum of semiconducting CNTs
(with kG 6= 0) has a gap given by 2~vF |kG|. In the following we consider only the lowest
subband with energies

ǫn = ν~vF

√
k2 + k2G, (10.8)

where ν = 1 (ν = −1) corresponds to electrons (holes), and n = (k, γ, ν) labels the
eigenstates. The corresponding wavefunctions with sublattice spinor are given by

ψn(Ri) = ei(γK+k)·Ri
1√
2

(
1

νγeiφk

)
, (10.9)

eiφk =
kG + ik√
k2G + k2

, (10.10)

where k = (kG, k). From now on we redefine Dirac points by shifting the circumferential
value of K (K′) by kG, so that K = −K′ = 4π(̂t cos θ + ẑ sin θ)/3a+ t̂kG and k = (0, k).

10.3.2 Spin orbit interaction

Spin orbit interaction in nanotubes arises mostly from curvature effects, which substan-
tially increase its value in comparison with flat graphene. [33, 34, 35, 39, 40, 41] The
effective Hamiltonian, which includes the spin orbit interaction terms, is given by

Hso = H0 + ασ1sz + γβsz, (10.11)

where si are the Pauli matrices acting on the spin. The SOI is described by two pa-
rameters, α and β, which depend on the diameter d. The values of these parameters
can be found in the framework of the tight-binding model, α = −0.16 meV/d [nm] and
β = −0.62 meV cos(3θ)/d [nm] (see Refs. [34, 35]). The valley index γ and the spin pro-
jection on the nanotube axis s are good quantum numbers due to the rotation invariance
of the CNT. The conduction band spectrum (ν = 1) is given by

ǫn = ±γβs+
√
(~υFk)2 + (γ~υFkG + αs)2 , (10.12)

and the corresponding wavefunctions are given by

ψn(Ri) = ei(γK+k)·Ri
1√
2

(
1

eiφs,γ

)
|s〉 , (10.13)

eiφs,γ =
γkG + sα + iγk√
k2 + (γkG + sα)2

, (10.14)

where the index n = (k, γ, s) labels the eigenstates. Here |s〉, the eigenstate of the Pauli
matrix sz, corresponds to the spin state with spin up (s = 1) or down (s = −1). We
note that the SOI lifts the spin degeneracy and opens gaps at zero momentum, k = 0. In
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case of semiconducting nanotubes (kG ≫ k), we use the parabolic approximation of the
spectrum,

ǫn = ~υFkG + γs(β + α) + ~υFk
2/2kG. (10.15)

Further we denote the sum of the SOI parameters α and β as β+ ≡ β + α. Such kind
of a spectrum is similar to the spectrum of a CNT in the presence of a pseudo-magnetic
field that has opposite signs at opposite valleys. We note that there is a principal dif-
ference between a semiconducting CNT and a semiconducting nanowire with Rashba
SOI. In the latter, the Rashba SOI can be gauged away by a spin-dependent unitary
transformation.[15, 10] In contrast, the spectrum of CNTs consists of parabolas shifted
along the energy axis and not along the momentum axis as in the case of semiconduct-
ing nanowires, so the SOI cannot be gauged away. As shown below, this leads to a less
transparent dependence of the spin susceptibility on the SOI compared to nanowires. [15]

10.4 RKKY in the absence of SOI

In this section we calculate the spin susceptibility neglecting spin orbit interaction, so
all states are two-fold degenerate in spin. We can thus consider a spinless system and
account for the spin degeneracy just by introducing a factor of 2 in the expressions for
the spin susceptibility, see Eqs. (10.4) and (10.5).

10.4.1 Metallic nanotubes

The spectrum of a metallic nanotube is linear, see Eq. (10.8), with the momentum in the
circumferential direction kG equal to zero, kG = 0. As was mentioned above, in this case
the integrals over the momentum in Eq. (10.4) are divergent, [30] so it is more convenient
to work in the imaginary time formalism [see Eq. (10.5)], where all integrals remain well-
behaved. To simplify notations, we denote the distance between the localized spins as
R ≡ Ri − Rj and its projection on the CNT axis as z. Using the wavefunctions given
by Eq. (10.9), we find the Green functions from Eq. (10.6), where we replaced sums by
integrals,

∑
k → (a/2π)

∫
dk. The Green functions on the same sublattices are given by

GAA
0 (R, τ) = GBB

0 (R, τ) = −a
π
cos(K ·R)

× vF τ cos(kFz)− z sin(kFz)

(vF τ)2 + z2
. (10.16)

The Green function on different sublattices is given by

GAB
0 (R, τ) = i

a

π
sin(K ·R)

× vF τ sin(kF z) + z cos(kFz)

(vF τ)2 + z2
. (10.17)
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Figure 10.1: The Dirac spectrum of a metallic nanotube. Each branch is characterized
by the isospin value σ, which is an eigenvalue of the Pauli matrix σ2. We note that the
Kramers partners at K and K ′, respectively, are characterized by the same value of the
isospin, and two partner states at the same cone are characterized by opposite isospins.

Here, the Fermi wavevector kF is determined by the Fermi energy ǫF as kF = ǫF/~υF . For
the corresponding spin susceptibilities [see Eq. (10.5)] we then obtain after straightforward
integration

χAA
0 (R) =

−a2
4π~vF |z|

[1 + cos(2K ·R)] cos(2kFz), (10.18)

χAB
0 (R) =

a2

4π~vF |z|
[1− cos(2K ·R)] cos(2kFz). (10.19)

If the chemical potential is tuned strictly to the Dirac point, kF = 0, the spin
susceptibility is purely ferromagnetic for the atoms belonging to the same sublattices,
χAA
0 , χBB

0 ≤ 0, whereas it is purely antiferromagnetic for the atoms belonging to different
sublattices, χAB

0 ≥ 0. [32] For the chemical potential tuned away from the Dirac point
we observe in addition to the sign difference oscillations of the spin susceptibility in real
space with period of half the Fermi wavelength π/kF . This oscillation, together with the
1/z decay, is typical for RKKY interaction in one-dimensional systems.[14]

An immediate consequence of the opposite signs of the susceptibilities in Eqs. (10.19)
is that any ordering of spins localized at the honeycomb lattice sites will be antiferromag-
netic. Such order produces a staggered magnetic field that can act back on the electron
system and give rise to scattering of electrons between branches of opposite isospin σ at
the same Dirac cone (see Fig. 10.1). It has been shown elsewhere that such backaction
effects can lead to a spin-dependent Peierls gap in the electron system. [8, 9, 10]

10.4.2 Semiconducting nanotubes

Zero chemical potential

Now we consider semiconducting CNTs that are characterized by a non-zero circumfer-
ential wavevector kG and a corresponding gap in the spectrum. We begin with the case
of the Fermi level ǫF lying in the middle of the gap, ǫF = 0. As a result, there are no
states at the Fermi level. This leads to a strong suppression of the RKKY interaction. For
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example, the Green function on the same sublattice, found from Eqs. (10.6) and (10.9),
is given by

GAA(R, τ) ≈ − a

2π
cos(K ·R)eikGz−υF |τ |kG

×
√

2πkG
υF |τ |

e−z2kG/2υF |τ |, (10.20)

where we used the simplified parabolic spectrum, see Eq. (10.15). The spin susceptibility
is then obtained from Eq. (10.5),

χAA(R) = −2a2kG
π~υF

cos2(K ·R)K0(2
√
2kG|z|), (10.21)

where K0(x) is the modified Bessel function of second kind, which decays exponentially
at large distances, K0(x) ≈ e−x

√
π/2x for x ≫ 1. This exponential decay (on the scale

of the CNT diameter d) of the spin susceptibility in the case when the Fermi level lies in
the gap is not surprising. There are just no delocalized electron states that can assist the
effective coupling between two separated localized spins. From now on we neglect any
contributions coming from higher or lower bands.

Non-zero chemical potential

In this subsection we assume that the Fermi level is tuned in such a way that it crosses,
for example, the conduction band. Thus, the itinerant states assist the RKKY interaction
between localized spins. The spectrum of a semiconducting CNT is parabolic [see Eq.
(10.15)], so it is more convenient to work with the spin susceptibility given by Eq. (10.4).
In momentum space the spin susceptibility on the same sublattice is given by χAA(q) =∑

γ,γ′ χAA(γ, γ′; q) with

χAA(γ, γ′; q) =
1

2

∑

k

θ[ξγ′(k + q)]− θ[ξγ(k)]

ξγ′(k + q)− ξγ(k)
. (10.22)

Performing integration over momentum k, we arrive at an expression similar to the Lind-
hard function,

χAA(γ, γ′; q) = − akG
2π~υF q

ln

∣∣∣∣
q + 2kF
q − 2kF

∣∣∣∣ , (10.23)

where the Fermi momentum kF is defined as kF =
√

2kG(ǫF − ~υFkG)/~υF . Next we go
to real space by taking the Fourier transform of χAA(γ, γ′; q). This can be readily done by
closing the integration contour in the upper (lower) complex plane for z > 0 (z < 0) and
deforming it around the two branch cuts of the logarithm in Eq. (10.23) that run from
±2kF to ±∞. This yields,

χAA(R) =
a2kG
π~υF

si(2kF |z|) [1 + cos(2K ·R)] . (10.24)
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Here, the sine integral is defined as

si(x) =

∫ x

0

dt
sin t

t
− π

2
, (10.25)

and at large distances, x≫ 1, its asymptotics is given by si(x) ≈ − cos(x)/x.
The evaluation of the spin susceptibility for different sublattices is more involved,

χAB(γ, γ′; q) =
γγ′

2

∑

k

e−i∆φk,q
θ[ξγ′(k + q)]− θ[ξγ(k)]

ξγ(k)− ξγ′(k + q)
, (10.26)

where the phase difference given by ∆φk,q = φk − φk+q depends on the momenta k and q,
see Eq. (10.10). Taking into account that kG is the largest momentum characterizing the
system, we expand the phase factor as ei(φk−φk+q) ≈ 1− iq/kG. The main contribution to
the spin susceptibility comes from the momentum-independent part and is given by

χAB(R) =
a2kG
π~υF

si(2kF |z|) [1− cos(2K ·R)] . (10.27)

In the next step we evaluate the correction ∆χAB(R) to the spin susceptibility χAB(R)
arising from the momentum-dependent part in the phase factor ei∆φk,q . In momentum
space it is given by

∆χAB(γ, γ′; q) =
iaγγ′

2π~υF
ln

∣∣∣∣
q + 2kF
q − 2kF

∣∣∣∣ . (10.28)

By taking the Fourier transform of Eq. (10.28), we arrive at the following expression,

∆χAB(R) =
∑

γ,γ′

ei(γ−γ′)K·R ia
2γγ′

2π~υF

×
∫ ∞

−∞
dq eiqz ln

∣∣∣∣
q + 2kF
q − 2kF

∣∣∣∣ . (10.29)

The integral in Eq. (10.29) can be evaluated easily by recognizing it as the derivative of
si(x) [see Eq. (10.23)],

I =

∫ ∞

−∞
dx eiαx ln

∣∣∣∣
x+ 1

x− 1

∣∣∣∣ = −isinα|α| , (10.30)

where α is real. As a result, the correction to the spin susceptibility on different sublattices
χAB(R) is given by

∆χAB(R) =
a2 sin(2kF z)

π~υF |z|
[1− cos(2K ·R)] . (10.31)

We note that ∆χAB(R) is small in comparison with χAB(R) by a factor kF/kG ≪ 1, and,
thus, this correction plays a role only around the points where the oscillating function
χAB(R) vanishes. We emphasize that the spin susceptibility for semiconducting CNTs
does not possess any significant dependence on the sublattices in contrast to metallic
CNTs.
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Figure 10.2: The spin susceptibility χαβ , given in Eqs. (10.44)-(10.46), plotted as a
function of distance between localized spins z, for a semiconducting (11,1)-CNT in the
presence of spin orbit interaction and at zero B-field. Here, χ0 = a2kG/2π~υF . For
clarity we suppress the fast oscillating factors and plot only the slowly varying en-
velopes at small (a,c) and large scales (b,d). The chemical potential µ = 472 meV
(δµ ≡ µ − ~υFkG + β+ = 1 meV) is tuned inside the gap opened by SOI with cor-
responding value 2β+ = 1.7 meV for a (11,1)-CNT. [34] The diagonal components χzz

[(a,b) blue full curve] and χxx (c,d) oscillate with period 2π/k+,− ≈ 2π/kF . In contrast
to that, the off-diagonal component χxy [(a,b) red dashed curve], oscillates with period
2π/k+,+ ≈ π/kF . All components decay as 1/z. Note that the diagonal and off-diagonal
components are of comparable size.

10.5 RKKY in the presence of SOI

In the presence of spin orbit interaction, the spin space is no longer invariant under
rotations, and as a consequence the spin susceptibility is described by the tensor χij

αβ

[see Eq. (10.2)] with non-vanishing off-diagonal components. In this case it is more
convenient to work in the framework of retarded Green functions[15] in which the RKKY
Hamiltonian HRKKY is given by Eq. (10.3). Below we neglect the weak dependence of
the susceptibility on the sublattice discussed above and focus on the SOI effects. The
Green functions in the energy-momentum space can be expressed as

G(k, ǫ+ i0+) =
∑

γ

[G0(γ, k, ǫ) +G1(γ, k, ǫ)sz], (10.32)
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where the diagonal and off-diagonal (in spin space) Green functions are given by

G0(γ, k, ǫ) =
kG
~υF

∑

η=±1

1

k2γη − k2 + i0+
, (10.33)

G1(γ, k, ǫ) = − kG
~υF

∑

η=±1

η

k2γη − k2 + i0+
. (10.34)

Here, to simplify notations, we introduced the wavevector kη′ , defined as (with η′ = γη)

kη′ =
√

2kG(ǫ− ~υFkG − η′β+)/~υF , (10.35)

which can take both real and imaginary values. In a next step we transform the Green
functions from momentum to real space,

G0,1(R, ǫ+ i0+) =
a

2

∑

γ

∫
dk

2π
G0,1(γ, k, ǫ)e

i(γK+k)·R, (10.36)

leading to

G0(R, ǫ) = −i akG
2~υF

cos(K ·R)
∑

η=±1

eikη |z|

kη + i0+
, (10.37)

G1(R, ǫ) =
akG
2~υF

sin(K ·R)
∑

η=±1

ηeikη |z|

kη + i0+
. (10.38)

Substituting G(R, ǫ) = G0(R, ǫ) + G1(R, ǫ)sz into Eq. (10.3), we find for the RKKY
Hamiltonian,

HRKKY = −J
2

π
Im

[
−4Izi I

z
j

∫ ǫF

−∞
dǫ G2

1(R, ǫ)

−4i(Ii × Ij)z

∫ ǫF

−∞
dǫ G1(R, ǫ)G0(R, ǫ)

+2Ii · Ij
∫ ǫF

−∞
dǫ
[
G2

0(R, ǫ) +G2
1(R, ǫ)

]]
. (10.39)

Here, the trace over spin degrees of freedom were calculated by using the following iden-
tities

Tr{(Ii · s)(Ij · s)} = 2Ii · Ij, (10.40)

Tr{(Ii · s)sz(Ij · s)} = −2i(Ii × Ij)z, (10.41)

Tr{(Ii · s)sz(Ij · s)sz} = 2(2Izi I
z
j − Ii · Ij). (10.42)

All integrals in Eq. (10.39) are of the same type,

Im

∫ ǫF

−∞
dǫ

eikη |z|

kη + i0+
eikη′ |z|

kη′ + i0+
=

~υF
kG

si(kηη′ |z|), (10.43)
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and can be easily evaluated by changing variables from the original ǫ to kη + kη′ . We
denote the real part of the sum of two Fermi wavevectors as kη,η′ = Re[kη(ǫF ) + kη′(ǫF )]
with the indices η, η′ = ±1. As a result, we arrive at the RKKY Hamiltonian in the form
of Eq. (10.2), where the components of the spin susceptibility tensor χij

αβ ≡ χαβ(R) are
explicitly given by

χzz =
a2kG
2π~υF

[
si(k+,+|z|) + si(k−,−|z|)

+ 2 cos(2K ·R)si(k−,+|z|)
]
, (10.44)

χxx =
a2kG
2π~υF

(
2si(k−,+|z|) + cos(2K ·R)

× [si(k+,+|z|) + si(k−,−|z|)]
)
, (10.45)

χxy =
a2kG
2π~υF

sin(2K ·R)

×
[
si(k+,+|z|)− si(k−,−|z|)

]
, (10.46)

with χxx = χyy, χxy = −χyx, and all other components being zero. First, we note
that the off-diagonal components χxy, χyx are non-zero. They describe the response to a
perturbation applied perpendicular to the nanotube axis. This opens up the possibility
to test the presence of SOI in the system by measuring off-diagonal components of the
spin susceptibility tensor χαβ. Second, the spin response in a direction perpendicular to
the z-axis cannot be caused by a perturbation along the z-axis, thus χyz = χxz = 0. This
simply reflects the rotation-invariance of CNTs around their axes. The difference between
the diagonal elements of the spin susceptibility tensor, χxx = χyy and χzz, again arises
from the SOI and is another manifestation of the broken rotation invariance of spin space.
In total this means that the RKKY interaction given in Eq. (10.39) is anisotropic in the
presence of SOI, giving rise to an Ising term ∝ Izi I

z
j and a Moryia-Dzyaloshinsky term

∝ (Ii × Ij)z, in addition to the isotropic Heisenberg term ∝ Ii · Ij .
Quite remarkably, when the Fermi level is tuned close to the gap opened by the SOI,

then the off-diagonal and diagonal components of the susceptibility tensor become of
comparable magnitude, see Figs. 10.2 and 10.3. This has important consequences for a
Kondo lattice system, where a highly anisotropic RKKY interaction will give rise to an
ordered magnetic phase even at finite temperatures.[21] As a potential candidate for such
a Kondo lattice [9] we might mention a CNT made out of the 13C-isotope, [42] where each
site of the graphene lattice contains a nuclear spin-1/2 to which the itinerant electrons
couple via hyperfine interaction. [43]

We note that the susceptibility depends on two Fermi wavevectors via kηη′ in a rather
complicated way (see Figs. 10.2 and 10.3). In the absence of SOI, we recover the result
for the spin susceptibility on the same sublattice, χAA(R) [see Eq. (10.24)]. The leading
term in the spin susceptibility for different sublattices, χAB(R), can be obtained from Eqs.
(10.44) - (10.46) by putting a minus sign in front of cos(2K ·R). In addition, as shown in
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Figure 10.3: The same as Fig. 10.2 (a,b) but with the chemical potential µ = 474 meV
being tuned above the gap opened by SOI. The spin susceptibility decays as 1/z and
exhibits beatings, with period determined by the SOI parameters.

Sec. 10.4.2, the spin susceptibility vanishes if the Fermi level is tuned inside the gap in
semiconducting CNTs, so that both k±(ǫF ) are purely imaginary. If the chemical potential
is inside the gap opened by the SOI, the Fermi wavevector k−(ǫF ) is still imaginary, at
the same time k+(ǫF ) is real, giving k+,+ = 2k+(ǫF ), k−,− = 0, and k+,− = k+(ǫF ). This
results in the behavior of the spin susceptibility shown in Fig. 10.2. The strength of the
RKKY interaction decays oscillating as 1/R. The oscillation period is determined by k+,+

for χxy and by k+,− for χxx and χzz, see Fig. 10.2. If the chemical potential is above
the SOI gap, then both wavevectors k±(ǫF ) are real, giving rise to oscillations with two
different frequencies that result in beating patterns for the spin susceptibility, see Fig.
10.3.

10.6 RKKY with magnetic field

In Sec. 10.5 we demonstrated that the presence of SOI, which breaks rotation invariance in
spin space, leads to an anisotropic spin susceptibility. Another way to break this rotation
invariance is to apply a magnetic field, which also breaks time-reversal invariance. In
this section we again neglect sublattice asymmetries discussed above and focus on the
effects of a magnetic field B applied along the nanotube axis z for a semiconducting
nanotube. The Zeeman term HZ = ∆Zsz = µBBsz lifts the spin degeneracy. Here, µB is
the Bohr magneton. The orbital term Horb = γ~υFkmag leads to a shift of the transverse
wavevector kG by kmag, which finds its origin in the Aharonov-Bohm effect and is given
by kmag = πBd|e|/2h for a nanotube of diameter d. Thus, the valley degeneracy of the
levels is also lifted. The spectrum of the effective Hamiltonian H0+HZ +Horb in the case
of a semiconducting nanotube is given by

ǫγ,s = ~υFkG,γ + s(γβ+ +∆z) + ~υFk
2/2kG,γ, (10.47)
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where kG,γ = kG + γkmag. The Green functions in momentum space can be found similar
to Eq. (10.32). As a result, we arrive at the following expression for the Green functions,

G(k, ǫ+ i0+) =
∑

γ

[G0(γ, k, ǫ) +G1(γ, k, ǫ)sz], (10.48)

where

G0(γ, k, ǫ) =
kG,γ

~υF

∑

s

1

κ2γ,s − k2 + i0+
, (10.49)

G1(γ, k, ǫ) = −kG,γ

~υF

∑

s

s

κ2γ,s − k2 + i0+
. (10.50)

Here, we define wavevectors κγ,s as a function of the energy ǫ from Eq. (10.47) as

κγ,s =

√
2kG,γ[ǫ− ~υFkG,γ − s(γβ+ +∆z)]

~υF
, (10.51)

which can take both non-negative real and imaginary values. The Green functions in real
space are found by Fourier transformation,

G0(R, ǫ) = −i
∑

γ,s

akG,γ

2~υF
eiγK·R eiκγ,s|z|

κγ,s + i0+
, (10.52)

G1(R, ǫ) = −i
∑

γ,s

akG,γ

2~υF
eiγK·R seiκγ,s|z|

κγ,s + i0+
. (10.53)

By substituting Eqs. (10.52) and (10.53) into Eq. (10.39), we arrive at the effective
RKKY Hamiltonian. Since kmag/kG ≪ 1, we can neglect the dependence of the spectrum
slope on the magnetic field, which simplifies the calculations considerably.

At the end we arrive at the following expressions for the spin susceptibility tensor
components

χxx =
a2kG
4π~υF

×
∑

γ,s

[
si(kγ,s;γ,s̄|z|) + cos(2K ·R)si(kγ,s;γ̄,s̄|z|)

]
, (10.54)

χzz =
a2kG
4π~υF

×
∑

γ,s

[
si(kγ,s;γ,s|z|) + cos[2K ·R]si(kγ,s;γ̄,s|z|)

]
, (10.55)

χxy =
a2kG
4π~υF

∑

γ,s

γs sin[2K ·R]si(kγ,s;γ̄,s̄|z|), (10.56)
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Figure 10.4: The same as Fig. 10.2 (a,b) but with the chemical potential µ = 472.7 meV
being tuned in such a way that there are three pairs of states at the Fermi level and with
a magnetic field B = 1 T. The spin susceptibility decays as 1/z and exhibits beatings,
with period determined by the SOI parameters and the magnetic field.

with χxx = χyy, χxy = −χyx, and the rest being zero. Here, we use the notation kγ,s;γ′,s′ =
Re[κγ,s(ǫF ) + κγ′,s′(ǫF )]. Again, the RKKY interaction decays at large distances as 1/R.
The spin susceptibility also exhibits oscillations and beating patterns (similar to ones
shown in Fig. 10.3) determined by four different Fermi wavevectors kγs(ǫF ), see Fig. 10.4.
Finally, we note that the same beating patterns arises also for nanowires with parabolic
spectrum in the presence of a magnetic field giving rise to a Zeeman splitting.

10.7 Spin Fluctuations

The spin susceptibility is a fundamental characteristics of the system. At zero frequency it
describes the RKKY interaction between localized spins. At finite frequencies ω the spin
susceptibility gives access to the equilibrium spin noise in the system. For a general observ-
able, sα, the fluctuation-dissipation theorem[14] connects the dynamical structure factor
Sαα(q, ω) = (1/2π)

∫
dt 〈sα(q, t)sα(−q, 0)〉eiωt, describing equilibrium fluctuations, with

the linear response susceptibility, χαα(q, ω) = (−i/~)
∫
dt Θ(t)〈[sα(q, t), sα(−q, 0)]〉eiωt,

Imχαα(q, ω) =
π

~
(e

− ~ω
kBT − 1)Sαα(q, ω) , (10.57)

for ω > 0. Below we calculate the spin susceptibility for both metallic and semiconducting
nanotubes at finite frequencies, and obtain via Eq. (10.57) the spin correlation function
(spin noise) Sαα(R, ω) in real space at zero temperature,

Sαα(R, ω) = −~

π
Imχαα(R, ω), (10.58)

Here, we assumed that the system is invariant under parity transformation so that χ(q, ω)
becomes an even function of q. For simplicity, we consider only the case without SOI.
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10.7.1 Metallic nanotubes

The spin susceptibility at finite Matsubara frequencies ωn is given by

χ0(R, iωn) =
2

~

∫ ∞

0

dτ G0(R, τ)G0(−R,−τ)eiωnτ , (10.59)

where we modified Eq. (10.5) accordingly, and the Green function G0(R, τ) was found
before [see Eqs. (10.16) and (10.17)]. For the spin susceptibility on the same sublattice
we get

χAA
0 (R, iωn) =

2a2

π2~
cos2(K ·R)

×
∫ ∞

0

dτ eiωnτ
[z sin(kF z)]

2 − [vF τ cos(kFz)]
2

[(vF τ)2 + z2]2
. (10.60)

Introducing the notation

In(x) =

∫ ∞

0

dτ
τneiτx

(1 + τ 2)2
, (10.61)

where n = 0, 2, the susceptibility can be rewritten as

χAA
0 (R, iωn) =

2a2

π2~vF |z|
cos2(K ·R)

×
[
sin2(kFz)I0

(
ωn|z|
vF

)
− cos2(kFz)I2

(
ωn|z|
vF

)]
. (10.62)

The asymptotics of In(x) for small x is given by I0(x) ≈ π/4 + ix/2 and I2(x) ≈ π(1 −
2x)/4−ix(lnx+γe−1/2), where γe is the Euler constant. Performing the standard analytic
continuation from Matsubara to real frequencies, [14] we obtain the spin susceptibility
χAA
0 (ω), and from its imaginary part the spin noise, see Eq. (10.58). Explicitly, the

dynamical structure factor at zero temperature and for vF ≫ ω|z| ≥ 0 is given by

SAA(R, ω) = −2a2ω

π2v2F
cos2(K ·R) cos2(kF z). (10.63)

For the susceptibility on different sublattices we find

χAB
0 (R, iωn) = − 2a2

π2~vF |z|
sin2(K ·R)

×
[
sin2(kFz)I2

(
ωn|z|
vF

)
− cos2(kFz)I0

(
ωn|z|
vF

)]
, (10.64)

with the corresponding dynamical structure factor being given by

SAB(R, ω) = −2a2ω

π2v2F
sin2(K ·R) sin2(kF z). (10.65)
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The dynamical structure factors SAA(R, ω) and SAB(R, ω) are linear in ω, and, as ex-
pected, vanish at zero frequency (we recall that we work at zero temperature). Moreover,
the noise is strongly suppressed at some special points Rz in space that satisfy the condi-
tion kFz = nπ/2, where n is an integer.

In the opposite limit ω|z| ≫ vF we use the following asymptotics, I0(x) ≈ i/x +
πxe−x/2 and I2(x) ≈ −2i/x3 − πxe−x/2 for x ≫ 1. After analytic continuation, the
dynamical structure factor is then given by

SAA(R, ω) =
a2ω

π2v2F
cos2(K ·R) cos

(
ω|z|
vF

)
, (10.66)

SAB(R, ω) =
a2ω

π2v2F
sin2(K ·R) cos

(
ω|z|
vF

)
. (10.67)

In this regime, SAA(R, ω) and SAB(R, ω) are not only linearly proportional to the fre-
quency but also oscillate rapidly as a function of frequency. This implies that in real time
the spin noise is only non-zero for times t and distances z satisfying |z| = vF t.

10.7.2 Semiconducting nanotubes

For semiconducting CNTs all calculations for the frequency dependent susceptibility are
similar to the ones for one-dimensional systems with parabolic spectrum, being available
in the literature. [14] At zero temperature Imχαα(q, ω) is given by

Imχαα(q, γ, γ
′, ω) = −π

2

∑

k

[θ(ξk,γ)− θ(ξk+q,s,γ′)]

× δ(~ω + ξk,s,γ − ξk+q,s,γ′). (10.68)

The upper and lower frequencies ω± are defined as

ω±(q) =

∣∣∣∣
υF q

2

2kG
± υFkF

kG
|q|
∣∣∣∣ . (10.69)

The imaginary part of the spin susceptibility is non-zero only for frequencies

ω−(q) ≤ |ω| ≤ ω+(q) (10.70)

and is given by

Imχαα(q, γ, γ
′, ω) = − akG

4~υF |q|
sgn(ω). (10.71)

To arrive at the expression in real space we perform the Fourier transformation,

Imχαα(R, ω) = (1± cos(2K ·R))

× a2kG
4π~υF

Im

∫
dq

eiqz

|q| sgn(ω), (10.72)
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where the range of the q-integration is determined from Eq. (10.70), and the positive
(negative) sign corresponds to χAA

αα (χAB
αα ). For high frequencies, ω > υFk

2
F/2kG, the

dynamical structure factor is given by

S(R, ω) = (1± cos(2K ·R))
a2kG
2π2υF

× [si(q+(ω)|z|)− si(q−(ω)|z|)] sgn(ω), (10.73)

where wavevectors q±(ω) are positive solutions of the equations |ω| = |ω±(q±)|. For low
frequencies, 0 < ω ≤ υFk

2
F/2kG, the same equation |ω| = |ω−(q−,i)| has three non-negative

solutions, [14] q−,1 ≤ q−,2 ≤ q−,3. In this case S(R, ω) is given by

S(R, ω) = (1± cos(2K ·R))
a2kG
2π2υF

sgn(ω)

× [si(q+(ω)|z|)− si(q−,1(ω)|z|)
+ si(q−,2(ω)|z|)− si(q−,3(ω)|z|)]. (10.74)

We note that the expression is composed of several contributions and thus leads to beating
patterns of the spin noise, similar to the one before for the spin susceptibility.

10.8 Graphene nanoribbons

10.8.1 The effective Hamiltonian

In the last part of this work, we turn to graphene nanoribbons, which are finite-size sheets
of graphene.[44] The nanoribbon is assumed to be aligned along the z-direction and to
have a finite width W = Na in x-direction, with N being the number of unit cells in this
transverse direction. Here, we focus on armchair nanoribbons, characterized by the fact
that the x-axis points along one of the translation vectors of the graphene lattice. The
effective Hamiltonian is given by

H0 = ~υF (γkxσ1 + kzσ2) , (10.75)

which determines the low-energy spectrum around the two Dirac points K = −K′ =
(4π/3a, 0). Here, kz is the momentum in z-direction. The momentum kx in x-direction is
quantized due to the vanishing boundary conditions imposed on the extended nanoribbon.[44]
If the width of the GNR is such that N = 3M + 1, where M is a positive integer, the
GNR is metallic with kx = 0. Otherwise, the nanoribbon is semiconducting.

The eigenstates are written as ψ =
∑

σγ φσγe
iγKxx, Φ = (φAK, φBK , φAK ′, φBK ′), where

σ = A,B. The corresponding spectrum and wavefunctions that satisfy the vanishing
boundary conditions (for ψ) are given by

Φǫ,kz
ζ = eikzz(−iζ, 1, iζ,−1), (10.76)

ǫζ = ζ~υFkz (10.77)
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for a metallic GNR, and

Φǫ,kz
± = eikzz(±eiϕs+ixkmin

x , eixk
min
x ,

∓ eiϕs−ixkmin
x ,−e−ixkmin

x ), (10.78)

ǫ± = ±~υF
√
(kmin

x )2 + k2z (10.79)

for a semiconducting GNR. Here, ζ = ±1 is the eigenvalue of the Pauli matrix σ2, and
we use the notation eiϕs = [kmin

x − ikz]/
√
(kmin

x )2 + k2z , with |kmin
x | = π/3(N + 2)a.

10.8.2 Spin susceptibility

Without SOI

To calculate the spin susceptibility for a metallic nanoribbon that has a linear spectrum
given by Eq. (10.77), we again work in the imaginary time formalism, see Eq. (10.5). The
calculations are quite similar to the ones presented before in Sec. 10.4.1. The only change
in the expressions for the spin susceptibility in comparison with a metallic nanotube [see
Eqs. (10.18) and (10.19)] is in the fast oscillating prefactor,

χAA
0 (Ri,Rj) = −χAB

0 (Ri,Rj) = − a2

2π~vF |z|
× sin2(K ·Ri) sin

2(K ·Rj) cos(2kFz). (10.80)

Similarly, for semiconducting nanoribbons the spin susceptibility is given by Eqs. (10.24)
and (10.27), where the fast oscillating prefactors 1± cos(2K ·R) are replaced by sin2(K ·
Ri) sin

2(K ·Rj).

With SOI

The intrinsic SOI in graphene is only several µeV , so it is rather weak. Moreover, the
Rashba SOI generated by an externally applied electric field E is in the range of tenths of
µeV for E = 1 V/nm. [34, 45] Such small SOI values might be hard to observe. However,
the Rashba SOI generated by a spatially varying magnetic field opens new perspectives
for spintronics in graphene. [13] In this case, the SOI strength can be exceptionally large,
reaching hundreds of meV. A nanoribbon in the presence of a rotating magnetic field
with period 2π/kn, described by the Zeeman Hamiltonian

H⊥
n = ∆Z [sy cos(knz) + sz sin(knz)] , (10.81)

is equivalent to a nanoribbon with Rashba SOI in the presence of a uniform magnetic
field,

H⊥ = U †
n(H0 +H⊥

n )Un = H0 +∆Zsy +∆n
sosxσ2, (10.82)
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where the unitary gauge transformation is given by Un = exp(iknzsx/2). The period of
the magnetic field determines the strength of the Rashba SOI ∆n

so = ~υFkn/2, while the
amplitudes of the uniform and the rotating fields are the same and given by ∆Z .[10, 13]
The spectrum of a metallic (semiconducting) GNR in the presence of such SOI consists of
two cones (parabolas) shifted along the momentum axis against each other by kn/2. Every
branch of the spectrum possesses a well-defined spin polarization perpendicular to the z-
axis that is along the nanoribbon. A uniform magnetic field only slightly modifies the
spectrum by opening a gap at zero momentum. In the following discussion we neglect the
uniform magnetic field working in the regime where the induced Rashba SOI is stronger
than the Zeeman energy 2∆Z .

As a result, similar to the semiconducting nanowire, one can gauge away the momen-
tum shifts by rotating the spin coordinate system as follows,

Ix(R) = Ix cos(knz) + Iy sin(knz), (10.83)

Iy(R) = Iy cos(knz)− Ix sin(knz), (10.84)

Iz(R) = Iz. (10.85)

The same transformation should be applied to the electron spin operators ~s/2. The
effective RKKY Hamiltonian in this rotated coordinate system is the same as in the
system without SOI and is given by Eq. (10.80). To return to the laboratory frame, we
perform the following change

Ii · Ij → Ii(Ri) · Ij(Rj) = cos(knz)Ii · Ij
+ [1− cos(knz)]I

z
i I

z
j − sin(knz)(Ii × Ij)z. (10.86)

The spin susceptibility tensor has non-vanishing off-diagonal components, which, again,
indicate a broken invariance of spin space induced by the magnetic field or the Rashba
SOI. As before, this gives rise to anisotropic RKKY interactions of Ising and Moryia-
Dzyaloshinski form.

10.9 Conclusions

In the present work we studied the Rudermann-Kittel-Kasuya-Yosida (RKKY) interaction
in carbon nanotubes and graphene nanoribbons at zero temperature in the presence of
spin orbit interaction. Our main results are summarized in the following.

The spin susceptibility in metallic CNTs, characterized by a Dirac spectrum (gapless
and linear), crucially depends on whether the localized spins that interact with each
other are from the same or from different sublattices. In particular, if the Fermi level is
tuned exactly to the Dirac point where the chemical potential is zero the interaction is of
ferromagnetic type for spins on A-A or B-B lattice sites, whereas it is of antiferromagnetic
type for spins on A-B lattice sites. In semiconducting CNTs, with a sizable bandgap,
the spin susceptibility depends only slightly on the sublattices. In all cases, the spin

183



Chapter 10

susceptibility is an oscillating function that decays as 1/R, where R is the distance between
the localized spins.

The spin orbit interaction breaks the spin degeneracy of the spectrum and the direction
invariance of the spin space. As a result, the spin susceptibility is described by the tensor
χαβ that has two non-zero off-diagonal components χxy = −χyx, the finite values of
which signal the presence of SOI in the system. Moreover, the RKKY interaction is
also anisotropic in the diagonal terms, χzz 6= χxx = χyy. Quite surprisingly, we find
that all non-zero components, diagonal and off-diagonal, can be tuned to be of equal
strength by adjusting the Fermi level. These anisotropies, giving rise to Ising and Moriya-
Dzyaloshinski RKKY interactions, thus open the possibility to have magnetic order in
low-dimensional systems at finite temperature. [21]

We note that, in contrast to semiconducting nanowires, the SOI cannot be gauged
away by a unitary transformation in CNTs, giving rise to a more complicated dependence
of χαβ on the SOI parameters. In the same way, a magnetic field along the CNT axis
breaks both the spin and the valley degeneracy, leading to a dependence of the spin
susceptibility on four different Fermi wavevectors.

The spin susceptibility at finite frequencies also allows us to analyze the spin noise in
the system via the fluctuation-dissipation theorem. We find that the dynamical structure
factor Sαα(R, ω) is linear in frequency and oscillates in real space.

Metallic armchair GNRs behave similarly to metallic CNTs. Indeed, in both cases
the spin susceptibility shows a strong dependence on the sublattices, with, however, dif-
ferent fast oscillating prefactors. A Rashba-like SOI interaction can be generated in
armchair GNR by periodic magnetic fields. In contrast to CNTs with intrinsic SOI, this
field-generated SOI can be gauged away giving rise to a simple structure of the spin
susceptibility tensor.[46]

In this work we have ignored interaction effects. However, it is well-known that in
one- and two-dimensional systems electron-electron interactions can lead to interesting
modifications of the spin susceptibility, for instance with a slower power law decay such
as 1/Rg, with 0 < g ≤ 1 in a Luttinger liquid approach to interacting one-dimensional
wires. [17, 8] It would be interesting to extend the present analysis and to allow for
interaction effects[37] in the spin susceptibility for carbon based materials in the presence
of spin orbit interaction, in particular for metallic CNTs and GNRs at the Dirac point.
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