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Abstract 39 

The peroxisome proliferator-activated receptor γ co-activator 1α (PGC-1α) coordinates the 40 

transcriptional network response to promote an improved endurance capacity in skeletal muscle, e.g. 41 

by co-activating the estrogen-related receptor α (ERRα) in the regulation of oxidative substrate 42 

metabolism. Despite a close functional relationship, the interaction between these two proteins has not 43 

been studied on a genomic level. We now mapped the genome-wide binding of ERRα to DNA in a 44 

skeletal muscle cell line with elevated PGC-1α and linked the DNA recruitment to global PGC-1α 45 

target gene regulation. We found that, surprisingly, ERRα co-activation by PGC-1α is only observed 46 

in the minority of all PGC-1α recruitment sites. Nevertheless, a majority of PGC-1α target gene 47 

expression is dependent on ERRα. Intriguingly, the interaction between these two proteins is 48 

controlled by the genomic context of response elements, in particular the relative GC and CpG 49 

content, monomeric and dimeric repeat binding site configuration for ERRα, and adjacent recruitment 50 

of the transcription factor SP1. These findings thus not only reveal a novel insight into the regulatory 51 

network underlying muscle cell plasticity, but also strongly link the genomic context of DNA response 52 

elements to control transcription factor – co-regulator interactions. 53 

  54 
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Introduction 55 

Skeletal muscle cells have an enormous capacity to respond to external stimuli, e.g. altered levels of 56 

physical activity, temperature, oxygen, nutrient composition and supply, by modulating metabolic and 57 

contractile properties (1,2). Accordingly, skeletal muscle cell plasticity entails a biological program 58 

with an enormous complexity. Thus, not surprisingly, the molecular mechanisms that control this 59 

program are still largely elusive. In recent years however, the peroxisome proliferator-activated 60 

receptor γ coactivator 1α (PGC-1α) has emerged as a regulatory nexus in the phenotypic adaptation of 61 

skeletal muscle to endurance training (3). The expression of individual or groups of target genes is 62 

positively or negatively affected by specific interactions of PGC-1α with a substantial repertoire of 63 

different transcription factors (TFs) (4). The dynamism and flexibility of a coactivator-controlled 64 

transcriptional network could therefore provide an explanation regarding how PGC-1α expression in 65 

muscle is not only sufficient to induce a high endurance phenotype in this tissue (5,6), but also to 66 

control related processes such as angiogenesis (7) or post- and pre-synaptic neuromuscular junction 67 

plasticity (8). 68 

The estrogen-related receptor α (ERRα, NR3B1) plays a prominent role in regulating cellular 69 

metabolism that is highly reminiscent of the function of PGC-1α to boost mitochondrial biogenesis 70 

and oxidative substrate utilization (9). Indeed, a close relationship between ERRα and PGC-1α in the 71 

regulation of the expression of metabolic and other genes has been described in muscle and other 72 

tissues (10,11). Unbiased motif prediction in promoters of genes that exhibit PGC-1α-dependent 73 

changes in expression furthermore implied co-activation of ERRα by PGC-1α as a central regulatory 74 

paradigm in the control of mitochondrial oxidative phosphorylation (OXPHOS) gene expression (12). 75 

Intriguingly, at least in some crystal structures, the ligand-binding pocket of ERRα is almost 76 

completely occupied by bulk amino acid side chains and thereby, binding of putative endogenous 77 

ligands in the ligand binding pocket might be almost impossible (13). Instead, fluorescence 78 

polarization-based binding assay of the ERRα ligand binding domain (LBD) together with a 79 

coactivator peptide from PGC-1α revealed that these two partners exhibit a particularly high 80 

interaction affinity, as well as a change of the ERRα LBD into a transcriptionally active conformation 81 

in a ligand-independent manner (13). These data imply a “special relationship” between ERRα and 82 

PGC-1α to constitute the mechanistic core of PGC-1α- and ERRα-controlled gene expression whereby 83 

PGC-1α could act as the effective “ligand” of ERRα (14). 84 

Recently, we have investigated the global DNA recruitment pattern of PGC-1α to the mouse genome 85 

in muscle cells related to PGC-1α-controlled gene transcription (4). To our surprise, a computational 86 

analysis of regulatory sites in positively regulated PGC-1α target genes not only suggested ERRα as an 87 

important TF in the regulation of direct, but also to be involved in the induction of indirect PGC-1α 88 

target genes, implying a role for ERRα in the absence of co-activation (4). To rule out the possibility 89 
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of false positive computational prediction or spurious assignment of different nuclear receptor binding 90 

sites as ERRα response elements, we now studied genome-wide binding of endogenous ERRα to the 91 

mouse genome in muscle cells upon activation of PGC-1α. As in our previous study, cultured muscle 92 

cells were chosen based on their low expression of endogenous PGC-1α and hence a high signal-to-93 

noise ratio upon adenoviral overexpression of this coactivator. Furthermore, exogenous expression of 94 

PGC-1α allowed the introduction of an epitope tag, which not only further enhances the selectivity of 95 

the immunoprecipitation, but also circumvents the problem of the currently existing low affinity 96 

antibodies that hamper an analysis of endogenous, untagged PGC-1α in cells or muscle tissue in vivo. 97 

Thus, by comparing genomic loci bound by endogenous ERRα in muscle cells that overexpress PGC-98 

1α with those occupied by PGC-1α using chromatin immuno-precipitation followed by deep 99 

sequencing (ChIP-Seq), we aimed at identifying shared and individual recruitment sites for these two 100 

proteins in the context of PGC-1α-controlled muscle gene expression in the same cellular context. We 101 

now experimentally confirmed a role for ERRα in the regulation of PGC-1α-mediated transcription, 102 

thus after overexpression of PGC-1α, in the absence of PGC-1α co-recruitment. Importantly, we 103 

identified several parameters describing the genomic context of DNA response elements that 104 

differentiate between ERRα/PGC-1α coactivation and exclusive ERRα DNA binding. In particular, 105 

monomeric/dimeric DNA binding site configuration for ERRα, GC and CpG content of the binding 106 

region and co-recruitment of the specificity protein 1 (SP1) predict the interaction between PGC-1α 107 

and ERRα. Collectively, these findings not only significantly expand our insights into the regulation of 108 

the PGC-1α-controlled transcriptional network involved in muscle cell plasticity, but at the same time 109 

provide distinctive molecular links between genomic elements and TF – coregulator interactions. 110 

  111 
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Materials and Methods 112 

Cell culture, shRNA knockdown of ERRα and RNA isolation 113 

C2C12 cell culture, shRNA-mediated knockdown and RNA isolation were performed as described (4). 114 

The adenoviral vectors for the modulation of ERRα were a generous gift from Prof. A. Kralli from the 115 

Scripps Research Institute in La Jolla, California, USA. For the ERRα knockdown gene expression 116 

arrays, the RNAs from the following three conditions were used: AV-shGFP + AV-GFP + vehicle 117 

(0.02% DMSO); AV-shGFP + AV-flag-PGC-1α + vehicle (0.02% DMSO); AV-shERRα + AV-flag-118 

PGC-1α + 2µM XCT-790. Briefly, myoblasts were differentiated into myotubes for 4 days, infected 119 

with adenoviral constructs and treated with XCT-790 for 2 additional days with daily medium change 120 

before harvesting. XCT-790 was used in the experiment to inhibit residual ERRα activity since the 121 

AV-shERRα knockdown alone was incomplete (at approx. 20% control levels, data not shown). Since 122 

modulation of PGC-1α and ERRα could potentially affect the myogenic program, the degree of 123 

differentiation of the cells was visually assessed before each experiment. Affymetrix Mouse Genome 124 

430 2.0 arrays were used for the gene expression analysis. 125 

ChIP and ChIP-Seq 126 

The ERRα ChIPseq was done in cells overexpressing PGC-1α using the exact same conditions and 127 

methodology as described for the PGC-1α ChIPseq experiments (4) and the ChIP-Seq data for PGC-128 

1α was used from previous work (4) to assess DNA binding of ERRα in the context of PGC-1α-129 

regulated gene expression. For the immunoprecipitation of ERRα, magnetic beads (Dynabeads Protein 130 

G, Invitrogen) were coated with the monoclonal anti-ERRα antibody (ERRα Rabbit Monoclonal 131 

Antibody, Clone ID: EPR46Y, Epitomics). For the ChIP of SP1, the magnetic beads were coated with 132 

the polyclonal anti-SP1 antibody (ChIPAb+ Sp1 Rabbit Polyclonal Antibody, #17-601, Millipore). 133 

High-throughput sequencing, read mapping and peak calling 134 

The ERRα ChIP-Seq experiment in C2C12 cells undergoing PGC-1α over-expression was performed 135 

at the joint Quantitative Genomics core facility of the University of Basel and the Department of 136 

Biosystems Science and Engineering (D-BSSE) of the ETH Zurich in Basel on a Illumina HiSeq2000 137 

sequencer as described (4). 138 

The sequenced reads underwent a quality filter which retained all reads having Phred score >= 20, 139 

read length >= 25 bps and ambiguous nucleotides (Ns) per read <= 2. The reads that passed the filter 140 

were used as input for Bowtie version 0.12.7 (15) and aligned to the UCSC mm9 mouse genome 141 

assembly. Moreover, to avoid PCR amplification error, which might have arisen during sample 142 

preparation, we removed redundant reads mapping to the same location with the same orientation and 143 

we kept at most one read per position. Consequently, we obtained 2’155’507 covered positions for the 144 
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IP and 84’175’472 covered positions for the WCE. Peak calling was performed as described using 145 

sliding windows (4). For the ERRα ChIP-Seq experiment, all consecutive windows having a Z-score 146 

greater than 3.5 were merged and the top scoring one from each window cluster was considered as the 147 

peak summit and used for further analyses. 148 

TF binding site over-representation and principal component analysis 149 

Analysis of TF binding site over-representation and principal component analysis was done as 150 

described (4). Briefly, TF binding site occurrence was compared to a randomized background set of 151 

regions and overrepresentations of TF binding sites calculated based on occurrence in peaks vs. that in 152 

the shuffled, randomized background. The principal component analysis (PCA) was based on an input 153 

matrix N containing the total number of predicted TF binding sites in each of the peaks for the 190 154 

mammalian regulatory motifs that were defined. 155 

Gene expression array analysis and gene ontology 156 

Microarray probes were associated to a comprehensive collection of mouse promoters that was 157 

downloaded from the SwissRegulon database (16) as described (4). For each promoter, the log2 fold 158 

change (log2FC) was compared between the following conditions: over-expressed PGC-1α (treatment) 159 

and GFP (control); ERRα knockdown with the addition of XCT-790 (treatment) and over-expressed 160 

PGC-1α (control). The significance of the expression change was assessed by a Z score, which was 161 

computed as: 162 

ܼ ൌ 	
ത௧௥௘௔௧௠௘௡௧ܧ െ	ܧത௖௢௡௧௥௢௟

ටߪ
ଶ
௧௥௘௔௧௠௘௡௧
݊ ൅	

ଶ௖௢௡௧௥௢௟ߪ
݊

 

where ݊ ൌ 3 was the number of replicate samples, ܧത௧௥௘௔௧௠௘௡௧ is the mean log2 expression across the 163 

treatment samples, ܧത௖௢௡௧௥௢௟ is the mean log2 expression across the control samples, and ߪଶ௧௥௘௔௧௠௘௡௧  164 

and ߪଶ௖௢௡௧௥௢௟ are the variances of log2 expression levels across the replicates for the treatment and 165 

control samples, respectively. A log2FC threshold of ±0.585 (corresponding, in a more commonly 166 

used notation, to 1.5 fold change) and a Z score cutoff of ±3 were used to identify significantly up-167 

/down-regulated promoters. The criterion used to associate peaks and genes was proximity. For each 168 

gene with one or more differentially regulated promoters, we checked whether there was a peak 169 

located within 10 kb from any of the gene’s associated promoters. Gene ontology analysis was 170 

performed as described using a false discovery rate (FDR)-adjusted p-value <= 0.05 for enrichment. 171 

Motif activity response analysis 172 

An extended version of Motif Activity Response Analysis (ISMARA, (17)) to separately model the 173 

direct and indirect regulatory effects that ERRα and PGC-1α was performed as described (4) using the 174 
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following linear model with eps denoting the log-expression of promoter p, i.e. the total log-expression 175 

of transcripts expressed from that promoter, and Npm denoting the total number of predicted TFBSs for 176 

regulatory motif m in the proximal promoter p (running from -500 to +500 relative to the transcription 177 

start site, or TSS): 178 

݁௣௦ ൌ ܿ௣ ൅ ܿ̃௦ ൅෍ ௣ܰ௠ܣ௠௦
௠

 

In this model, cp describes the basal expression of promoter p, ܿ̃௦ a sample-dependent normalization 179 

constant, and ܣ௠௦ is the regulatory activity of motif m in sample s, which is inferred by the model. To 180 

extend this model to now incorporate PGC-1α and ERRα binding data, we recognized that the motif 181 

activities Ams of a given regulatory motif m may be modulated by the nearby binding of PGC-1α and/or 182 

ERRα. We thus distinguished the effect Ams of a regulatory site for motif m that occurs outside of the 183 

binding of PGC-1α/ ERRα from the effect A*
ms of the motif when it occurs within a binding peak of 184 

either PGC-1α or ERRα. To model our gene expression data, we applied the standard MARA model 185 

above to promoters that lacked an associated PGC-1α binding peak. The gene expression changes 186 

observed at these promoters upon knockdown of ERRα and/or over-expression of PGC-1α indicate 187 

indirect regulatory effects of ERRα, PGC-1α or both of them on the activities Ams. In contrast, for each 188 

“direct target” promoter p that has an associated binding peak (which could be an ERRα, a PGC-1α or 189 

an overlapping ERRα/PGC-1α peak) within 10 kb, we modelled its expression in terms of the 190 

predicted TFBSs in the binding peak, i.e.: 191 

݁௣௦ ൌ ܿ௣ ൅ ܿ̃௦ ൅෍ ௣ܰ௠
∗ ∗௠௦ܣ

௠
 

where ௣ܰ௠
∗  is the number of predicted TFBSs for motif m in the peak associated with promoter p, and 192 

∗௠௦ܣ  is the motif activity of regulator m in sample s when this motif occurs in the context of either 193 

ERRα binding, PGC-1α recruitment or both. Besides motif activities ISMARA also calculates error-194 

bars ߜ௠௦ for each motif m in each sample s. Using these, ISMARA calculates, for each motif m, an 195 

overall significance measure for the variation in motif activities across the samples analogous to a z-196 

statistic: 197 

௠ݖ ൌ ඩ
1
ܵ
෍൬

௠௦ܣ
௠௦ߜ

൰
ଶௌ

௦ୀଵ

 

For each motif we calculate a z-score ܼ௠  associated with its indirect activity changes, a z-score 198 

ܼ௠,ாோோఈ
∗  associated with its direct activity changes in the context of ERRα binding, a z-score ܼ௠,௉ீ஼ଵఈ

∗  199 

associated with its direct activity changes in the context of PGC-1α recruitment and a z-score ܼ௠,஻ை்ு
∗  200 
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associated with its direct activity changes in the context of both ERRα binding and PGC-1α 201 

recruitment. 202 

Quantitative real-time PCR and statistical analysis 203 

Semi-quantitative real-time PCR (qPCR) was used to validate the efficiency of the ERRα knockdown 204 

in regard to gene expression and to verify that the ChIP of ERRα and the ChIP of SP1 were successful. 205 

The sequences of all primers used for qPCR are listed in Suppl. Table 1. Previously described ERRα 206 

response elements in PGC-1α target gene promoters and known ERRα/PGC-1α target genes were used 207 

as positive controls for the validation of the ChIP and gene expression, respectively. Regarding the 208 

statistical analysis of qPCR data sets, the values are presented as the mean ±SEM. Student’s t-tests 209 

were performed and a p-value < 0.05 was considered as significant. *<0.05, **<0.01, ***<0.001. 210 

Animal experiments 211 

Mice were housed in a conventional facility with a 12-h night/12-h day cycle with free access to chow 212 

diet pellet and water. For the experiments, male, 10- to 13-week-old skeletal muscle-specific PGC-1α 213 

knockout (MKO) mice (18) and PGC-1α muscle-specific transgenic (Tg) animals (5) were used. All 214 

experiments were performed according to the criteria outlined for the care and use of laboratory 215 

animals and with approval of the veterinary office of the Basel canton and the Swiss authorities. 216 

Injections were performed under sevoflurane (Provet, QN01AB08) anesthesia. Mice were injected 217 

intramuscularly (i.m.) with either PBS + DMSO vehicle (30μl/TA) or Mithramycin A (Cayman 218 

Chemical, 11434) (1μg/TA) dissolved in DMSO in both TA muscles. Mice were sacrificed 6 hours 219 

post-injection and the TAs isolated for further analysis. 220 

  221 
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Results 222 

ERRα is recruited to DNA together with and independently of PGC-1α 223 

Following up on several previous publications that implied a strong, direct co-dependence of ERRα 224 

and PGC-1α in the control of PGC-1α-regulated metabolic gene expression (10,12), we previously 225 

performed an unbiased, genome-wide analysis of PGC-1α recruitment to the mouse genome (4). The 226 

results of this study suggested a role for ERRα in controlling PGC-1α target gene expression in the 227 

absence of co-activation by PGC-1α (4). To verify these predictions and to identify all regions that are 228 

bound by this TF genome-wide in skeletal muscle cells after overexpression of PGC-1α, we performed 229 

a chromatin immunoprecipitation (ChIP) experiment followed by high-throughput sequencing (ChIP-230 

Seq) of endogenous ERRα in differentiated C2C12 murine myotubes that overexpressed epitope-231 

tagged PGC-1α. Thus, importantly, our experiments were not designed to map ERRα recruitment per 232 

se, but specifically the involvement of ERRα in the regulation of PGC-1α muscle target genes in the 233 

exact same cellular context as the previous mapping of PGC-1α recruitment (4). We then compared 234 

the identified ERRα binding sites with this set of PGC-1α recruitment regions that we identified 235 

previously (4). In order to identify all genomic locations significantly enriched in ERRα binding, we 236 

passed a sliding window along the genome and compared the local IP read density with the 237 

background read density from whole cell extract (WCE) for each consecutive window and quantified 238 

the significance of the enrichment by Z score. All regions with a Z score bigger than 3.5 were merged 239 

into a final total of 3225 peaks, which included binding regions in the vicinity of known ERRα target 240 

genes (Suppl. Fig. S1A), like the isocitrate dehydrogenase 3 [NAD+] alpha (Idh3a) and the pyruvate 241 

dehydrogenase lipoamide kinase isozyme 4 (Pdk4) (19). The enrichment of IP fragments from the 242 

ChIP-Seq experiment was validated for some of these ERRα target genes by quantitative real-time 243 

PCR (Suppl. Fig. S1B). 244 

When we compared the genome-wide ERRα binding and PGC-1α DNA recruitment (Fig. 1A), we 245 

noticed that the majority of ERRα peaks (~60%) are not overlapping a PGC-1α peak, suggesting that 246 

the so-far believed concept of symbiotic cooperation between these two proteins is in fact restricted to 247 

only a subset of their identified targets (~40% for ERRα and ~18% for PGC-1α), at least at the specific 248 

time point of analysis chosen in our experiments. It obviously is possible that the overlap between the 249 

two sets of peaks differs in a temporal manner. Moreover, the number of the PGC-1α peaks that 250 

overlap ERRα binding sites (~18%) could in part be due to the high overexpression of PGC-1α. 251 

Finally, the two ChIPseq experiments most likely differ in terms of specificity and efficacy of the 252 

antibody-antigen interaction and thus, interpretation of negative data could be hampered in the 253 

analysis. Nevertheless, the small overlap between the ERRα and PGC-1α peaks was not necessarily 254 

expected based on the literature. Some examples of the differential regulation are depicted in Fig. 1B. 255 

Of the 1321 ERRα peaks overlapping a PGC-1α site (that is, sharing at least one base pair), the vast 256 

majority of them is well centered on the closest PGC-1α peak at a distance of a couple of dozen base 257 
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pairs (Fig. 1C), which could be interpreted as direct co-activation of ERRα by PGC-1α in most cases 258 

of ERRα/PGC-1α peak overlap. Notably, a larger fraction of ERRα peaks (approx. 12%) resides 259 

within 100 bp from a mouse promoter region (Fig. 1D), compared to the PGC-1α peaks (approx. 2%), 260 

which we previously found to be more distally located (4). 261 

 262 

ERRα function is required for the regulation of many PGC-1α target genes 263 

Based on DNA binding data alone, we cannot estimate how many of the non-PGC-1α overlapping 264 

ERRα peaks are non-functional. Therefore, to integrate the results obtained from the ChIP-Seq 265 

experiment with functional data in terms of PGC-1α-dependent gene expression, we further analyzed 266 

the impact of ERRα on gene expression changes downstream of PGC-1α in differentiated muscle cells 267 

using the following conditions: (i) shGFP-transfected control cells expressing small hairpin RNA 268 

(shRNA) targeted at green fluorescent protein (GFP); (ii) shGFP-transfected cells expressing PGC-1α; 269 

(iii) shERRα-transfected cells expressing PGC-1α in addition to shRNA against ERRα combined with 270 

the ERRα inverse agonist XCT-790 (12) to completely abolish ERRα activity. By comparing 271 

conditions (i) and (ii), we are able to identify gene expression changes downstream of PGC-1α 272 

induction, while comparing conditions (ii) with (iii) allows us to quantify the impact of ERRα on 273 

PGC-1α-mediated gene expression: for example, we observed a strong reduction of PGC-1α-274 

controlled induction of Acadm, a known ERRα/PGC-1α target gene, in cells with abolished ERRα 275 

activity (Fig. 2A). After mapping the microarray probes to known transcripts and, through these, to a 276 

reference set of mouse promoters (16), we noticed that more promoters were significantly up-regulated 277 

(1863, corresponding to 1164 genes) than down-regulated (658, corresponding to 468 genes) 278 

following PGC-1α overexpression; in contrast, we observed the opposite effect in the ERRα 279 

knockdown cells: 910 promoters (corresponding to 597 genes) were significantly induced whereas 280 

1952 promoters (corresponding to 1203 genes) were repressed, demonstrating a strong role for ERRα 281 

in PGC-1α-mediated up-regulation of gene expression (Fig. 2B). Then, a region of +/- 10kb distance 282 

from each promoter was chosen to assign peaks to promoters and hence divide target genes into direct 283 

(harboring at least on peak within this region) vs. indirect (without a peak within this region) genes, 284 

which obviously underestimates more long-range regulatory interactions. This stratification of the 285 

positively regulated PGC-1α target genes in terms of presence and absence of PGC-1α and ERRα 286 

peaks revealed several interesting findings: first, of the up-regulated PGC-1α target genes with a PGC-287 

1α peak within 10 kb from any of their associated promoters, which constitute roughly 40% of all up-288 

regulated PGC-1α targets, the number of genes with an overlap of ERRα and PGC-1α peaks (179 289 

peaks, 15.4% of all up-regulated target genes) is lower than that of genes with only a PGC-1α peak 290 

(198 genes with only a PGC-1α peak and 57 genes that harbor distinct ERRα and PGC-1α peaks, thus 291 

combined representing 255 or 22% of all up-regulated genes) (Fig. 2C). Importantly, ERRα 292 

recruitment is observed in a significant number of indirectly up-regulated PGC-1α target genes (166 293 
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genes, corresponding to 22.7% of all indirect PGC-1α targets). These data suggest that, based on DNA 294 

binding, ERRα indeed plays a substantial role in PGC-1α target gene regulation, both when co-295 

activated by PGC-1α, but equally significant when binding in the absence of this co-activator. 296 

Notably, the PGC-1α-mediated down-regulation of gene expression is almost exclusively indirect (439 297 

out of 468 down-regulated PGC-1α target genes, corresponding to 93.8%), and the DNA binding of 298 

ERRα seems to likewise play a minor role in this process with ERRα peaks occurring in only 17 of 299 

down-regulated genes (3.6%) (Suppl. Fig. S2A). Of note, 62% of the 1321 overlapping PGC-1α/ERRα 300 

peaks (Fig. 1A) where not associated to any gene within a distance of +/-10 kb of the TSS while 25% 301 

of these peaks were linked to non-changing genes. 302 

DNA recruitment of TFs or co-regulators typically only partially correlates with transcriptional 303 

changes, e.g. as indicated by a large number of PGC-1α peaks that were not assigned to regulated 304 

genes (4). Inversely, gene regulation can be brought about in an indirect manner and, therefore, might 305 

not require a peak adjacent to the gene promoter region, as seen for 48.5% of up-regulated PGC-1α 306 

target genes without a PGC-1α or ERRα peak, respectively (Fig. 2C). We classified genes that exhibit 307 

up-regulation in response to PGC-1α induction into four categories based on whether they were 308 

associated with a PGC-1α binding peak, i.e. direct versus indirect PGC-1α targets, and whether the up-309 

regulation was dependent on ERRα. According to this classification, approximately two thirds of the 310 

up-regulated PGC-1α-controlled genes were dependent on the presence of functional ERRα protein, 311 

irrespective of whether they were direct or indirect targets of PGC-1α (Figs 2D and 2E).  312 

We next investigated whether the different classes of PGC-1α targets were over-represented for genes 313 

from different functional categories. As expected, most of the enriched categories for ERRα-dependent 314 

up-regulated target genes were related to mitochondria and oxidative energy metabolism (Fig. 2F and 315 

2G). Notably, as we observed previously (4), the same functional categories show enrichment 316 

regardless of direct or indirect PGC-1α involvement. Moreover, similar gene ontology terms were 317 

found when using the ERRα-independent PGC-1α targets as input for FatiGO (Fig. 2F and 2G). The 318 

different categories of PGC-1α target genes were confirmed by qPCR showing two ERRα-dependent 319 

(Aim1l and Twf2) and two ERRα-independent (Atg9b and Ifrd1) PGC-1α target genes (Fig. 2H and 2I, 320 

respectively). 321 

Finally, we also checked dependency of transcriptional regulation on functional ERRα for PGC-1α 322 

down-regulated targets. Peak-gene association clearly indicates that the majority of genes whose 323 

transcription is repressed by PGC-1α lack peaks for either PGC-1α or ERRα within 10 kb of the gene 324 

promoters (approx. 94% of all down-regulated PGC-1α target genes) (Suppl. Fig. S2A). Out of these 325 

439 indirectly down-regulated genes, about 23% (101 down-regulated, indirect PGC-1α targets) were 326 

dependent on ERRα meaning that PGC-1α-mediated repression was significantly alleviated by ERRα 327 

knockdown (Suppl. Fig. S2B). Thus, ERRα markedly contributes to boost an indirect inhibitory 328 

mechanism that is involved in PGC-1α-controlled transcriptional repression. Nevertheless, however, 329 



 

13 

the majority of PGC-1α-mediated inhibition of gene expression is ERRα-independent and thus using 330 

alternative mediators, such as, for example, the indirect inhibition of the nuclear factor κB (NFκB) 331 

(20). 332 

Coactivation specificity of monomeric vs. dimeric ERRα binding elements 333 

In light of the postulated intimate relationship between ERRα and PGC-1α, our data depicting a high 334 

degree of independence of these two proteins in the regulation of PGC-1α target genes in muscle cells 335 

are quite surprising. In particular, it is unclear by what molecular mechanisms PGC-1α is recruited to 336 

ERRα binding sites at some genomic loci, but not to others. ERRα can bind to a nine nucleotide-long 337 

element with the consensus sequence TNAAGGTCA called an estrogen-related receptor response 338 

element (ERRE) (21). In addition, binding of ERRα to repeats of ERREs and potentially other 339 

response elements has also been proposed (22). In both cases, ERRα has been proposed to bind as 340 

homo- or heterodimer, even to single ERREs (23). Importantly, data based on in vitro experiments 341 

implied that the base at the N position of the ERRE controls co-activation by PGC-1α with a 342 

preference for PGC-1α to interact with ERRα on ERREs with a T at the N position (TTAAGGTCA) 343 

whereas a C (TCAAGGTCA) favors reduced co-activation by PGC-1α (22). Since these in vitro 344 

studies were severely limited in terms of scope, we now investigated whether similar sequence 345 

variations can be detected in a genome-wide analysis of ERRα DNA binding elements identified by 346 

ChIP-Seq. We therefore split the ERRα and PGC-1α peaks into three distinct groups: “only ERRα”, 347 

“overlapping ERRα/PGC-1α” and “only PGC-1α” peak regions and computationally derived separate 348 

binding motifs for each set of regions. Instead of inferring standard position-specific weight matrix 349 

motifs, we employed a novel approach, recently developed in our group (Omidi, van Nimwegen et al., 350 

personal communication), which extends position-specific weight matrix models to so-called 351 

dinucleotide weight tensors, which allow arbitrary dependencies between the positions within the 352 

binding sites. 353 

First, both the “only ERRα” and the “overlapping ERRα/PGC-1α” peak-associated motifs exhibited a 354 

more determined 5’ extension of the hexamer half-site as expected for an ERRE compared to the “only 355 

PGC-1α” peak regions (Fig. 3A-C). Intriguingly, the “only ERRα” motif harbors a stronger preference 356 

for C at position 5 when compared to the “overlapping ERRα/PGC-1α” peaks, even though the 357 

preference for this nucleotide is relatively small. However, even more strikingly, we noticed that 358 

although there are internal dependencies between the nucleotides at positions 4, 5, and 6 in every peak 359 

group, the dependencies between the initial and final positions (1-2 and 13-14) of the motif are only 360 

observed for “overlapping ERRα/PGC-1α” and “only PGC-1α” peaks, but not for “only ERRα” peaks 361 

(Fig. 3A-C). 362 

Dependencies at the ends of the motif could imply that the TF is more often binding DNA as a dimer 363 

at these sites, suggesting that ERRα binding site repeats may be more likely to recruit co-activation by 364 
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PGC-1α than monomeric, extended half-sites. To test whether these motifs indeed differ in terms of 365 

hexamer repeat configuration, we next used the core recognition motif “AGGTCA” of the ESRRA 366 

weight matrix to identify nuclear receptor dimers in direct, everted or inverted configurations with a 367 

variable spacing between half-sites that ranged from 1 to 10 nucleotides around the core motif in the 368 

different peak groups. Remarkably, we found a striking difference in the relative occurrence of 369 

monomers and dimers of nuclear receptor hexamer half-sites between the “only ERRα” and the 370 

“overlapping ERRα/PGC-1α” peak sets (Fig. 3D). In the first group, the ratio of monomers to dimers 371 

was markedly higher compared to the “overlapping ERRα/PGC-1α” peaks (0.63 vs. 0.32), further 372 

supporting that dimeric ERRα binding sites are more likely to enable co-activation by PGC-1α. 373 

Furthermore, even when the number of monomers is normalized to the sum of monomers and dimers 374 

in each peak set, the “only ERRα” peaks showed the highest fraction of nuclear receptor monomers 375 

(39%) of the three groups (Fig. 3D). It should be noted, however, that despite these differences, the 376 

presence of a monomeric half-site in a ERRα peak is only a weak predictor of PGC-1α co-recruitment, 377 

as in both groups only a marginally higher proportion of “only ERRα” peaks contain a monomer 378 

compared to “overlapping ERRα/PGC-1α” (“only ERRα”: 440 out of 1904 peaks corresponding to 379 

23.1%; “overlapping ERRα/PGC-1α”: 266 out of 1321 peaks in total corresponding to 20.1%). It is 380 

therefore very likely that the sequence specificity and the monomeric/dimeric configuration favor, but 381 

by themselves are not sufficient to entirely control co-activation of ERRα by PGC-1α. 382 

 383 

ERRα binding regions without PGC-1α recruitment are enriched for SP1 binding 384 

To identify additional predictors of the ERRα/PGC-1α interaction, we next analyzed the occurrence of 385 

TF DNA-binding motifs within all of the ERRα peaks. We used the software MotEvo to predict TF 386 

binding sites (TFBSs) for a set of 190 known mammalian regulatory motifs (24). In order to explain 387 

most of the binding site variation observed across the ERRα peaks, we then applied principal 388 

component analysis (PCA) to a site-count matrix N, whose elements Npm represent the number of 389 

predicted TFBSs for each motif m in each ERRα peak region p. Out of a total of 190, the first 390 

component was accounting for ~10% of the total variation in the dataset (Fig. 4A). The distribution of 391 

motif projections on the first two principal components clearly indicates two distinct clusters of motifs 392 

that are associated with variation along the first and second principal components (Fig. 4B). The first 393 

group includes ESRRA and other nuclear receptors which have binding motifs that are very similar to 394 

that of the ERRα motif. This cluster reflects the most abundant sites which can be found within the 395 

ERRα binding regions. Interestingly, besides these expected nuclear receptor motifs, the second group 396 

of motifs consists of GC-rich motifs which often are found in the proximity of transcriptional start 397 

sites. The motif with the highest score along the first principal component describes binding elements 398 

of SP1. The activity of this protein can be significantly affected by post-translational modifications, 399 

resulting in SP1 to either act as an activator or as a repressor (25). Moreover, a functional link between 400 
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the occurrence of SP1 binding sites and ERRα activity, albeit without consideration of co-activation 401 

by PGC-1α, has been proposed previously (26). We thus subsequently investigated the activity of SP1 402 

in the context of PGC-1α target gene regulation. The different classes of peaks (“only ERRα”, “only 403 

PGC-1α”, “overlapping ERRα/PGC-1α”) were therefore combined with the regulation of their 404 

assigned promoters (“up”, “down”, “non-changing”, “no promoter assigned”) as shown in Fig. 4C. 405 

Strikingly, whenever a site for SP1 is present within a peak, it is more likely for the assigned promoter 406 

to be up-regulated, strongly suggesting that in the context of PGC-1α over-expression, SP1 plays a 407 

role as an activator. This effect is particularly enhanced when SP1 is found in an ERRα peak compared 408 

to the PGC-1α peaks. Similarly, when analyzing TFBS predictions that differ between the “only 409 

ERRα” and the “overlapping ERRα/PGC-1α” groups, SP1 emerges as the top-scoring motif and thus 410 

strongly associates with “only ERRα” peaks (Fig. 4D). The specific enrichment of SP1 motifs in the 411 

“only ERRα” group was also confirmed by comparing the enrichment of predicted SP1 binding sites, 412 

relative to its occurrence in a set of randomized peak sequences, in “only ERRα” peaks with the 413 

enrichment in “overlapping ERRα/PGC-1α” and “only PGC-1α” peaks. Although SP1 sites are more 414 

frequent in all peak sets relative to randomized regions, the enrichment is by far strongest in “only 415 

ERRα” peaks (Fig. 4E). Next, we experimentally validated the presence of SP1 both at the promoters 416 

of the known target genes RIP140/Nrip1 and Fasn (27,28) and in ERRα peaks with an adjacent 417 

predicted SP1 binding site in the proximity of four distinct genes by ChIP (Fig. 4F). Finally, we 418 

studied the functional consequence of SP1 on muscle target gene expression of endogenous and 419 

overexpressed PGC-1α in gain- and loss-of-function animal models in vivo (Suppl. Figure S3). First, 420 

we validated a set of target genes belonging to all four binding categories (genes with only ERRα 421 

recruitment with SP1 motifs, only ERRα recruitment without SP1 binding sites, PGC-1α/ERRα 422 

overlapping peaks with SP1 motifs and PGC-1α/ERRα overlapping peaks without SP1 binding sites). 423 

As shown in Fig. 5, the expression of genes from all four categories was reduced in skeletal muscle-424 

specific PGC-1α knockout (MKO) animals and elevated in skeletal muscle-specific PGC-1α 425 

transgenic (mTg) mice. Thus, at least these genes are not only regulated by overexpressed PGC-1α in 426 

cultured muscle cells, but also by endogenous and overexpressed PGC-1α in mouse muscle in vivo. 427 

Subsequently, we aimed at testing the functional involvement of SP1 in the predicted subcategories of 428 

PGC-1α target genes using the specific pharmacological SP1 inhibitor Mithramycin A (MitA) (29). 429 

First, efficacy of SP1 inhibition was demonstrated by the reduction of the known SP1 target genes Sp1 430 

and Vegfa (Suppl. Fig. S4). Surprisingly however, MitA not only reduced the ability of PGC-1α to 431 

induce target genes that harbor an SP1 motif, but also those without a predicted SP1 binding site 432 

(Suppl. Fig. S4). Most likely, the expected selectivity of the functional involvement of SP1 is lost due 433 

to an inhibition of endogenous and transgenic PGC-1α expression by MitA (Suppl. Fig. S4). Similarly, 434 

siRNA-mediated knockdown of SP1 in cultured muscle cells likewise reduced the expression of PGC-435 

1α (data not shown). Indeed, putative SP1 binding sites were found both in the proximal as well as in 436 

the distal/alternative promoter regions of PGC-1α (Suppl. Fig. S4). Thus, even though we found a 437 
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significant functional involvement of SP1 in the regulation of PGC-1α target gene expression in mouse 438 

muscle in vivo, we were unable to validate our prediction based on the presence of SP1 motifs in a 439 

subset of these genes, most likely due to the observation of PGC-1α itself being an SP1 target.  440 

 441 

ERRα peaks without PGC-1α co-recruitment exhibit higher GC and CpG content 442 

Intriguingly, the amount of predicted SP1 TFBSs (in terms of posterior sum) was much lower in PGC-443 

1α randomized (shuffled) peaks compared to the ERRα shuffled peak dataset (Fig. 4E). Since SP1 is 444 

known to bind GC-rich regions, these results might reflect a different nucleotide composition between 445 

the peak sets. Accordingly, we analyzed the GC and CpG content of all ERRα and PGC-1α peaks. 446 

Interestingly, in contrast to the “overlapping ERRα/PGC-1α” peaks, and even more to the “only PGC-447 

1α” peaks, the “only ERRα” peaks separated into two distinct populations, one with high and the 448 

second with lower GC content (Fig. 6A-C). Even more strikingly, these two populations in the “only 449 

ERRα” peak group also differed in the CpG content and therefore potential CpG islands. 450 

Subsequently, each peak set was further subdivided into proximal and distal binding regions, where 451 

“proximal” referred to peaks within 1kb from their associated gene promoter and “distal” to peaks 452 

located farther away. As clearly shown in Fig. 6D-F, the “only ERRα” peaks host more CpG 453 

dinucleotides with respect to “only PGC-1α” peaks; moreover, the fraction of “only ERRα” proximal 454 

peaks is much higher (~1/3) than the corresponding fraction of “only PGC-1α” peaks (~1/10). 455 

Importantly, while most of this difference stems from the CpG content in proximal peaks, even the 456 

more distal ERRα peak distribution curve exhibits shoulders towards higher CpG content that are 457 

completely missing in the PGC-1α peaks. These results suggest a preference for high GC and CpG 458 

content in ERRα DNA recruitment sites, whereas PGC-1α in the absence of ERRα is bound to 459 

response elements with a relatively lower GC and CpG content. Importantly, the “overlapping 460 

ERRα/PGC-1α” peaks behave in an intermediary manner (Fig. 6E).  461 

Strikingly, the combination of all three parameters, monomeric binding, high CpG content and 462 

presence of an SP1 binding site, synergize in discriminating between “only ERRα” and “overlapping 463 

ERRα/PGC-1α” peaks. For example, as depicted in Figure 6G-H, the percentage of peaks harboring at 464 

least two features are 2 fold more frequent in the “only ERRα” compared to the “overlapping 465 

ERRα/PGC-1α” group, while those with all three features are even 5 times more frequent. Notably, 466 

SP1 co-occurrence with high CpG content is particularly enriched in the “only ERRα” group with 467 

15.7% of peaks, as opposed to only 4.5% in the “overlapping ERRα/PGC-1α” peak group. Similarly, 468 

the combination of all the three criteria accounts for 6.5% of “only ERRα” peaks, whereas they are 469 

found in only 1.3% of “overlapping ERRα/PGC-1α” peaks. Indeed, the CpG content, which is present 470 

in 32.6% of the “only ERRα” peaks (i.e. 3 fold higher than in the other dataset), is the feature which 471 

determines the biggest fraction of overlap among the three criteria that we focused on. 472 
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Discussion 473 

Control of complex biological programs by co-regulator proteins has emerged as a regulatory 474 

paradigm in higher organisms in recent years. For example, the three members of the steroid receptor 475 

co-activator family SRC-1, -2 and -3 play a major role in modulating systems metabolism (30). Co-476 

regulator control of biological programs exhibits several advantages over individual TFs (31,32): by 477 

binding to and modulating the activity of several different TFs, co-regulators usually have a broader 478 

repertoire in target gene transcriptional regulation (33). Second, the possibility of coordinating the 479 

regulation of genes within a specific transcriptional program provides kinetic advantages to accelerate 480 

the output of specific pathways beyond the possibilities of individual gene regulation (34). 481 

Furthermore, transcriptional regulation, transcript variants and a myriad of posttranslational 482 

modifications allow a combinatorial control of co-regulator stability and specificity and thereby enable 483 

dynamic control of complex cellular plasticity in a highly context-dependent manner (35). Many of 484 

these mechanistic principles are illustrated by the regulation and function of PGC-1α in the control of 485 

cellular energy homeostasis. However, mechanistic insights into the dynamic TF – co-regulator 486 

interactions remain rudimentary. Following our previous report predicting ERRα activity both in the 487 

presence and absence of direct PGC-1α coactivation based on motif representation (4), we now 488 

provide experimental and computational evidence for a contribution of the genomic context of DNA 489 

response elements to control the co-recruitment of PGC-1α and ERRα in the context of PGC-1α-490 

controlled muscle gene expression. Our findings are particularly surprising since historically, ERRα 491 

has been thought to strongly rely on PGC-1α co-activation to regulate PGC-1α target gene expression 492 

(10,12). Interestingly, the DNA binding of PGC-1α and ERRα have been analyzed in a previous study 493 

by Charos and colleagues (36). Notably, several important differences compared to our experimental 494 

system exist: for example, Charos et al. analyzed human proteins in the human hepatoma cell line 495 

HepG2 and studied ERRα DNA binding in the absence of activated/elevated PGC-1α. Nevertheless, in 496 

both studies, a similar number of ERRα peaks were found (3786 by Charos compared to 3225 reported 497 

here), and even more importantly, the overlap between PGC-1α and ERRα peaks was likewise small: 498 

of the 3193 and 1741 multiple regulatory factor binding regions (multi-RFBRs) of ERRα and PGC-1α, 499 

respectively, only 535 were shared between these two factors (36). 500 

Intriguingly, the decision between ERRα co-activation by PGC-1α and distinct DNA binding is to a 501 

certain extent determined by several aspects of the DNA composition of the enhancer and promoter 502 

regions (Fig. 6I). In particular, the ERRα binding element configuration as a monomeric half-site, 503 

adjacent recruitment of SP1 and a high CpG content appear to discourage co-recruitment of PGC-1α. 504 

Assuming that ERRα activity seems largely determined by coactivator action due to the small ligand-505 

binding pocket observed in some crystallographic studies (13), the context of PGC-1α-regulated gene 506 

expression implies that separate ERRα DNA binding not only precludes association of PGC-1α, but 507 

instead favors co-activation by other co-regulators. Indeed, the transcriptional activity of hERR1, the 508 
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human ortholog of the murine ERRα, is enhanced in a ligand-independent manner by the activator of 509 

thyroid and retinoic acid receptors (ACTR), the glucocorticoid receptor interacting protein 1 (GRIP1), 510 

and SRC-1 (37). Whether any of these co-activators are involved in ERRα-dependent muscle gene 511 

regulation by PGC-1α remains to be investigated. Intriguingly, such a shift in co-activator preference 512 

from PGC-1α towards binding of GRIP1 to the glucocorticoid receptor could be achieved by using 513 

pharmacological means (38). Furthermore, an inverse agonist was discovered to specifically reduce 514 

the interaction between PGC-1α and ERRα, but not other TF binding partners (12,39). However, 515 

future studies will have to aim at determining how the genomic context translates into conformational 516 

changes in a TF that then affects interaction with distinct co-regulators. Importantly, at least part of 517 

this genomic context might be amenable to dynamic regulation, for example by the overall availability 518 

or posttranslational control of the activity of SP1. Unfortunately, due to the potent effect of SP1 on 519 

PGC-1α transcription, we were unable to validate our predictions of increased presence of SP1 520 

binding sites in ERRα only regulated PGC-1α target genes. Second, the cytosines in CpG sites are 521 

potential targets for DNA methylation and thereby mediate epigenetic regulation of gene expression 522 

(40). Even though our conclusions rely to a large extent on computational prediction and therefore, 523 

future experiments will have to further validate and expand these findings, it is intriguing to speculate 524 

that DNA methylation may not only generally repress transcription by limiting TF binding, but maybe 525 

in a more fine-tuned manner also modulate TF – co-regulator interactions. Moreover, based on the 526 

reports of epigenetic modifications in exercise, including DNA hypomethylation of the PGC-1α 527 

promoter itself (41), it thus will be interesting to study how exercise-induced epigenetic changes affect 528 

not only the expression, but also the DNA recruitment and TF coactivation pattern of this key 529 

regulator of endurance exercise adaptation in muscle. 530 

Besides the more general implication of our results on the mechanistic aspects of genomic context, TF 531 

binding and co-regulator recruitment, a second highly surprising finding emerged from the data related 532 

to the function of ERRα and PGC-1α in muscle cells. Specifically, ERRα was described as the central 533 

partner for PGC-1α in the regulation of mitochondrial oxidative phosphorylation gene expression 534 

(10,12). Our results however now reveal a much more diverse manner by which PGC-1α regulates the 535 

expression of these and other, related metabolic pathways. Ontological analysis of the PGC-1α target 536 

genes devoid of an ERRα and PGC-1α peak demonstrate that other TFs also significantly contribute to 537 

the regulation of genes encoding enzymes in the same metabolic pathways. Importantly, in light of the 538 

close similarity of DNA binding elements and target gene activation, it is possible that some of the 539 

predicted ERREs could also be activated by ERRγ. Moreover, as implied by the prediction of TF 540 

binding motifs to be associated with PGC-1α-dependent transcriptional regulation, there might be a 541 

number of additional TFs that work with PGC-1α in controlling muscle cell plasticity, many of which 542 

have not been studied in the context of PGC-1α-mediated transcriptional control so far. Intriguingly, a 543 

certain degree of functional redundancy seems to exist: for example, inhibition of ERRα reduces the 544 

PGC-1α-induced expression of the vascular endothelial growth factor (VEGF) gene (7). Likewise 545 
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however, siRNA-mediated knockdown of components of the AP-1 TF complex or of SP1 also 546 

decreases the ability of PGC-1α to increase VEGF gene expression (4). Thus, PGC-1α-controlled 547 

muscle cell plasticity might combine two mechanistic principles: on the one hand, a “regulon” to 548 

tightly coordinate the concurrent expression of genes that belong to a specific transcriptional program 549 

while on the other hand, providing a more distributed transcriptional network using a variety of 550 

different TFs, both directly as well as indirectly, to add regulatory robustness as well as flexibility to 551 

control the expression of these genes in different cellular contexts. ERRα most likely is the central 552 

factor for PGC-1α to control a bioenergetic regulon using several modulators including SP1 and 553 

potentially others such as Prox1 (42) to affect ERRα-PGC-1α interactions. Inversely, AP-1 and other 554 

TFs could complement the action of ERRα, for example by triggering muscle vascularization in 555 

different contexts such as local tissue hypoxia for AP-1 as opposed to altered metabolic demand for 556 

ERRα (4). 557 

In conclusion, we elucidated to what extent the nuclear receptor ERRα contributes to PGC-1α target 558 

gene expression in a muscle cell line. Even though our experiments were restricted to the analysis of 559 

endogenous ERRα in the context of overexpressed PGC-1α in cultured muscle cells, several 560 

interesting mechanistic findings emerged. Intriguingly, despite a relatively low overlap in DNA 561 

binding, ERRα is crucial for the regulation of a majority of PGC-1α target genes in a muscle cell line. 562 

Moreover, the genome-wide DNA binding patterns of ERRα and PGC-1α demonstrated that co-563 

activation of this TF by PGC-1α depends on different aspects of the genomic context of the DNA 564 

response element. Importantly however, the postulated criteria do not provide a binary distinction 565 

between co-activation and non-coactivation. Parameters with a higher predictive power might be 566 

identified in a temporal analysis of PGC-1α and ERRα DNA recruitment to PGC-1α target genes in 567 

muscle cells. Nevertheless, these findings not only provide important mechanistic insights into the 568 

regulation of complex biological programs by co-regulator proteins, but could also help to specifically 569 

modulate such networks in order to selectively address dysregulation of genes in pathological settings. 570 

In the future, studies on endogenous proteins in murine and human contexts in vivo will help to further 571 

unravel the complex mechanisms of co-activator-controlled transcriptional networks. 572 

  573 
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Figure Legends 707 

 708 

Figure 1. ERRα and PGC-1α are recruited to both shared and distinct sets of DNA elements and 709 

target genes. (A) Venn diagram depicting the number of ChIP-Seq binding peaks for PGC-1α (blue) 710 

and for ERRα (cyan). (B) PGC-1α and ERRα read densities around the TSS of the genes Btbd1 (only 711 

ERRα peak), Ldhb (overlapping ERRα/ PGC-1α peaks) and Tusc2 (only PGC-1α peak) obtained from 712 

the UCSC Genome Browser. (C) Distribution of ERRα peaks relative to their closest PGC-1α peaks. 713 

(D) Distribution of all ERRα peaks from the nearest mouse promoter region. 714 

 715 

Figure 2. PGC-1α directly up-regulates both in an ERRα-dependent and -independent manner. 716 

(A) qPCR analysis of PGC-1α, ERRα and Acadm mRNA levels in response to PGC-1α over-717 

expression (OV) and shERRα knockdown (KD) + XCT-790. Data are normalized to mRNA levels in 718 

GFP infected cells. Error bars represent ± SEM. *p < 0.05; **p < 0.01; ***p < 0.001. (B) Reverse 719 

cumulative distribution of log2 fold changes for all mouse promoters in the PGC-1α OV condition 720 

versus GFP control (left panel) and in the PGC-1α OV + shERRα KD + XCT-790 versus PGC-1α OV 721 

(right panel). Promoters are colored in red (up-regulation) when their fold change is bigger than 1.5 722 

and in green (down-regulation) when their fold change is smaller than -1.5 (obtained by taking the 723 

inverse of the linear binding ratio). (C) Tree diagram of all PGC-1α up-regulated target genes, 724 

distinguished in different subgroups according to peak presence/absence. (D) Pie-chart representing 725 

the classification of directly up-regulated PGC-1α target genes in ERRα-dependent (orange) and 726 

ERRα-independent (yellow) targets. (E) Pie-chart representing the classification of indirectly up-727 

regulated PGC-1α target genes in ERRα-dependent (violet) and ERRα-independent (lilac) targets. (F-728 

G) Subset of the top significantly enriched GO terms identified for ERRα-dependent and ERRα-729 

independent PGC-1α directly (F) or indirectly (G) induced target genes. Abbreviations: gener., 730 

generation; metab. metabolites; * oxidoreductase activity, acting on a sulfur group, disulfide as 731 

acceptor; ** S-adenosylmethionine-dependent methyltransferase activity. (H-I) qPCR analysis of two 732 

ERRα-dependent (H) or ERRα-independent (I) PGC-1α target genes, in response to PGC-1α OV and 733 

shERRα KD + XCT-790. Data are normalized to mRNA levels in GFP infected cells. Error bars 734 

represent ± SEM. *p < 0.05; **p < 0.01; ***p < 0.001. 735 

 736 

Figure 3. In the absence of a direct coactivation by PGC-1α, ERRα prefers to bind to monomeric 737 

DNA elements. (A-C) Motif logo showing the interdependencies between the different positions of 738 

the ESRRA weight matrix identified in “only ERRα”, “overlapping ERRα/PGC-1α” and “only PGC-739 

1α”. Dependencies between positions are indicated by a blue curved line, while yellow ellipses 740 
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highlight the dependencies which are in “overlapping ERRα/PGC-1α” and “only PGC-1α” peaks, but 741 

not in “only ERRα” peaks. (D) Table showing the posterior sum and the fraction of nuclear receptor 742 

hexamer half-site monomers and dimers across our three peak sets. 743 

 744 

Figure 4. SP1 is the top transcription factor partner for ERRα in skeletal muscle. (A) Fraction of 745 

explained variance of the top 10 PCA components. (B) PCA analysis of the 3225 ERRα peaks. The 746 

names of the motifs with the largest projections on the first two principal components are indicated. 747 

Purple and light blue ellipses highlight motif clusters, as identified by PC1, of nuclear hormone 748 

receptor-like motifs and SP1-like motifs, respectively. (C) Bar chart representing the different classes 749 

of peaks (“only ERRα”, “only PGC1α”, “overlapping ERRα and PGC1α”) together with the regulation 750 

of their associated promoters (“up”, “down”, “non-changing”, “no promoter assigned”). Numbers 751 

shown on top of each box represent the absolute peak counts. (D) Top scoring results of motif search 752 

obtained by comparing the TFBSs predictions within the “only ERRα peaks” with those in the 753 

“overlapping ERRα/PGC-1α”. The motifs corresponding to the SP-1 group in the PCA are colored in 754 

blue. (E) TFBSs posterior sum for SP1 in “only ERRα”, “overlapping ERRα/PGC-1α” and “only 755 

PGC-1α” peaks. For each dataset, TFBS occurrences were compared against binding site predictions 756 

performed on the corresponding background set of shuffled peaks. (F) qPCR validation of the ChIP 757 

enrichment measured at the promoter of a set of SP1 known target genes and around the predicted SP1 758 

site within the ERRα peaks associated to the genes Pdpr, Lrpprc, Acot13 and Mul1. Bars represent 759 

fold enrichment over that of the 18S rRNA gene, error bars represent SEM. *p < 0.05; **p < 0.01; 760 

***p < 0.001. 761 

 762 

Figure 5. Target genes of all four binding categories are regulated by endogenous and 763 

overexpressed PGC-1α in mouse muscle in vivo. (A-D) The expression of PGC-1α target genes with 764 

only ERRα DNA binding with (A) and without (B) adjacent SP1 motifs as well as of PGC-1α target 765 

genes with overlapping PGC-1α and ERRα peaks with (C) and without (D) SP1 binding sites was 766 

validated in skeletal muscle-specific PGC-1α knockout (MKO) and transgenic (mTG) mice compared 767 

to the respective wildtype littermate controls. 768 

 769 

Figure 6. “Only ERRα” peaks prefer to occur as ERRE monomers and to bind high CpG 770 

content regions (A-C) Two-dimensional histogram (shown as a heat map) of the GC base content 771 

(horizontal axis) and CpG dinucleotide content (vertical axis) of “only PGC-1α” (A), “overlapping 772 

ERRα/PGC-1α” (B) and “only ERRα” peaks (C). The values shown on both axes are expressed as 773 
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logarithms. (D-F) Density plots of the CpG content of “only ERRα” (D), “overlapping ERRα/PGC-774 

1α” (E) and “only PGC-1α” (F) peaks, located either proximally (≤ 1 kb) or distally (> 1 kb) from the 775 

closest promoter. Each inset shows the bar plot of the number of “proximal” and “distal” peaks. (G-H) 776 

Euler diagram of “only ERRα peaks” (G) and of “overlapping ERRα/PGC-1α” peaks (H). Peaks were 777 

subdivided according to three different criteria: presence of SP1 binding sites, presence of monomers 778 

and high CpG content (defined as GC content >= 50% and CpG content >= 65%). (I) Model of ERRα 779 

regulation of PGC-1α target genes in muscle cells. A combination of SP1 co-recruitment, monomeric 780 

vs. dimeric ERRα binding site configuration, nucleotide preference of the ERRE, and GC/CpG content 781 

affect co-activation of ERRα by PGC-1α in the regulation of PGC-1α target genes in muscle cells. 782 

 783 
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Supplementary figures and tables 

 

Suppl. Figure S1. (A) ERRα read densities around the TSS of the known target genes Pdk4 and 

Idh3a, as displayed by the UCSC Genome Browser. (B) Real-time semiquantiative PCR validation of 

the ChIP enrichment measured at the promoter of a set of ERRα target genes. Bars represent fold 

enrichment over that of the TBP intron. 
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Suppl. Figure S2. (A) Tree diagram of all PGC-1α down-regulated target genes, distinguished in 

different subgroups according to peak presence/absence. (B) Piechart representing the classification 

of directly (grey/white) and indirectly (dark green/light green) down-regulated PGC-1α target genes, 

either ERRα-dependent or ERRα-independent targets. 
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Suppl. Figure S3. Gene expression of PGC-1α in muscle-specific knockout mice (MKO), 
muscle-specific transgenic animals (mTg) and their respective wildtype control littermates. 
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Suppl. Figure S4. Gene expression changes upon pharmacological inhibition of SP1 with 
Mithramycin A (MitA) in mouse muscles in vivo. (A) Expression of endogenous and transgenic 
PGC-1α in muscle-specific transgenic mice (mTg) and wildtype littermate controls with and without 
MitA, respectively. (B) Inhibition of known SP1 target genes by MitA (see Suppl. Refs. (1-3). (C-F) 
Regulation of PGC-1α-controlled gene expression by inhibition of SP1 with only ERRα peaks and SP1 
binding sites (C), only ERRα peaks without SP1 binding sites (D), overlapping PGC-1α/ERRα peaks 
with SP1 binding sites (E) and overlapping PGC-1α/ERRα peaks without SP1 binding sites (F), 
respectively. (G) Representation of predicted SP1 binding sites in the proximal and distal PGC-1α 
promoter regions. Predictions were made with MatInspector and PROMO (see Suppl. Refs. 4,5).
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Suppl. Table 1. Real-time qPCR primer sequences 

Real‐time qPCR primers for ChIP validation    

Gene promoter or intron  Forward primer  Reverse primer 

TBP intron  TGTGAGCTCCTTGGCTTTTT  ATAGTTGCCCAGCAATCAGG 

promoter of Acadm  CCTTGCCCGAGCCTAAAC  GTCTGGCTGCGCCCTCT 

promoter of ATP5b  CTGGAAACTTCCACCCTCACTA  GAGAGGTTTTTGGCGGAACTA 

promoter of Idh3a  GGACGGCGTCAAGGTCAAG   GCCTAGGTGGCCTGTCTGTG 

pNrip1  CACGCCATTCAGCTCTTCAG  GTGACAATGGGAGGGAGGG 

pFasn  CTGGAGCACAAGGAACGC  GGACAGAGATGAGGGCGTC 

Pdpr  CACACTCGTCGTCAACCAG  GTGCGCTTGTTTGGGTCTC 

Lrpprc  ACAACACCCCTCCACTTTGA  CGGTGTCGCTCCTAGTTG 

Acot13  TCACTCTTTAGCGCCCCAG  AAGACCGCCCTCTCTGGT 

Mul1  ACTCCATATACCGGCAGAAGG  GAGCTGCCAGTGAGACCG 

Real‐time qPCR primers for testing the knockdown of ERRα 

Gene  Forward primer  Reverse primer 

18S  AGTCCCTGCCCTTTGTACACA  CGATCCGAGGGCCTCACTA 

PGC‐1α  TGATGTGAATGACTTGGATACAGACA  GCTCATTGTTGTACTGGTTGGATATG 

ERRα  ACTGCAGAGTGTGTGGATGG  GCCCCCTCTTCATCTAGGAC 

Acadm  AACACTTACTATGCCTCGATTGCA  CCATAGCCTCCGAAAATCTGAA 

Aim1l  CCTGTTGCGTCCATAAGGGT  GCTCTGAGTTCCACATCCCC 

Twf2  TGCTACCTCCTCTTCCGACT  ATAGCATCTTCAGCCGCACC 

Atg9b  TGGCATCACATCCAGAACCT  CATTGTAATCCACGCAGCGA 

Ifrd1  GACAAGAGAAAGCAGCGGTC  GGTACTGCATCCCTGATCCA 

Real‐time qPCR primers used to analyze gene expression in mouse muscle in vivo 

Gene  Forward primer  Reverse primer 

Acadm  AACACTTACTATGCCTCGATTGCA  CCATAGCCTCCGAAAATCTGAA 

Acot13  TCACTCTTTAGCGCCCCAG  AAGACCGCCCTCTCTGGT 

Cycs  GCAAGCATAAGACTGGACCAAA  TTGTTGGCATCTGTGTAAGAGAATC 

CytC  TGCCCAGTGCCACACTGT  CTGTCTTCCGCCCGAACA 

Esrra  ACTGCAGAGTGTGTGGATGG  GCCCCCTCTTCATCTAGGAC 

Lrpprc  ACAACACCCCTCCACTTTGA  CGGTGTCGCTCCTAGTTG 

Mrpl45  CCAGAGGGTGATGCTCGAAT  TTCGGATTGCCAGCTGTGAT 

Mrpl47  CTCGGGGTAAGTGGTGAGAG  CTCAGGACTCCTCGGAAACC 

Ndufa9  TTCTGTGGCTCATCCCATCG   TGTAGCCCCAAACACAGTGG 

Ndufa11  TGGTGATGTAGGTCTTGCGA  GCGTCCAAGGCGTTCAATAA 

Pdk4  AAAATTTCCAGGCCAACCAA  CGAAGAGCATGTGGTGAAGGT 

Pdpr2  ATGAACTCTGCTGGCCTGTC  AAGCGCTGCAAATCCAACTC 

PGC‐1α ex2  TGATGTGAATGACTTGGATACAGACA  GCTCATTGTTGTACTGGTTGGATATG 

PGC‐1 ex3‐5  AGCCGTGACCACTGACAACGAG  GCTGCATGGTTCTGAGTGCTAAG 

PolR2a  AATCCG CATCATGAACAGTG  CAGCATGTTGGACTCAATGC 

Qrsl1  GTTGGATCAGGGTGCCCTAC   GGGGTTTCTAACTGGCCCAA 

SP1  GACCTCATCTCCGAGCAC  GAAGCTCGTCCGAACGTGTA 

Tfam  GAGCGTGCTAAAAGCACTGG   GCTACCCATGCTGGAAAAACA 

Tfrc  AGCTTTGTCCTTTTCAGCTGT  TGTGGGGAGCCGCTGTAC 

VEGFα  CACGACAGAAGGAGAGCAGA GGGCTTCATCGTTACAGCAG
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