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Abstract

A simple exposition of the rarely discussed fact that a set of free
boson fields describing different, i.e. kinematically different particle
types can be quantized with mutual anticommutation relations is given
by the explicit construction of the Klein transformations changing an-
ticommutation relations into commutation relations. The q-analog of
the presented results is also treated. The analogous situation for two
independent free fermion fields with mutual commutation or anticom-
mutation relations is briefly investigated.

Keywords: canonical quantization, spin and statistics, quantum field the-
ory

1 Introduction

All hitherto existing experimental evidence indicates that physical systems
with one type of integer spin particles solely obey the laws of Bose-Einstein
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statistics, whereas systems with one type of half-odd integer spin particles re-
spect Fermi-Dirac statistics. The natural way to arrive at Bose-Einstein or
Fermi-Dirac statistics is to describe the particles by the help of quantum fields
which commute or anticommute for space-like separations, repectively. When
one turns from the commutation relations for a given field to those between
different fields in the sense that the fields cannot be mapped by space-time
transformations onto each other, the situation becomes more complicated. One
observes that ‘abnormal’ commutation relations in theories in which, e.g., two
different integer spin fields anticommute, may arise, but such theories possess
special symmetries which allow to link them to the case with regular commuta-
tion relations. In this paper, it is shown how this link can easily be constructed
from simple algebraic considerations for systems with a finite number of de-
grees of freedom which can be generalized in a straightforward manner to the
case of inifinitely many degrees of freedom.

Starting from the well-known commutation relations of the rising and lowering
operators of two independent, i.e. non-interacting bosonic harmonic oscillators

[a, a†] = 1 , [b, b†] = 1 ,

where a and b annihilate the ground state

a|0〉 = b|0〉 = 0 , (1)

one may impose ‘abnormal’ mutual anticommutation relations given by

{a, b} = ab+ ba = {a, b†} = 0 , (2)

consequently leading to the Hermitian conjugate relations

{a†, b†} = {a, b}† = {a, b†}† = {a†, b} = 0 . (3)

The commutation relations given by eq. (1) fix the physical nature of the
phonons as bosons, since the creation operators a† and b† can create an arbi-
trary number of phonons, contrary to the fermionic case where the correspond-
ing anticommutation relations would imply the Pauli principle a† 2 = b† 2 = 0.
In the bosonic case, a state normalized to one containing ñ phonons of type a
would be given, e.g., by

|ñ〉 =
1√
ñ!
a† ñ|0〉 . (4)

The anticommutation relations in eq. (2) can be converted into commutation
relations by mapping the algebra of b-type operators only according to

a 7→ ã = a , b 7→ b̃ = ηb , b† 7→ b̃† = b†η = −ηb† , (5)
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where the involutive, unitary and Hermitian phonon (or particle) number par-
ity operator η is defined via the phonon number operator

n = a†a+ b†b (6)

by
η = (−1)n = eiπn = e−iπn = η−1 = η† . (7)

η anticommutes with a, a†, b, and b†, since the creation and annihilation oper-
ators change the particle number by one. Hence, the commutation relations in
the b-sector are preserved, since [b̃, b̃] = 0 is trivially fulfilled and from η2 = 1
follows

[b̃, b̃†] = [ηb, b†η] = ηbb†η − b†η2b = [b, b†] = 1 , (8)

however one now has mutual commutativity

[a, b̃] = aηb− ηba = −ηab− ηba = −η{a, b} = 0 ,

[a, b̃†] = ab†η − b†ηa = {a, b†}η = 0 ,

i.e. the anticommutation relations between the a- and b-operators go over into
commutation relations by a change of phase conventions without changing the
physical content of the theory. Note, however, that the transformation accord-
ing to eq. (5) does not correspond to a unitary transformation of the operators
and the underlying Hilbert space of phonon states which would preserve the
commutation rules.

The way to achieve a situation where all operators fulfill standard commutation
rules is, of course, not unique. E.g., introducing particle number and particle
number parity operators for different phonon types

na = a†a , nb = b†b , (9)

ηa = (−1)na = η−1a = η†a , ηb = (−1)nb = η−1b = η†b (10)

and new operators

a 7→ ã = ηba , a† 7→ ã† = a†ηb = ηba
† , b 7→ b̃ = ηbb , b† 7→ b̃† = b†ηb = −ηbb† ,

(11)
also does the job. A further valid redefinition is given by

a 7→ ã = a , b 7→ b̃ = ηab , b† 7→ b̃† = b†ηa = ηab
† . (12)

So-called Klein transformations as presented above have been introduced for
the first time by Oskar Klein [1]. The abstract work on a quantum field
theoretical level in connection with the spin-statistics theorem given much later
by Huzihiro Araki [2] was the basis for a short discussion given by Ray Streater
and Arthur Wightman in their famous book on PCT, spin and statistics, and
all that [3].
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2 Several degrees of freedom

In the case where m different phonon types are created by operators a†1, . . . a
†
m

with
[ai, a

†
i ] = 1 , {ai, aj} = {ai, a†j} = 0 for i 6= j , (13)

the mutual anticommutation relations can be successively transformed into
commutation relations by the following sequence of transformations

a1 7→ ã1 = a1 ,

a2 7→ ã2 = η1a2 ,

a3 7→ ã2 = η1η2a3 ,

. . .

ai 7→ ãi = η1 · . . . · ηi−1ai ,

. . .

am 7→ ãm = η1 · . . . · ηm−1am , (14)

where
ηi = (−1)a

†
iai . (15)

This explicit construction shows that there is always the possibility to succes-
sively remove all abnormal anticommutators from a theory describing different
bosons only. An analogous statement holds for the general case involving dif-
ferent different bosonic and different fermionic particles. For the even more
general quantum field theoretical case where one has infinitely many degrees
of freedom, the (normal) abnormal case of two different Fermi fields with van-
ishing (anti-)commutators is briefly discussed in the last section. But before
the situation discussed above shall be reanalyzed from a q-deformed point of
view.

3 How to q-commute

Considering again the commutation relations of the raising and lowering oper-
ators of two independent bosonic harmonic oscillators

[a, a†] = 1, [b, b†] = 1, [a, b] = [a, b†] = [b†, a†] = [b, a†] = 0, (16)

where a and b annihilate the ground state a|0〉 = b|0〉 = 0, one may introduce
the map

ã = a, b̃ = ηb, ã† = a†, b̃† = b†η† = b†η−1 = qη−1b† (17)
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where η is a unitary q-parity operator defined with θ real as

η = qN = eiθN , η† = e−iθN = η−1 , (18)

and
N = Na +Nb = a†a+ b†b . (19)

Introducing the following commutation relations

ηa =
1

q
aη , ηa† = qa†η ,

ηb =
1

q
bη , ηb† = qb†η , (20)

leads to the algebra
[ã, ã†] = 1 , [b̃, b̃†] = 1 ,

[ã, b̃]q = ãb̃− qb̃ã = 0 ,

[ã, b̃†] 1
q

= ãb̃† − 1

q
b̃†ã = 0 ,

[Ña, Ñb] = 0 , (21)

where
Ña = ã†ã, Ñb = b̃†b̃ . (22)

Replacing η = qN with ηa = qNa in eq. (18) gives the same result. Indeed, the
map given in eq. (17) transforms commuting modes into q-commuting modes
without changing the boson algebra for each mode. For q = −1, the map eq.
(17) leads to the case which has been introduced for the first time by Klein
[1], and studied in further detail by Araki [2].

One may also define another mapping like

ã = ηba , b̃ = ηbb , ã† = a†η†b , b̃† = b†η†b , (23)

where ηb = qNb . Then we have the following commutation relations

[ã , ã†] = 1, [b̃ , b̃†] = 1 ,

[ã , b̃] 1
q

= 0, [ã , b̃†]q = 0 ,

[Ña, Ñb] = 0 . (24)

These considerations can be generalized into the multi-mode case. Considering
the n independent bosonic harmonic oscillators (i 6= j)

[ai, a
†
i ] = 1, i = 1, 2, 3, . . . , n ,
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[ai, aj] = [ai, a
†
j] = 0 , (25)

leads to the consideration of the following map

ãi = Λi−1ai, ã†i = a†iΛ
−1
i−1 , (26)

where Λi−1 is a unitary q-parity operator defined as

Λi−1 =
i−1∏
k=1

ηk =
i−1∏
k=1

qNk (27)

and
Nk = a†kak . (28)

Then, one has the commutation relations

[ãi, ã
†
i ] = 1, i = 1, 2, 3, . . . , n ,

[ãi, ãj]q = 0, i < j ,

[ãi, ãj] 1
q

= 0, i > j ,

[ãi, ã
†
j] 1
q

= 0, i < j

[ãi, ã
†
j]q = 0, i > j ,

[Ñi, Ñj] = 0 , (29)

where
Ñi = ã†i ãi . (30)

The second, third, forth and fifth relations can be also written as

[ãi, ãj]qεij = 0, [ãi, ã
†
j]q−εij = 0 , (31)

where

εij =


1 (i < j)
0 (i = j)
−1 (i > j)

(32)

4 Changing the mutual commutation relations

of two different Dirac fields

For the sake of generality, one may also have a look at the situation where
fermion fields are involved. However, only a simple case involving free fields
shall be discussed for the sake of brevity. Discussing free fields only is not a
major disadvantage, since a rigorous construction of a non-trivial quntum field
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theory in four space-time dimensions has not been successful so far, and most
of our practical knowledge in local quantum field theory is based on consider-
ations concerning free fields acting as operator valued distributions on a Fock
space.

A Dirac field describing non-interacting spin-1
2

fermions like, e.g., the free
electron-positron field, can be written in the following form, using natural
units h̄ = c = 1 and a relativistic notation with kx = kµx

µ = k0x0 − ~k~x,

k0 =
√
~k2 +m2

e > 0

ψ(x) =
∫ d3k

2k0(2π)3
∑
s=± 1

2

{e−ikxus(~k)as(~k) + e+ikxvs(~k)b †s (~k)} , (33)

where the us(~k) [vs(~k)] denote electron [positron] spinors for the corresponding

spin s = ±1
2

and momentum ~k = (k1, k2, k3). The electron [positron] destruc-

tion operators as(~k) [bs(~k)] and the Hermitian adjoint creation operators a†s(
~k)

[b†s(
~k)] fulfill the anti-commutation relations

{as(~k), a†s′(
~k′)} = {bs(~k), b†s′(

~k′)} = δss′2k
0(2π)3δ(3)(~k − ~k′) ,

{as(~k), as′(~k
′)} = {a†s(~k), a†s′(

~k′)} = {bs(~k), bs′(~k
′)} = {b†s(~k), b†s′(

~k′)} = 0 ,

{as(~k), bs′(~k
′)} = {a†s(~k), b†s′(

~k′)} = {as(~k), b†s′(
~k′)} = {a†s(~k), bs′(~k

′)} = 0 .
(34)

Note that all the destruction operators annihilate the vacuum according to

as(~k)|0〉 = bs(~k)|0〉 = 0 (35)

in order to have a Fock Hilbert space representation of free electron and
positron states. Considering an extended theory including a further type of
kinematically independent fermions of mass m′, e.g.muons, one introduces the
additional ‘primed’ Dirac field

ψ′(x) =
∫ d3k

2k′0(2π)3
∑
s=± 1

2

{e−ikxu′s(~k)a′s(
~k) + e+ikxv′s(

~k)b′s
†
(~k)} . (36)

with k′0 =
√
~k2 +m′2 and creation and destruction operators fulfilling com-

pletely analogous anti-commutation relations as given by eqns. (34).

It is common practice to assume that the creation and destruction operators
for different fermion types which are (kinematically) independent in the sense
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that they cannot be transformed by a Poicaré transformations or C, P, or T
into each other [4] anticommute, i.e. one has

{ĉ, ĉ′} = 0 , (37)

where ĉ represents any creation or destruction operator for particles of mass
m appearing in eqns. (34) and ĉ′ a corresponding creation or destruction op-
erator for particles of mass m′.

Introducing the total particle number operator

N = Na +Nb +Na′ +Nb′ =∑
s=± 1

2

∫ d3k

2k0(2π)3

[
a†s(
~k)as(~k) + b†s(

~k)bs(~k) + a′s
†
(~k)a′s(

~k) + b′s
†
(~k)b′s(

~k)
]

(38)

one may define the operator

η = (−1)N = eiπN . (39)

η is defined on the whole Fock Hilbert space and fulfills

η = η† , η2 = 1 , η−1 = η† . (40)

Note that η could also be defined by the help of the charge operator

η = eiπQ , Q = −Na +Nb −Na′ +Nb′ . (41)

Contrary to the particle number operator N , Q is conserved when interactions
are involved and therefore provides some advantages when one tries to discuss
an interacting theory, where the charge structure survives rather than the
particle picture. Since creation and destruction operators change the particle
number by ±1, one has

ĉη = −ηĉ , or {η, ĉ} = 0 , (42)

and {η, ĉ′} = 0. Now one may define a new algebra of creation and destruction
operators for particles of mass m′, explicitly

a′s(
~k) 7→ ãs(~k) = ηa′s(

~k) , b′s(
~k) 7→ b̃s(~k) = ηb′s(

~k) , (43)

implying

a′s
†
(~k) 7→ ã†s(

~k) = a′s
†
(~k)η , b′s

†
(~k) 7→ b̃†s(

~k) = b′s
†
(~k)η (44)

for all s and ~k. This would change the anticommutation relations eq. (37) into
commutation relations

[ĉ, c̃] = 0 , (45)

where c̃ is any operator of type ãs(~k), ã†s(
~k), b̃s(~k), or b̃†s(

~k).
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