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Abstract Nuclear Pore Complexes (NPCs) are key cellular transporter that control

nucleocytoplasmic transport in eukaryotic cells, but its transport mechanism is still not understood.

The centerpiece of NPC transport is the assembly of intrinsically disordered polypeptides, known

as FG nucleoporins, lining its passageway. Their conformations and collective dynamics during

transport are difficult to assess in vivo. In vitro investigations provide partially conflicting results,

lending support to different models of transport, which invoke various conformational transitions of

the FG nucleoporins induced by the cargo-carrying transport proteins. We show that the spatial

organization of FG nucleoporin assemblies with the transport proteins can be understood within a

first principles biophysical model with a minimal number of key physical variables, such as the

average protein interaction strengths and spatial densities. These results address some of the

outstanding controversies and suggest how molecularly divergent NPCs in different species can

perform essentially the same function.

DOI: 10.7554/eLife.10785.001

Introduction
Nuclear Pore Complexes (NPCs) are biological ’nanomachines’ that conduct all the transport

between the nucleus and the cytoplasm in eukaryotic cells. NPCs participate in a vast number of reg-

ulatory processes in the cell, as well as pathological conditions such as viral disease and cancer

(Dickmanns et al., 2015). Transport through the NPC is fast, highly selective and robust with respect

to molecular noise and structural perturbations. Transport of relatively small cargoes up to several

nanometers in size, or approximately 30–40 kD, occurs by pure diffusion, without specific interac-

tions with the NPC constituents. By contrast, transport of larger macromolecules, such as import of

transcription factors and export of mRNA particles is tightly controlled by the NPC. For efficient

transport, macromolecules larger than several nanometers in size must be shuttled through the NPC

by soluble nuclear transport proteins from a highly conserved family, known as Karyopherins (Kaps)

in yeast or Importins/Transportins in vertebrates. Remarkably, despite its high selectivity and effi-

ciency, the NPC does not consume metabolic energy during transport and does not possess an obvi-

ous ’gate’ opening or closing during transport (Terry and Wente, 2009; Wente and Rout, 2010;

Stewart, 2007; Feldherr and Akin, 1997; Mohr et al., 2009).
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The spatial organization of the NPC and its transport mechanism are unique. The passageway

through the nuclear envelope of about 35–50 nm in diameter and 50� 80 nm in length is formed by

a structural scaffold that comprises multiple proteins of a combined size of ~ 150 MDaltons. This pas-

sageway is lined by a set of ~ 200 intrinsically disordered polypeptide chains, collectively known as

’FG nups’ due to the large numbers of Phenylalanine-Glycine (FG) repeats in their sequence

(Terry and Wente, 2009; Wente and Rout, 2010). Although the actual sequences of the FG nups

can vary widely among different species, the overall structure, organization and the transport mecha-

nism of the NPC are conserved (Terry and Wente, 2009; Hülsmann et al., 2012; Schmidt and Gör-

lich, 2015). As the key component of the NPC transport mechanism, the FG nups set up the

permeability barrier that prevents free passage of large macromolecules and serve as a template for

the transient binding of the cargo-carrying transport proteins. NPCs are also remarkably resilient

with respect to structural perturbations: many of the FG nups can be genetically deleted without

impairing cell viability and without major effect on transport (Strawn et al., 2004; Popken et al.,

2015; Feldherr et al., 2002; Hülsmann et al., 2012). Cargo-carrying transport proteins bind to the

FG nups through multiple, yet relatively weak contacts. This binding is crucial for selective transport:

interfering with it decreases the transport efficiency, or abolishes the transport altogether. Con-

versely, particles or molecules that normally cannot penetrate the NPC can be transported after

chemical modifications that enables the to interact directly with the FG nups (Wente and Rout,

2010; Bayliss et al., 1999; 2000; Naim et al., 2009; Kim et al., 2013; Kumeta et al., 2012). NPC

geometry and architecture are schematically illustrated in Figure 1.

eLife digest Animal, plant and fungal cells contain a structure called the nucleus, inside which

the genetic material of the cell is stored. For the cell to work properly, certain proteins and other

molecules need to be able to enter and exit the nucleus. This transport is carried out by pore-like

molecular “devices” known as Nuclear Pore Complexes, whose architecture and mode of operation

are unique among cellular transporters.

Nuclear Pore Complexes are charged with a daunting task of deciding which of the hundreds of

molecules it conducts per second should go through and which should not. Small molecules can

pass freely through Nuclear Pore Complexes. However, larger molecules can only pass through the

pore efficiently if they are bound to specialized transport proteins that interact with the proteins –

called FG nucleoporins – that line the pore. A unique feature of the FG nucleoporins is that, unlike

typical proteins, they do not have a defined three-dimensional structure. Instead, they form a soft

and pliable lining inside the Nuclear Pore Complex passageway.

Exactly how interacting with transport proteins affects the structure and spatial arrangements of

the FG nucleoporins in a way that allows them to control transport is not well understood. This is in

part because existing experimental techniques are unable to study the structures of the FG

nucleoporins in enough detail to track how they change during transport. The complexity and the

diversity of the FG nucleoporins also make them difficult to model in detail.

Vovk, Gu et al. have developed a theoretical model that is based on just three basic physical

properties of the FG nucleoporins – their flexibility, their ability to interact with each other, and their

binding with the transport proteins. Future work can refine the model by incorporating further

molecular details about the interactions between FG nucleoporins and transport proteins.

The predictions made by this simple model agree well with experimental results in a wide range

of situations – from single molecules to complex spatial assemblies. They also explain why some of

the experimental results appear to contradict each other and suggest how several outstanding

controversies in the field can be reconciled. Because the model invokes only fundamental physical

principles of FG nucleoporin assemblies, it shows that some of their general properties do not

depend on the exact conditions. In particular, this might shed light on why Nuclear Pore Complexes

in different organisms perform essentially the same function, although the details of their molecular

structure may differ. This also suggests how the FG nucleoporins can be manipulated to build

artificial devices based on the same principles.

DOI: 10.7554/eLife.10785.002
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Full understanding of the NPC transport still remains elusive, and various hypotheses remain

unsettled. The consensus is that the binding of the transport proteins to the FG nups enables them

to overcome the permeability barrier. The strength of this binding controls the transport selectivity

and efficiency. Hence, transport proteins can be informally viewed as ’glorified enzymes’ that lower

the free energy barrier for the translocation through the NPC. Basic models that describe the trans-

port as facilitated diffusion through the FG nup medium, modulated by the interactions with the FG

nups, provide a good explanation of the selectivity of the NPC even in the presence of large

amounts of molecular noise (Wente and Rout, 2010; Zilman et al., 2007; 2010; Frey and Görlich,

2007; Fernandez-Martinez and Rout, 2012). The overall veracity of these general principles has

been demonstrated by creation of artificial nanochannels and nanomaterials that mimic NPC func-

tion and recapitulate many of its transport properties (Zilman et al., 2007; 2010; Frey and Görlich,

2007; Schmidt and Görlich, 2015; Zilman, 2009; Jovanovic-Talisman et al., 2009;

Kowalczyk et al., 2011; Caspi et al., 2008; Jovanovic-Talisman et al., 2014).

Various models of the mechanistic involvement of the FG nups in transport have been proposed.

In the ’virtual gate’ model, the permeability barrier arises due to the entropic repulsion from the fluc-

tuating FG nup chains (Zilman et al., 2007; Lim et al., 2007; Rout et al., 2003). In a related idea,

an entropically stabilized FG nup ’brush’ can be collapsed by the transport proteins thus opening

the transport passageway (Lim et al., 2006; 2007; 2008). In another scenario, the permeability bar-

rier arises from a gel-like network, stabilized by the hydrophobic interactions between the FG

repeats. Transport proteins disentangle this gel via their binding to the FG repeats thereby allowing

their passage through the pore (Hülsmann et al., 2012; Frey and Görlich, 2007; Frey et al., 2006).

More complex models have been proposed that take into account the sequence inhomogeneity and

local molecular properties of the FG nups, their possible spatial localization and dynamics

(Kim et al., 2013; Patel et al., 2007; Yamada et al., 2010; Peters, 2009; Mincer and Simon, 2011;

Cardarelli et al., 2012; Ma et al., 2012; Solmaz et al., 2013; Lowe et al., 2015). It is likely that the

majority of the effects invoked in all these models contribute to the NPC transport mechanism to

Figure 1. Schematic illustration of spatial arrangements of the FG nups in the NPC and in vitro models. Left:

schematic rendering of the NPC geometry (not to exact scale). The vertebrate FG nucleoporins discussed in this

paper (Nup62, Nup98 and Nup153) and their approximate locations within the NPC are highlighted in color

(Chatel et al., 2012; Krull et al., 2004; Chug et al., 2015). Other FG nups are not shown. Yeast NPC has an

overall similar architecture but smaller dimensions. Vertebrate FG nucleoporins discussed in the paper have yeast

analogues: Nsp1 is analogous to Nup62, while Nup100 and Nup116 are analogous to Nup98 in their sequence

and the biophysical and functional properties. Right upper panel: schematic depiction of one typical in vitro

experimental setup of a grafted FG nup layer in equilibrium with a solution of transport proteins. Right lower

panel: some FG nups, such as Nup98, phase separate at high concentration and form a dense phase in

equilibrium with a dilute solution.

DOI: 10.7554/eLife.10785.003
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some degree. In particular, the FG nups possess various degrees of intra- and inter-chain ’cohesive-

ness’ that can lead to formation of single and multi-chain aggregates (Schmidt and Görlich, 2015;

Frey et al., 2006; Patel et al., 2007; Yamada et al., 2010; Hough et al., 2015; Milles and Lemke,

2011).One major contribution to FG nup cohesiveness is believed to arise from the weak binding of

the hydrophobic FG repeats to each other. However, intrinsically disordered proteins are notoriously

prone to aggregation and the cohesiveness can have multiple sources, including electrostatic, p � p

and p-charge interactions as well as non-specific interactions between the non-FG parts of the chains

(Uversky, 2002; Song et al., 2013; Borg et al., 2007; Milles et al., 2013). Cohesiveness of individ-

ual FG nups correlates with the ratio of the numbers of the hydrophobic to charged residues in their

sequence (Yamada et al., 2010). However, the relative importance of the cohesiveness and its spe-

cific role in the transport mechanism are still under debate.

To add to the complexity of the system, the transport proteins are present in large numbers

within the NPC, and can strongly affect FG nup conformations and dynamics (Zilman et al., 2007;

2010; Zilman et al., 2009; Jovanovic-Talisman et al., 2009; Yang and Musser, 2006;Lowe et al.,

2015 ; Kapinos et al., 2014; Schoch et al., 2012; Milles et al., 2013). However, several controver-

sies persist with respect to their contributions to the architecture and the function of the NPC. Spe-

cifically, it is still under debate whether the transport proteins swell or compact assemblies of FG

nups (Kapinos et al., 2014; Wagner et al., 2015; Eisele et al., 2010; 2013).

Understanding the spatial organization and the collective dynamics of the FG nups and the trans-

port proteins during the translocation processes is hindered by the scarcity of experimental methods

and insufficient measurement accuracy to assess them in vivo on the relevant time (several millisec-

onds) and length (several nanometers) scales (Cardarelli et al., 2012; Ma et al., 2012; Yang and

Musser, 2006; Yang et al., 2004; Grünwald et al., 2011; Dange et al., 2008). Consequently,

computational and theoretical approaches - from atomistic to highly coarse grained - have become

increasingly important in the investigations of the possible configurations of the FG nups and the

transport dynamics within the NPC (Zilman et al., 2007; 2010; Mincer and Simon, 2011;

Opferman et al., 2013; Osmanović et al., 2013a; 2013b; Tagliazucchi et al., 2013; Moussavi-

Baygi et al., 2011a; 2011b; Ghavami et al., 2014; Ando et al., 2014; Gamini et al., 2014). How-

ever, parameterizations of such models still remain difficult because of the sheer complexity and

diversity of the FG nups, exacerbated by conflicting or non-existent measurements of the relevant

parameters. The existing parameterizations differ significantly in their physical assumptions and out-

comes (Tagliazucchi et al., 2013; Ghavami et al., 2014; Ando et al., 2014; Gamini et al., 2014). As

a case in point, even the radii of gyration of the FG nups and their interaction affinities with the

transport proteins are still under debate (Yamada et al., 2010; Kapinos et al., 2014; Tetenbaum-

Novatt and Rout, 2010; Isgro and Schulten, 2005; Eisele et al., 2010).

For further progress, it is imperative to establish the most pertinent physical features and varia-

bles controlling the FG nup conformations induced by the transport proteins. Recent in vitro studies

provide the basis for systematic understanding of the conformations of the assemblies of the FG

nups with transport proteins in order to relate their molecular properties to their nanomechanical

behavior (Hülsmann et al., 2012; Frey and Görlich, 2007; Schmidt and Görlich, 2015; Lim et al.,

2007; Frey et al., 2006; Kapinos et al., 2014; Wagner et al., 2015; Eisele et al., 2010; 2013). In

one typical experimental setup, an FG nup assembly is grafted to a rigid surface in the presence of

varying concentrations of the transport proteins (see Figure 1). The FG nup conformations are

inferred from the measurements of layer height. Even this relatively simple experimental setup

resulted in conflicting observations. Depending on the experimental conditions and the measure-

ment technique, the transport proteins can either increase or decrease the layer height, or in some

cases cause no measurable change. However, despite the variability between different FG nups and

transport proteins, general behavior motif is emerging from these experiments. Typically, at low con-

centrations, the transport proteins do not affect the layer height. This is followed by a partial layer

collapse and height decrease, accompanied by accumulation of the transport protein in the layer.

Increasing the concentration further reverses the collapse and eventually leads to the swelling of the

layer. Virtually all studied mixtures of the FG nups and transport proteins regardless of the species

of origin or the natural localization in the NPC exhibit this general pattern of behavior although the

degree of collapse and swelling may vary (Lim et al., 2006; 2007; Kapinos et al., 2014;

Wagner et al., 2015; Eisele et al., 2010; 2013). Related patterns of behavior are observed in

experiments with bulk solutions of FG nups mixed with various transport proteins. At sufficiently
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high concentrations, the FG nups form a dense phase which either absorbs or excludes the transport

proteins, depending on the size of the latter and their interaction strength with the FG

nups see Figure 1. The behavior is very general and is observed in a wide range or FG nups from dif-

ferent species (Hülsmann et al., 2012; Frey and Görlich, 2007; Schmidt and Görlich, 2015;

Hough et al., 2015).

The generality of these behaviors - despite the large number of molecular factors affecting the

FG nup behavior - suggests that it might be understood in terms of a small number of core organiz-

ing principles. In this paper we develop a coarse grained theory of the transport proteins-FG nup

assemblies that captures only the essential physical features: (i) the flexible nature of the FG nups, (ii)

their potential cohesiveness and (iii) the attractive interactions with the transport proteins. The

model is investigated using mean field theory supported by coarse-grained simulations

(Opferman et al., 2012; Opferman et al., 2013). Our approach is inspired by the successes of the

simplified theories in explaining the properties of highly chemically complex and diverse materials in

polymer science and soft condensed matter (Doi and Edwards, 1998; Flory, 1953; de Gennes,

1979). Systematic comparison of the model predictions with extensive experimental data shows that

the model captures and explains the observed behavior in different regimes. The model suggests a

resolution of some of the apparent conflicts in the experimental results and proposes how to recon-

cile the outstanding controversies regarding the relative importance of the cohesive and the entro-

pic effects for FG nup behavior and NPC selectivity. The model also sheds light on the long standing

discrepancies in the measurements of the binding affinities of transport proteins to FG nups.

The model identifies the key physical variables controlling the conformational behavior of FG

nup-transport protein assemblies and suggests experimental ways of manipulating them. This essen-

tial theoretical framework can be systematically developed in the future with additional molecular

and structural details. Beyond the NPC, the results of the model are interesting in a broader context

of intrinsically disordered proteins and nanotechnological applications (Stuart et al., 2010;

Tagliazucchi and Szleifer, 2015; Coalson et al., 2015). Many aspects of the unfolded protein

behavior are still puzzling, and the conceptual and computational frameworks - many of which are

built on the foundation of polymer physics - are currently being developed (Uversky, 2002; van der

Lee et al., 2014; Tcherkasskaya et al., 2003; Das et al., 2015; Sherman and Haran, 2006). The

model described here demonstrates the power of such approaches on a concrete example of an

important family of intrinsically disordered proteins.

Mathematical model
Many of the molecular parameters determining the behavior of the FG nup assemblies and their

interactions with transport proteins are not fully known. In particular, the number of binding sites on

the transport proteins and affinities of their binding to the FG repeats are a matter controversy. The

degree of inter- and intra- FG nup cohesion or the relative importance of the electrostatic vs hydro-

phobic effects are unknown (Bayliss et al., 1999; 2000; Frey et al., 2006; Yamada et al., 2010;

Kapinos et al., 2014; Schoch et al., 2012; Tagliazucchi et al., 2013; Tetenbaum-Novatt and Rout,

2010; Isgro and Schulten, 2005; Eisele et al., 2010; Pyhtila and Rexach, 2003; Otsuka et al.,

2008). To capture the most salient mechanical and energetic properties responsible for the collec-

tive conformational behavior of the FG nups, we model them as flexible polymeric chains. Although

not all intrinsically disordered proteins can be described in this way (for instance, due to residual sec-

ondary structure), the nanomechanical and the statistical properties of the FG nups can be well

described by the polymer worm-like chain model (Lim et al., 2007). The chains can be imagined as

consisting of ’monomers’, where each monomer roughly corresponds to one or several amino-acids;

as will be shown below, the predictions of the model turn out to be insensitive to the exact choice of

the monomer size within a realistic range (see the Results section). The transport proteins are mod-

eled as rigid particles of appropriate volume that interact attractively with the FG nup chains.

Although the interaction between the transport proteins and FG nups is believed to be predomi-

nantly mediated by Phenylalanines of the FG repeats lodging themselves into the hydrophobic

grooves on the transport proteins, it is likely that other amino acids and other interactions, such as

electrostatic interaction, participate in the binding as well (Bayliss et al., 2000;

2002; Tagliazucchi et al., 2013; Isgro and Schulten, 2005; Colwell et al., 2010; Liu and Stewart,

2005). Thus, the interactions of the FG nups with the transport proteins are taken into account on a
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coarse-grained level parameterized by an interaction parameter �, which is proportional to the aver-

age binding energy of a monomer to a transport protein molecule. The main contributions to � are

enthalpic, although water network re-arrangement entropy contributes to the hydrophobic interac-

tion as well. We discuss the range of experimentally motivated values of � below. The inter- and

intra-FG nup cohesive interactions are incorporated into the model in a similarly general fashion

through the effective interaction parameter �cr, as explained below in Equation (2). This description

is appropriate for high salt concentrations conditions (150–300 mM) of the experiments, where the

electrostatic interactions are highly screened (Zhulina et al., 2000; Barrat and Joanny, 1997). Simi-

lar types of coarse-grained models have been successfully used to describe microtubule-associated

unfolded proteins (Leermakers et al., 2010), other bio-polymers (Attili et al., 2012;

Akinshina et al., 2013) and DNA-protein interactions (Jung et al., 2012). It was shown in

Yamada et al. (2010) that the observed cohesiveness of different FG nup segments correlates with

their hydrophobic to charged amino acid content. Our parameter �cr can be thought of as a quantifi-

cation of this concept and its extension into multi-chain and multi-protein domain.

In addition to the interactions of the FG nups among themselves and with the transport proteins,

the main physical factors responsible for the conformations of their assemblies with the transport

proteins are the entropy of chain stretching and compression, and the volume constraints. Roughly

speaking, the attractive interactions favor more compact structures because they allow formation of

higher numbers of energetically favorable contacts, while the entropy of chain configuration favors

more diffuse and open conformations. These physical considerations are encapsulated in the free

energy that describes an assembly of polymer chains, each of contour length L (Opferman et al.,

2013; Milner et al., 1988; Halperin et al., 2011; Fredrickson et al., 2002):

F ¼
kT

2b

X

i

ðL

0

ds
q~r iðsÞ

qs

� �2

þ
kT

v0

ð

d3~rf
�

 ð~rÞ;fð~rÞ
�

: (1)

The first term in this free energy stands for the entropic elasticity of the polymer chains; ~r iðsÞ

describes the trajectory of the i-th chain in space and where b is the Kuhn length of the chain,

roughly corresponding to the bond length between adjacent ’monomers’. In the second term,

f ð ;fÞ is the local free energy density that includes all the interactions between the polymers and

the transport proteins, written in the ’mean field’ (well mixed) approximation in terms of their local

volume fractions  ð~rÞ and fð~rÞ, respectively (Opferman et al., 2012; 2013; Flory, 1953;

de Gennes, 1979; Lai and Halperin, 1992):

f ð ;fÞ ¼
1

v
flnfþð1� �fÞlnð1� �fÞþ

1

v
� 1

� �

ð1�fÞlnð1�fÞþ
1

v
� fþ

1

2
�cr 

2; (2)

where v0 � l3 is the monomer volume and v ¼ v=v0 is the ratio of the transport protein and monomer

volumes (note that a monomer does not have to be spherical). The first term describes the transla-

tional entropy of the transport proteins in the layer. The next two terms describe the excluded vol-

ume interaction (steric repulsion) between all the monomers of the chains and the transport

proteins. The last two terms describe the attractive interaction between the FG nup chains and the

transport proteins and among the FG nups themselves, respectively; negative � and �cr correspond

to attraction. Other expressions for free energy can be used and provide qualitatively similar results

(Osmanović et al., 2013a; Osmanovic et al., 2012).

Surface layer geometry
To further simplify the discussion and establish the key variables controlling the experimentally

observed behaviors, we assume that the monomer density is uniform throughout the layer. In reality,

the monomer density inside the layer decays away from the grafting surface. We also assume that

the entropic elasticity of the chains is described by the Gaussian model (Alexander, 1977). This sim-

ple approximation cannot be used to predict the exact layer height, but it is a qualitatively

good treatment for the moderately cohesive chains and moderate concentrations of the transport

proteins of interest in this paper, because the cohesiveness causes layer compaction, as shown

below (Opferman et al., 2012; 2013; Halperin et al., 2011; Alexander, 1977; Zhulina et al.,

1991; Lai and Halperin, 1992). The overall conclusions of this paper do not depend on this approxi-

mation (see Figure 2—figure supplement 1). The discussion is further simplified by normalizing the
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average layer height h by the chain length L, introducing a new variable h ¼ h=L. With these, the

free energy per unit area of a layer of chains grafted at a distance a from each other becomes

(Alexander, 1977; de Gennes, 1980)

Fðh; ;fÞ=A¼ kT
L

l3
sh

2

2

l

b
þ hf ð ;fÞ

" #

; (3)

where s ¼ ðl=aÞ2 is the grafting density of the chains normalized by the average monomer cross-sec-

tion l�2 (l � v
1=3
0 ). The layer height related to the monomer density through the condition s l

b
¼  h

which expresses the fact that the total number of the monomers in the layer is constant, hl3 ¼ Ns.

At this level of approximation, the equilibrium layer height is found by the minimization of the free

energy over h and the transport protein concentration f under the constraints that the chemical

potential of the transport proteins in the layer and the osmotic pressure in the layer are equal to

those in the outside solution of volume fraction c. Importantly, because L factorizes out of the free

energy expression in Equation (3), the resulting equilibrium values of h and f are independent of

the chain length L. The chemical potential and the osmotic pressure of the outside dilute solution -

assumed to be ideal - are �c ¼ kBTlnðcÞ and pc ¼ kBTc=v. This procedure has been described in detail

and verified by coarse-grained brownian dynamics simulations in Opferman et al. (2012),

Opferman et al. (2013). Finally, it is important to keep in mind that the calculated properties are

equilibrium average values. On the molecular scale, the polymers are highly dynamic and their indi-

vidual conformations fluctuate on the microsecond time scale.

Bulk solutions
In a bulk solution where the chains are not grafted to a surface but are freely floating in solution, the

entropic stretching (first term in Equation (3)) is replaced by the translational entropy of the chains,

so that the mean field free energy per unit volume is Doi and Edwards (1998), Flory (1953),

de Gennes (1979)

f ð ;fÞ ¼
1

N
 ln þ

1

v
flnfþð1� �fÞlnð1� �fÞþ

1

v
� 1

� �

ð1�fÞlnð1�fÞþ
1

v
� fþ

1

2
�cr 

2: (4)

This free energy becomes unstable for sufficiently large interaction parameters j�j or j�cr j, leading

to a phase separation where a dense phase of transport proteins mixed with the FG nups coexists

with a very dilute solution. The compositions of the dense and the dilute phases are determined

from the equality of the osmotic pressures and the chemical potentials of the transport proteins and

the FG nups in the coexisting phases (de Gennes, 1979; Zilman and Safran, 2002;

Morse, 1969) see Appendix for details.

Dimensions of individual FG nups
The model can be used to calculate the dimensions of individual FG nup molecules in solutions. Due

to the thermal motion, each flexible chain dynamically samples multiple spatial conformations that

on average occupy a volume of size R, which can be found through minimization of the free energy
3R2

2N
þ 4

3
pR3f ð Þ over R with the condition 4

3
pR3 ¼ N; the first term represents the entropic elasticity

of chain conformations in space, while the second term describes the intra-chain interactions where

f ð Þis the free energy of Equation (2) with f ¼ 0. Slightly different expressions for the free energy

can be used, all leading to qualitatively the same results (de Gennes, 1979; Sherman and Haran,

2006; Sanchez, 1979).

As shown below, the overall qualitative predictions of the theory are robust with respect to the

choice of model parameters within a physically feasible range. However, quantitative or semi-quanti-

tative comparison with the experimental data requires a specific choice of the molecular parameters

b and v0 � l3. The approximate volume of a transport protein molecule can be calculated from its

molecular mass and the average protein density � ’ 1:2� 1:5 g/cm3. For Karyopherin-b1 (molecular

mass » 97� 103 kD, depending on the attached tag), v ’ 120� 140 nm3 and for NTF2, the transport

protein specialized for the import of RanGDP into the nucleus (molecular mass » 33 kD), v ’ 35� 45

nm3. The estimates of the ’monomer’ size are somewhat less well defined. The average distance

between two adjacent amino acids on a polypeptide chain is» 0:36� 0:38 nm and the side chain size
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varies in the range ~ 0:3� 0:6 nm (Levitt, 1976; Zamyatnin, 1972; Quillin and Matthews, 2000).

However, their effective size can be modulated by the bound ions present within the Debye screen-

ing length (of the order of ~ 0:5� 1 nm at the experimental salt concentrations) or bound denaturant

molecules. Thus, for comparison with experiments, the realistic monomer size lies within a range

b » 0:4� 1:6 nm and its volume v0 » 0:12� 1 nm3; the upper limit corresponds to a ’monomer’

composed of about four amino acids. Finally, the exact structure of the dense phase and its maximal

molecular packing fraction are unknown (Frey and Görlich, 2007; Schmidt and Görlich, 2015;

Milles et al., 2013). For the conversions between the theoretical volume fractions and the experi-

mentally measured concentrations, we have assumed the maximal packing fraction z ¼ 0:625 in the

dense phase, typical of the random close packing of dense molecular assemblies which normally lies

in the range of z ¼ 0:5� 0:7 (Nolan and Kavanagh, 1992).

Results

Conformations of an FG nup layer in the absence of transport proteins
To establish whether the model captures the basic biophysical characteristics of the FG nup assem-

blies, we first apply it to the case of an FG nup layer without transport proteins. In this case the

transport protein density is f ¼ 0, and the free energy per area A of Equations (2) and (3) is mini-

mized over h to obtain the equilibrium average layer height. We emphasize again that once the layer

height has been re-scaled by the polymer contour length L, the theoretical predictions become inde-

pendent of L. This will be important in the analysis of the experimental data.

The conclusions of the model are summarized in Figure 2, which shows that the FG nup layer

height h decreases with the grafting distance a, because the steric repulsion between the polymers -

that maintains the chains being stretched on average - is higher at lower grafting distances. The the-

ory predicts that the layer height is monotonically decreasing with the cohesion strength. This is

expected because the cohesiveness favors more compact conformations with more favorable con-

tacts while the entropic elasticity term favors more diffuse conformations. In polymer physics par-

lance, increasing the cohesiveness is similar to changing the solvent ’quality’ from ’good’ to ’bad’

(Osmanović et al., 2013a; Eisele et al., 2013; de Gennes, 1979; Milner et al., 1988;

Halperin et al., 2011; Lai and Halperin, 1992; Zhulina et al., 1991; Peleg et al., 2011; Moh et al.,

2011). The model also shows that sufficiently strong cohesion not only decreases the layer height,

but shifts the behavior into a qualitatively different regime. The FG nup internal conformation and

cohesiveness can be characterized by the scaling exponent g that describes the dependence of the

height h on the grafting distance a, h ~ a�g. For an ideal non-cohesive, purely entropically stabilized

polymer brush, g ¼ 2=3. Cohesiveness increases the value of the exponent towards g ¼ 2, in which

regime the layer effectively behaves as a material of constant density with  independent of h

(de Gennes, 1979; Milner et al., 1988; Zhulina et al., 1991; Moh et al., 2011). Nevertheless, even

in the highly cohesive regime, the layer has significant ’free space’ occupied by the solvent (calcu-

lated as 1�  ).

Behavior of the FG nup layers reported in Kapinos et al. (2014), Schoch et al. (2012),

Wagner et al. (2015) follows the general predictions of the theory. In particular, examination of the

data shows that the height of FG nup layers in the absence of transport proteins decays faster than

a�2=3 with the grafting distance a, but slower that a�2, as shown in Figure 3. The accuracy of the

experimental measurements does not allow one to quantitatively differentiate between different FG

nups based on the scaling exponent g. However, interpreted in light of the theoretical model, the

data strongly indicate the presence of significant cohesion in all FG nups. Importantly, Nsp1 seg-

ments of different lengths fall within the same family of curves, once normalized by their length, in

accord with the theoretical predictions. These results indicate that the salient physical mechanisms

responsible for the behavior of grafted FG nup layers are adequately captured by the model.

Effects of the transport proteins on the layer height
We now compare the theoretical predictions with the experimental data in the presence of transport

proteins. Although at a first glance experimentally observed responses of different FG nups to the

addition of transport proteins appear rather different (Kapinos et al., 2014; Eisele et al., 2010),

closer inspection shows that most FG nups exhibit the same general pattern of behavior. With
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progressive addition of the transport proteins, the layer height decreases to some extent followed

by recovery and eventual swelling. The initiation of the collapse is correlated with the penetration of

the transport proteins into the layer. We have recently shown that this behavior is expected on very

general grounds for polymer layers infiltrated with nanoparticles (Opferman et al., 2012;

2013). This common behavior is shown in Figure 4, which renders the experimental data from

Kapinos et al. (2014), Wagner et al. (2015).

Intuitively, the penetration of an individual transport protein into the layer is determined by the

balance between the energetic (enthalpic) gain of creating more contacts with the FG nups and the

entropic cost of displacing and crowding the FG nup chains. If the overall free energy change upon

insertion of one transport protein into the layer is negative, it will typically penetrate the layer. Oth-

erwise, the penetration is exponentially suppressed, although there still will be some particles in the

layer. For a single particle of radius R, at low particle concentration, the entropic cost of penetrating

an ideal polymer brush layer can be estimated as ’ akTR2 , where the prefactor a depends on the

grafting density and the degree of cohesiveness (Halperin et al., 2011; Egorov, 2012;

Milchev et al., 2008). On the other hand, a rough estimate for the energetic/enthalpic gain contacts

is ’ ��n , where n is the number of the interaction sites on the protein and � is the energy per con-

tact. Thus, for � < akTn=R2 the entropic repulsion dominates, and one does not expect significant

penetration into the layer. In principle, this entropic repulsion from the flexible polymer layer is suffi-

cient for creating the permeability barrier for non-binding molecules. It is crucial to bear in mind that

the polymer chains are not static but highly fluctuating entities. It is the entropy of these molecular

motions that is responsible for the penetration barrier; thinking of a polymer layer as a static entity

with some amount of free space can lead to erroneous conclusions. The barrier could be enhanced

by other effects, such as, for instance, inter-chain cohesion.

Thus, at low concentrations the transport proteins penetrate the layer if their attractive interaction

with the FG nups is strong enough. However, they do not cause significant conformational changes -

Cohesiveness strength

  Increasing

cohesiveness 

h~a
-gh

a

g

Figure 2. Cohesion makes FG nup layers more compact: theoretical predictions. Layer height h=L normalized by

the chain length as a function of the normalized grafting distance a=l for increasing cohesiveness (�cr varies from

�cr ¼ 0 to �cr ¼ �1:5). For any value of �cr , the curve is well approximated by the dependence h ~ a�g. The

inset shows that the exponent g increases from 2=3 to 2 as the absolute value of the cohesion strength j�crj.
DOI: 10.7554/eLife.10785.004

The following figure supplement is available for figure 2:

Figure supplement 1. Effect of density non-uniformity on the model predictions.

DOI: 10.7554/eLife.10785.005
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essentially occupying the available empty space inside the layer. At higher densities of the transport

proteins, or higher interaction strengths, the number of transport proteins in the layer increases, and

collective effects start to play a role (Opferman et al., 2013; Halperin and Kro€ger, 2011; Kim and

O’Shaughnessy, 2006). Further addition of the transport proteins causes a cooperative conforma-

tional transition of the FG nups leading to either collapse or swelling of the layer, correlated with the

accumulation of the transport proteins inside the layer. The magnitude of the collapse and swelling

depend on the transport protein size, concentration, interaction strength with the FG nups, the

grafting density, and the cohesion strength. Typical height responses to transport protein concentra-

tion are shown in Figure 5. One important conclusion of the theory is that the FG nup response to

the addition of the transport proteins (for instance, ’swelling’ vs. ’collapse’) is not an intrinsic prop-

erty of an FG nup, but can be modulated by the grafting density, transport protein size and the

interaction strength. The overall repertoire of predicted behavior as a function of parameters is

shown in the ’phase diagrams’ in Figures 6 and 7. The model captures the general salient features

of the experimental observations. In particular, at the same grafting distance and the cohesion

strength, the collapse is more pronounced for a smaller protein such as NTF2, in accord with the

experimental observations (Wagner et al., 2015). Similarly, higher grafting distance results in more

collapse - because the entropic repulsion of the transport proteins by the chains is lower at lower

chain density. Different experimental results can be placed in the different parts of the ’phase dia-

gram’, potentially explaining the observed discrepancies. Notably, the theory predicts a high degree

of collapse at large grafting distances, in agreement with the experiments of (Lim et al., 2007).

Another interesting prediction of the model is that changing the grafting distance affects small and

large transport proteins in a different way. For large ones (e.g. Karyopherin), increasing the grafting

distance enhances the penetration into the layer because it reduces the repulsive barrier due to

lower monomer density in the layer. By contrast, for small transport factors (such as NTF2), for which

Figure 3. FG nup layer height depends on the grafting distance: theory vs. experiment. The dots are the

experimentally measured layer heights from Kapinos et al. (2014) and Wagner et al. (2015) normalized by the

FG nup length. Red, blue, green and black: grafted layers of Nup62, Nup98, Nup153 and Nsp1, respectively; gray

dots belong to a short Nsp1 segment. Solid line: h ~ a�2=3 is the ideal brush (�cr ¼ 0) behavior obtained from

the model. Dotted line: h ~ a�2 is the behavior of a strongly collapsed brush with �cr ¼ �2:5. All the FG Nups lie

between these two regimes, indicating a significant amount of cohesion for all FG nups; the dashed line is for

�cr ¼ �0:8; the dashed-dotted line is for �cr ¼ �1:4. To enhance the contrast, inset shows the same data with

the height h normalized by the ideal brush height. b ¼ 1:52 nm, l ¼ 1 nm.

DOI: 10.7554/eLife.10785.006
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Figure 4. Characteristic responses of FG nup layers to the transport proteins: experimental results. Upper panel:

change in the layer height relative to the unperturbed layer as a function of the transport protein concentration in

the outside solution. Lower panel: number of the transport proteins in the layer per unit length of the FG nup

chain. Each line corresponds to a different run with a different initial layer height and grafting distance. Different

colors correspond to different FG nups, which all exhibit qualitatively similar behavior. Color coding. Red, blue,

green and black: Karyopherin-b1 interacting with Nup62, Nup98, Nup153 and Nsp1, respectively; magenta: NTF2

interacting with Nsp1. The corresponding average grafting distances are ~ 2:5 nm, ~ 4 nm, ~ 4:5 nm, ~ 3:7 nm.

The data are from Refs. (Kapinos et al., 2014; Wagner et al., 2015)

DOI: 10.7554/eLife.10785.007

The following figure supplement is available for figure 4:

Figure supplement 1. Nup214.

DOI: 10.7554/eLife.10785.008
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the repulsion is less important, increasing the grafting distance decreases the penetration into the

layer because it reduced the density of available binding sites in the layer.

Can this simplified theory be qualitatively or semi-quantitatively related to the experimental data

for realistic values of parameters? Due to the experimental accuracy limitations and large uncertainly

in the known values of all the parameters, the fitting of the parameters to the data is not unique and

has limited information content. Rather, we focus on clearly distinguishable trends, such as the differ-

ence between the behavior of Karyopherin-b1 vs. NTF2 on the Nsp1 layer, reported in

Wagner et al. (2015). These measurements, performed on the same FG nup in approximately same

a

cr

Figure 5. Layer collapse and swelling: effect of cohesion and of the grafting distance. Upper panel: Theoretical

curves show that FG nup cohesion can convert layer collapse to swelling. The cohesion strengths are �cr ¼

0;�0:4;�0:8;�1:1 for a ¼ 5 nm and � ¼ �550. Lower panel: Increasing grafting distance increases the

magnitude of the layer compaction. The lines correspond to model predictions for a ¼ 3; 4; 5; 6 nm for � ¼

�530 and �cr ¼ �1. The insets show that the fraction of free space in the layer, calculated as 1 � f �  ,

decreases with the addition of the transport proteins. b ¼ 1 nm, l ¼ 0:67 nm in both panels.

DOI: 10.7554/eLife.10785.009
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range of grafting distances, allow us to examine the effects of the transport protein size and the

binding strength, unconfounded by other factors. Karyopherin-b1 and NTF2 have significantly differ-

ent sizes and binding strengths. NTF2 is ~ 4 times smaller in volume and has only two binding sites,

while Karyopherin-b1 can have up to ten specific FG-binding sites and a significantly larger surface

area with potentially much larger number of non-FG interactions with the FG nups (Bayliss et al.,

1999; 2000; 2002; Isgro and Schulten, 2005; Liu and Stewart, 2005). We focus on one clearly dis-

cernible difference in the experimental behavior: significant penetration of NTF2 starts at higher con-

centrations but causes stronger compaction of the layer compared to Karyopherin-b1. Comparison

Figure 6. The ’phase diagram’ of predicted behaviors: conformational transitions of the layer. The grayscale color

denotes the degree of layer compaction, hmin=h0, relative to the unperturbed layer (color legend is on top). The

colored contour lines indicate the corresponding bulk concentration cmin at which the minimal layer height is

achieved (legend on the right side). There is no layer swelling above the dashed line (up to 1 �M transport protein

concentration). Upper panel: v ¼ 125, roughly corresponding to Karyopherin-b1; Lower panel: v ¼ 40, roughly

corresponding to NTF2. The overall phase diagram topology is similar in both cases, but for smaller protein the

collapse is more pronounced and occurs at lower interaction strengths �. In both panels b ¼ 1:52; l ¼ 1 nm,

corresponding to the ’monomer’ size of roughly four amino acids.

DOI: 10.7554/eLife.10785.010

The following figure supplement is available for figure 6:

Figure supplement 1. Model predictions are robust with respect to the monomer size estimate.

DOI: 10.7554/eLife.10785.011
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of the theoretical predictions with the experimental results is shown in Figure 8 in the range of con-

centrations where direct comparison is possible. Because of the relatively large uncertainty in the

measurements of the absolute layer height, the grafting distance (see Figure 4) and the binding

strengths, the theoretical predications are shown for a range of values approximately corresponding

to the experimental ones. The model reproduces the observed differences in the behavior of Karyo-

pherin-b1 and NTF2 on Nsp1 at physically plausible values of the parameters in the regime of its

validity. It might also explain why no significant change in the layer height (or very limited swelling)

was observed upon addition of transport proteins by other experimental groups (Eisele et al., 2010;

2012): the behavior of both NTF2 and Karyopherin-b1 can be easily shifted into the swelling regime

by relatively small changes in the grafting distance, cohesion or interaction strength, the latter of

which can be modulated by small changes in the pH or salt and denaturant concentrations. Other

patterns revealed by the experimental data shown in Figure 4, such as the dependence of the

Figure 7. The ’phase diagram’ of predicted behaviors: amount of transport protein in the layer. The grayscale

color denotes the degree of layer compaction, hmin=h0, relative to the unperturbed layer (color legend is on top).

The colored contour lines show the amount of adsorbed proteins in the layer per chain monomer. Higher degree

of collapse is correlated with higher accumulation of the proteins in the layer. Upper panel: v ¼ 125, roughly

corresponding to Karyopherin-b1; Lower panel: v ¼ 40, roughly corresponding to NTF2. In both panels b ¼

1:52; l ¼ 1 nm.

DOI: 10.7554/eLife.10785.012
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maximal compaction concentration on the grafting distance, are also qualitatively explained by the

theory. Quantitative comparison of these features requires more analysis of the data and more

detailed approximations, including the sparse and high transport protein density regimes, and will

be presented elsewhere.

Figure 8. Comparison of the theoretical predictions with the experimental data in the layer geometry. Theoretical

predictions for the range of the parameter values approximately corresponding to the experimental ones for Nsp1

layers infiltrated by Karyopherin-b1 and NTF2. Upper panel: layer height vs bulk concentration of the transport

protein. Red: Karyopherin-b1, Blue: NTF2. Lower panel: amount of adsorbed transport protein in the layer as a

function of the concentration in the solution. Red: Karyopherin-b1, Blue: NTF2. The shaded regions correspond to

3:5 < a < 4 nm and �73 < � < �63 for NTF2 and �185 < � < �175 for Karyopherin- b1. For all lines, b ¼

1:52; l ¼ 1 nm and �cr ¼ �1. The insets show the corresponding experimental data from Wagner et al. (2015).

DOI: 10.7554/eLife.10785.013

The following figure supplement is available for figure 8:

Figure supplement 1. Model predictions are robust with respect to the monomer size estimate.

DOI: 10.7554/eLife.10785.014
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The chosen values of b and l correspond to the ’monomer’ size of approximately four amino

acids - roughly the size of one FG patch, reflecting the fact that FG nup interaction with the trans-

port proteins requires this particular local sequence of amino acids (Bayliss et al., 2000; 2002); we

emphasize that our model does not correspond to a randomized amino acid sequence of the FG

nups (Tagliazucchi et al., 2013; Ghavami et al., 2014). The interaction parameter roughly � corre-

sponds to the attractive part of the second virial coefficient of the interaction between the transport

proteins and the monomers, so that � ’ n �
kT
e�=kT , where n is the number of available binding sites on

the protein, and � is the average binding energy of one site (Doi and Edwards, 1998; Pathria, 1996).

Taking into account the possible non-FG interactions, n ~ 6� 14 for Karyopherin and n ~ 2� 5 for

NTF2. This translates to � ~ 2:5� 3kT for the chosen parameter values, which is a reasonable esti-

mate for the average energies of the weak hydrophobic and electrostatic interactions in question.

These numbers also agree with recent estimates using other methods (Kapinos et al., 2014;

Tu et al., 2013). Similarly, assuming that the main contribution to cohesiveness comes from the FG-

FG interactions, the value of �cr ¼ �1 corresponds to �cr ’ 2kT . These values will guide our analysis

of bulk solutions of FG nups and transport proteins in the next section. Importantly, the general

agreement between the theory and experiment is robust with respect to parameterization choices

(see Figure 6—figure supplement 1).

The model also sheds light on another long-standing controversy in the field - the high variability

among different experimental groups of the measured affinities of the transport protein binding to

the FG nups, with values of the measured dissociation constant ranging from several nanomolars to

several micromolars (Bayliss et al., 1999; Kapinos et al., 2014; Eisele et al., 2010; Pyhtila and

Rexach, 2003; Tetenbaum-Novatt et al., 2012). As can be seen in Figure 8, due to the collective

effects and the conformational changes during binding, the adsorption curves are not well described

by the standard Langmiur curve typically used to quantify the interaction in binding assays

TP-cargo complex Schematic representation Results

NTF2 TP-cargo penetrate into Nup aggregates

Imp β TP-cargo penetrate into Nup aggregates

Imp β - IBB-GFP No penetration

Imp β - IBB-MBP-GFP No penetration

(Imp β - ZsGreen) × 4

- IBB

 × 4

GFP

 4

Schematic representation MW(kDa)
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131
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520 TP-cargo penetrate into Nup aggregates

Figure 9. Partitioning of transport proteins into dense FG nup phase: summary of experimental results.

Experimentally, partitioning of the transport proteins (TP) complexes with various cargoes into the dense FG nup

phase depends on the cargo size and the overall interaction strength of the complex with the FG nups. Both

Importin-b (vertebrate homologue of Kap-b1) and NTF2 penetrate the dense phase, but the Importin-b with

either medium (IBB-GFP) or large (IBB-MBP-GFP) cargo does not. However, the very large complex of four

Importin-b complexed with four ZsGreen proteins partitions into the dense phase. The results are for the dense

phase of TtNup98 of Tetrahymena Thermophila recombinantly expressed in bacteria, adapted from Schmidt and

Görlich (Schmidt and Görlich, 2015).

DOI: 10.7554/eLife.10785.015
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(Kapinos et al., 2014). An attempt to fit it with one or a combination of Langmiur isotherms would

lead to different results depending on the concentration range and the grafting density

(Schmidt and Görlich, 2015). The model developed here provides fundamental physical reasons for

the discrepancies in experimental measurements.

Phase separation in bulk solutions of FG nups mixed with transport
proteins
The fundamental physical considerations underlying the behavior of the surface assemblies of FG

nups manifest themselves also in the behavior of mixtures of the FG nups and the transport proteins

in bulk solutions. Such mixtures were systematically studied in Schmidt and Görlich (2015) over a

wide range of FG nups from different species (recombinantly expressed in bacteria), systematically

varying the size of transport protein-cargo complexes. It was found that even in the absence of

transport proteins, solutions of Nup98 FG nucleoporin phase separate into a dense phase with a

very high protein concentration, in equilibrium with a very dilute solution. Importantly, unlike the

previously reported ’gels’ of Nup98 and other FG nucleoporins (Hülsmann et al., 2012; Frey and

Görlich, 2007), these phases form via an equilibrium phase separation mechanism, allowing compar-

ison with our model. Upon addition of cargo-carrying transport proteins bound to such FG nup solu-

tions, the transport protein-cargo complexes either penetrate the dense phase, or stay

predominantly in solution, depending on their size and the interaction strength with the FG nups.

These results are summarized in Figure 9. In this section, we show that the observed patterns natu-

rally follow from the minimal model of this paper.

Binary FG nup/buffer solutions
Phase separations of polymer solutions with significantly strong inter-chain cohesiveness are well

understood. Phase separation is expected when the cohesiveness is strong enough to make the for-

mation of the dense phase energetically favorable to overcome the loss of the chain entropy in the

compact aggregate, j�crj > 1þ 2
N1=2 (in the mean field approximation for N � 1); note that this condi-

tion is independent of any other parameters such as the monomer volume v0 (de Gennes, 1979).FG

nup densities in the co-existing phases can be found from the equality of the FG nup chemical

potentials and the osmotic pressures, as explained in the Methods and the Appendix.

The model predictions for the phase separation in FG nup solutions agree very well with the

experimental data, as shown in Figure 10. The comparison is made for the for the same values of

the parameters b and v0 as in Figure 3 that describes the surface layers FG nups. The inferred value

of the cohesiveness strength �cr » � 1:5 for Nup98, known to be more cohesive than Nsp1, is also

consistent with the behavior of the grafted layers shown in Figure 3. Taken together, this indicates

that the model captures the essential biophysical properties of the FG nup assemblies both in sur-

face grafted geometry and in the bulk solutions.

The model also captures biophysical properties of different FG nups reported in

Yamada et al. (2010), where dimensions of individual FG nups were shown to correlate with

their hydrophobic to charged amino acid content ratio. The differences between the cohesive

collapsed coils - such as Nsp1n (N-terminal domain of Nsp1), Nup100n, Nup116m - and the non-

cohesive extended coils, such as Nsp1m (C-terminal domain of Nsp1), are captured by different

values of �cr, as shown in Figure 11 and Figure 11—figure supplement 1, in accord with the

interpretation of Yamada et al (Yamada et al., 2010). Importantly, the values of �cr arising from

the analysis of the data from Yamada et al. (2010) are entirely consistent with those obtained

from the analysis of the surface assemblies of Nsp1 in experiments by Lim and coworkers

(Kapinos et al., 2014; Wagner et al., 2015) (which used an overlapping segment of the C-termi-

nal domain) and of bulk assemblies of Nup98, Nup110 and 116 in the work by Gorlich and col-

laborators (Schmidt and Görlich, 2015). Transition from the ’extended coil’ regime to the

’collapsed coil’ regime upon increase in the chain cohesiveness strength is known in polymer

physics as the ’coil-globule’ transition and stems from the same physical factors that govern the

changes in height of the grafted layers described in Figure 2.
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Ternary FG nup/transport proteins/buffer solutions
Phase separation in bulk solutions of FG nups and the transport proteins can be understood

through the same theoretical prism. From the theoretical standpoint, at sufficiently high concen-

trations, such mixtures phase separate into a dilute phase in equilibrium with the dense phase,

driven by the inter-chain cohesiveness and the interactions of the FG nups with the transport pro-

teins. The fundamental physics behind this process is the same as in the pure FG nup phase sep-

aration: in the dense phase the magnitude of the energetic/enthalpic interactions is maximized at

the expense of the entropy.

The overall predictions and conclusions of the theory are presented in the phase diagram in Fig-

ure 12. In a range of concentrations, the system phase separates into a dense phase of FG nups

mixed with transport proteins, in equilibrium with a dilute solution. The corresponding phases lying

on the boundary of the phase separation region (shown in black line) are connected with straight

lines. The inset shows the effect of the transport protein-cargo complex size and their interaction

strength with the FG nups on the phase separation. Increasing the interaction strength � or decreas-

ing the complex size v enhances the penetration of the transport proteins and into the dense phase

and increases its overall density (green line). On the other hand, sufficiently big or too weakly inter-

acting particles are excluded from the dense phase, as shown in the red phase separation line,

where the density of the transport proteins is lower inside the dense FG nup phase than in the out-

side solution.

The model semi-quantitatively reproduces experimentally observed patterns of phase separation

in bulk FG nup solutions mixed with different transport protein-cargo complexes as shown in

Figure 10. Phase separation in FG nucleoporin solutions: theory vs. experiment. For combinations of �cr and FG

nup concentrations that lie above the phase separation boundaries shown in solid lines, the system undergoes a

phase separation into the dilute and the dense phases that lie on the boundaries of the phase separation region.

The symbols show the experimentally estimated concentrations of Nup98 from different species in the co-existing

dilute and dense phases from Schmidt and Görlich (2015). The phase separation boundaries are calculated with

the following parameters: N=125 monomers (black) and N=167 monomers in the chain (red), l ¼ 1 nm3, b ¼ 1:52

nm, corresponding to approximately four amino acids per monomer.

DOI: 10.7554/eLife.10785.016

The following figure supplement is available for figure 10:

Figure supplement 1. Phase separation of Nup98s from the remaining two species as well as of yeast

nucleoporins ScNup100/ScNup116 from Schmidt and Görlich (2015) can also be accommodated within the

theoretical model, with slightly different packing fraction and monomer volume.

DOI: 10.7554/eLife.10785.017
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Figure 13 for the mixtures of Nup98 with Importin-b-cargo complexes studied in Schmidt and Gör-

lich (2015) (Importin-b is the vertebrate homologue of the yeast Karyopherin-b1). Specifically, both

NTF2 and Importin-b penetrate the dense FG nup phase, but the complexes of Importin-b with

either medium (IBB-GFP) or large (IBB-MBP-GFP) cargo are excluded. By contrast, a very large com-

plex of four Importin-b molecules with four ZsGreen proteins does partition into the dense FG nup

phase, showing that the large size exclusion is not absolute but can be overcome with stronger inter-

actions. Other observations, such as the lack of penetration of the dense phase by the small TEV-

mCherry (approx 25 kDa) complex, which does not interact with the FG nups (� ¼ 0), are also cap-

tured by the model. The parameters for this analysis were based on those inferred from the analysis

of phase separation of Nup98 in the absence of the transport proteins: N=167 v0 ¼ 1 nm3,

�cr ¼ �1:5. The approximate volumes of different constructs were estimated based on their molecu-

lar weights as explained in the Model section and Figure 9. The interaction parameters of Imp-b

with the FG nups are �NTF2 ¼ �75, �ðImp�bÞ ¼ �215. To incorporate the potential direct repulsive

interactions between the cargo and the FG nups described in Schmidt and Görlich (2015), we

assumed the interaction of the Imp-b-IBB-GFP and Imp-b-IBB-MBP-GFP complexes with the FG

nups to be slightly weaker (� ¼ �200). As a parsimonious estimate, we assumed that the interaction

strength of the Imp-b-ZsGreen tetramer with the FG nups is four times that of an individual Impor-

tin-b. The correct penetration pattern is produced by the FG nup-Imp interaction strengths lying in

the range �220 < �ðImp�bÞ < �200, in a good agreement with the parameter values inferred from the

analysis of the surface layers of Nup98 from Refs. Wagner et al. (2015) and Kapinos et al. (2014);

see Figure 13—figure supplement 1. Small differences in the values of � between different

Figure 11. Dimensions of individual FG nucleoporins in solution: theory vs. experiment. Comparison of the model

predictions for the dimensions of individual FG nups with the observations of Yamada et al (Yamada et al., 2010).

Dimensions of the individual FG nup coils are normalized by the dimensions of the Gaussian chain of the same

length (’relaxed coil’ for the experimental data). Solid black, red, green and blue lines are the theoretical model

predictions for N ¼ 43; 108; 137; 152 corresponding to four amino acids per monomer for the respective FG nups.

The model predictions are independent of the choice of the monomer size v0. Circles: experimental

measurements of the FG nup dimensions from Yamada et al. (2010). Polymer model captures the bimodal

distribution of ’extended’ and ’collapsed’ FG nups. This behavior, known as the coil-globule transition in polymer

literature, reflects physically the same phenomenon as the decrease in the grafted layer height with increase in

cohesiveness strength shown in Figure 2.

DOI: 10.7554/eLife.10785.018

The following figure supplement is available for figure 11:

Figure supplement 1. Classification of individual FG nucleoporins according to their scaling exponent.

DOI: 10.7554/eLife.10785.019
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experimental systems are expected due to the differences in the buffers and the intrinsic sequence

differences between the proteins fragments used in each study.

The model also predicts how the penetration of the transport proteins into the dense phase is

affected by the cohesiveness �cr, whose role in the NPC selectivity and permeability has been the

subject of a vigorous debate (Frey and Görlich, 2007; Schmidt and Görlich, 2015; Lim et al.,

2007; 2008; Wagner et al., 2015; Eisele et al., 2010). At low cohesion, insufficient to cause the

phase separation of the FG nups alone, addition of the transport proteins can trigger the phase sep-

aration and the formation of the mixed dense phase. Further increase in the cohesiveness promotes

formation of an even denser phase and enhances Importin partitioning into it, contrary to the naive

expectation that cohesiveness always inhibits particle penetration in to the FG Nup medium. Never-

theless, further increase in cohesiveness prevents penetration of the transport proteins into the

dense phase, thereby enhancing the permeability barrier as has been suggested before

(Hülsmann et al., 2012; Frey and Görlich, 2007). These results will be explored in detail elsewhere.

The model also might explain a recent report that the aggregation of cohesive FG nup segments

can be reversed by addition of highly concentrated cell lysate (up to 50 mM) (Hough et al., 2015).

Cell lysate has been independently shown to interact with the FG nups non-specifically but strongly

enough to compete with the transport proteins for binding sites (Tetenbaum-Novatt et al., 2012).

In our model this is captured through medium value of �, the interaction strength of the transport

proteins with the FG nups. As can be seen from Figure 12 and Figure 12—figure supplement 1,

addition of a high concentration of attractive proteins to the phase separated FG nup aggregate can

Figure 12. Phase separation in solutions of FG nups mixed with transport proteins: theoretical predictions. For

high enough values of the ratio �=v, mixtures of FG nucleoporins and the transport proteins phase separate into a

dense aggregate containing both nups and transport proteins, and a dilute solution. The black line encloses the

predicted phase separation region approximately corresponding to a mixture of Imp-b and Nup98 calculated at

N ¼ 167, v ¼ 125, � ¼ �200, �cr ¼ �1:5 and �=v ¼ �1:6. The oblique lines connect the coexisting phases

that lie on the boundary of the region. Outside of this region, FG nups and transport proteins are homogeneously

mixed and no phase separation occurs. Inset: Increasing the transport protein size v or decreasing � hinders their

penetration into the dense phase and eventually leads for their complete exclusion as shown in the red dashed

lines connecting the co-existing phases: concentration of the transport proteins in the dense phase is lower than

outside. Vice versa, increasing j�=vj enhances the penetration of the transport proteins into the dense phase as

shown in the green lines.

DOI: 10.7554/eLife.10785.020

The following figure supplement is available for figure 12:

Figure supplement 1. Phase separation region of Figure 12 in a double logarithmic scale.

DOI: 10.7554/eLife.10785.021
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take the system out of the phase separation region, in agreement with the experimental

observations.

Discussion
Mechanistic understanding of transport through the Nuclear Pore Complex is hindered by the com-

plexity of the NPC organization and the absence of experimental methods for directly probing FG

nup conformations and dynamics during transport. One has to rely on the interpretation of indirect

measurements of the FG nup properties in vitro, which are partially incomplete or conflicting. On

the theoretical side, the progress is hampered by the lack of a universally accepted comprehensive

theory of intrinsically disordered proteins that is able to incorporate all the factors dictating the

physico-chemical and nanomechanical properties of the FG nups.

The theoretical model developed here provides a rigorous physical framework for organizing

the known phenomenology of the observed FG nup behaviors and suggests ways to reconcile

the apparently contradictory experimental findings and models of transport. The model relies on

the minimal number of key physical concepts and variables to describe the FG nups and their

interactions with the transport proteins, integrating the multitude of molecular details into a small

number of variables, thus avoiding the over-fitting problem, inherent to models with multiple

unknown parameters. It has been already suggested that the biophysical properties and dimen-

sions of individual FG nups can be, to a large extent, captured in one phenomenological

Figure 13. Transport protein partitioning into dense FG nup phase: theory vs. experiment. Theoretical model

captures the pattern of partitioning of the transport proteins into the dense phase. Symbols connected with

dotted lines show the theoretically predicted co-existing dilute and dense phases of TtNup98 at varying sizes of

transport protein-cargo complexes corresponding to those used in Schmidt and Görlich (2015) and summarized

in Figure 9. Transport proteins Importin-b and NTF2 partition into the dense phase, while larger complexes of

Importin-b with different cargoes do not. Even a large cargo can be configured to penetrate the dense phase as

illustrated by the example of a tetramer of Imp-b-ZsGreen complexes. All theoretical solutions are for the initial

concentrations of 5 �M of Nup98A and 1 �M of the transport protein-cargo complexes (indicated by the pink star

symbol). Parameters used to generate these solutions are established from the analysis of Nup98 phase separation

in the absence of the transport proteins, described in Figure 10: N=167,v0 ¼ 1 nm3, �cr ¼ �1:5; see text for the

interaction parameters of the transport proteins with the FG nups .

DOI: 10.7554/eLife.10785.022

The following figure supplement is available for figure 13:

Figure supplement 1. Adsorption of Karyopherin-b1 into Nup98 layer and the layer height (inset) vs. bulk

concentration of Kap-b1.

DOI: 10.7554/eLife.10785.023
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parameter, the hydrophobic to charged amino acid content ratio, paralleling our cohesiveness

strength �cr (Yamada et al., 2010). Our model extends these concepts into the regime of multi-

ple chain assemblies interacting with transport proteins. We have found that this limited set of

concepts is sufficient to qualitatively, and even semi-quantitatively, explain the experimentally

observed patterns and trends. We expect that explicit inclusion of several important factors such

as the spatial distributions of ions, discrete nature of the binding sites on the transport proteins,

non-linear elasticity of the chains, potential heterogeneity of the FG nup sequence, and more

careful modeling of the microscopic structure of the FG nups assemblies will lead to better quan-

titative agreement. Additional sources of discrepancy are the possible length polydispersity of

the FG nups, transport protein aggregation, and inherent biases of the experimental techniques

(for instance, in the SPR method, for technical reasons the measurement of the layer height lags

behind in time after the measurement of the protein adsorption (Wagner et al., 2015). The the-

ory provides clear experimental predictions for the variation of the properties of FG nup-trans-

port protein assemblies with the experimental conditions such as the grafting density. Such

measurements would allow further systematic refinement of the model.

The analysis of this paper shows that both entropic (’brush-like’) and entalpic/cohesive (’gel-like’)

effects naturally cooperate in determining the spatial structures of the assemblies of FG nucleoporins

with the transport proteins, and suggests how the ’brush’ and the ’gel’ concepts can be reconciled.

Although the overall qualitative predicted behavior of the surface layers is similar for cohesive and

non-cohesive chains alike, quantitative comparison with experiments was only possible by assuming

a certain amount of cohesiveness for the studied FG nups. Our analysis indicates that all FG nups

likely possess some degree of intra- and inter-chain cohesiveness, although only for some of them it

is sufficiently strong to cause aggregation in bulk solutions. The model also shows that the different

classes of ’extended’ and ’collapsed’ FG nups (Yamada et al., 2010) can be accounted for by differ-

ent values of the cohesiveness �cr. Another puzzling observation of the resilience of the NPC trans-

port with respect to the deletion of large numbers of FG nups might be attributed to the fact that

the permeability and the selectivity of the FG nup assemblies are relatively insensitive to the grafting

density in a significant range - at lower grafting densities, the neighboring chains simply expand,

maintaining selective permeability properties of the layer (Popken et al., 2015). Finally, relatively

weak interaction energies of the FG nups among themselves and with the transport proteins inferred

from our analysis are consistent with the high local molecular mobility inside the dense aggregates

observed experimentally in Schmidt and Görlich (2015), Hough et al. (2015).

The success of the theory relies on the very robust physical mechanisms underlying it. Attractive

interactions between long flexible filaments and compact objects, such as folded proteins, cause

their surface assemblies to attain more compact conformations at low concentrations of the trans-

port proteins and swollen conformations at higher concentrations. Similarly, in bulk solutions of

ungrafted chains, inter-chain interactions and the interactions with transport proteins lead to phase

separation and formation of a dense phase at sufficiently high concentrations. These behavior motifs

are always expected irrespective of the nature of the interactions on the molecular scale. In this

sense, all such systems lie in the same ’universality class’ (de Gennes, 1979). The ability of the model

to capture the behavior of different FG nups in different geometries under a variety of experimental

conditions makes it a useful tool for the development of further, more refined, models. Finally, the

analysis of this paper underscores the importance of always considering the presence of the trans-

port factors when thinking about NPC architecture.

The theory also sheds light on the discrepancies in the experimental measurements of the binding

affinities of the FG nups to transport proteins. Depending on the experimental procedure, the values

of the measured dissociation constants range from several nanomolars to several micromolars. More-

over, some of these measured affinities appear to be inconsistent with the observed transport times

in the millisecond range (Yang and Musser, 2006; Yang et al., 2004; Tetenbaum-Novatt and

Rout, 2010; Tetenbaum-Novatt et al., 2012; Tu et al., 2013; Denning et al., 2003; Ma, 2010).

Our theory shows how these discrepancies might stem from the fundamental statistical thermody-

namics of the transport protein-FG nup interaction. First, as shown in this paper, penetration of the

transport proteins into an FG nup layer is a cooperative process, not described well by a single Lang-

miur isotherm typically used in the interpretation of binding assays. Second, penetration of the trans-

port proteins into the layer is determined not only by enthalpic but also entropic effects and

therefore the measured effective affinity does not directly reflect the interaction energies. Finally,
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even the purely enthalpic part of the interaction can vary with the experimental conditions, because

the average number of monomers available to bind to a transport protein depends on the monomer

concentration, which in turn depends on the layer height and grafting distance (Kapinos et al.,

2014; Schoch et al., 2012; Tu et al., 2013; Sethi et al., 2011). All this highlights the fact that the

classical characterization of inter-molecular interactions by a single affinity value is not informative

for complex multivalent interactions of spatially extended objects such as the FG nups. It is also

worth bearing in mind that a 1000-fold difference in the dissociation constant translates into » 7kT

difference in the effective interaction strength - a relatively small difference that can be easily influ-

enced by many factors.

The results of this paper have important implications for the behavior of the Nuclear Pore

Complex and design of bio-molecular sorters based on the same principles. One has to be care-

ful in making inference about the NPC properties based on the in vitro results because the

detailed features of the actual spatial morphologies of FG nup assemblies in the channel-like

geometry of the NPC are likely to differ from flat and bulk geometries. Analysis of this paper

establishes the pertinent parameters that constrain possible scenarios and guide future model

building. Recent work on coarse grained models of flexible chains in channel geometries allows

us to gauge the implications of the findings in the flat and bulk geometries for FG nup morphol-

ogies within the NPC (Osmanović et al., 2013a; Coalson et al., 2015; Peleg et al., 2011).

Behavior of non-cohesive or weakly cohesive chains in relatively wide pores - wider than the natu-

ral height of the planar layer - is expected to be qualitatively similar to that of flat layers. In this

case, the chains form a relatively dense layer along the inner surface of the channel, and increase

in cohesiveness compacts the layer towards the walls. Addition of transport proteins causes either

collapse or swelling of this surface layer, analogously to the behavior in the flat geometry. In the

other limit of strongly cohesive chains in relatively narrow channels, the monomers of the chains

accumulate at the pore center in a plug-like shape. It is still unknown in what regime the NPC

lies, and further computational and experimental work is required. These findings are also inter-

esting in the more general context of intrinsically disordered proteins, where physics concepts

are often invoked to organize and explain the experimental observations (Uversky, 2002;

van der Lee et al., 2014; Das et al., 2015).

Although the qualitative behavior motifs predicted by the theory and borne out by the experi-

ments are very general, the specific quantitative features such as the exact height or the degree of

compaction are rather sensitive to the parameter values, such as the grafting distance, the density

and the interaction strength. This has been already noted in other computational theories

(Popken et al., 2015; Osmanović et al., 2013a; Tagliazucchi et al., 2013; Gamini et al., 2014).

This raises a question - how the Nuclear Pore Complex functioning remains so invariant across spe-

cies despite the large variations in sizes and spatial organization. Similarly puzzling in this light is the

ability of the NPC to maintain its function despite large structural perturbations (Strawn et al.,

2004; Hülsmann et al., 2012). One possible solution to this puzzle is that the NPC is exquisitely

”fine tuned” in a sense that it works correctly only when all the molecular details are right - the FG

nup sequence and localization, local pH, ionic strength and concentrations of other molecules - and

these conditions are maintained by the cellular homeostasis. On the other hand, the results of this

model suggest another possibility - that the NPC is ’robust’ in a sense that any structure with the

approximately right physical properties will function nearly optimally, which could explain the NPC

resilience with respect to structural damage and re-arrangements. This provides an interesting exam-

ple of functional conservation in the absence of sequence conservation. The importance of this ques-

tion goes beyond the NPC and arises in the discussion of many cellular machines and networks

(Alon et al., 1999; Bialek, 2012).
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Appendix

Details of the phase separation calculations

Two-component (FG nup/buffer) solutions
In a system where the only solute are the FG Nups without the transport proteins, phase

separation occurs for sufficiently high j�crj. The volume fractions of the monomers  1 and  2 in

the co-existing phases are determined from the equality of the chemical potentials � and the

osmotic pressures P in the separated phases:

0 ¼ � ð 1Þ�� ð 2Þ ¼
df

d 
j ¼ 1

�
qf

q 
j ¼ 2

0 ¼ Pð 1Þ�Pð 2Þ

Pð Þ ¼ �f ð Þþ 
df

d 
;

(1)

where the free energy f ð Þ is given by Equation (4) in the main text with f ¼ 0. Numerical

solution of these equations produces the phase diagram of Figure 10 in the main text.

Three-component (FG nups/transport proteins/buffer) solutions
In mixed solutions of the FG nups and transport proteins, the chemical potentials of each

species in the coexisting phases are equal to each other, as is the osmotic pressure in both

phases, similar to the two component case above (de Gennes, 1979):

0 ¼
qf

q 
j ;f¼ 1;f1

�
qf

q 
j ;f¼ 2;f2

0 ¼
qf

qf
j ;f¼ 1;f1

�
qf

qf
j ;f¼ 2 ;f2

0 ¼ Pð 1;f1Þ�Pð 2;f2Þ

Pð ;fÞ ¼ �f ð ;fÞþ 
qf

q 
þf

qf

qf
:

(2)

However, unlike in the two component solution, three Equation (2) in themselves are not

sufficient to determine the four unknowns ð 1;f1Þ and ð 2;f2Þ. In the ternary solutions FG

nups/transport proteins/buffer, the densities of both components in the coexisting phases

depend also on the initial concentrations f and  that satisfy the following conservation laws:

 1ð1� rÞþ 2r¼  

f1ð1� rÞþf2r¼f;
(3)

where r ¼ ðV � V2Þ=V is the fraction of volume occupied by the phase with ð 2;f2Þ.

Together, Equation (2-3) provide five equations for five variables ð 1;f1Þ, ð 2;f2Þ and r. Their

solution results in the phase diagrams of Figures 11–12 in the main text.
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