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Abstract

The vortex-wave system is a version of the vorticity equation gov-
erning the motion of 2D incompressible fluids in which vorticity is split
into a finite sum of Diracs, evolved through an ODE, plus an Lp part,
evolved through an active scalar transport equation. Existence of a
weak solution for this system was recently proved by Lopes Filho, Miot
and Nussenzveig Lopes, for p > 2, but their result left open the exis-
tence and basic properties of the underlying Lagrangian flow. In this
article we study existence, uniqueness and the qualitative properties
of the (Lagrangian flow for the) linear transport problem associated to
the vortex-wave system. To this end, we study the flow associated to
a two-dimensional vector field which is singular at a moving point. We
first observe that existence and uniqueness of the regular Lagrangian
flow are ensured by combining previous results by Ambrosio and by La-
cave and Miot. In addition we prove that, generically, the Lagrangian
trajectories do not collide with the point singularity. In the second
part we present an approximation scheme for the flow, with explicit
error estimates obtained by adapting results by Crippa and De Lellis
for Sobolev vector fields.

1 Introduction

The purpose of this article is to study the flow associated to a particular class
of vector fields that contain a point singularity, which arise as weak solutions
of the vortex-wave system. For a smooth vector field b : [0, T ] × R2 → R2,
the flow of b is the unique map X : [0, T ]× R2 → R2 defined by

d

dt
X(t, x) = b (t,X(t, x)) t ∈ [0, T ],

X(0, x) = x ∈ R2.
(1.1)
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It turns out that, in some cases, even if b is not smooth, it is still possible to
define an extended notion of flow for b, nowadays called regular Lagrangian
flow (see, e.g., Definition 1.1 below). In their pioneering work, DiPerna and
Lions [8] proved the existence and uniqueness of the flow for vector fields
belonging to L1(W 1,1

loc ) with suitable decay at infinity and with bounded
divergence (see assumptions (H1) and (H3) below). The Sobolev-type regu-
larity assumptions on b were later relaxed by Ambrosio [1], allowing for BV
vector fields (see assumption (H2)). There is a wide literature devoted to
this issue, see e.g. [2, 3, 4] and references therein for additional or related
results. The problem we address here is that the vector field associated to
the vortex-wave system is not BV .

We will focus on the case where b is given by

b(t, x) = v(t, x) +H(t, x), (1.2)

where the field v enters the class of vector fields considered in the theory
of DiPerna and Lions and Ambrosio, and where H is a special vector field
which is singular along a curve in space time. More precisely, we assume
that the first component v satisfies the same assumptions as in [1]:

(H1)
v

1 + |x|
∈ L1

(
[0, T ], L1(R2)

)
+ L1

(
[0, T ], L∞(R2)

)
,

(H2) v ∈ L1
(
[0, T ],BVloc(R2)

)
,

(H3) div (v) ∈ L1
(
[0, T ], L∞(R2)

)
.

The result of Ambrosio [1] ensures existence and uniqueness of the regular
Lagrangian flow associated to such fields. In addition, in our context, we
require the following assumption:

(H4) v ∈ L∞
(
[0, T ], Lq(R2)

)
for some 2 < q ≤ +∞.

Next, we define our singular part H as follows. We consider a given Lipschitz
trajectory in R2:

z ∈W 1,∞([0, T ],R2). (1.3)

We introduce the map

K : R2 \ {0} → R2, K(x) =
x⊥

|x|2
=

(−x2, x1)
|(x1, x2)|2

and we define
H(t, x) = K (x− z(t)) . (1.4)
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Then H satisfies (H1) and (H3): actually, it is divergence free. It does not
satisfy (H2) therefore such a field is not covered by the result of Ambrosio
[1]. However note that H is smooth away from the set {(t, z(t)), t ∈ [0, T ]}.

The structure described by (1.2) includes that of solutions of the vortex-
wave system in the special case of a single vortex together with compactly
supported Lp vorticity, p > 1.

Next we recall, following DiPerna and Lions [8] and Ambrosio [1], the
definition of regular Lagrangian flow. We denote by L2 the Lebesgue mea-
sure on R2.

Definition 1.1 (Regular Lagrangian flow). We say that a map X : [0, T ]×
R2 → R2 is a regular Lagrangian flow for the vector field b if:

(i) There exists an L2-negligible set S ⊂ R2 such that for all x ∈ R2 \ S
the map t 7→ b(t,X(t, x)) belongs to L1([0, T ]), and

X(t, x) = x+

∫ t

0
b(s,X(s, x)) ds, ∀t ∈ [0, T ].

(ii) For all R > 0 there exists LR > 0 such that1

X(t, ·)#(L2 BR) ≤ LRL2, ∀t ∈ [0, T ],

i.e. L2
(
X(t, ·)−1(A) ∩BR

)
≤ LRL2(A) for every Borel set A ⊂ R2.

In Section 2 we combine the abstract theory by Ambrosio [2] (Theo-
rem 2.1 below), see also [3], exploiting the link between the ODE and the
continuity and transport equations (see (2.1)-(2.2)), with a version of the
renormalization result established by Lacave and Miot [12] to show existence
and uniqueness for the regular Lagrangian flow of b. Moreover, we prove the
additional property that for L2-a.e. x ∈ R2 the trajectory starting from the
point x does not collide with the singularity point. More precisely, we prove
the following theorem:

Theorem 1.2. Let b be as in (1.2), where v satisfies (H1)− (H2)− (H3)−
(H4) and where H is given by (1.4). Then there exists a unique regular
Lagrangian flow. Moreover, for L2-a.e. x ∈ R2 we have

X(t, x) 6= z(t), ∀t ∈ [0, T ].

1Here and in the following, given a Borel measure µ, we denote by X(t, ·)#µ the push-
forward of the measure µ by the map X(t, ·).
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Observe that, by the very definition of regular Lagrangian flow, the ab-
solute continuity of the measure X(t, ·)#L2 with respect to L2 implies, by
Fubini’s theorem, that for L2-a.e. x ∈ R2 we have X(t, x) 6= z(t) for L1-a.e.
t ∈ [0, T ]. The main point of Theorem 1.2 is that collisions between the La-
grangian trajectories and the singularity point are avoided for all t ∈ [0, T ].
Indeed Proposition 2.4 yields a quantitative control of the amount of La-
grangian trajectories getting closer than ε to the point singularity: the proof
of this proposition uses the additional assumption (H4). We mention that
an analogous control on the trajectories was performed in the setting of the
Vlasov-Poisson equation with singular fields by Caprino, Marchioro, Miot
and Pulvirenti [6].

In the second part of this work we present an effective construction of
the regular Lagrangian flow by an approximation argument. In contrast
with the point of view adopted in the first part, this construction does not
rely on the link between the ODE and the PDE. Moreover, we provide a
quantitative rate of convergence, by extending to our setting the estimates
performed by Crippa and De Lellis [7] for vector fields without singular part.
We restrict ourselves to vector fields satisfying the stronger assumptions:

(H ′1) v ∈ L∞([0, T ]× R2),

(H ′2) ∇v ∈ L1
(
[0, T ], Lp(R2)

)
for some 1 < p ≤ +∞,

(H ′3) div (v) ∈ L1
(
[0, T ], L∞(R2)

)
.

In Section 3 we define a suitable smooth approximation (bn)n∈N of b, and
we denote by Xn the unique corresponding classical flow. We prove the
following theorem:

Theorem 1.3. Let v satisfy (H ′1) − (H ′2) − (H ′3). Let R > 0. There exists

R̃ and C, depending on R, T , ‖v‖L∞(L∞), ‖div (v)‖L1(L∞), ‖∇v‖L1(Lp), and
‖z‖W 1,∞, such that, denoting by

δ(n,m) = ‖bn − bm‖L1([0,T ]×B
R̃
)

the following estimate holds:∫
BR

sup
t∈[0,T ]

|Xn(t, x)−Xm(t, x)| dx ≤ C

| ln δ(n,m)|1/3
.

In particular, (Xn)n∈N is a Cauchy sequence in L1
loc

(
R2, L∞ ([0, T ])

)
, and it

converges to X in L1
loc

(
R2, L∞ ([0, T ])

)
, where X is the regular Lagrangian

flow relative to b as in Theorem 1.2.
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To conclude this introduction, we describe the vortex-wave system and
the connection between the present work and this system. In two-dimensional
incompressible fluids, we consider a flow with initial vorticity consisting of
the superposition of a diffuse part ω0 ∈ Lp for some p ≥ 1 and a point vortex
located at z0 ∈ R2, with unit strength. The evolution of vorticity can be
described by a system of equations called the vortex-wave system (with one
single point vortex): 

∂tω + (v +H) · ∇ω = 0

v =
1

2π
K ∗ ω

H(t, x) =
1

2π
K(x− z(t))

ż(t) = v(t, z(t)).

(1.5)

This system was introduced by Marchioro and Pulvirenti [14, 15]. It is
an idealized model for two-dimensional flows where regions of sharply con-
centrated vorticity interact with a distributed vorticity background. Such
flows arise naturally as simplified models in geophysical flows and in plasma
dynamics, see [9, 16, 17, 18]. There are two natural notions of weak solu-
tion for this system, one is a solution in the sense of distributions, called
Eulerian solution, while the other is a solution for which the diffuse part
of the vorticity is constant along the trajectories of the flow, called La-
grangian solution, see [10, 12] for precise definitions. (By ‘trajectories of
the flow’ we mean the flow associated to the vector field b = v +H above.)
In [14, 15], Marchioro and Pulvirenti established global existence of a La-
grangian solution with ω ∈ L∞(L1 ∩ L∞). In [10], Lopes Filho, Miot and
Nussenzveig Lopes established global existence of an Eulerian solution with
vorticity ω ∈ L∞(L1 ∩ Lp), with p > 2. For any p > 2 Lagrangian solutions
to the vortex-wave system are Eulerian. The converse was left open in [10].
The issue of the Lagrangian formulation is the natural requirement that
flow trajectories should not collide with the point vortex. When p = +∞,
almost-Lipschitz regularity for the velocity (1/2π)K ∗ ω enables to define
flow trajectories in the classical sense, which do not intersect with the point
vortex, starting from any x 6= z0 [14, 15]. For p < +∞ this property is
unclear. In Section 4, we use the results established in Sections 2 and 3 to
show that any Eulerian solution with ω ∈ L∞(L1 ∩ Lp), p > 2, gives rise to
a regular Lagrangian flow such that ω is constant along the flow trajecto-
ries, which do not, generically, collide with the point vortex. As it happens,
when p > 2, the assumptions (H ′1) − (H ′2) − (H ′3) are all satisfied and, in
particular, the point vortex trajectory t 7→ z(t) is Lipschitz.
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2 Proof of Theorem 1.2

In the theory of DiPerna and Lions and Ambrosio [1, 2, 8], the existence,
uniqueness and the stability properties of the flow associated to a field b are
linked to the well-posedness of the corresponding continuity equation

∂tu+ div (bu) = 0 on (0, T )× R2, u(0) = u0 (2.1)

and transport equation

∂tu+ b · ∇u = 0 on (0, T )× R2, u(0) = u0. (2.2)

Note that one passes formally from the ODE to the continuity and transport
equations by noticing that if X solves (1.1) then X(t, ·)#u0 solves (2.1), and
u0◦X(t, ·)−1 solves (2.2). In the non-smooth case, we consider distributional
solutions to (2.1) and (2.2). Such distributional formulations make sense as
soon as bu and udiv (b) belong to L1

loc.
As a matter of fact, we have the following general abstract result due

to Ambrosio [2], somewhat extending this connection to the non smooth
context:

Theorem 2.1 (Ambrosio [2], Theorems 3.3 and 3.5). Let b be a given vec-
tor field in L1

loc([0, T ] × R2). If existence and uniqueness for (2.1) hold in
L∞

(
L1 ∩ L∞

)
then the regular Lagrangian flow of b exists and is unique.

And, besides, existence and uniqueness for (2.1) hold for vector fields
satisfying the assumptions (H1)− (H2)− (H3) or (H ′1)− (H ′2)− (H ′3) [1, 8].

Now, in the case where b is given by (1.2), the PDE well-posedness
results cannot be applied directly because of the singular field H. However,
the following holds:

Proposition 2.2. Let b be given by (1.2).
(1) Let v satisfy the assumptions (H1) − (H2) − (H3). Let u0 ∈ L1 ∩ L∞.
Then (2.1) has a unique solution u ∈ L∞

(
L1 ∩ L∞

)
.

(2) Let v satisfy the assumptions (H ′1) − (H ′2) − (H ′3). Let u0 ∈ L1 ∩ Lr,
with r > 2. Then (2.1) has a unique solution u ∈ L∞

(
L1 ∩ Lr

)
.

Remark 2.3. Since H belongs to Laloc if and only if 1 ≤ a < 2, the condition
r > 2 in (2) is a natural requirement to give sense to the product div (Hu) =
H · ∇u in the sense of distributions.

Proof. First, existence of a distributional solution follows in both cases from
standard regularization arguments.
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The argument for uniqueness is strictly analogous to the one of Lacave
and Miot [12]. We give the main lines for the reader’s convenience. First,
using the by now standard methods introduced in [1, 8], it suffices to show
that any solution u satisfies the renormalization property:

∂t|u|+ div ((v +H)|u|) = 0. (2.3)

This is proved in [12] for the case (1). Similar arguments, which we sketch
below, lead to (2.3) in the case (2). First, we observe that (2.3) holds in
the sense of distributions on the complement of the set {(t, z(t)), t ∈ [0, T ]}.
Indeed, v+H is regular enough in that set so that the renormalization results
of [1, 8] hold. We next establish (2.3) in (0, T )×R2. Let ϕ ∈ C∞c ((0, T )×R2)
and let χ ∈ C∞(R2) be a radial function such that 0 ≤ χ ≤ 1, χ = 0 on B1/2

and χ = 1 on Bc
1. For ε > 0 we set χε(t, x) = χ((x− z(t))/ε) and ϕε = ϕχε.

Since ϕε is compactly supported away from the set {(t, z(t)), t ∈ [0, T ]} we
have ∫∫

|u|
(
∂tϕε + (v +H) · ∇ϕε) dx dt = 0.

Expanding the previous expression yields∫∫
|u|χε(∂tϕ+ (v +H) · ∇ϕ) dx dt

+

∫∫
|u|ϕ

(
− ż(t)

ε
· ∇χ

(
x− z(t)

ε

)
+ (v +H)(t, x) · ∇χε(t, x)

)
dx dt = 0.

We remark that H · ∇χε = 0. Therefore by Hölder’s inequality the second
term is bounded by C(ϕ)(‖ż‖L∞ + ‖v‖L∞(L∞))‖u‖L∞(Lr)‖ε−1∇χ(ε−1·)‖Lr′
which vanishes when ε tend to 0 because r′ < 2. Hence by applying
Lebesgue’s theorem to the first term we finally obtain∫∫

|u|
(
∂tϕ+ (v +H) · ∇ϕ) dx dt = 0.

Combining Part (1) of Proposition 2.2 and Theorem 2.1 we obtain the
existence and uniqueness of the regular Lagrangian flow X in Theorem 1.2.
Therefore we only have to prove that for L2-a.e. x ∈ R2 no collision between
X(t, x) and z(t) occurs on [0, T ]. This is a direct consequence of the following
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Proposition 2.4. For 0 < ε < 1 and R > 0, let

P (ε,R) =

{
x ∈ BR \ S s.t. min

t∈[0,T ]
|X(t, x)− z(t)| < ε

}
,

where S is as in Definition 1.1. Then

L2(P (ε,R)) ≤ C(T, LR, ‖v‖L∞(Lq) + ‖ż‖L∞)ε
1− 2

q .

Proof. We adapt the strategy introduced in [6] for the Vlasov-Poisson equa-
tion. Here, we set α = 1− 2/q > 0. We introduce

∆T = λεβ,

where 0 < λ < 1 is a parameter to be determined later, and where

β =
1 + α/q

1− 1/q
≥ 1.

We set

N =

[
T

∆T

]
− 1

and we define
ti = i∆T, i = 0, . . . , N, tN+1 = T,

so that

[0, T ] =
N⋃
i=0

[ti, ti+1] with |ti+1 − ti| ≤ ∆T, ∀i = 0, . . . , N.

We first consider the case 2 < q < +∞. We set

A =

{
x ∈ BR \ S :

∫ ti+1

ti

|v(s,X(s, x))|q ds ≤ ε−α, ∀i ∈ {0, . . . , N}
}

and for i ∈ {0, . . . , N} we set

Bi =

{
x ∈ BR \ S :

∫ ti+1

ti

|v(s,X(s, x))|q ds ≥ ε−α
}
.

By Chebyshev’s inequality and Fubini’s theorem we have

L2(Bi) ≤ εα
∫
BR

∫ ti+1

ti

|v(s,X(s, x))|q ds dx

= εα
∫ ti+1

ti

∫
BR

|v(s,X(s, x))|q dx ds.
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Using Property (ii) in Definition 1.1 for X(s, ·) and the assumption (H4) for
v we get

L2(Bi) ≤ LRεα‖v‖L∞(Lq)(ti+1 − ti).

Therefore

L2
(

N⋃
i=0

Bi

)
≤ LRT‖v‖L∞(Lq)ε

α. (2.4)

Then, let x ∈ P (ε,R) ∩A and let s0 ∈ [0, T ] such that

|X (s0, x)− z(s0)| < ε.

By continuity, we may assume that s0 ∈ [0, T ), hence we have s0 ∈ [ti, ti+1)
for some i ∈ {0, . . . , N}. Let s1 ≤ ti+1 maximal such that |X (t, x)− z(t)| <
2ε on [s0, s1). If s1 = ti+1 then x ∈ X(ti+1, ·)−1

(
B(z(ti+1), 2ε)

)
∩ BR. We

assume then that s1 < ti+1. For L1-a.e. t ∈ [s0, s1) we have Ẋ(t, x) =
b(t,X(t, x)). Now we observe that, even though b is not uniformly bounded,
the map t 7→ |X(t, x) − z(t)| is Hölder continuous for each x ∈ A. Indeed,
for L1-a.e. t ∈ [s0, s1) such that X(t, x) 6= z(t) we get, using that

K(y) · y = 0, ∀y ∈ R2 \ {0},

d

dt
|X(t, x)− z(t)| = X(t, x)− z(t)

|X(t, x)− z(t)|
·
(
v(t,X(t, x))− ż(t)

)
,

hence ∣∣∣∣ ddt |X(t, x)− z(t)|
∣∣∣∣ ≤ |v(t,X(t, x))|+ |ż(t)|. (2.5)

Hence for all t ∈ [s0, s1] we have by Hölder inequality

|X(t, x)− z(t)| = |X(s0, x)− z(s0)|+
∫ t

s0

d

ds
|X(s, x)− z(s)| ds

< ε+

∫ t

s0

|v(s,X(s, x))| ds+

∫ t

s0

|ż(s)| ds

≤ ε+ (ti+1 − ti)1−
1
q

(∫ ti+1

ti

|v(s,X(s, x))|q ds
) 1
q

+ ‖ż‖L∞(ti+1 − ti).
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Finally, by definition of the set A and by definition of β ≥ 1 we get

|X(t, x)− z(t)| ≤ ε+ λ
1− 1

q ε
β(1− 1

q
)−α

q + ‖ż‖L∞λεβ

≤ ε+ λ
1− 1

q ε+ ‖ż‖L∞λε.

Now we choose λ so that

λ
1− 1

q + ‖ż‖L∞λ < 1.

For this choice of λ we obtain |X(s1, x)− z(s1)| < 2ε, which contradicts the
definition of s1 and shows that we must have s1 = ti+1. It follows that

A ∩ P (ε,R) ⊂
N⋃
i=0

X(ti+1, ·)−1
(
B(z(ti+1), 2ε)

)
∩BR.

Therefore in view of (ii) in Definition 1.1,

L2(A ∩ P (ε,R)) ≤
N∑
i=0

L2
(
X(ti+1, ·)−1

(
B(z(ti+1), 2ε)

)
∩BR

)
≤ (N + 1)LR(4πε2)

and finally

L2(A ∩ P (ε,R)) ≤ 4πLRTλ
−1ε2−β. (2.6)

Combining (2.4), (2.6) and using the definition of λ we obtain

L2(P (ε,R)) ≤ C(T, LR, ‖v‖L∞(Lq), ‖ż‖L∞)(εα + ε2−β).

Since 2− β = α, this yields the conclusion.

We now study the case where q =∞, which is easier and does not require
to introduce the sets Bi and A. Indeed, let x ∈ P (ε,R). Coming back to
(2.5) and proceeding similarly as before we obtain for s ∈ [s0, s1)

|X(t, x)− z(t)| ≤ ε+ λε(‖v‖L∞(L∞) + ‖ż‖L∞) < 2ε

provided that
λ(‖v‖L∞(L∞) + ‖ż‖L∞) < 1.

This shows that

P (ε,R) ⊂
N⋃
i=0

X(ti+1, ·)−1
(
B(z(ti+1), 2ε)

)
∩BR,

and the conclusion then follows as before.
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3 Proof of Theorem 1.3

We start by defining the smooth approximation involved in Theorem 1.3.
Let (ρn)n∈N be the usual sequence of Friedrichs mollifiers, namely ρn ∈
C∞(R2,R+),

∫
R2 ρn = 1 and supp(ρn) ⊂ B(0, 1/n) for all n ∈ N∗. Let

vn = ρn ∗ v and let

Kn(x) =
x⊥

|x|2 + 1
n2

, x ∈ R2,

which defines a globally bounded, divergence free and smooth vector field
on R2. We finally set

bn(t, x) = vn(t, x) +Kn(x− z(t)).

We first remark that (|Xn(t, x)−z(t)|)n∈N is uniformly Lipschitz in time
even though bn is not uniformly bounded in L∞. Indeed, by the same
computation leading to (2.5), using that Kn(y) · y = 0 and (H ′1), we have∣∣∣∣ ddt |Xn(t, x)− z(t)|

∣∣∣∣ ≤ |vn(t,Xn(t, x))|+ |ż(t)| ≤ ‖v‖L∞(L∞) + ‖ż‖L∞ .

(3.1)

In particular, we have the local equiboundedness property

‖Xn‖L∞([0,T ]×BR) ≤ R+ 2‖z‖L∞ + (‖v‖L∞(L∞) + ‖ż‖L∞)T. (3.2)

On the other hand, since div (bn) = ρn ∗ div (v) we infer from (H ′3) that

sup
n≥0

∫ T

0
‖div (bn)(s)‖L∞ ds ≤ L0 <∞. (3.3)

In particular it follows from the standard theory on Jacobians that

Xn(t, ·)#L2 ≤ eL0L2, ∀t ∈ [0, T ]. (3.4)

Part of our subsequent analysis is borrowed from [7]: we introduce

R̃ = R+ 2‖z‖L∞ + (‖v‖L∞(L∞) + ‖ż‖L∞)T

and

δ(n,m) = ‖bn − bm‖L1([0,T ]×B
R̃
).

We consider the positive quantity

gn,m =

∫
BR

sup
t∈[0,T ]

ln

(
|Xn(t, x)−Xm(t, x)|

δ(n,m)
+ 1

)
dx. (3.5)
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Lemma 3.1. We have

gm,n ≤ C| ln δ(n,m)|2/3

where C depends only on R, T , L0, ‖v‖L∞(L∞), ‖ż‖L∞, and ‖∇v‖L1(Lp).

From now on C will denote a positive constant depending only on R, T ,
L0, ‖v‖L∞(L∞), ‖ż‖L∞ , and ‖∇v‖L1(Lp).

Before proving Lemma 3.1 we show how it implies Theorem 1.3. In the
following we will sometimes write δ instead of δ(m,n).

Proof of Theorem 1.3 with Lemma 3.1.
We fix η > 0 to be determined later. By Chebychev’s inequality and

Lemma 3.1 we can find a set K ⊂ BR such that L2(BR \K) ≤ η and

sup
t∈[0,T ]

ln

(
|Xn(t, x)−Xm(t, x)|

δ
+ 1

)
≤ C| ln δ|2/3

η
, for x ∈ K. (3.6)

Using (3.2), it follows that∫
BR

sup
t∈[0,T ]

|Xn(t, x)−Xm(t, x)| dx

≤
∫
BR\K

sup
t∈[0,T ]

|Xn(t, x)−Xm(t, x)| dx+

∫
K

sup
t∈[0,T ]

|Xn(t, x)−Xm(t, x)| dx

≤ CL2(BR \K) + C sup
x∈K

sup
t∈[0,T ]

|Xn(t, x)−Xm(t, x)|

≤ C
(
η + δ exp

(
C| ln δ|2/3/η

))
,

where we have used (3.6) in the last inequality. We finally optimize the
choice of the parameter η as follows. We set

η ≡ 2C

| ln δ|1/3
,

so that exp(C| ln δ|2/3/η) = exp(| ln δ|/2) = δ−1/2. This yields∫
BR

sup
t∈[0,T ]

|Xn(t, x)−Xm(t, x)| dx ≤ C

| ln δ(n,m)|1/3
. (3.7)

In particular, we infer that (Xn)n∈N is a Cauchy sequence converging to some
Y : [0, T ] × R2 → R2 in the space L1

loc

(
R2, L∞ ([0, T ])

)
. Finally, the fact

that Y is the (unique) regular Lagrangian flow associated to b is standard,
and we omit the proof. �
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Remark 3.2. Given the strong convergence of (Xn)n∈N to X together with
the uniform bound (3.4) we infer that under assumptions (H ′1)−(H ′2)−(H ′3)
the constant LR in Definition 1.1 actually does not depend on R.

We finally give the
Proof of Lemma 3.1.

Let ε > 0 be a small parameter to be chosen later. We consider the set

P (n, ε) =

{
x ∈ R2 s.t. min

t∈[0,T ]
|Xn(t, x)− z(t)| < ε

}
.

Using Proposition 2.4 applied to Xn, with q =∞, and thanks to (3.4), which
yields a uniform bound with respect to n, we obtain

L2(P (n, ε)) ≤ Cε, (3.8)

where C depends only on T , L0, ‖v‖L∞(L∞), ‖ż‖L∞ , and ‖∇v‖L1(Lp). Next,

gn,m = Gn,m + Bn,m,

where

Gn,m =

∫
BR\[P (n,ε)∪P (m,ε)]

sup
t∈[0,T ]

ln

(
|Xn(t, x)−Xm(t, x)|

δ
+ 1

)
dx,

Bn,m =

∫
P (n,ε)∪P (m,ε)

sup
t∈[0,T ]

ln

(
|Xn(t, x)−Xm(t, x)|

δ
+ 1

)
dx.

By (3.2) and (3.8),
Bn,m ≤ C| ln δ|ε. (3.9)

We next estimate the second part, for which we can adapt the proof of
Theorem 2.9 in [7] for Sobolev vector fields since H is regular away from the
set {(t, z(t)), t ∈ [0, T ]}. We have

sup
t∈[0,T ]

ln

(
|Xn(t, x)−Xm(t, x)|

δ
+ 1

)
≤
∫ T

0

∣∣∣∣ ddtXn(τ, x)− d

dt
Xm(τ, x)

∣∣∣∣ (|Xn(τ, x)−Xm(τ, x)|+ δ)−1 dτ

≤
∫ T

0

|bn (τ,Xn(τ, x))− bm (τ,Xm(τ, x))|
|Xn(τ, x)−Xm(τ, x)|+ δ

dτ.
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Writing

bn(Xn)− bm(Xm) =
[
bn(Xn)− bm(Xn)

]
+
[
bm(Xn)− bm(Xm)

]
we further obtain Gn,m ≤ G1n,m + G2n,m, where

G1n,m =
1

δ

∫ T

0

∫
BR

|bn (τ,Xn(τ, x))− bm (τ,Xn(τ, x))| dx dτ

and

G2n,m =

∫ T

0

∫
BR\[P (n,ε)∪P (m,ε)]

|bm (τ,Xn(τ, x))− bm (τ,Xm(τ, x))|
|Xn(τ, x)−Xm(τ, x)|

dx dτ.

By definition of R̃ and by (3.4) and (3.2) we obtain

G1m,n ≤
eL0

δ

∫ T

0

∫
B
R̃

|bn − bm|(τ, y) dy dτ = eL0 . (3.10)

We now estimate G2m,n. Let 0 ≤ χε ≤ 1 be a smooth function such that
χε = 0 on B(0, ε/2) and χε = 1 on B(0, ε)c and let

Hm,ε(t, x) = (Kmχε)(x− z(t)), bm,ε = vm +Hm,ε.

For x ∈ BR \ [P (n, ε) ∪ P (m, ε)] we have bm(τ,Xn(τ, x)) = bm,ε(τ,Xn(τ, x))
and bm(τ,Xm(τ, x)) = bm,ε(τ,Xm(τ, x)) for τ ∈ [0, T ].

In the following Mf denotes the maximal function of f . Using the
classical estimate of the difference quotient of a function in terms of the
maximal function of the derivative (see e.g. Lemma A.3 in [7]) we find∫ T

0

∫
BR

|bm,ε (τ,Xn(τ, x))− bm,ε (τ,Xm(τ, x))|
|Xn(τ, x)−Xm(τ, x)|

dx dτ

≤ C
∫ T

0

∫
BR

[
M∇bm,ε (τ,Xm(τ, x)) +M∇bm,ε (τ,Xn(τ, x))

]
dx dτ.

By using (3.2) and (3.4) we get

G2m,n ≤ CeL0

∫ T

0

∫
B
R̃

|M∇bm,ε (τ, y)| dy dτ

≤ CeL0R̃1−1/p
∫ T

0
‖M∇bm,ε(τ))‖Lp(B

R̃
) dτ

≤ CeL0R̃1−1/p
(
‖∇vm‖L1(Lp) + ‖∇Hm,ε‖L1(Lp)

)
.
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In view of (H ′2) and of the expression of Hm,ε we get

G2m,n ≤
C

ε
2− 2

p

≤ C

ε2
. (3.11)

We gather (3.9), (3.10) and (3.11), obtaining

gm,n ≤ C
(
ε| ln δ|+ ε−2

)
.

We now optimize our choice of ε, setting ε = | ln δ|−1/3, so that

gm,n ≤ C| ln δ|2/3

and the conclusion of Lemma 3.1 follows. �

4 Lagrangian solutions to the vortex-wave system

We finally comment on the applications of the previous results to the vortex-
wave system (1.5). Two notions of weak solution for the vortex-wave system
have been introduced: Eulerian solutions and Lagrangian solutions, see [10,
12]. These notions coincide when the vorticity ω belongs to L∞(L1 ∩ L∞)
[14, 15, 12]. In [10] the authors establish global existence of an Eulerian
solution with ω belonging to L∞(L1 ∩ Lp) for p > 2. We claim that to this
Eulerian solution corresponds a unique regular Lagrangian flow and that
ω is constant along the flow trajectories. Indeed, the velocity field defined
by v = 1

2πK ∗ ω is divergence free, therefore (H ′3) is satisfied. Moreover,
since p > 2 it is well-known that v satisfies (H ′1), see e.g. Lemma 1 in
[11]. Finally, v satisfies also (H ′2) by the Calderón-Zygmund inequality, see
[19] (Chapter II, Theorem 3). In particular, (H1) − (H2) − (H3) − (H4)
are satisfied as well. Hence, in view of Theorem 1.2 of the present article,
there exists a unique regular Lagrangian flow associated to the divergence
free velocity field b = v+H. Moreover, it can be readily checked (adapting,
e.g., the proof of Theorem 1.3 in [12]), that the function ω̃ = X(t, ·)#ω0 is
a distributional solution in L∞(L1 ∩ Lp) of the PDE

∂tω̃ + (v +H) · ∇ω̃ = 0, ω̃(0) = ω0.

Now, invoking the uniqueness part of Proposition 2.2 we obtain ω = ω̃,
which establishes our claim.

Finally, we mention that Theorems 1.2 and 1.3 can be extended to vector
fields H containing several point singularities

H(t, x) =

N∑
i=1

diK(x− zi(t)), di ∈ R,
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under the condition

min
i6=j

min
t∈[0,T ]

|zi(t)− zj(t)| > 0,

which corresponds to the interaction of several point vortices in the setting
of the point vortex system.
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