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Abstract  

Agroforestry systems potentially deliver win-win solutions to production and biodiversity conservation in the 

tropics but they need to be adapted to farmers’ needs. We reviewed the literature on functional roles of 

biodiversity and resilience in tropical agroforestry systems, and we evaluated the evidence base for the 

beneficial role of biodiversity on yield, and effects of farmer management practices. Most studies investigated 

the biodiversity of taxa assumed to have positive functions for farmers. Shaded commodities and shifting 

cultivation were the systems most frequently assessed. Half of studies investigated plants, while Hymenoptera 

and birds were other major groups. Many agroforests had lower diversity than forest, while less than half had 

higher diversity than agriculture. The effects of management within systems were rarely addressed, with shade 

level the most frequent factor. Papers on resilience, mainly from shifting cultivation systems, showed the 

positive influence of adjacent old-growth forest to biodiversity, and the negative effects of tillage. Better 

reporting of results for meta-analyses, and long-term experiments on key questions are needed to evaluate the 

potential of agroforestry more thoroughly. 

 

Keywords: Agroforestry systems; biodiversity function; farmer management practices; agriculture; landscape 

management 

 
1 Introduction 

Tropical landscape management has two pressing needs – the production of food and goods to sustain rural 

livelihoods on the one hand, and the conservation of biodiversity on the other hand. Agroforestry is a land-use 

system that has raised huge interest in this respect, by agronomists and conservationists alike, as it may hold 

potential to reconcile these two seemingly opposing demands. Agroforestry preserves, most probably, much 

more of the (usually forest-bound) biodiversity than would the conversion of forests to non-forest agricultural 

systems. At the same time, there may be an economic benefit in maintaining high biodiversity, hence many 

beneficial ecological functions, in an agricultural system. This hope is sustained by experimental evidence from 

temperate-region grassland systems that showed a beneficial effect of biodiversity on biomass production [1]. 

Data from tropical biomes, particularly the humid forest zone, are scarce [2]. Agroforestry systems have been 

intensely studied in recent times, but due to the interdisciplinary, in parts policy-oriented nature of the topic it is 

not clear what claims are backed up by solid empirical knowledge.  

 

1.1 What is agroforestry? 
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A simple definition of agroforestry is the use of trees in agricultural systems. More precisely, agroforestry has 

been defined as an intimate association of a minimum of two plant species of which at least one is a woody 

perennial, in a spatial mix with interactions through environmental processes or management [3]. More recent 

definitions have become less exclusive (Table 1). Many traditional farming systems fall into these categories, as 

tropical smallholder farmers have traditionally husbanded trees among their crops [9].  

 

1.2 Defining the scope of tropical agroforestry systems with major groupings  

Tropical agroforestry systems can be categorized along a gradient determined by whether they include planted 

timber trees, non-planted timber trees or other trees and shrubs and consequently whether the economic focus is 

more on forestry or on agriculture. They can also be classified by the length of the tree-crop interface. However, 

systems are extremely variable and can be included in multiple categories (Fig. 1). Some important types of 

agroforestry systems are described below (see also Table 2). 

 

Shifting cultivation (or “slash-and-burn”, swidden) systems are characterized by alternated phases of cropping 

and fallowing, with the length of the fallow period exceeding greatly the length of the cropping period. During 

the fallow phase, soil nutrients are restored to allow low-input farming during cropping phases. Typically, an 

area of forest or fallow is partially cleared during the dry season and the cut vegetation is left to dry [10]. 

Remnant forest trees are often retained in the field [11-13], a practice that is often enshrined in traditional laws 

(e.g., for Central Africa [14,15]. Farmers then burn the debris and, after the first rains, cultivate the field. After a 

short cropping phase, the land is abandoned to a long fallow phase. Shifting cultivation has been in existence for 

millennia [16]. It is common across the humid tropics [17], particularly in areas with low human population 

density. Recent population growth has led to shorter fallowing phases in some parts of the world ([17]), and is 

assumed, unless management practices are adjusted, to result in a loss of sustainability and consequently create 

increases in demand for land to maintain production.  

 

Homegardens comprise multipurpose trees or shrubs (used e.g. for fruits, firewood) grown with a large range of 

annual crops and vegetables. They have high levels of organic inputs, such as small livestock manure and 

kitchen waste [18]. Homegardens are distinguished from other agroforestry systems by being permanent, clearly 

delineated and located near homesteads.  

 

In improved fallows, trees or shrubs are tended or planted with the aim of either economically enriching the 

fallow so that more products (e.g., firewood, medicinal plants) are produced (in addition to crops), or 

biologically enriching the fallow by, for example, adding trees that improve soils (e.g., nitrogen fixing). Systems 

using herbaceous legumes, such as Mucuna spp. or Pueraria phaseloides, for this and other purposes, are 

functionally similar although they are not regarded as agroforestry.  

 

In alley cropping, food crops (e.g. maize) are grown between hedges of trees or shrubs, usually legumes (in 

Africa, e.g. Leucaena leucocephala, Calliandra calothyrsus, Gliricidia sepium, Flemingia macrophylla) that are 

pruned during the cropping phase. Alley cropping is often attributed to B. T. Kang [19], who developed this 

system in SW Nigeria in the 1970s. However, there are examples of similar smallholder systems that preceded 

it, such as the use of Dactyladenia barteri in fields in SE Nigeria [20] and Leucaena leucocephala in Timor, 

Indonesia [21]. In the Northwest Region of Cameroon, farmers plant lines of Tephrosia vogelii into their maize 

fields, stating that it suppresses the weed Imperata cylindrica (L. Norgrove, unpublished data).  

 

Agrisilviculture (or agrosilviculture) distinguishes agroforestry systems that include planted timber trees as well 

as other perennial or annual crops. Two main types are common: (1) temporary intercropping systems (or 

taungya), in which food crops are grown between timber tree saplings before canopy closure; or (2) longer-term 

associations between timber trees and, usually, perennial crops, particularly Musa spp. 
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 (1) Taungya was used in the 17th century by the Yao and Miao peoples in southern China to cultivate 

the conifer Cunninghamia lanceolata [22]. In 19th century Burma, the taungya system was used to 

produce teak (Tectona grandis) by the British Colonial Service while local farmers planted sweet 

potatoes, cotton and chillies between the tree seedlings [23]. The taungya system has spread worldwide 

and is usually institutionalised and instigated by forestry departments which permit smallholder 

farmers to crop between trees, saving on the labour cost of weeding the plantation. While the system 

has persisted, it has been severely criticised by some as being exploitational [24]. Indigenous taungya 

systems, designed and controlled by smallholders, are rare but do exist. For example, teak is grown 

with upland rice in Lao PDR [25] or with other food crops in Indonesia [26,27].  

(2) There are only few references on traditional long-term associations between planted timber trees 

and crops. In the ‘damar’ (resin) system of Indonesia, Shorea javanica is planted by smallholder 

farmers for timber and resin production, combined with food crops and fruit trees [28-30].  

 

Shade commodities: traditionally, smallholders have grown rubber and stimulants such as cacao, coffee and tea, 

under shade trees, whether planted or retained after partial forest clearance. Today, these crops are major 

agricultural commodities with globally combined production area amounting to ca. 36 x 106 ha (data from [31]). 

Although often managed in industrialized plantations, they are partly still grown under shade from timber trees.  

 

 

1.3 Evaluating benefits and costs of agroforestry 

Agroforestry systems can vary in scale (e.g., smallholder farming vs. industrialized plantation) and socio-

economic characteristics vary accordingly. However, regardless of scale, agroforestry systems will generally 

have higher product diversity and a wider range of planting, weeding and harvesting times than an equivalent 

monocrop system. This leads to potential advantages for smallholder farmers in particular, such as (1) reduced 

risk of total crop failure (as the risk is spread between many species, akin to the “spatial insurance hypothesis” 

[63]); (2) increased diversity of products, hence improved nutrition for subsistence farmers; (3) less 

vulnerability to market price changes (for cash crops); (4) better distributed labour demands over the year; and 

(5) reduced seasonality of income (for cash crops). Apart from these, there are potentially positive effects on 

yields due to ecological effects such as complementarity and facilitation.  

 

1.3.1 Complementarity  

A central hypothesis in agroforestry is that ‘the benefits of growing trees with crops will only occur when the 

trees are able to acquire resources of water, light and nutrients that the crops would not otherwise acquire’ [64]. 

Trees and crops are complementary if they exploit more of the factors limiting growth, when grown together 

[65]. Where the different components have different root and stem architectures, or when their growth demands 

peaks are at different times, they are more likely to show complementarity [65-67]. For example, many food 

crop annuals are shallow rooting. In combination with a deep-rooting tree, more of the available soil volume is 

explored, and a greater amount of available water and nutrients accessed [68]. The most common mechanism 

for higher productivity in mixtures is the temporal sharing of resources. For example, mango trees (Mangifera 

indica) assimilate and produce leaves during the dry season when associated crops have been harvested or have 

reduced demands.  

 

1.3.2. Facilitation 

Different species may not only be unaffected in their growth by each other’s presence, they may even benefit. A 

modification of the environment by one partner with benefits for the other describes the 'facilitative production 

principle' [69]. For example, a reduction in light intensity may, under tropical, high-radiation conditions, have 

positive growth effects by, for example, avoiding stomatal closure at midday [70]. In some crops such as 

plantain (Musa spp.), light saturation density of leaves can be low and full light can lead to photorespiration 

rather than growth [71]. Shade can also alter pest and disease dynamics. Black sigatoka (Mycosphaerella 

fijiensis), the most important Musa disease globally, can be reduced under shade [72].  

An agroforestry tenet is that trees perform a facilitative function by improving or maintaining soil fertility, in 

addition to the improved water and nutrient capture mechanisms mentioned above. Leaf-litter cover, tree root 

decomposition and the more stable soil microclimate created may maintain soil organic matter and also improve 

soil biological activity [73]. However, many of these assumptions have not been empirically proven, or only 

under specific circumstances [6]. Many data demonstrating positive effects of trees on soil qualities have been 

collected from natural [74], rather than planted tree systems. Therefore, it is not possible to clearly assess 

causalities, i.e. whether the trees improved the soil or whether good soils allowed the germination and growth of 

the trees. 
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1.3.3 Costs 

There are also potential disadvantages of agroforestry, particularly for large-scale plantations. Among them are 

(1) difficult application of machinery for harvesting and planting; (2) greater requirement for technical 

knowledge; and (3) less benefits from ‘economy of scale’ effects [75,76], e.g. in processing, transporting and 

harvesting harvests. Furthermore, whether yields actually do increase, or possibly even decrease, is far from 

certain and requires quantitative study.  

 

1.3.4 Cost:benefit analysis 

The evaluation of yield benefits and, ultimately, economic advantages of agroforestry over other forms of 

productions is notoriously difficult. The criterion most frequently used to judge these quantitatively is the land 

equivalent ratio (LER) (see text box) [77]. It quantifies whether mixed cultivation yields more, or less, than 

what could be harvested in a monoculture. However, the performance of an agroforestry system varies locally 

due to the selected species’ combination, absolute and relative densities and the limiting factors of the selected 

environment. The non-linearities inherent to economic as well as ecological processes (such as complementarity 

and facilitation) mean that outcomes could be very different depending on the exact mix and it is difficult to 

separate the effects of diversity, composition and management. It is therefore challenging to evaluate systems 

empirically in any general, transferable way, particularly systems with many components, and such attempts 

would require large experimental designs. For example, Leakey (2014) [78] discusses the uses of Nelder fan 

[79] and complex replacement series designs for determining optimum shade tree and shrub mixes in a cacao 

agroforestry trial. The timeframe of evaluations may also matter – for example, in grassland experiments ([1,80] 

particular monocultures in particular years performed better than more diverse systems, although longer-term 

average production of diverse communities always exceeded monocultures. When such ideas are applied to tree 

systems with longer growth cycles, even longer-term experiments are required and these should be a priority in 

the upcoming decades. 

Furthermore, metrics such as the LER do not take account of the economic values of the different components 

and the outcome with the highest LER may not be the same as the one with the highest value [81]. Indeed, 

where the role of trees is not to produce a marketable product, but simply to provide benefits such as, e.g., 

maintain soil fertility or conservation of biodiversity (e.g., alley cropping), the adoptability of the system is 

greatly constrained. The “yield” of the hedgerow (e.g., its pruning) is not intrinsically of interest to farmers 

(although it can be used as mulch for the crop). For an alley cropping system to be successful economically, 

either the yield of the food crop would need to exceed that of a monoculture in the long term (despite reduced 

production area), or there needs to be an indirect economic benefit (e.g., conservation subsidies, offsets, etc.). In 

contrast, where the tree component produces edible or marketable products, farmers can be expected to be more 

tolerant of lower yields of their food crops, as they may gain economically, overall. Such calculations also need 

to take into account that smallholder farmers typically have short-time horizons and thus apply high discount 

rates [82], partly due to commonly high levels of tenure insecurity (for example, [83]), a disincentive to planting 

trees [84]. Thus farmers may favour short-term crops over trees and fast-yielding perennials, such as early 

fruiting trees, over timber trees with longer production cycles. Yet other authors have shown that incorporating 

trees into systems can reduce production risks and increase profitability compared to crop monocultures even 

under high discount rates [85].  

 

Text box: The land equivalent ratio (LER) 

LER allows the quantification of relative yield losses or benefits due to multi-cropping (e.g. a 

food crop and a tree) compared to monocrop systems [77]. It is calculated as 
 

LER =
It
Mt

+
If
Mf

 

 

where 

If = yield (per ha and unit time) of food crop, in mixed cultivation 

It = yield (per ha and unit time) of tree, in mixed cultivation 

Mf = yield (per ha and unit time) of food crop in monoculture at optimum density 

Mt= yield (per ha and unit time) of tree in monoculture at optimum density 

LER can take values between 0 (no yield at all) and >2 (if, due to facilitation, both crops yield 

more than in monoculture despite sharing the available area). If LER <1, the system is not 

economically beneficial (as judged on yield alone), as monoculture of one crop could produce 

more. LER = 1 indicates yield equivalence of the two crops, i.e. losses in one crop are perfectly 

balanced by gains in the other crop. If LER >1the multi-crop system is more productive than 

monoculture. 
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1.4 Biodiversity function in agroforestry systems and relevance for smallholder farmers 

Apart from research assessing crop yield benefits of agroforestry systems, recent work has included potential 

biodiversity conservation benefits in agroforestry systems. For example, Leakey (2014) [78] collated data on 

biodiversity in tropical agroforestry systems as part of a more general review. Bhagwat et al. (2008) [86] 

focused on the potential for tropical agroforestry to maintain species diversity. Scales and Marsden (2008) [87] 

reviewed 52 studies that compared diversity indices between tropical agroforests and primary forest, and 27 

studies that compared different types of agroforest. However, neither Bhagwat et al. (2008) [86] nor Scales and 

Marsden (2008) [87] distinguished between different types of biodiversity from the farmers’ utilitarian 

perspectives, or assessed productivity data to test for a relationship between biodiversity and yield. They also 

did not consider the experimental designs to assess whether any confounding factors were present. For example, 

studies comparing the different stages of a land use sequence can either sample the same site repeatedly through 

the various phases (Type-I “chronosequence” data); or, different sites in different stages of the succession can be 

compared at the same time (Type-II “space-for-time” or “false chronosequence” data) [88]. Type-I 

chronosequence data collection requires large plots and is expensive, yet it is accurate and unequivocal. 

Drawbacks of type-II studies include spatial variation [89] and, often, unwarranted assumptions about site 

history [90]. Furthermore, type-II space-for-time studies comparing farmers’ fields and fallows with remaining 

forest remnants rely on the farmer having randomly selected his plots, an unlikely condition as farmers have 

developed appropriate criteria to select the most productive fallows [91].  

 

1.5. Resilience of biodiversity in tropical agroforestry system 

Resilience is the capacity of an ecosystem to return to the pre-condition state following a disturbance, including 

maintaining its essential characteristics such as taxonomic composition, structures, ecosystem functions, and 

process rates [92,93]. Applying this concept to agroforestry systems can imply (1) that these systems have 

features that allow a recovery of biodiversity back to levels found in the previous land use system, prior to the 

disturbance of land conversion, and (2) that management features of the agroforestry system are sufficiently 

benign to avoid irreversible changes during its lifespan. Tittonell (2014) [94] has recently applied the resilience 

concept to tropical agroecosystems in Africa. Trenbath (1985) [95] developed a simulation model detailing how 

changes in management practice in shifting cultivation systems might alter succession of the future fallow. His 

model detailed how tree biomass and grass biomass may change under intensification comprising two stability 

domains with a separatrix.  He postulated that with repeated cropping cycles and shortening fallow phases, a 

point will be reached at which tree regeneration fails completely and the system will move to the grassland 

domain. This would have severe implications for shifting cultivators as the utilitarian functions of a forest 

fallow, such as accumulating biomass and shading out agricultural weeds [96], would be lost, as well as their 

role as a biodiversity repository for forest species. More recently, a similar model to the Trenbath tree-grass 

model has been developed [97]. However, none of these models have been tested empirically, and the tipping 

point at which intensification creates a regime shift, as well as the dominant factors determining such a shift, 

have not been identified. Thus, as there is only limited empirical understanding of resilience in agroforestry 

systems, it is difficult to test and it may be premature to apply this concept based on assumptions alone. 

 

1.6 Aims 

In the next section, we assess and collate the results of peer-reviewed scientific studies on biodiversity of 

different taxa in agroforestry systems, to assess the relevance and utility from the viewpoint of the smallholder 

farmer, to assess how useful they are in deciding how effective the agroforestry system is in conserving 

biodiversity compared with a forestry agricultural landscape mosaic, and what is known about the relationship 

with productivity. We put particular emphasis on evaluating the evidence base for the beneficial role of 

biodiversity on yield and farm-level economy, which is the crucial argument for the high regard that 

agroforestry has. To assess the resilience of biodiversity in agroforestry systems, we used papers that examined 

changes over time within a particular system and those from shifting cultivation studies that assessed the 

residual management effects of the previous cropping phase.  

 

 

 

 

2. A quantitative review of peer-reviewed studies on biodiversity function in tropical agroforestry systems  

2.1 Methods: Literature search and processing 

We conducted a literature search in SCOPUS on 1 June 2015 by searching for the following combinations of 

words in the title, abstract or keywords: (agroforestry  OR  swidden  OR “hedgerow intercropping” OR “alley 

cropping” OR agrosilviculture OR home garden OR  "shifting cultivation"  OR  "planted fallows"  OR  

"improved fallows"  OR  taungya  OR  agrisilviculture  OR  "slash and burn")  AND  (biodiversity  OR  

"ecosystem function"  OR  diversity  OR  "species richness"  OR  "Shannon-Wiener index"  OR  "Simpson 
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index")  AND  (tropic* ).We limited our search to journal articles within environmental and agricultural 

sciences. There was no time limitation. 

The initial search resulted in 277 articles. We then manually excluded articles, such as review articles, those 

from outside the geographical tropics, those that did not contain biodiversity data, and two articles that we were 

unable to access. To limit the enormous potential scope, we also excluded articles where animals were a major 

component of the system, such as sylvopastoralism, leaving 146 articles. We extracted data on the following 

topics from these studies: 

(1) To categorise different types of biodiversity functions in agroforestry systems, we used a system developed 

by Biala et al. (2005) [98] that can be adjusted to adequately describe the biodiversity of agroforestry systems:  

i) Planned cultivated biodiversity, consisting of the crop mix planted by the farmer;  

ii) Spontaneous volunteer biodiversity, i.e. marketable or useful species that were not planted, but are 

tended by the farmer;  

iii) Within-system functional biodiversity, e.g. regulators of soil fertility, natural enemies of crop pests, 

decomposer microbes, nitrogen fixers, pollinators of food crops and trees present within the 

agroforestry system; 

iv) Out-of-system functional biodiversity, which has a landscape-wide benefit in adjacent cropping 

systems, such as pollinators of crops or predators of crop pests not in the agroforestry system but in 

other production systems in the landscape;  

v) Heritage biodiversity, i.e. biodiversity not known to be directly linked to the functioning of the 

agroforestry system or production systems in the landscape, but of conservation value.  

Some studies evaluated data for several of these categories. In such cases, we assigned the most valuable 

function, from a utilitarian farmer’s perspective, to that study (i.e., highest: planned cultivated biodiversity, 

lowest: heritage biodiversity). 

Other variables of interest were (2) country (for insular Southeast-Asia: island); (3) taxon studied;  (4) type of 

agroforestry systems tested; (5) whether forest and agricultural controls were included; (6) the factors or 

covariables assessed, if any, and whether they related to smallholder management (if any); (7) whether the study 

was experimental (planted assemblages after randomly assigning  plots, compared with agricultural and forestry 

controls), semi-experimental (some treatment imposed within the agroforest to elucidate functions) or 

descriptive (e.g., an existing type II “false chronosequence”); (8) whether productivity data (crop yields, 

economic value, carbon stocks) were presented;  (9) what the relationship of biodiversity and productivity was 

(if investigated).  

We identified a subset of papers that, in addition to comparing different land use systems, assessed the effects of 

farmer-relevant management practices within a system or looked at various landscape variables and categorized 

them by the type of agroforestry system investigated. We also identified those papers comparing similar systems 

in different stages of succession to estimate biodiversity resilience through time or those that looked at residual 

effects of management practices in the crop phase on the recovery of the following fallow. Of these, we only 

included studies that contained at least 3 age classes. Where secondary forests were mentioned without 

specifying age, we coded the age as 35 y. Similarly, primary forest and old growth forest were specified as 100 

y old. We selected fallow succession studies that had a primary forest control. Of those, we calculated the 

proportion of recovery of species richness or species number, by comparing with the primary forest control. 

This is a simplistic measurement, yet it was chosen as many papers did not assess more complex indicators such 

as changes in functional composition. We then tested the significance of linear regressions of species against age 

and separated those that were significant. The age at which 80% of species recovery would be obtained was 

estimated from the linear regressions obtained.  

 

2.2 Results 

2.2.1 Categorizing studies by location, system, taxon, and other features 

Studies found were from across the Americas, Africa and Asia with Mexico, Costa Rica, Brazil, Cameroon, and 

Sulawesi (Indonesia) having eight or more studies (Fig. 2A). One hundred and twenty studies (82%) were from 

humid forest ecoregions, 11 from sub-humid forest, 6 from montane forest, 1 from seasonally dry forest, 3 from 

the forest-savannah transition zone, and 5 from dry forest. The majority of studies assessed the biodiversity of 

taxa assumed to be of positive functional use to the farmer (”within-system”; Fig. 2B). Almost half of studies 

investigated the diversity of plants, while Hymenoptera (mainly ants) and birds were other major groups (Fig. 

2B). Over a quarter of studies described biodiversity in shifting cultivation systems, and ca. half of studies 

described shaded commodity crops, predominantly cacao and coffee. Other shaded commodity systems were 

dominated by rubber [99,100], tea [53], coconut [101] and cardamom [102,103]. Other systems, such as 

homegardens, agrisilviculture and improved fallow were rarely studied. We did not find any study on 

biodiversity in taungya systems. Studies were predominantly of descriptive research design (Fig. 2B).  

 

2.2.2 Biodiversity in relation to control habitats and yield 
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More studies contained forest controls (63%) than agricultural controls (20%), and only 19% contained both 

types of controls (Table 3). However, controls were not usually composed of the individual components of the 

agroforestry systems, thus it was not possible to conduct an LER-type analysis (see text box) to consider 

whether more biodiversity would be retained by the agroforestry system in contrast to its monocropped 

constituent parts.  

Nevertheless, many agroforests (ca. 2/3) had significantly lower tested diversity than forest. For the remaining 

studies, there was no significant difference between agroforests and forests, however, this might be because of 

high variability and insufficient sampling and cannot be interpreted as meaning that there is no biodiversity loss. 

Less than half (41%) had significantly higher diversity than the agricultural control (Table 3). 

Seventeen papers contained productivity data. Of these, only one study demonstrated a positive relationship 

between the number of cultivated species and total system (trees + crops) biomass production [124]. This study 

compared three tree species each planted in either a tree monoculture or intercropped in a polyculture with 

crops. Three years after planting, total system biomass production was increased in the polyculture versus the 

monoculture for the tree species Cedrela odorata and Cordia alliodora, but was not significantly difference for 

Hyeronima alchorneoides [124] . One paper found a negative effect of diversity in which higher cacao yields 

were associated with low richness of forest tree species [121], however, these data were derived from farmers’ 

shaded cacao farms where the diversity of shade trees was confounded with shade level and therefore results 

simply demonstrate that very high shade levels can limit cacao production and do not test diversity per-se. Four 

studies tested the relationship but found no significant effect (Table 3). The remaining 11 studies presented data 

but did not explicitly address the link between diversity and yield or carbon stocks.  

 

2.2.3 Biodiversity in relation to management 

Studies on the effects of management within systems were few, with most of them addressing shaded 

commodity crops and analysing species richness as a response. For cacao, the effect of shade level was the 

factor most intensively studied (13 studies) while the density of flowering plants, weeding frequency and the 

application of fungicide, insecticide or nitrogen fertilizer were addressed in single studies only (Table 4). Many 

of the results were from the same, large project in Sulawesi, others were from Ecuador, Cameroon and Brazil. 

No study found a negative correlation between shade level and biodiversity, there were eight occurrences of 

significantly positive effects, and 17 results were non-significant. Shade levels and tree diversity were, 

generally, positively correlated. Shade effects were always positive on the diversity of birds, non-significant on 

amphibians, reptiles, and (mostly) invertebrates, and mixed on non-woody plants. However, these results are 

confounded by the higher probability of having more tree species when shade levels and therefore densities are 

higher, as data were mainly from descriptive studies of existing farmer managed systems rather than from 

planted experimental systems explicitly testing shade and diversity effects.  

There was not sufficient information in the papers to assess which shade level was optimum. For coffee, some 

studies also investigated shade level as well as the distance from the agroforestry system to the nearest old 

growth forest (Table 5). Shade level generally had a non-significant effect, although it was only tested on ants 

and bats. Distance to the forest was negatively related to species richness of invertebrates.  

 

2.3.4 Resilience 

For assessments of biodiversity resilience (i.e., changes through time), we found one paper on homegardens in 

Indonesia, with ages ranging from 10 - 80 years old [141]. They found no relationship between tree species 

richness and age. Three studies from Ecuador [115,138,142] compared active coffee plantations with those 

abandoned 10-15 years ago, against a forest control. Whether or not pesticides were used was not reported. 

Total arthropod species richness was not significantly different between forest and abandoned coffee yet 

significantly lower in actively managed shaded coffee. There were no differences between actively managed and 

abandoned coffee in adult tree species richness, however, for both tree saplings and tree seedlings, abandoned 

coffee had higher species richness than active coffee and was not significantly different from the forest. These 

results suggest that this shaded coffee system was relatively benign from a viewpoint of biodiversity 

preservation and restoration can subsequently occur back to forest levels. We found no other studies in the 

shaded commodity, mixed multistrata, improved fallow or agrisilviculture categories.  

All remaining papers on resilience dealt with temporal changes in biodiversity during the fallow period in 

shifting cultivation systems and most of these focused on the effect of the age of the current fallow (Table 6). 

Of papers including at least three age categories and a primary or old growth forest, 9 studies had significant 

positive linear regressions between species richness and age for any particular group, while the rest were non-

significant (14). The greatest proportion of significant studies was for invertebrates (2/3), followed by “all 

plants” (4/7) (Table 6). With the exception of one study from the dry forest of Mexico (33 years) [90], it took at 

least 48 years for species richness to approach 80% of the value of the primary forest and this estimate did not 

vary consistently between taxa or ecoregion, however, the number of data points per time sequence was limited 

(Fig 3).  
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Eight papers looked at factors other than fallow age affecting biodiversity resilience in shifting cultivation 

(Table 7). Factors comprised a mix of residual management effects and landscape configuration. Three out of 

five studies assessing landscape configuration effects suggested effects of biodiversity reservoirs (e.g., nearby 

old-growth forests). Three studies from humid forest ecoregions assessed the effects of the number of previous 

crop-fallow cycles, with one reporting a negative effect on diversity (the two others were non-significant). 

Studies testing various effects of phase durations (e.g., cropping, previous fallow) did not find significant 

effects, while the effect of previous tillage was negative for plant and seedbank species richness. 

 

3. Discussion 

Increasing agricultural production in the tropics is jeopardizing conservation aims. There is currently much 

discussion on how to best compromise between these seemingly antagonistic needs: the land-sparing versus 

land-sharing debate [165,166]. Land-sparing is achieved by intensification of crop production to achieve higher 

yields. This saves other (e.g., forested) land for conservation purposes. Land-sharing is the application of 

farming practices that preserve or promote biodiversity within agricultural areas, often using low levels of inputs 

and minimal disturbance but at the cost of lower yields and therefore a greater area requirement for equivalent 

production. Traditional smallholder agroforestry systems are usually perceived as a land-sharing strategy [86]. 

While reviewing 146 original studies on biodiversity in tropical agroforestry systems, we focused on evaluating 

the evidence for three main conjectures in agroforestry research and policy: (1) it helps to preserve (forest-

bound) biodiversity; (2) farming techniques are complementary to and not antagonistic with those promoting 

biodiversity conservation; and (3), there are economic advantages due to direct positive effects of biodiversity 

on productivity. If these conjectures are true, they provide strong arguments for environmental policies to 

maintain and promote agroforestry systems, in smallholder as well as plantation farming, across the tropics. A 

question of such global, applied relevance cannot be judged based on single studies, as they always refer to a 

particular system and region. As we have shown above, there is a wide variety of agricultural systems bunched 

together under the term agroforestry, which may react quite differently. Furthermore, single studies are prone to 

type-I statistical error [167], hence the requirement to assess results from multiple studies.  

 

3.1 Methodological issues 

Providing research results in a manner that facilitates review and meta-analysis is of high value. We noticed a 

relatively poor documentation of relevant factors in many studies, which may partly stem from the 

interdisciplinary nature of the research topic (i.e., ecology and agronomy; e.g., lacking information on age of 

system; planting densities; husbandry techniques such as weeding, pruning, etc.; variety of crops such as coffee 

and cacao used, which may have different shade responses [168]. Similarly, reporting on statistical test results 

was often not sufficient to carry out formal, quantitative meta-analyses [169], and the analysis of biodiversity in 

some papers was questionable (e.g., not considering effects of area size, under-sampling, and spatial non-

independence). 

It was challenging to address the three conjectures given above with the available studies. Many studies did not 

actually address them directly, even if some mentioned them to point out the relevance of agroforestry research. 

Furthermore, in the absence of a globally coordinated research program on data management, there is a huge 

variety of methods (including data analysis and its reporting), systems, spatial scales, and taxa studied. Different 

taxa can react very differently to the same environmental variation, jeopardizing overall conclusions [112, 170]. 

The majority of studies were not experimental, but compared already existing farmer-managed systems, which 

further weakened conclusions on causalities. 

 

3.2 Testing the three conjectures 

We found that many, but not a majority, of studies reported significantly higher biodiversity in agroforestry 

compared to agriculture, which moderately supports conjecture (1). Assumptions on the conservation benefits of 

agroforestry are also supported by conservation research from outside of agroforestry, which highlights the 

value of retaining forested secondary habitats in the tropics, in comparison to forest conversions to agricultural 

habitats (e.g., [171]). However, a majority of studies indicated significantly reduced diversity in agroforests 

compared to reference forests, so biodiversity preservation is far from complete and agroforestry cannot be 

viewed as a perfect substitute for forest protection. In line with this, a recent meta-analysis of biodiversity 

recovery after disturbance [172] indicated very long time-frames for reliably restoring reference-habitat levels 

(see also [173,174]).  

As for conjecture (2), many studies addressed biodiversity types that were relevant to farmers and production 

(i.e., cultivated, volunteer and within-system biodiversity function), but surprisingly few studies looked at how 

agronomic practices used by farmers within their agroforestry systems affected biodiversity. Those that did 

overwhelmingly focused on shade level, with most of the studies on cacao, but not in a way that would allow 

quantification and facilitate practical advice to farmers. This finding supports the view of Franzen and 
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Borgerhoff Mulder (2007) [175], who, referring to shade cacao, stated that research often targets interventions 

that provide benefits either to farmers or biodiversity, but not both.  

Shade had positive effects on ants in Cameroonian shaded cacao [134], which may help in controlling mirid 

(Sahlbergella singularis) populations, and on parasitoids in Brazilian shade cacao[128], although it was not 

clear what these were parasitizing and whether its host were cacao pests or not. Fungal diseases (witches’ broom 

and blackpod), not insect pests, are generally considered the major yield constraints in South America. Other 

positive shade effects were on bird and plant biodiversity. Yet, the only study on cacao showing a significant 

biodiversity – productivity effect was from West Africa and a negative correlation was found [121]. Clearly, 

even so-called functional biodiversity will only show a positive impact on productivity if it is affecting a major 

yield constraint in the system.  

Several studies suggested that landscape configuration was more important than management effects in 

determining biodiversity resilience, with biodiversity recovery in agroforestry systems depending on the 

existence of forest patches in the landscape. For example, Jakovac et al. (2015) [163], working in the Amazon, 

concluded that species diversity was more dependent on landscape configuration than on management intensity 

history of a fallow plot - although recovery of the structure of the forest was more dependent on the latter. 

However, the fallows in this study were rather young (5 y) so more and longer-term studies would be required to 

assess the importance of landscape configuration.  

Conjecture (3), i.e. that high biodiversity in agroforest systems actually increases yields and therefore benefits 

farmers, was most poorly studied. This conjecture is backed by plausible ideas on ecological mechanisms, such 

as better nutrient cycling and lower potential for explosive population growth of pest organisms in diverse 

systems [176]. However, the few studies that addressed this in a tropical agroforestry context were quite 

equivocal (Table 3). Furthermore, results of descriptive studies on this topic are particularly susceptible to 

reversed causalities, as primary productivity (of which farmer’s yield is a substantial part) is known to be a 

major determinant of biodiversity [177]. The correct assessment of the relationships between diversity and 

productivity or ecosystem functioning requires well-designed experimental approaches, analogous to those 

employed in some recent forest biodiversity experiments (for e.g.,[178,179].   

Thus, in conclusion, the evidence base for the three conjectures is generally not strong. There is a lack of 

applied, practical advice resulting from studies on conjecture (2), and proof is particularly weak on conjecture 

(3). More studies, with improved designs, imposed treatments and from which the results are better documented 

are needed to test these conjectures with the required certainty. This is particularly relevant because they could, 

if proven, convince farmers and plantation owners to adopt more biodiversity-friendly management for their 

own, utilitarian advantage (which is a stronger incentive for action than any conservation policy).     

Drawing more reliable conclusions from the available literature was hampered by the multitude of approaches, 

combined with weak-inference study designs (i.e., mostly descriptive studies) and often unclear reporting of 

statistical test results. Default publishing of raw data in electronic format, as it is becoming standard in many 

basic science ecological journals, would facilitate future meta-analyses. There is also still a gap between the 

approach used in the more ecologically focused, short-term studies initiated by universities, predominantly 

relying on comparing existing systems, and the longer-term, more agronomic studies that are less publishable 

but yield more practically relevant information for farmers. Additionally, systems are undergoing rapid changes. 

For example, Kusters et al. (2008) [30] predicted that farmers would cut down damar agroforests in Sumatra in 

the near future due to external economic factors; Ekadinata and Vincent (2011) [52] have confirmed this 

through remote sensing data. Cacao farmers in Ghana consider traditional cacao agroforests as an archaic 

system, preferring lightly shaded, commercially orientated systems with newer hybrid varieties [168].  

Optimizing these systems before they disappear might be achieved by a series of collaborative, multi-locational 

long-term trials set up in farmers’ agroforestry systems. Randomly allocated types of management, as planned 

by the farmers, could be compared with status-quo controls. Long-term data collection on yield, labour, inputs 

and biodiversity would allow the relevant open questions to be addressed (e.g., link of management actions, 

economic benefits, and biodiversity) simultaneously. 

 

4 Conclusions 

Agroforestry covers a wide range of different land management systems. It was studied in different regions, 

with reference to different taxa, using different methods, and analyzing different responses of biodiversity. 

Generalized statements on research findings may therefore not be warranted. Comparisons of biodiversity to 

those of control habitats suggest that agroforestry has more conservation potential than agriculture, but that it 

cannot substitute old-growth forests. Management practices (mostly shading regime in commodity crops) were 

studied either in relation to farmer’s benefits or to biodiversity, but rarely both. While shade was often 

associated with higher biodiversity, most studies fell short of fully evaluating economic effects for farmers. 

Resilience, in the sense of biodiversity recovery to old-growth levels, was studied mostly in shifting cultivation 

systems (i.e., using fallow age as predictor). An initial review suggested recovery times of half a century, but 
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better data are needed for reliable estimates. The distribution of old-growth habitat in the landscape (i.e., 

proximity of biodiversity reservoirs) emerged as an important predictor of resilience in many studies.  
 

Acknowledgements 
L. Norgrove is supported by the SNSF (Swiss National Science Foundation) through a Marie Heim-Vögtlin 

research fellowship in Agricultural and Forestry Sciences (grant PMPDP3_145502).   

 

Compliance with Ethics Guidelines 

Conflict of Interest 
Dr. Norgrove is supported by the SNSF (Swiss National Science Foundation) through a Marie Heim-Vögtlin 

research fellowship in Agricultural and Forestry Sciences (grant PMPDP3_145502).   
Dr. Beck declares no conflict of interest 

 

Human and Animal Rights and Informed Consent 
This article does not contain any studies with human or animal subjects performed by the author. 

 

References 
Papers of particular interest, published recently, have been highlighted as: 

• Of importance 

•• Of major importance 

 

1. Tilman D, Reich PB, Knops J, Wedin D, Mielke T, Lehman C. Diversity and productivity in a long-

term grassland experiment. Sci. 2001;294(5543):843-845. 

2. Cardinale BJ, Matulich, KL, Hooper DU, Byrnes JE, Duffy E, Gamfeldt L, Balvanera P, O’Connor MI, 

Gonzalez A. The functional role of producer diversity in ecosystems. Am J Botany. 2011;98(3):572-

592. 

3. Huxley PA. Comments on agroforestry classifications: with special reference to plant aspects. In: 

Huxley PA, editor. Plant Research and Agroforestry: proceedings of a Consultative Meeting held in 

Nairobi, 8 to 15 April 1981. 1983. ICRAF, Nairobi, Kenya.  

4. Young A. Agroforestry for soil conservation. ICRAF, Nairobi, Kenya. 1989.   

5. Nair PKR. State of the art of agroforestry. For. Ecol. Manag.1991;45:5-29. 

6. Sanchez PA. Science in agroforestry. Agrofor Syst. 1995;30:5-55.  

7. Zomer RJ, Trabucco A, Coe R, Place F. Trees on farm: analysis of global extent and geographical 

patterns of agroforestry. ICRAF Working Paper - World Agroforestry Centre 2009 No. 89 pp. 63 pp. 

8. Norgrove LA. Crop, weed and soil response to tree density and implications for nutrient cycling in a 

tropical agrisilvicultural system. Doctoral dissertation, King's College London, University of London, 

UK. 1999. 

9. Garrity D. Agroforestry and the future of global land use. In: Nair PKR, Garrity D, editors.  

Agroforestry and the future of global land use. Springer, Netherlands. 2012. pp. 21-27. 

10. Norgrove L, Hauser S. Estimating the consequences of fire exclusion for food crop production, soil 

fertility and fallow recovery in shifting cultivation landscapes in the humid tropics. Environ Manag. 

2015;553: 536-549. 

11. Guevara S, Purata SE, Van der Maarel E. The role of remnant forest trees in tropical secondary 

succession. Vegetatio. 1986;66(2):77-84. 

12. Sirois MC, Margolis HA, Camire C. Influence of remnant trees on nutrients and fallow biomass in 

slash and burn agroecosystems in Guinea. Agrofor. Syst.1998;40(3):227-246. 

13. Carrière SM, Letourmy P, McKey DB. Effects of remnant trees in fallows on diversity and structure of 

forest regrowth in a slash-and-burn agricultural system in southern Cameroon. J Trop Ecol. 

2002;18:375–39. 

14. Diaw MC.  Si, Nda Bot et Ayong : culture itinérante, occupation des sols et droits fonciers au Sud-

Cameroun. Réseau foresterie pour le développement rural 21e. London: ODI. 1997. 

15. Fondoun JM, Manga TT. Farmers’ indigenous practices for conserving Garcinia kola and Gnetum 

africanum in southern Cameroon. Agrofor Syst. 2000;48(3):289-302. 

16. Bailey RC, Head G, Jenike M, Owen B, Rechtman, R, Zechenter E. Hunting and gathering in tropical 

rain forest: Is it possible? Am Anthropol. 1989;91(1): 59-82. 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



11 
 

17. •• Van Vliet N, Mertz O, Heinimann A, Langanke T, Pascual U, Schmook B, Adams C, Schmidt-Vogt 

D, Messerli P, Leisz S, Castella J-C, Jørgensen L, Birch-Thomsen T, Hett C, Bech-Bruun T, Ickowitz 

A, Chi VK, Yasuyuki K, Fox J, Padoch C, Dressler W, Ziegler AD. Trends, drivers and impacts of 

changes in swidden cultivation in tropical forest-agriculture frontiers: a global assessment. Global 

Environ Change. 2012; 22:418–429. A comprehensive report on the state of shifting cultivation 

globally. 

18. Norgrove L, Hauser S. Improving plantain Musa spp. AAB yields on smallholder farms in West and 

Central Africa. Food Security. 2014;6(4): 501-514. 

19. Kang BT. Alley cropping: past achievements and future directions. Agrofor Syst. 1993;23(2-3):141-

155. 

20. Stamp LD. Land utilization and soil erosion in Nigeria. Geog Rev.1938;28:32-45. 

21. Metzner J. Innovations in agriculture incorporating traditional production methods: the case of Amarasi 

Timor. Bull Indonesian Econ Studies. 1983;193: 94-105. 

22. Menzies N. Three hundred years of taungya: a sustainable system of forestry in south China. Human 

Ecol. 1988 ;16:361-376. 

23. Blanford H R. Highlights of one hundred years of forestry in Burma. Empire Forestry Review. 

1958;37(1): 33-42. 

24. Bryant R L. The rise and fall of taungya forestry. Social forestry in defence of the Empire. The 

Ecologist. 1994; 24: 21-26. 

25. Hansen PK, Sodarak H, Savathvong S. Teak production by shifting cultivators in Northern Lao PDR. 

In Cairns M, editor. Voices from the forest:integrating indigenous knowledge into sustainable upland 

farming, RFF Press, Washington DC, USA; 2007. Pp. 414-424. 

26. Van der Hout P. Effects of wider initial spacing of teak (Tectona grandis) on income and distribution 

in the taungya system in Java. Netherlands J Agric Sci. 1984;32:139-142.  

27. Roshetko JM, Rohadi D, Perdana A, Sabastian G, Nuryartono N, Pramono AA, Widyani N, Manalu P, 

Fauzi, MA, Sumardamto P, Kusumowardhani N. Teak agroforestry systems for livelihood 

enhancement, industrial timber production, and environmental rehabilitation. Forests, Trees 

Livelihoods. 2013;22(4): 241-256. 

28. Michon G, Bompard J, Hecketsweiler P, Ducatillion C. Tropical forest architectural analysis as applied 

to agroforests in the humid tropics: the example of traditional village agroforests in West Java. Agrofor 

Syst. 1983;1: 117-129. 

29. Torquebiau E. Man-made dipterocarp forest in Sumatra. Agrofor Syst. 1984;2:103-128. 

30. Kusters K, Pérez MR, De Foresta H, Dietz T, Ros-Tonen M, Belcher B, Manalu P, Nawir A, 

Wollenberg E Will agroforests vanish? The case of Damar agroforests in Indonesia. Human Ecol. 

2008;36(3):357-370. 

31. Monfreda C, Ramankutty N, Foley JA. Farming the planet: 2. Geographic distribution of crop areas, 

yields, physiological types, and net primary production in the year 2000. Global Biogeochem Cycles. 

2008;22:GB1022, doi:10.1029/2007GB002947. 

32. Wiersum KF. Tree gardening and taungya on Java: examples of agroforestry techniques in the humid 

tropics. Agrofor. Syst. 1983;1:53-70. 

33. Spears JS. Can farming and forestry coexist in the tropics? Unasylva. 1985;32 (128):2-12. 

34. Christanty L. Shifting cultivation and tropical soils: patterns, problems and possible improvements. In: 

Marten GG, editor. Traditional agriculture in southeast Asia. 1986. Westview Press, Boulder, 

Colorado, USA. pp 226-240.   

35. Okubo S, Tomatsu A, Muhamad D, Harashina K, Takeuchi K. Leaf functional traits and functional 

diversity of multistoried agroforests in West Java, Indonesia. Agric Ecosys Environ. 2012;49:91-99. 

36. Smith NJH. Home gardens as a springboard for agroforestry development in Amazonia. Int Tree Crops 

J. 1996;9:11-30. 

37. Scatena FN, Walker RT, Kingo Oyama Homma A, de Conto AJ, Palheta Ferreira CA, de Amorim 

Carvalho R, Neves da Rocha ACP, dos Santos AIM, de Oliveira PM. Cropping and fallowing 

sequences of small farms in the 'terra firme' landscape of the Brazilian Amazon: a case study from 

Santarem, Pará. Ecol. Econ. 1996;18:29-40. 

38. Carvalho TKN, Abreu DBO, de Lucena CM, Pedrosa KM, Neto CFAV, Alves CAB, Felix LP, 

Florentino ATN, Alves RRN, de Andrade LA, de Lucena RFP. Structure and floristics of home gardens 

in an altitudinal marsh in Northeastern Brazil. Ethnobotany Res Applic. 2013;11: 029-047. 

39. Neulinger K, Vogl CR, Alayón-Gamboa JA. Plant species and their uses in homegardens of migrant 

Maya and Mestizo smallholder farmers in Calakmul, Campeche, Mexico. J. Ethnobiol. 

2013;33(1):105-124. 

40. Lowe RG. Development of taungya in Nigeria. In: Gholz HG, editor.  Agroforestry: realities, 

possibilities and potentials. Martinus Nijhoff, Dordrecht, The Netherlands. 1987: pp137-154.   

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



12 
 

41. Blay D, Appiah M, Damnyag L, Dwomoh FK, Luukkanen O, Pappinen A. Involving local farmers in 

rehabilitation of degraded tropical forests: some lessons from Ghana. Environ Dev Sustainability. 

2008;104: 503-518. 

42. Boakye EA, Gils H, Osei EM, Asare VN. Does forest restoration using taungya foster tree species 

diversity? The case of Afram Headwaters Forest Reserve in Ghana. Afr J Ecol. 2012;50(3):319-325. 

43. Kalame FB, Aidoo R, Nkem J, Ajayie OC, Kanninen M, Luukkanen O, Idinoba M. Modified taungya 

system in Ghana: a win–win practice for forestry and adaptation to climate change? Environ Sci Policy. 

2011; 14(5):519-530. 

44. Watanabe H, Sahunalu P, Khemnark C. Combinations of trees and crops in the taungya method as 

applied in Thailand. Agrofor. Syst.1988;6:169-177. 

45. Lahiri A K. Taungya-based agro-forestry trials in West Bengal. Indian Forester. 1989;115:127-132. 

46. Shankar U, Lama SD, Bawa KS. Ecosystem reconstruction through 'taungya' plantations following 

commercial logging of a dry, mixed deciduous forest in Darjeeling Himalaya. For Ecol 

Manag.1998;102:131-142. 

47. Oduol PA. The shamba system: an indigenous system of food production from forest areas in Kenya. 

Agrofor Syst. 1986;4:365-373. 

48. Imo M. Interactions amongst trees and crops in taungya systems of western Kenya. Agrofor Syst. 

2009;76(2): 265-273. 

49. Witcomb M, Dorward P. An assessment of the benefits and limitations of the shamba agroforestry 

system in Kenya and of management and policy requirements for its successful and sustainable 

reintroduction. Agrofor Syst. 2009;75(3):261-274. 

50. Lawrence DC. Trade-offs between rubber production and maintenance of diversity: the structure of 

rubber gardens in West Kalimantan, Indonesia. Agrofor Syst.1996;34:83-100.  

51. Lehébel-Péron A, Feintrenie L, Levang P. Rubber agroforests' profitability, the importance of 

secondary products. Forests, Trees Livelihoods. 2011;20(1):69-84. 

52. Ekadinata A, Vincent G Rubber agroforests in a changing landscape: analysis of land use/cover 

trajectories in Bungo district, Indonesia. Forests, Trees Livelihoods. 2011;20(1); 3-14. 

53. Sakchoowong W, Jaitrong W, Ogata K. Ant diversity in forest and traditional hill-tribe agricultural 

types in Northern Thailand. Kasetsart J. Nat. Sci. Thailand. 2008;42(4): 617-626. 

54. Norgrove L, Csuzdi C, Forzi F, Canet M, Gounes J. Shifts in soil faunal community structure in shaded 

cacao agroforests and consequences for ecosystem function in Central Africa. Trop Ecol. 2009;50(1): 

71-78. 

55. Cunningham RK, Arnold PW. The shade and fertiliser requirements of cacao (Theobroma cacao) in 

Ghana. J. Sci Food Agric.1962;13:213-221. 

56. Norgrove L. Effects of different copper fungicide application rates upon earthworm activity and 

impacts on cocoa yield over four years. Eur J Soil Biol. 2007;43:303-310. 

57. Norgrove L, Hauser S. Carbon stocks in shaded Theobroma cacao farms and adjacent secondary 

forests of similar age in Cameroon. Trop. Ecol. 2013;54(1):15-22. 

58. Santana MBM, Cabala-Rosand P. Dynamics of nitrogen in a shaded cacao plantation. Plant Soil. 

1982;67:271-281. 

59. Sambuichi RH, Vidal DB, Piasentin FB, Jardim JG, Viana TG, Menezes AA, Durval LNM, Ahnert 

DA,  Baligar VC. Cabruca agroforests in southern Bahia, Brazil: tree component, management 

practices and tree species conservation. Biodiv Cons. 2012; 21(4):1055-1077. 

60. Arunguren J, Escalante G, Herrera R. Nitrogen cycle of tropical perennial crops under shade trees. 1. 

Coffee. Plant Soil.1982a;67:247-258. 

61. Arunguren J, Escalante G, Herrera R. Nitrogen cycle of tropical perennial crops under shade trees. 1. 

Cacao. Plant Soil.1982b;67:259-269.  

62. Lagemann J, Heuveldop J. Characterization and evaluation of agroforestry systems: the case of Acosta-

Puriscal, Costa Rica. Agrofor Syst.1983;1:101-115. 

63. Yachi S, Loreau M. Biodiversity and ecosystem productivity in a fluctuating environment: the 

insurance hypothesis. Proc Nat Acad Sci. 1999;96(4):1463-1468. 

64. Cannell MGR, van Noordwijk M, Ong CK. The central agroforestry hypothesis: the trees must acquire 

resources that the crop would not otherwise acquire. Agrofor Syst. 1996; 34:27-31. 

65. Willey RW. Resource use in intercropping systems. Agric Water Manag. 1990;171:215-231. 

66. Fukai S, Trenbath BF. Processes determining intercrop productivity and yields of component crops. 

Field Crops Research.1993; 34:247-271. 

67. Midmore DJ. Agronomic modification of resource use and intercrop productivity. Field Crops 

Research. 1993. 34(3), 357-380. 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



13 
 

68. Rowe EC, van Noordwijk M, Suprayogo D, Hairiah K, Giller KE, Cadisch G. Root distributions 

partially explain 15N uptake patterns in Gliricidia and Peltophorum hedgerow intercropping systems. 

Plant Soil. 2001;235(2):167-179. 

69. Vandermeer JH. The interpretation and design of intercrop systems involving environmental 

modification by one of the components: a theoretical framework. Biol Agric Hort 1984; 2:135-156. 

70. Charbonnier F, le Maire G, Dreyer E, Casanoves F, Christina M, Dauzat J, Eitel JUH, Vaast P, Vierling 

LA, Roupsard O. Competition for light in heterogeneous canopies: Application of MAESTRA to a 

coffee Coffea arabica L. agroforestry system. Agric For Meteor. 2013;181:152-169. 

71. Eckstein K, Robinson JC, Fraser C. Physiological responses of banana Musa AAA/Cavendish sub-

group in the subtropics. VII. Effects of windbreak shading on phenology, physiology and yield. J Hort 

Sci.1997;72:389-396. 

72. Norgrove, L Hauser S. Black leaf streak disease and plantain fruit characteristics as affected by tree 

density and biomass management in a tropical agroforestry system. Agrofor. Syst. 2013b;87(2):349-

354. 

73. Buresh RJ, Tian G. Soil improvement by trees in sub-Saharan Africa. Agrofor Syst. 1998; 38:51-76. 

74. Belsky A J. Influences of trees on savanna productivity: tests of shade, nutrients, and tree-grass 

competition. Ecol.1994;75(4):922-932. 

75. Ofori-Bah A, Asafu-Adjaye J. Scope economies and technical efficiency of cocoa agroforestry systems 

in Ghana. Ecol. Econ. 2011;70(8):1508-1518. 

76. Blackman A, Ávalos-Sartorio B, Chow J. Land cover change in agroforestry: shade coffee in El 

Salvador. Land Econ. 2012;88(1):75-101. 

77. Mead R, Willey RW. The concept of a ‘land equivalent ratio’ and advantages in yields from 

intercropping. Exper Agric. 1980;16: 217-228. 

78. Leakey RRB. The role of trees in agroecology and sustainable agriculture in the tropics. Ann Rev 

Phytopath. 2014; 52:113-133. 

79. Nelder JA. New kinds of systematic designs for spacing experiments. Biometrics.1962;18:283-307. 

80. Marquard E, Weigelt A, Temperton V M, Roscher C, Schumacher J, Buchmann N, Fischer M, Weisser 

WW, Schmid B. Plant species richness and functional composition drive overyielding in a six-year 

grassland experiment. Ecol. 2009; 90(12): 3290-3302.  

81. Schultz B, Phillips C, Rosset P, Vandermeer J. An experiment in intercropping cucumbers and 

tomatoes in southern Michigan, USA. Sci Hort 1982;18(1):1-8. 

82. Snelder DJ, Klein M, Schuren SHG. Farmers’ preferences, uncertainties and opportunities in fruit-tree 

cultivation in Northeast Luzon. Agrofor Syst. 2007;71(1):1-17. 

83. Mekonnen A. Tenure security, resource endowments, and tree growing: evidence from the Amhara 

region of Ethiopia. Land Econ. 2009;85(2):292-307. 

84. Fenske J. Land tenure and investment incentives: Evidence from West Africa. J Dev Econ. 

2011;95(2):137-156. 

85. Ramírez OA, Somarriba E, Ludewigs T, Ferreira P. Financial returns, stability and risk of cacao-

plantain-timber agroforestry systems in Central America. Agrofor Syst. 2011;51(2):141-154. 

86. Bhagwat SA, Willis KJ, Birks HJB, Whittaker RJ. Agroforestry: a refuge for tropical biodiversity? 

Trends Ecol Evol. 2008;23(5):261-267. 

87. Scales BR, Marsden SJ. Biodiversity in small-scale tropical agroforests: a review of species richness 

and abundance shifts and the factors influencing them. Environ Cons. 2008;35(02):160-172.  

88. Hartemink AE. Assessing soil fertility decline in the tropics using soil chemical data. Adv Agron. 

2006;89:179-225. 

89. Pickett ST. Space-for-time substitution as an alternative to long-term studies. In: Likens GE, editor. 

Long-term studies in ecology. New York: Springer; 1989. pp.110-135.  

90. •• Lebrija‐Trejos E, Bongers F, Pérez‐García EA, Meave, JA. Successional change and resilience of a 

very dry tropical deciduous forest following shifting agriculture. Biotropica. 2008;40(4): 422-431. A 

comprehensive case study on resilience in shifting cultivation using many age classes representing 

the succession of very dry tropical deciduous forest in Mexico.  
91. Norgrove L, Hauser S. Biophysical criteria used by farmers for fallow selection in West and Central 

Africa. Ecol. Indic. doi:10.1016/j.ecolind.2015.06.013. in press. 

92. Holling CS. Resilience and stability of ecosystems. Ann Rev Ecol Syst. 1973;4:1-23. 

93. Scheffer M, Carpenter S, Foley JA, Folke C, Walker B. Catastrophic shifts in ecosystems. Nature. 

2001;413(6856):591-596. 

94. Tittonell P. Livelihood strategies, resilience and transformability in African agroecosystems. Agric. 

Syst. 2014;126:3-14. 

95. Trenbath BR. Weeds and Agriculture: A question of balance. In: White J, editor. Studies on plant 

demography. A festschrift for John L Harper. London: Academic Press; 1985. pp171-183.  

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



14 
 

96. Szott LT, Palm CA, Buresh RJ. Ecosystem fertility and fallow function in the humid and subhumid 

tropics. Agrofor Syst. 1999;47(1-3):163-196. 

97. Albers HJ, Goldbach MJ. Irreversible ecosystem change, species competition, and shifting cultivation. 

Res Energy Econ. 2000;22(3):261-280. 

98. Biala  K,  Peeters A,  Muys  B,  Hermy  M,  Brouckaert  V,  García  V,  van  der  Veken  B,  Valckx  J. 

Biodiversity  indicators  as  a  tool  to  assess  sustainability  levels  of  agro-ecosystems,  with  a 

special consideration of grassland areas.  In: Molina AE, Ben Salem H, Biala K,  Morand-Fehr  P, 

editors. Sustainable  grazing,  nutritional  utilization  and  quality  of  sheep  and  goat products 

Zaragoza :  CIHEAM,  2005  p  439-443  (Options  Méditerranéennes: Série A  Séminaires 

Méditerranéens; n 67).  

99. Beukema H, Danielsen F, Vincent G, Hardiwinoto S,  Van Andel J. Plant and bird diversity in rubber 

agroforests in the lowlands of Sumatra, Indonesia. Agrofor Syst. 2007;70(3): 217-242. 

100. Kishimoto-Yamada K, Itioka T, Nakagawa M, Momose K, Nakashizuka T. Phytophagous scarabaeid 

diversity in swidden cultivation landscapes in Sarawak, Malaysia. Raffles Bull. Zool. 2011;59(2):285-

293. 

101. Holbech LH. The conservation importance of luxuriant tree plantations for lower storey forest birds in 

south-west Ghana. Bird Conservation Int. 2009:19(03):287-308. 

102. Gao L, Liu HM. Rotation system for Cardamom planting and forest regeneration in the tropical 

rainforest of southwest China. J Trop For Sci. 2009;21(3):190-197. 

103. Mo XX, Zhu H, Zhang YJ, Slik JF, Liu JX. Traditional forest management has limited impact on plant 

diversity and composition in a tropical seasonal rainforest in SW China. Biol Cons. 2011;144(6):1832-

1840. 

104. Arias RM, Heredia-Abarca G, Sosa VJ, Fuentes-Ramírez LE. Diversity and abundance of arbuscular 

mycorrhizal fungi spores under different coffee production systems and in a tropical montane cloud 

forest patch in Veracruz, Mexico. Agrofor Syst. 2012;85(1):179-193. 

105. Bobo KS, Waltert M, Fermon H, Njokagbor J, Mühlenberg M. From forest to farmland: butterfly 

diversity and habitat associations along a gradient of forest conversion in Southwestern Cameroon. J 

Insect Cons. 2006;10(1):29-42. 

106. Bobo KS, Waltert M, Sainge NM, Njokagbor J, Fermon H, Mühlenberg M. From forest to farmland: 

species richness patterns of trees and understorey plants along a gradient of forest conversion in 

Southwestern Cameroon. Biodiv Cons. 2006;15(13): 4097-4117. 

107. Braga RF, Korasaki V, Audino LD, Louzada J. Are dung beetles driving dung-fly abundance in 

traditional agricultural areas in the Amazon? Ecosyst. 2012;15(7): 1173-1181. 

108. Eggleton P, Bignell DE, Hauser S, Dibog L, Norgrove L, Madong B. Termite diversity across an 

anthropogenic disturbance gradient in the humid forest zone of West Africa. Agric Ecosys Environ. 

2002;90(2):189-202. 

109. Harvey CA, Villalobos JAG. Agroforestry systems conserve species-rich but modified assemblages of 

tropical birds and bats. Biodiv Cons. 2007;16(8):2257-2292. 

110. Laliberté E, Tylianakis JM. Deforestation homogenizes tropical parasitoid-host networks. 

Ecol.2010;91(6):1740-1747. 

111. •• Rousseau L, Fonte SJ, Téllez O, Van der Hoek R, Lavelle P. Soil macrofauna as indicators of soil 

quality and land use impacts in smallholder agroecosystems of western Nicaragua. Ecol Indic. 2013; 

27:71-82. A case study focussing on the role of soil faunal functional biodiversity in multistrata 

systems with both forest and agricultural controls 
112. Schulze CH, Waltert M, Kessler PJA, Pitopang R, Shahabuddin, Veddeler D, Mühlenberg M, 

Gradstein SR, Leuschner C, Steffan-Dewenter I, Tscharntke T. Biodiversity indicator groups of 

tropical land-use systems: comparing plants, birds, and insects. Ecol Appl. 2004;14(5):1321-1333. 

113. Schulze CH, Tscharntke T. Changes of dung beetle communities from rainforests towards agroforestry 

systems and annual cultures in Sulawesi (Indonesia). Biodiv Cons. 2005;14(4): 863-877. 

114. Steffan-Dewenter I, Tscharntke T. Biodiversity indicator groups of tropical land-use systems: 

comparing plants, birds, and insects. Ecol Appl. 2004;14(5):1321-1333. 

115. Teodoro AV, Muñoz A, Tscharntke T, Klein AM, Tylianakis JM. Early succession arthropod 

community changes on experimental passion fruit plant patches along a land-use gradient in Ecuador. 

Agric Ecosys Environ. 2011;140:14-19. 

116. Waltert M, Mardiastuti A, Mühlenberg M. Effects of land use on bird species richness in Sulawesi, 

Indonesia. Cons Biol. 2004;18(5):1339-1346. 

117. Waltert M, Bobo KS, Sainge NM, Fermon H, Mühlenberg M. From forest to farmland: habitat effects 

on Afrotropical forest bird diversity. Ecol Appl. 2005;15(4):1351-1366. 

118. Waltert M, Bobo KS, Kaupa S, Montoya ML, Nsanyi MS, Fermon H. Assessing conservation values: 

biodiversity and endemicity in tropical land use systems. PLoS ONE. 2011;6(1): e16238. 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



15 
 

119. Bieng MAN, Gidoin C, Avelino J, Cilas C, Deheuvels O, Wery J. Diversity and spatial clustering of 

shade trees affect cacao yield and pathogen pressure in Costa Rican agroforests. Basic Appl Ecol. 

2013;14(4): 329-336. 

120. Kessler M, Hertel D, Jungkunst HF, Kluge J, Abrahamczyk S, Bos M, Buchori D, Gerold G, Gradstein 

SR, Kohler S, Leuschner C, Moser G, Pitopang R, Saleh S, Schulze CH, Sporn SG, Steffan-Dewenter 

I, Tjitrosoedirdjo SS, Tscharntke T. Can joint carbon and biodiversity management in tropical 

agroforestry landscapes be optimized? PLoS ONE. 2012;7(10):10.1371/journal.pone.0047192. 

121. Wade AS, Asase A, Hadley P, Mason J, Ofori-Frimpong K, Preece D, Spring N, Norris K. 

Management strategies for maximizing carbon storage and tree species diversity in cocoa-growing 

landscapes. Agric. Ecosys. Environ. 2010.  138(3), 324-334. 

122. Saha SK, Nair PR, Nair VD, Kumar BM. Soil carbon stock in relation to plant diversity of 

homegardens in Kerala, India. Agrofor Syst. 2009;76(1): 53-65. 

123. Méndez VE, Gliessman SR, Gilbert GS. Cooperative management and its effects on shade tree 

diversity, soil properties and ecosystem services of coffee plantations in western El Salvador. Agrofor 

Syst. 2009;76(1):111-126. 

124. Haggar JP, Ewel JJ. Primary productivity and resource partitioning in model tropical ecosystems. Ecol. 

1997;78(4): 1211-1221. 

125. Waldron A, Justicia R, Smith L, Sanchez M. Conservation through chocolate: a win‐win for 

biodiversity and farmers in Ecuador's lowland tropics. Cons Letters. 2012;5(3):213-221. 

126. Kessler M, Abrahamczyk S,  Buchori D, Putra DD, Gradstein SR, Hohn P, Kluge J, Orend F, Pitopang 

R, Saleh S, Schulze CH, Sporn SG, Steffan-Dewenter I, Tjitrosoedirdjo SS, Tscharntke T. Alpha and 

beta diversity of plants and animals along a tropical land-use gradient. Ecol Appl.2009;19(8): 2142-

2156. 

127. Wanger TC, Iskandar DT, Motzke I, Brook BW, Sodhi NS, Clough Y, Tscharntke T. Effects of land‐
use change on community composition of tropical amphibians and reptiles in Sulawesi, Indonesia. 

Cons Biol. 2010; 24(3):795-802. 

128. Sperber CF, Nakayama K, Valverde MJ, de Siqueira Neves F. Tree species richness and density affect 

parasitoid diversity in cacao agroforestry. Basic Appl Ecol. 2004;5(3):241-251. 

129. Hoehn P, Steffan-Dewenter I, Tscharntke T. Relative contribution of agroforestry, rainforest and 

openland to local and regional bee diversity. Biodiv Cons. 2010;19(8):2189-2200. 

130. Shahabuddin,  Hidayat P, Manuwoto S, Noerdjito WA, Tscharntke T, Schulze CH. Diversity and body 

size of dung beetles attracted to different dung types along a tropical land-use gradient in Sulawesi, 

Indonesia. J Trop Ecol. 2010;26(01):53-65. 

131. Bos MM, Tylianakis JM, Steffan-Dewenter I, Tscharntke T. The invasive yellow crazy ant and the 

decline of forest ant diversity in Indonesian cacao agroforests. Biol Invasions. 2008;10(8):1399-1409. 

132. Rizali A, Clough Y, Buchori D, Hosang ML, Bos MM, Tscharntke T. Long‐term change of ant 

community structure in cacao agroforestry landscapes in Indonesia. Insect Cons Divers. 2013;6(3):328-

338. 

133. Bos MM, Steffan-Dewenter I, Tscharntke T. The contribution of cacao agroforests to the conservation 

of lower canopy ant and beetle diversity in Indonesia. Biodiv Cons. 2007;16(8):2429-2444. 

134. Bisseleua HBD, Fotio D, Missoup AD, Vidal S. Shade tree diversity, cocoa pest damage, yield 

compensating inputs and farmers' net returns in West Africa. PLoS ONE. 2013;8(3): e56115. 

doi:10.1371/journal.pone.0056115. 

135. Sporn SG, Bos MM, Hoffstätter-Müncheberg M, Kessler M, Gradstein SR. Microclimate determines 

community composition but not richness of epiphytic understory bryophytes of rainforest and cacao 

agroforests in Indonesia. Funct Plant Biol. 2009;36(2):171-179. 

136. Cicuzza D, Clough Y, Tjitrosoedirdjo SS, Kessler M. Responses of terrestrial herb assemblages to 

weeding and fertilization in cacao agroforests in Indonesia. Agrofor Syst. 2012;85(1):75-83. 

137. Klein A-M, Steffan-Dewenter I, Tscharntke T. Rain forest promotes trophic interactions and diversity 

of trap‐nesting Hymenoptera in adjacent agroforestry. J Animal Ecol. 2006;75(2):315-323. 

138. Teodoro AV, Sousa-Souto L, Klein AM, Tscharntke T. Seasonal contrasts in the response of coffee 

ants to agroforestry shade-tree management. Environ Entom. 2010;39(6):1744-1750. 

139. Williams‐Guillén K, Perfecto I. Effects of agricultural intensification on the assemblage of leaf‐nosed 

bats (Phyllostomidae) in a coffee landscape in Chiapas, Mexico. Biotropica. 2010;42(5): 605-613. 

140. Méndez VE, Gliessman SR, Gilbert GS. Tree biodiversity in farmer cooperatives of a shade coffee 

landscape in western El Salvador. Agric Ecosys Environ. 2007;119(1):145-159. 

141. García-Fernández C, Casado MA. Forest recovery in managed agroforestry systems: the case of 

benzoin and rattan gardens in Indonesia. For. Ecol. Manag. 2005;214(1):158-169. 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



16 
 

142. Lozada T, De Koning GHJ, Marché R, Klein AM, Tscharntke T. Tree recovery and seed dispersal by 

birds: comparing forest, agroforestry and abandoned agroforestry in coastal Ecuador. Perspect Plant 

Ecol Evol Syst. 2007;8(3):131-140. 

143. Castro‐Luna AA, Sosa VJ, Castillo‐Campos G. Bat diversity and abundance associated with the degree 

of secondary succession in a tropical forest mosaic in south‐eastern Mexico. Animal Cons. 2007;10(2): 

219-228. 

144. Pawar SS, Rawat GS, Choudhury BC. Recovery of frog and lizard communities following primary 

habitat alteration in Mizoram, Northeast India. BMC Ecol. 2004; 4(1):10. doi:10.1186/1472-6785-4-10. 

145. Nakagawa M, Miguchi H, Nakashizuka T. The effects of various forest uses on small mammal 

communities in Sarawak, Malaysia. Forest Ecol Manage. 2006:231(1):55-62. 

146. Shankar Raman TR, Rawat GS, Johnsingh AJT. Recovery of tropical rainforest avifauna in relation to 

vegetation succession following shifting cultivation in Mizoram, north‐east India. J Appl Ecol. 

1998;35(2):214-231. 

147. Bu W, Zang R, Ding Y. Field observed relationships between biodiversity and ecosystem functioning 

during secondary succession in a tropical lowland rainforest. Acta Oecol. 2014;55:1-7. 

148. Itioka T, Takano KT, Kishimoto-Yamada K, Tzuchiya T, Ohshima Y, Katsuyama R I, Yago M, Yata 

O, Nakagawa M, Nakashizuka T. Chronosequential changes in species richness of forest-edge-dwelling 

butterflies during forest restoration after swidden cultivation in a humid tropical rainforest region in 

Borneo J For Res. 2015; 20(1):125-134. 

149. Nakagawa M, Momose K, Kishimoto-Yamada K, Kamoi T, Tanaka HO, Kaga M, Yamashita S, Itioka 

T, Nagamasu H, Sakai S, Nakashizuka T.  Tree community structure, dynamics, and diversity 

partitioning in a Bornean tropical forested landscape. Biodiv Cons. 2013; 22(1):127-140. 

150. Piotto D, Montagnini F, Thomas W, Ashton M, Oliver C.  Forest recovery after swidden cultivation 

across a 40-year chronosequence in the Atlantic forest of southern Bahia, Brazil. Plant Ecol. 

2009;205(2): 261-272. 

151. Fujisaka S, Escobar G., Veneklaas E. Plant community diversity relative to human land uses in an 

Amazon forest colony. Biodiv. Cons. 1998:7(1); 41-57. 

152. Wangpakapattanawong P, Kavinchan N, Vaidhayakarn C, Schmidt-Vogt D, Elliott S. Fallow to forest: 

Applying indigenous and scientific knowledge of swidden cultivation to tropical forest restoration. 

Forest Ecol Manage. 2010:260(8);1399-1406. 

153. Kennard DK. Secondary forest succession in a tropical dry forest: patterns of development across a 50-

year chronosequence in lowland Bolivia. J. Trop Ecol. 2002:18(01); 53-66. 

154. Tanaka HO, Yamane S, Nakashizuka T, Momose K, Itioka T.  Effects of deforestation on mutualistic 

interactions of ants with plants and hemipterans in tropical rainforest of Borneo. Asian Myrmecol. 

2007:1;31-50. 

155. Williams M, Ryan CM, Rees RM, Sambane E, Fernando J, Grace J. Carbon sequestration and 

biodiversity of re-growing miombo woodlands in Mozambique. Forest Ecol Manage. 2008:254(2);145-

155. 

156. Klanderud K, Mbolatiana HZH, Vololomboahangy MN, Radimbison MA, Roger E, Totland Ø, 

Rajeriarison C. Recovery of plant species richness and composition after slash-and-burn agriculture in 

a tropical rainforest in Madagascar. Biodiv Cons. 2010;19(1):187-204. 

157. Toledo M, Salick J. Secondary succession and indigenous management in semideciduous forest fallows 

of the Amazon Basin. Biotropica. 2006:38(2);161-170. 

158. •• De Wilde M, Buisson E, Ratovoson F, Randrianaivo R, Carrière SM, Lowry PP II. Vegetation 

dynamics in a corridor between protected areas after slash-and-burn cultivation in south-eastern 

Madagascar. Agric. Ecosyst Environ. 2012;159:1-8. A case study with sufficient age categories to 

demonstrate fallow succession in shifting cultivation as well as assessing the impacts of different 

cultivation practices on fallow succession. 
159. N'Dja JK, Decocq G. Régénération de la forêt dense semi-décidue dans les stades post—culturaux en 

forêt classée de Sanaimbo (Côte-d'Ivoire). Acta Botanica Gallica. 2007;154(3):395-405. 

160. McNamara S, Erskine PD, Lamb D, Chantalangsy L, Boyle S. Primary tree species diversity in 

secondary fallow forests of Laos. Forest Ecol Manag. 2012;28(1): 93-99. 

161. Kupfer JA, Webbeking AL, Franklin SB. Forest fragmentation affects early successional patterns on 

shifting cultivation fields near Indian Church, Belize. Agric Ecosys Environ. 2004;103(3): 509-518. 

162. Randriamalala JR, Hervé D, Randriamboavonjy JC, Carrière, SM. Effects of tillage regime, cropping 

duration and fallow age on diversity and structure of secondary vegetation in Madagascar. Agric 

Ecosys Environ. 2012;155:182-193. 

163. Jakovac CC, Peña‐Claros M, Kuyper TW, Bongers F. Loss of secondary‐forest resilience by land‐use 

intensification in the Amazon. J Ecol. 2015;103(1):67-77. 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



17 
 

164. Randriamalala JR, Hervé D, Letourmy P, Carrière SM. Effects of slash-and-burn practices on soil seed 

banks in secondary forest successions in Madagascar. Agric Ecosys Environ. 2015;199:312-319. 

165. Green RE, Cornell SJ, Scharlemann JPW, Balmford A. Farming and the fate of wild nature. 

Science.2005; 307:550–555. 

166. Phalan B, Green R, Balmford A. Closing yield gaps: perils and possibilities for biodiversity 

conservation. Phil. Trans. R. Soc. B-Biol. Sci. 2014;369. 

167. Ioannidis JPA. Why most published research findings are false. PLoS Med. 2005; 2:e124. 

168. Ruf FO. The myth of complex cocoa agroforests: the case of Ghana. Human Ecol. 2011; 39(3):373-

388.  

169. Gurevitch J, Curtis, P S, Jones, M H. Meta-analysis in ecology. Adv Ecol Res. 2001;32:199-247. 

170. Beck J, Pfiffner L, Ballesteros-Mejia L, Blick T, Luka H. Revisiting the indicator problem: can three 

epigean arthropod taxa inform about each other’s biodiversity? Diversity Distribut. 2013;19: 688–699. 

171. Newbold T, Hudson LN, Hill SLL, Contu S, Lysenko I, Senior RA, Borger L, Bennett DJ, Choimes A, 

Collen B, Day J, De Palma A, Diaz S, Echeverria-Londono S, Edgar MJ, Feldman A, Garon M, 

Harrison MLK, Alhusseini T, Ingram DJ, Itescu Y, Kattge J, Kemp V, Kirkpatrick L, Kleyer M, 

Correia DLP, Martin CD, Meiri S, Novosolov M, Pan Y, Phillips HRP, Purves DW, Robinson A, 

Simpson J, Tuck SL, Weiher E, White HJ, Ewers RM, Mace GM, Scharlemann JPW, Purvis A. Global 

effects of land use on local terrestrial biodiversity. Nature. 2015;520(7545):45-50. 

172. Curran M, Hellweg S, Beck J. Is there any empirical support for biodiversity offset policy? Ecol 

Applic. 2014;24:617–632. 

173. Quetier, F, Van Teeffelen AJA, Pilgrim JD, von Hase A, ten Kate K. Biodiversity offsets are one 

solution to widespread poorly-compensated biodiversity loss - a response to Curran et al. Ecol Applic. 

2015; 25(6), 1739-1741. 

174. Curran M, Hellweg S, Beck J. The jury is still out on biodiversity offsets—Reply to Quétier et al. Ecol 

Applic. 2015; 25:1741–1746. 

175. •• Franzen M, Borgerhoff Mulder M. Ecological, economic and social perspectives on cocoa 

production worldwide. Biodiv Conserv. 2007;16:3835–3849. This paper provides a critical view on 

biodiversity research in cacao systems and suggests practical ways to minimize trade-offs 

between production and conservation. 

176. Kricher J. Tropical ecology. Princeton, N.J: Princeton University Press. 2011. 

177. Storch D, Marquet PA, Brown JH. Scaling biodiversity. Cambridge: Cambridge University Press; 

2007. 

178. Bruelheide H, Nadrowski K, Assmann T, Bauhus J, Both S, Buscot F, Chen X-Y, Ding BY, Durka W, 

Erfmeier A, Gutknecht JLM, Guo DL, Guo L-D, Härdtle W, He J-S, Klein A-M, Kühn P, Liang Y, Liu 

XJ, Michalski S, Niklaus PA, Pei KQ, Scherer-Lorenzen M, Scholten T, Schuldt A, Seidler G, 

Trogisch S, von Oheimb G, Welk E, Wirth C, Wubet T, Yang XF, Yu MJ, Zhang SR, Zhou HZ, 

Fischer M, Ma KP, Schmid B. Designing forest biodiversity experiments: general considerations 

illustrated by a new large experiment in subtropical China. Meth Ecol Evol. 2014; 5:74–89.  

179. Verheyen K, Vanhellemont M, Auge H, Baeten L, Baraloto C, Barsoum N, Bilodeau-Gauthier S, 

Bruelheide H, Castagneyrol B, Godbold D, Haase J, Hector A, Jactel H, Koricheva J, Loreau M, Mereu 

S, Messier C, Muys B, Nolet P, Paquette A, Parker J, Perring M, Ponette Q, Potvin C, Reich P, Smith 

A, Weih M, Scherer-Lorenzen M. Contributions of a global network of tree diversity experiments to 

sustainable forest plantations. Ambio. DOI 10.1007/s13280-015-0685-1. In press. 

  

CAPTION: 

Figure 1 Depiction of selected tropical agroforestry systems along a forestry to agriculture gradient and 

according to the type and length of the tree-crop interface. 

Figure 2 Properties of 146 reviewed studies on tropical agroforestry and biodiversity function. (A) Location of 

studies by country (in insular Southeast-Asia by island). (B) Frequencies of studies by Biodiversity function 

(CULT = planned, cultivated biodiversity; VOL = Spontaneous, volunteer biodiversity of use for the farmer; IN 

= biodiversity of positive, functional use for the farmer within the system (e.g. soil fertility, pest control, 

pollination); EX = biodiversity of positive, functional use outside the study system; HER = heritage biodiversity 

(without direct, studied link to study system), Taxon, Agroforestry system (ASC = Agrisilviculture; oSC = other 

shade commodity), and study design.  

Figure 3 Estimate of species richness recovery (in percent of old-growth control levels) as a function of fallow 

age. Linear regressions (OLS) were fitted to published data as a crude, preliminary representation of recovery 

trajectories. Arrows indicate the age at which 80% of reference biodiversity would be restored according to 

these functions. Numbers give taxon, locality, ecoregion and r2’s of linear regressions (all were significant at P 

<0.05): (1) Trees, Hainan (China), humid forest, r2 = 0.99, n = 4 [147]; (2) Trees, NE India, humid forest, r2 = 

0.94, n = 5 [146]; (3) All plants, Mexico, dry forest, r2 = 0.47, n = 15 [90]; (4) All plants, Madagascar, humid 
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forest, r2 = 0.81, n = 6 [156]; (5) All plants, Madagascar, semi-humid forest, r2 = 0.99, n = 5 [158]; (6) All 

plants, Côte-d'Ivoire, semi-humid forest, r2 = 0.59, n = 8 [159]; (7) Birds, NE India, humid forest,  r2 = 0.81, n = 

5 [146]; (8) Beetles, Borneo, humid forest,  r2 = 0.99, n = 4 [100]; (9) Butterflies, Borneo, humid forest,  r2 = 

0.97, n = 4 [148].  

 

Table 1 Definitions of agroforestry by the minimum number and type of components, the requirement for 

spatial or only temporal mixing and the degree of interaction between components (updated after [8]). Key: ns – 

not stated 

Table 2 Agroforestry systems with classes or individual components either named, or classified as present (X) 

or absent (). S = smallholder farmers, L = large-scale or institutionalised. *L. Norgrove unpublished data 

Table 3 Number of studies with controls (agr. = agriculture), biodiversity differences of agroforestry compared 

to controls, and diversity-productivity effects, classified by type of agroforestry system. Note that the total 

surpasses the number of reviewed studies (146) as some papers presented data from several systems. The 

significance of effects was based on error probabilities given in papers (p ≤0.05) or estimated from graphic data 

representation (e.g., non-overlap of 2*SE). Papers used for biodiversity comparison: [53, 104-118]. Papers used 

for biodiversity – productivity relationship: [119-124]. 

 Two “other”s were both semi-experimental studies on Quesungual slash-and-mulch agroforestry [111] and fruit 

trees under shade  [107]. 

Table 4 Management influences tested on biodiversity in shaded cacao systems. All studies from the humid 

forest ecoregion.  

Table 5 Management influences tested on species richness in shaded coffee systems, all from humid forest 

ecoregions. 

Table 6 Number of studies assessing effects of fallow age on biodiversity in shifting cultivation systems. NB 

Studies had at least 3 ages classes with a primary or old growth forest control; assessment of significance (sig., p 

<0.05) is based on linear regression (ordinary least squares). 

Table 7 Management and landscape configuration factors affecting biodiversity resilience in fallows of shifting 

cultivation systems.   
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 Huxley, (1983) [3] Young (1989)[4] Nair (1991)[5] Sanchez (1995)[6] Zomer et al. (2009)[7] 

      

      

minimum components  minimum of two plant    woody perennial &    trees (shrubs?) tree and woody perennials  

 species of which at  crop and / or animal crop and /or animal crop and / or animal included within 

farming system 

 least one is woody.       

 animals optional.     

      

      

spatial mix required or 

only time sequence? 

spatial mix required spatial mix or time 

sequence possible 

ns ns ns 

 (not time sequence)        

      

      

      

types of interactions 

required 

interactions through     both ecological not specified      interactions ns 

 environmental  processes         & economic 

interactions 

      (competition)  

 or management            
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 Study region, 

References 

Planted timber 

trees 

Non-

planted 

timber 

trees 

Fruit or bean 

trees  

Commodity 

tree crops 

Other trees 

(e.g. N-

fixing, 

shade) 

Starchy 

food 

crops 

Vegetables Others 

Homegardens         
S Java, 

Indonesia[28,32-

35] 

 sometimes guava sometimes  cassava X X 

S N Brazil [36-38]  X X X  X X X 

S Mexico[39]   orange, 

avocado 
  X epazote 

(Dysphania 

ambrosioides) 

coconut, 

Aloe 

vera 

Improved fallow (alley cropping)        
S SE Nigeria[20]     Dactyladenia 

barteri 

maize, 

yam 
  

S NW Cameroon*     Tephrosia 

vogelii 

maize   

Agrisilvicultural systems: taungya        
S Lao PDR[25] Teak (Tectona 

grandis) 

    upland 

rice 

(Oryza 

sativa) 

  

          
L Nigeria[40] Teak, sapele 

(Entandro-phragma 

cylindricum), 

African mahogany 

(Khaya ivorensis), 

bibolo (Lovoa 

trichilioides) 

    X   
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S / L Ghana[41-43]  Teak, Cedrela 

(Cedrela odorata),  

Eucalypts, Cassia 

(Cassia siamea), 

Wawa (Triplochiton 

scleroxylon), Ofram 

/ fraké (Terminalia 

superba), Emira / 

framiré (Terminalia 

ivorensis), 

Mansonia 

(Mansonia 

altissima),  African 

mahogany, 

mahogany (Khaya 

anthotheca), and 

Edinam (Entandro-

phragma angolense) 

    cassava, 

plantain 

(Musa 

AAB), 

maize 

pepper, okra,  

tomatoes, 

cabbage 

 

L Thailand[44] teak, Eucalyptus 

camaldulensis,  

chinaberry (Melia 

azedarach) 

    upland 

rice, 

maize, 

sorghum 

  

S /L Indonesia[26,27] teak     X   

L India[45,46] sal (Shorea robusta)       cotton, 

jute 

L Shamba, 

Kenya[47-49] 

cypress (Cupressus 

lusitanica), pines 

(Pinus patula, P. 

radiata), 

Eucalyptus, 

Araucaria, Acacia 

  robusta 

coffee,  

cashew 

 maize, 

potatoes, 

peas 

  

Agrisilvicultural systems: long-term        



S Indonesia[28-

30] 

damar (Shorea 

javanica) 

 durian (Durio 

zibethinus), 

rambutan 

(Nephelium 

lappaceum) 

coffee    black 

pepper, 

Piper 

nigrum 

Shade Commodities         

S Indonesia[50-

52] 
 X rambutan, stink 

beans (Parkia 

speciosa), 

kerdas beans 

(Archidendron 

bubalinum) 

rubber 

(Hevea 

brasiliensis), 

   palms 

          

S N Thailand[53]  remnant 

forest 

trees 

 tea, 

(Camellia) 
    

S Ghana, S 

Cameroon[54-

57] 

X X  cacao, safou 

(Dacryodes 

edulis) 

X    

S Brazil, 

particularly 

Bahia1[58,59] 

Caesalpinia 

echinata 

X Spondias 

mombin 

cabruca 

systems: 

cacao, 

rubber 

Erythrina 

sp., Inga sp. 
   

S Venezuela 

[60,61] 
   cacao, 

arabica 

coffee 

X X   

S Costa Rica[62]  X X arabica 

coffee 
   palms 



 



 Control habitat present Biodiversity difference Relationship biodiversity and 

productivity 

System type N Only 

forest 

Only 

agr. 

Both N* Lower than 

forest 

Higher 

than agr. 

N Positive Negative 

Shifting cultivation 42 23 3 8 - - - 0 0 0 

Homegarden 18 3 0 2 0 0 0 1 0 0 

Agrisilviculture  8 2 0 1 0 0 0 1 1 0 

Shade commodities  78 36 3 6 14 8 6 4 0 1 

Other 9 3 0 0 2 2 0 0 0 0 

Total 155 74 8 24 16 10 6 6 1 1 

N = number of tests with relevant data; *) studies on fallows in shifting cultivation systems were excluded from this comparison. 
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#
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s

t

e
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+ve 8 1 0 0 0 0 

 -ve 0 0 0 0 1 0 

 ns 17 0 1 1 0 1 

Key: ns = not significant, +ve = significantly positive at P <0.05; -ve significantly negative at P<0.05; E = Ecuador, 

CC = central Cameroon, SI = Sulawesi, Indonesia, AB = Atlantic Brazil. *high (6 y-1) or low (2 y-1) frequency. 

 



Reference Region Taxa 

Shade 

level 

Distance to 

forest  

[137] Sulawesi, Indonesia Bees -  -ve 

[137] Sulawesi, Indonesia Wasps -  -ve 

[137] Sulawesi, Indonesia Parasitoids of bees & wasps -  -ve 

[138] Ecuador Ants ns - 

[139] Chiapas, Mexico Bats ns - 

[140] El Salvador Trees >2 m height  +ve ns 

 

Key: ns = not significant, +ve significantly positive at P <0.05; -ve significantly negative at P <0.05. 
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Taxon Sig. Not sig. Refs   

Vertebrates 1* 4§ [143-145, 

146y] 

  

Trees 2 6 [146-153]   

Invertebrates 2** 1§§ [100,148,154]   

All plants 4 3 [90,151,155-

159] 

  

Totals 9 14    

 

*) Birds; §) Bats, frogs & lizards, small mammals, forest birds; ycompares all birds with forest birds**)Beetles, 

butterflies, §§) Ants. 
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[160] Lao PDR HF juvenile trees  7-10 - ns - - - - - - 

             

[161] Belize sDF all plants  1 - 10 ns - - - - - ns - 

             

[156] 

Madagasca

r 
HF  tree seedlings  1-35 ns  -ve - - - ns ns - 

  
 saplings  1-35 ns  -ve - - - ns ns - 

   
shrubs  1-35 ns ns - - - ns  -ve - 

   
 herbs  1-35  +ve ns - - - ns ns - 

   
 adult trees  1-35 ns ns - - - ns ns - 

             

[162] 

Madagasca

r 
HF all plants  1-5 

 
- ns - ns - - - 

  
all plants  6 -10 +ve* - ns -  -ve - - - 

   
all plants  11-29 

 
- ns -  -ve - - - 
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 [163] 
Amazonia, 

Brazil 
HF 

trees, shrubs, palms,  

lianas 
5 - ns - ns - - -  +ve 

             
[164] 

Madagasca

r 
HF topsoil seedbank  1- 26  +ve - ns -  -ve - - - 

             
[143] S E Mexico HF bats 3,8 ns - - - - - ns - 

             

 [148] 
Sarawak, 

Malaysia 
HF butterflies 

1,     

5-13, 

20-60 

 +ve - - - - -  -ve - 

     
        

             
   

Sums, by factors tested  +ve  4 0 0 0 0 0 0 1 

    
 -ve 0 2 0 0 3 0 2 0 

    
ns 6 5 4 1 1 5 6 0 

             

 

 

 

Key: *Significant between 1-5 and 6-10y fallows but not significant between 6-10 and 11-29 y fallows; ns not significant, +ve significant at P<0.05 and 

positively associated; -ve significant at P<0.05 and negatively associated; HF humid forest; sDF seasonally dry forest, - not tested. xrefers to a no-tillage versus 

“heavy” tillage comparison. 

 

  



 


